
Algorithms for the Constrained Longest Common

Subsequence Problems

Abdullah N. Arslan1 and Ömer Eğecioğlu2∗

1 Department of Computer Science
University of Vermont

Burlington, VT 05405, USA
e-mail: aarslan@cs.uvm.edu

2 Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106, USA
e-mail: omer@cs.ucsb.edu

Abstract. Given strings S1, S2, and P , the constrained longest common sub-
sequence problem for S1 and S2 with respect to P is to find a longest common
subsequence lcs of S1 and S2 such that P is a subsequence of this lcs. We
present an algorithm which improves the time complexity of the problem from
the previously known O(rn2m2) to O(rnm) where r, n, and m are the lengths
of P, S1, and S2, respectively. As a generalization of this, we extend the defi-
nition of the problem so that the lcs sought contains a subsequence whose edit
distance from P is less than a given parameter d. For the latter problem, we
propose an algorithm whose time complexity is O(drnm).

Keywords: Longest common subsequence, constrained subsequence, edit dis-
tance, dynamic programming.

1 Introduction

A subsequence of a string S is obtained by deleting zero or more symbols of S.
The longest common subsequence (lcs) problem for two strings is to find a common
subsequence in both strings having maximum possible length. The lcs problem has
many applications, and it has been studied extensively, see for example [1, 4, 2, 3, 5, 7].
The problem has a simple dynamic programming formulation. To compute an lcs
between two strings of lengths n, and m, we use the edit graph. The edit graph is a
directed acyclic graph having (n + 1)(m + 1) lattice points (i, j) for 0 ≤ i ≤ n, and
0 ≤ j ≤ m as vertices. Vertex (0, 0) appears at the top-left corner, and the vertex
(n, m) is at the bottom-right corner of this rectangular grid. To vertex (i, j) there
are incoming arcs from its neighbors at (i − 1, j), (i, j − 1), and (i − 1, j − 1) which
represent, respectively, insert, delete, and either substitute or match operations. The
lcs calculation counts the number of matches on the paths from vertex (0, 0) to (n, m),
and the problem aims to maximize this number. The time complexity lower bound

∗Work done in part while on sabbatical at Sabanci University, Istanbul, Turkey during 2003-2004.

24

Algorithms for the Constrained Longest Common Subsequence Problems

for the problem is Ω(n2) for n ≥ m if the elementary operations are “equal/unequal”,
and the alphabet size is unrestricted [1]. If the alphabet is fixed the best known time
complexity is O(n2/ log n) when n = m [5]. A survey of practical lcs algorithms can
be found in [2].

Given strings S1, S2, and P , the constrained longest common subsequence problem
[6] for S1 and S2 with respect to P is to find a longest common subsequence lcs of S1

and S2 such that P is a subsequence of this lcs. For example, for S1 = bbaba, and
S2 = abbaa, bbaa is an (unrestricted) lcs for S1 and S2, and aba is an lcs for S1 and
S2 with respect to P = ab, as shown in Figure 1.

S 1 = b b a b a S 1 = b b a b a

S 2 = a b b a a P = a b2 = a b b a aS

Figure 1: For S1 = bbaba, and S2 = abbaa, the length of an lcs is 4 (left). When
constrained to contain P = ab as a subsequence, the length of an lcs drops to 3
(right).

The problem is motivated by practical applications: For example in the computa-
tion of the homology of two biological sequences it is important to take into account
a common specific or putative structure [6].

Let n, m, r denote the lengths of the strings S1, S2, and P , respectively. Tsai
[6] gave a dynamic programming formulation for the constrained longest common
subsequence problem and a resulting algorithm whose time complexity is O(rn2m2).
In this paper we present a different dynamic programming formulation with which we
improve the time complexity of the problem down to O(rnm). We achieve improved
results by changing the order of the dimensions in the formulation. We also extend
the definition of the problem so that the lcs sought is forced to contain a subsequence
whose edit distance from P is less than a given positive integer parameter d. For this
latter problem we propose an algorithm whose time complexity is O(drnm). Taking
d = 1 specializes to the original constrained lcs problem as this choice of d forces the
subsequence to contain P itself. We describe these results in section 2.

2 Algorithms

Let |S1| = n, |S2| = m with n ≥ m, and |P | = r. Let S[i] denote the ith symbol of
string S. Let S[i..j] = S[i]S[i + 1] · · ·S[j] be the substring of consecutive letters in S
from position i to position j inclusive for i ≤ j, and the empty string otherwise.

Denote by Li,j,k the length of an lcs for S1[1..i] and S2[1..j] with respect to P [1..k].
This simply means that the common subsequence is constrained to contain P as
a subsequence in turn. We calculate the values Li,j,k by a dynamic programming
formulation. Then Ln,m,r is the length of an lcs of S1 and S2 containing P as a
subsequence.

Theorem 1 For all i, j, k, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ r, Li,j,k satisfies

Li,j,k = max{L′
i,j,k, Li,j−1,k, Li−1,j,k} (1)

25

Proceedings of the Prague Stringology Conference ’04

where
L′

i,j,k = max{L′′
i,j,k, L′′′

i,j,k} (2)

and

L′′
i,j,k =

{

1 + Li−1,j−1,k−1 if (k = 1 or (k > 1 and Li−1,j−1,k−1 > 0))
and S1[i] = S2[j] = P [k]

0 otherwise

L′′′
i,j,k =

{

1 + Li−1,j−1,k if (k = 0 or Li−1,j−1,k > 0) and S1[i] = S2[j]
0 otherwise

with boundary conditions Li,0,k = 0, L0,j,k = 0, for all i, j, k, 0 ≤ i ≤ n, 0 ≤ j ≤ m,
0 ≤ k ≤ r.

Proof We prove the correctness of our formulation by induction on k for all i, j.
We will consider all possible ways of obtaining an lcs with respect to P [1..k] at

any node i, j. Essentially there are three cases to consider:

1. An lcs ending at the node (i, j − 1) is extended with the horizontal arc ((i, j −
1), (i, j)) ending at node (i, j),

2. An lcs ending at (i − 1, j) is extended with the vertical arc ((i − 1, j), (i, j))
ending at node (i, j),

3. An lcs ending at node (i−1, j−1) is extended with the diagonal arc ((i−1, j−
1), (i, j)) ending at node (i, j). In this case we distinguish between subcases
depending on whether the diagonal arc is a matching for the given strings along
with the pattern, or is a matching for the given strings only at the current
indices.

The possible lcs extensions referred to in items 1 and 2 above are accounted for by
Li,j−1,k and Li−1,j,k respectively in the statement of the theorem. The quantities L′′

i,j,k

and L′′′
i,j,k in the statement of the theorem keep track of the two further possibilities

described in item 3.
In the base case: when k = 0 (i.e. when P is the empty string) L′′

i,j,k is identically
0. Therefore L′

i,j,k = L′′′
i,j,k in (2). Since k = 0, the conjunction in the definition of

L′′′
i,j,k is always satisfied. We see that putting Li,j = Li,j,0, (1) becomes

Li,j = max{L′
i,j, Li,j−1, Li−1,j}

where

L′
i,j =

{

1 + Li−1,j−1 if S1[i] = S2[j]
0 otherwise

which is the classical dynamic programming formulation for the ordinary lcs between
S1 and S2 [7].

Assume that for k − 1 (k ≥ 1), Li,j,k−1 computed by (1) is the length of an lcs for
S1[1..i] and S2[1..j] with respect to P [1..k− 1] for all i, j and consider the calculation
of Li,j,k when k > 1.

We define a path at node (i, j) as a simple path in the edit graph which includes
at least one matching arc, starts at node (0, 0), and ends at node (i, j). A path with

26

Algorithms for the Constrained Longest Common Subsequence Problems

respect to P [1..k] includes matching diagonal arcs ending at a sequence of k ≥ 1
distinct nodes (a1, b1), (a2, b2), . . . , (ak, bk) such that for all ℓ, 1 ≤ ℓ ≤ k, S1[aℓ] =
S2[bℓ] = P [ℓ]. We define #match on a path as the number of matches between the
symbols of S1, and S2, not necessarily involving symbols in P . An lcs path with
respect to P [1..k] ending at node (i, j) is a path with respect to P [1..k] ending at
node (i, j) with maximum #match. Thus Li,j,k is #match on an lcs path at node
(i, j) with respect to P [1..k]. Evidently #match = #match(i, j, k) is a function of the
indices i, j, k. We will omit these parameters when they are clear from the context.

We can extend any lcs path with respect to P [1..k] ending at node (i, j − 1)
with the horizontal arc ((i, j − 1), (i, j)) to obtain a path with respect to P [1..k]
ending at node (i, j). Such an extension does not change #match on the path, and
Li,j,k ≥ Li,j−1,k.

Similarly we can extend any lcs path with respect to P [1..k] ending at node
(i − 1, j) with the vertical arc ((i − 1, j), (i, j)) to obtain a path with respect to
P [1..k] ending at node (i, j). This extension does not change #match on the path
either, and Li,j,k ≥ Li−1,j,k. Therefore, Li,j,k ≥ max{Li,j−1,k, Li−1,j,k}.

By using a matching arc ((i−1, j−1), (i, j)), we can obtain paths with respect to
P [1..k] at node (i, j) by extending lcs paths with either respect to P [1..k−1], or with
respect to P [1..k] ending at node (i− 1, j − 1). These two possibilities are accounted
for by L′′

i,j,k and L′′′
i,j,k in the dynamic programming formulation, respectively.

First consider lcs paths with respect to P [1..k − 1] ending at node (i − 1, j − 1).
We will show that L′′

i,j,k stores the maximum #match on paths obtained at node (i, j)
by extending these paths.

If S1[i] = S2[j] = P [k] then: If k = 1 then this is the first time the letter P [1]
appears as a matching arc on a path ending at node (i, j) since we are considering lcs
paths with respect to P [1..k−1] ending at node (i−1, j−1) and S1[i] = S2[j] = P [1].
Therefore, the lcs length relative to P [1] at (i, j) is L′′

i,j,1 = 1+Li−1,j−1,0, which is one
more than the length of an ordinary lcs between S1[1..i− 1] and S2[1..j − 1]. If k > 1
and if there is an lcs path with respect to P [1..k−1] ending at node (i−1, j−1) (i.e.
if Li−1,j−1,k−1 > 0) then we can extend this path with a new match, and #match in
the resulting path ending at node (i, j) becomes L′′

i,j,k = 1 + Li−1,j−1,k−1.

Next we consider lcs paths with respect to P [1..k] ending at node (i − 1, j − 1).
We will show that L′′′

i,j,k stores the maximum #match on paths obtained at node (i, j)
by extending these paths.

If S1[i] = S2[j] then: Since the k = 0 case is considered earlier in the base case
of the induction, we only consider the case when k > 1. If there is an lcs path with
respect to P [1..k] ending at node (i−1, j−1) (i.e. if Li−1,j−1,k > 0) then we can extend
this path by adding a new match (which does not involve P), and #match in the
resulting path relative to P [1..k] ending at node (i, j) becomes L′′′

i,j,k = 1 + Li−1,j−1,k.
After setting L′

i,j,k = max{L′′
i,j,k, L′′′

i,j,k}, the quantity L′
i,j,k is equal to the max-

imum #match on paths with respect to P [1..k] ending at node (i, j) ending with
the arc ((i − 1, j − 1), (i, j)). If there is no such path then L′

i,j,k = 0. Therefore
Li,j,k ≥ max{L′

i,j,k, Li,j−1,k, Li−1,j,k}.

From all possible lcs paths ending at neighboring nodes of (i, j) we can find their
extensions ending at node (i, j), and we can obtain an lcs path ending at node (i, j)
with respect to P [1..k] for all k. We calculate, and store in Li,j,k such lcs lengths. Now
consider the structure of an lcs path with respect to P [1..k] ending at node (i, j). As

27

Proceedings of the Prague Stringology Conference ’04

b b a b a
a 0 0 1 1 1
b 1 1 1 2 2
b 1 2 2 2 2
a 1 2 3 3 3
a 1 2 3 3 4

b b a b a
a 0 0 1 1 1
b 0 0 1 2 2
b 0 0 1 2 2
a 0 0 3 3 3
a 0 0 3 3 4

b b a b a
a 0 0 0 0 0
b 0 0 0 2 2
b 0 0 0 2 2
a 0 0 0 2 3
a 0 0 0 2 3

k = 0 k = 1 k = 2

Figure 2: For S1 = abbaa, S2 = bbaba, and P = ab, the tables of values Li,j,k = the
length of an lcs for S1[1..i] and S2[1..j] with respect to P [1..k].

typical in dynamic programming formulations, we consider the possible cases of the
last arc on such a path to obtain Li,j,k ≤ max{L′

i,j,k, Li,j−1,k, Li−1,j,k} which proves
the theorem. •

Example: Figure 2 shows the contents of the dynamic programming tables for S1 =
bbaba, and S2 = abbaa, and P = ab for k = 0, 1, 2. For k = 0, the calculated values
are simply the ordinary dynamic programming lcs table for S1 and S2.

All Li,j,k can be computed in O(rnm) time, using O(rm) space using the formula-
tion in Theorem 1 by noting that we only need rows i−1, and i during the calculations
at row i. If actual lcs is desired then we can carry the lcs information for each k along
with the calculations. This requires O(rnm) space. By keeping track, on lcs for each
k, of only the match points (i′, j′) of P [u] for all u, 1 ≤ u ≤ r, the space complexity
can be reduced to O(r2m). In this case, the lcs for k = r needs to be recovered using
ordinary lcs computations to connect the consecutive match points.
Remark: Space complexity can further be improved by applying a technique used in
unconstrained lcs computation [3]. We can compute, instead of the entire lcs for each
k, middle vertex (n/2, j) (assume for simplicity that n is even) at which an lcs with
respect to P [1..k] passes. This can be done in O(rm) space, and we can compute for
all k the lcs length Ln/2,j,k from vertex (0, 0) to vertex (n/2, j), and lcs length from
(n/2, j) to (n, m). The latter is done in the reverse edit graph by calculating lcs from
(n, m) to (n/2, j), hence we denote it by Lreverse

n/2,j,l for 0 ≤ ℓ ≤ k. Then for every k,

max
j,0≤ℓ≤k

Ln/2,j,l + Lreverse
n/2,j,k−l

is the lcs length for k, and it identifies a middle vertex. After the middle vertex
(n/2, j) on lcs for every k is found, the problem of finding the lcs from (0, 0) to
(n, m) can be solved in two parts: find the lcs from (0, 0) to (n/2, j), and find the
lcs from (n/2, j) to (n, m) for all k. These two subproblems can be solved recursively
by finding the middle points. This way lcs can be obtained using O(rm) space. The
time complexity remains O(rnm) because n is halved each time, and the area (in
terms of number of vertices) covered in the edit graph is O(nm), and at each vertex
the total time spent is O(r).

Next we propose a generalization of the constrained longest common subsequence
problem. Given strings S1, S2, and P , and a positive integer d the edit distance

28

Algorithms for the Constrained Longest Common Subsequence Problems

constrained longest common subsequence problem for S1 and S2 with respect to string
P , and distance d is to find a longest common subsequence lcs of S1 and S2 such that
this lcs has a subsequence whose edit distance from P is smaller than d. Edit distance
between two strings is the minimum number of edit operations required to transform
one string to the other. The edit operations are insert, delete, and substitute.

Let Li,j,k,t be the length of an lcs for S1[1..i] and S2[1..j] such that the common
subsequence contains a subsequence whose edit distance from P [1..k] is exactly t.

Example: Suppose S1 = bbaba, S2 = abbaa and P = ab. We have calculated
before that the length of an lcs for S1 and S2 relative to P is 3. Thus L5,5,2,0 = 3. On
the other hand the lcs bbaa of S1 and S2 contains the subsequence a, which is edit
distance 1 away from P . Therefore L5,5,2,1 = 4.

We calculate all Li,j,k,t by a dynamic programming formulation. Optimal value of
the edit distance constrained lcs problem is max

0≤t<d
Ln,m,r,t.

Theorem 2 For all i, j, k, t, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ r, 0 ≤ t < d, Li,j,k,t

satisfies

Li,j,k,t = max{L′
i,j,k,t, Li,j−1,k,t, Li−1,j,k,t} (3)

where

L′
i,j,k,t = max{L′′

i,j,k,t, L′′′
i,j,k,t, L′′′′

i,j,k,t} (4)

where

L′′
i,j,k,t =



















1 + Li−1,j−1,k−1,t if ((k = 1 and t = 0) or
(k > 1 and Li−1,j−1,k−1,t > 0))

and S1[i] = S2[j] = P [k]

0 otherwise

L′′′
i,j,k,t =











1 + Li−1,j−1,0,0 if (k = 0 and t = 1) and S1[i] = S2[j]
1 + Li−1,j−1,k,t else if (k = 0 or Li−1,j−1,k,t > 0)

and S1[i] = S2[j]
0 otherwise

L′′′′
i,j,k,t = max{Di,j,k,t, Xi,j,k,t, Ii,j,k,t} (5)

where

Di,j,k,t =
{

Li,j,k−1,t−1 if t ≥ 1
0 otherwise

Xi,j,k,t =
{

Li,j,k−1,t−1 if t ≥ 1 and S1[i] = S2[j]
0 otherwise

Ii,j,k,t =
{

Li,j,k,t−1 if t ≥ 1 and S1[i] = S2[j]
0 otherwise

with boundary conditions Li,0,k,0 = 0, L0,j,k,0 = 0, for all i, j, k, 0 ≤ i ≤ n, 0 ≤ j ≤ m,
0 ≤ k ≤ r.

29

Proceedings of the Prague Stringology Conference ’04

Proof We claim that Li,j,k,t is the optimum length for any lcs for S1[1..i] and S2[1..j]
such that the lcs contains a subsequence whose edit distance is t from P [1..k]. We
prove the correctness of our formulation by induction on t for all i, j, k.

In the base case: when t = 0 the formulation becomes the same formulation as
in Theorem 1, since now the lcs is required to contain P itself as a subsequence.
Therefore, the correctness of this case follows from Theorem 1.

Assume that for t − 1 (t ≥ 1), for all i, j, k, Li,j,k,t−1 is the optimum length for
any lcs for S1[1..i] and S2[1..j] such that the lcs contains a subsequence whose edit
distance is t from P [1..k]. Consider the calculation of Li,j,k,t for all i, j, k when t > 1.

Our formulation uses the following observation: Let cs be a subsequence of an
lcs of S1 and S2. The minimum edit distance between cs and P can be calculated
using insert, delete, and substitute operations in P , and using no operations in cs.
To see this consider the edit operations between the symbols in cs, and in P . If an
edit distance calculation deletes a symbol s in cs, we can instead insert the symbol s
in P ; if a minimum edit distance calculation inserts a symbol s in cs, we can instead
delete the symbol s in P ; and if a minimum edit distance calculation substitutes a
symbol s′ for s in cs, we can instead substitute a symbol s for s′ in P to obtain the
same edit distance.

We define an edit path at node (i, j) at distance t from P [1..k] as a simple
path from node (0, 0) to node (i, j), which includes a sequence of l ≥ 1 distinct
nodes (a1, b1), (a2, b2), · · · , (al, bl) such that the edit distance between the string
S1[a1]S2[a2] . . . S1[al] (= S2[b1] S2[b2] . . . S2[bl]), and P [1..k] is exactly t. We define
#match on a given edit path to node (i, j) as the number of matching diagonal arcs
on the path between the symbols in S1[1..i], and the symbols in S2[1..j], not nec-
essarily involving matches in P . An optimal edit path at node (i, j) at distance t
from P [1..k] is an edit path at node (i, j) at distance t from P [1..k] with maximum
#match. Thus Li,j,k,t is #match on an optimal edit path at node (i, j) at distance
t from P [1..k]. In this case, #match = #match(i, j, k, t) is a function of the indices
i, j, k, t, but we omit these parameters when they are clear from the context.

We can extend any optimal edit path at node (i, j − 1) at distance t from P [1..k]
with the horizontal arc ((i, j−1), (i, j)) to obtain an edit path at node (i, j) at distance
t from P [1..k]. Such an extension does not change #match on the resulting edit path,
and Li,j,k,t ≥ Li,j−1,k,t.

Similarly we can extend any optimal edit path at node (i−1, j) at distance t from
P [1..k] with the vertical arc ((i − 1, j), (i, j)) to obtain an edit path at node (i, j) at
distance t from P [1..k]. This extension does not change #match on the resulting edit
path, and Li,j,k,t ≥ Li−1,j,k,t. Therefore, Li,j,k,t ≥ max{Li,j−1,k,t, Li−1,j,k,t}.

By using a matching arc ((i − 1, j − 1), (i, j)), we can obtain edit paths at node
(i, j) at distance t from P [1..k] by extending optimal edit paths at node (i− 1, j − 1)
at distance t − 1, or t from P [1..k − 1], or P [1..k].

First consider optimal edit paths at node (i−1, j−1) at distance t from P [1..k−1].
We will show that L′′

i,j,k,t stores the maximum #match obtained at node (i, j) by
extending these edit paths.

If S1[i] = S2[j] = P [k] then: We do not need to consider the case when k = 1
and t = 0 since t = 0 case is considered in the base case of the induction. If k > 1
and if there is an optimal edit path at node (i, j) at distance t from P [1..k] (i.e. if

30

Algorithms for the Constrained Longest Common Subsequence Problems

Li−1,j−1,k−1,t > 0) then we can extend this edit path with a new match, and #match
on the resulting edit path at node (i, j) at distance t from P [1..k] becomes L′′

i,j,k,t =
1 + Li−1,j−1,k−1,t.

Next we consider optimal edit paths at node (i − 1, j − 1) at distance t from
P [1..k]. We will show that L′′′

i,j,k,t stores the maximum #match obtained at node
(i, j) by extending these edit paths.

If S1[i] = S2[j] then: If k = 0 and t = 1 then: We can extend an lcs path ending
at node (i−1, j−1) with respect to P [1..k] with a match. In this case, #match in the
resulting edit path is one more than Li−1,j−1,0,0. Therefore, L′′′

i,j,0,1 = 1 + Li−1,j−1,0,0.
Otherwise if k = 0 then we can extend an optimal edit path at node (i − 1, j − 1)
at distance t from P [1..k] with a match, and #match on the resulting edit path is
L′′′

i,j,k,t = 1 + Li−1,j−1,k,t.
Any edit path at node (i, j) at distance t − 1 from P [1..k − 1], or P [1..k] can be

modified by applying an edit operation in P . We can modify an edit path at node
(i, j) at distance t − 1 from P [1..k − 1] by deleting P [k]. Then on the resulting edit
path #match remains the same, and the distance increases by 1. Therefore, we set
Di,j,k,t = Li,j,k−1,t−1, and take it into account in L′′′′

i,j,k,t. We can modify an edit path
at node (i, j) at distance t − 1 from P [1..k − 1] by substituting S1[i] = S2[j] for
P [k]. Then on the resulting edit path #match remains the same, and the distance
increases by 1. Therefore, we set Xi,j,k,t = Li,j,k−1,t−1 if S1[i] = S2[j], and take it into
account in L′′′′

i,j,k,t. We can also modify an edit path at node (i, j) at distance t − 1
from P [1..k] by inserting S1[i] = S2[j] in P after position k. Then on the resulting
edit path #match remains the same, and the distance increases by 1. Therefore, we
set Ii,j,k,t = Li,j,k,t−1 if S1[i] = S2[j], and take it into account in L′′′′

i,j,k,t. Combining all
these L′′′′

i,j,k,t = max{Di,j,k,t, Xi,j,k,t, Ii,j,k,t}.
After setting L′

i,j,k,t = max{L′′
i,j,k,t, L′′′

i,j,k,t, L′′′′
i,j,k,t}, L′

i,j,k,t stores the maximum
#match on edit paths at node (i, j) at distance t from P [1..k] whose last arc is
((i − 1, j − 1), (i, j)). If there is no such edit path then L′

i,j,k,t = 0.
From all possible optimal edit paths at neighboring nodes of (i, j) we can obtain

their extensions ending at node (i, j), and we can find an optimal edit path at node
(i, j) at distance t from P [1..k] for all k, t. We calculate, and store in Li,j,k,t maximum
#match in such optimal edit paths. Considering the possible cases of the last arc on
an optimal edit path at node (i, j) at distance t from P [1..k] we also have Li,j,k,t ≤
max{L′

i,j,k,t, Li,j−1,k,t, Li−1,j,k,t}. This concludes the proof of the theorem. •

All Ln,m,r,t for t = 0, 1, · · · , d − 1 can be computed in O(drnm) time, and using
O(drm) space using the formulation in Theorem 2 by noting that we only need rows
i − 1, and i during the calculations at row i. If an actual optimal edit path is
desired then we can carry the edit path information for every k and t along with the
calculations. This requires O(drnm) space since edit paths can be of length O(n).

If we store match points (where the symbols of S1, S2, and P match) on these edit
paths then we can reduce the required space to O(dr2m). In this case, the optimal
edit path of the problem needs to be recovered using ordinary lcs computations to
connect the consecutive match points.
Remark: Space complexity can further be improved by using the technique we used
in our first algorithm. We can compute, instead of the entire edit path for each k,
and t, a middle vertex (n/2, j) (assume for simplicity that n is even) at which an edit
path at distance t from P [1..k] passes. This can be done in O(drm) space, and we

31

Proceedings of the Prague Stringology Conference ’04

can compute for all k, and t, #match Ln/2,j,l,u on optimal edit path from vertex (0, 0)
to vertex (n/2, j), and #match on optimal edit path from (n/2, j) to (n, m) where
0 ≤ ℓ ≤ k, and 0 ≤ u ≤ t. The latter, denoted by Lreverse

n/2,j,k−l,t−u, can be calculated in
the reverse edit graph. Then for all k, t,

max
j,0≤ℓ≤k,0≤u≤t

Ln/2,j,l,u + Lreverse
n/2,j,k−l,t−u

is the optimum #match for k, t, and it identifies a middle vertex. After the middle
vertex (n/2, j) on optimal edit path for every k, t is found, the problem of finding an
optimal edit path from (0, 0) to (n, m) can be solved in two parts: find an optimal
edit path from (0, 0) to (n/2, j), and find and optimal edit path from (n/2, j) to
(n, m) for all k, t. These two subproblems can be solved recursively. As a results an
optimal edit path can be obtained using O(drm) space. The time complexity remains
O(rnm) because n is halved each time, and the area (in terms of number of vertices)
covered in the edit graph is O(nm), and at each vertex the total time spent is O(dr).

3 Conclusion

We have improved the time complexity of the constrained lcs problem from O(rn2m2)
to O(rnm) where n, and m are the lengths of the given strings, and r is the pattern
length. This improvement is achieved by a dynamic programming formulation which
is different from what was proposed in [6]. In our formulation, the dimensions are
ordered differently. We also extended the problem definition to use edit distances,
and presented an O(drnm) time algorithm for the resulting edit distance constrained
lcs problem.

References

[1] A.V. Aho, D.S. Hirschberg, and J.D. Ullman. Bounds on the complexity of the
longest common subsequence problem. J. ACM, 23(1):1–12, 1976.

[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. SPIRE, A Coruna, Spain, pp. 39–48, 2000.

[3] D.S. Hirschberg. A linear space algorithm for computing maximal common sub-
sequences. Communications of ACM, 18:341–343, 1975.

[4] D.S. Hirschberg. Algorithms for the longest common subsequence problem. J.
ACM, 24:664–675, 1977.

[5] W.J. Masek and M.S. Paterson. A faster algorithm computing string edit dis-
tances. J. Comput. System Sci., 20:18–31, 1980.

[6] Yin-Te Tsai. The constrained common sequence problem. Information Processing
Letters, 88:173–176, 2003.

[7] R.A. Wagner and M.J. Fisher. The string-to-string correction problem. J. ACM,
21:168–173, 1974.

32

