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Abstract. We review some pattern matching algorithms and techniques moti-
vated by the discrete theory of image processing.

The problem inspiring this research is that of searching an aerial photograph
for all appearances of some object.

The issues we discuss are digitization, local errors, rotation and scaling.
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1 Motivation

String Matching is one of the most widely studied problems in computer science [35].
Part of its appeal is in its direct applicability to “real world” problems. Some variation
of the Boyer-Moore [21] algorithm is directly implemented in the search command of
practically all text editors. The longest common subsequence dynamic programming
algorithm [22] is implemented in the UNIX “diff” command. The largest overlap
heuristic for finding the shortest common superstring [46] is used in DNA sequencing.
In this respect string matching is somewhat of an anomaly in theoretical computer
science. Theoretical algorithms can not often be used as “off-the-shelf” solutions for
practical problems.

We consider one of the important roles of theoretical computer science, that of pro-
viding an algorithmic theory for various application domains. Usually that process
starts with abstracting the practical problem into several “pure form” combinatorial
problems. It is hoped that understanding the solution of these problems will aid in
an efficient solution of the original application. In this paper we review some of the
algorithms and techniques that were motivated by image processing. Covering all
aspects of the problem is clearly a mammoth undertaking. We concentrate on serial
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deterministic algorithms. The reader should be aware that there is also a wide body
of work on probabilistic, randomized, and parallel approaches to the problem.

The main practical motivation for this survey is the problem of searching aerial

photographs. The (ambitious) practical goal of this application is to input an aerial
photograph and a template of some object (a pattern). The output is all locations
on the aerial photograph where the template object appears. In reality we need to
grapple with several problems:

1. Local errors. These may arise from atmospheric distortions, transmission noise,
level of detail, the digitization process, or occlusion of pattern parts by other
objects.

2. Scaling. The size of the object in the input aerial photo may differ from that
in the template.

3. Rotation. The object may be facing different directions in the aerial photograph
and in the template.

There are other issues of interest in two dimensional matching. Among them are:

Compressed Matching: Digitized images are known to be extremely space con-
suming. However, regularities in the images can be exploited to reduce the necessary
storage area. Thus we find that many systems store images in a compressed form
(e.g. jpeg). If searching for appearances of a pattern in an image can be done with-
out decompressing then compression becomes a time saving tool in addition to its
being a space saving device. We will not delve into compression issues in this pa-
per, although many of the techniques mentioned here have been used in compressed
matching algorithms.

Dictionary Matching: The aerial photograph model we described is by no means
the only possible vision paradigm. While it may be important to find an object in a
given image, biological vision is somewhat an “inverse” of that process. Rather than
searching for a small template in a large image, we have in our minds a tremendous
database of objects we have seen (or imagined). When presented with an image we
recognize it with amazing speed. Thus it is interesting to come up with efficient
algorithms for quickly recognizing objects from a preprocessed dictionary, in a given
image. As in the case of compressed matching, we will not have the opportunity to
say much of this exciting area of research, although here too many algorithms use
techniques that will be addressed herein.

For ease of perusal we enclose a table of contents for this paper:

1. Motivation

2. Exact Two Dimensional Matching

2.1 Linear Reductions

2.1.1 Automata Methods

2.1.2 Suffix Tree Methods

2.2 Convolutions

2.3 Periodicity Analysis
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2.3.1 Two Dimensional Periodicity

2.3.2 The Dueling Method

3. Approximate Matching of Rectangular Patterns

4. Approximate Matching of Nonrectangular Patterns

4.1 Mismatches

4.2 Mismatches, Insertions and Deletions

5. Scaled Matching

6. The Geometric Model

6.1 Scaling

6.2 Rotation

7. Conclusions and Open Problems

2 Exact Matching

The most restrictive possible abstraction of the aerial photograph problem is that of
seeking an exact matching of the pattern in the image, where both pattern and image
are rectangles. Throughout this paper we define our problems in terms of squares
rather than rectangles. In almost all cases the reason is simply for convenience of
notation, and the results directly generalize. We explicitly mention those results that
only apply to squares.

The Exact Two Dimensional Matching Problem is defined as follows: Let Σ be an
alphabet. INPUT: Text array T [n × n] and pattern array P [m × m]. OUTPUT: All
locations [i, j] in T where there is an occurrence of the pattern, i.e. T [i + k, j + l] =
P [k + 1, l + 1] 0 ≤ k, l ≤ n − 1.

2.1 Linear Reductions

A natural way of solving any generalized problem is by reducing it to a special case
whose solution is known. It is not surprising that the early solutions to the two
dimensional exact matching problem use exact string matching algorithms in one
way or another.

The Knuth-Morris-Pratt [39] algorithm basically follows the idea of matching the text
and pattern character by character until a mismatch occurs. Then the pattern is slid
forward for the greatest overlap with the old pattern position, and the comparison
resumes from there. This idea can be generalized in the following way:

Starting from the leftmost column and moving to the right, proceed down the columns
and compare a pattern row with a length-m text subrow starting at the scanned text
location. Proceed in this fashion until a mismatch occurs. Upon a mismatch, slide
the pattern down for the greatest overlap with the old pattern position and resume
comparisons from there.

The idea is obvious, but its straightforward implementation would take time O(n2m),
since this is a basic KMP on the text, but every comparison takes time O(m). It is
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an improvement over the naive O(n2m2) algorithm, but not good enough. What is
needed is a method for quick comparison of a pattern row and a length-m text subrow.
Two solutions are possible.

2.1.1 Automata Methods

Bird [20] and, independently, Baker [18] proposed the following solution. Preprocess
the text and identify all occurrences of all pattern rows. Represent each different row
by a new symbol and place this symbol at the text location where the row occurs. The
problem is now exactly that of string matching, where we are seeking all occurrences
of the string composed of the new symbols in the order that their respective rows
appear in the pattern. The string matching part can be done in time O(n2). The
only question is how to efficiently identify the occurrences of all pattern rows.

This was done by using the Aho and Corasick [2] dictionary matching algorithm. The
Dictionary Matching Problem is the following: Preprocess a dictionary of patterns
{P1 = p11 · · · p1m1

, P2 = p21 · · · p2m2
, ..., Pk = pk1 · · · pkmk

}. Subsequently, for every
INPUT: Text T = t1 · · · tn. OUTPUT: All locations in the text where there is a
match with any dictionary pattern.

Aho and Corasick preprocess the dictionary in time O(
∑k

i=1 mi log |Σ|) and subse-
quently search an input text in time O(n log |Σ| + occ), where occ = number of
patterns that occur in the text. If all patterns are of the same length then only a
single pattern can end at any text location. The time then becomes O(n log |Σ|).
Returning to two dimensional matching. We may view each distinct pattern row as a
separate pattern in a dictionary. The result is a dictionary matching problem where
all dictionary patterns have the same length. Thus the Bird-Baker solution is the
following:

1. Find all occurrences of all pattern rows in the text. Mark the end of each
distinct row’s occurrence with a new special symbol.

2. Scan the text down the columns, from left to right. Run the Knuth-Morris-
Pratt (KMP) algorithm searching for the string composed of the new symbols
representing the distinct pattern rows.

Time: 1. Using Aho and Corasick, O(n2 log |Σ|). 2. O(n2).

Total Time: O(n2 log |Σ|).

2.1.2 Suffix Tree Methods

Recall that our aim is to use the KMP algorithm for solving the exact two dimensional
matching problem. What we seek is a method for constant time comparison of pattern
rows with length-m text subrows (and with each other). Bird and Baker solved this
problem by performing the comparisons in advance. In this section we will see a
method where this comparison can be done while scanning the text.

Definition: Let S = s1 · · · sn be a string. A suffix tree of S is a trie of all suffixes
of S (i.e. {sn, sn−1sn, sn−2sn−1sn, ..., s2s3 · · · sn, s1s2 · · · sn}) where every path of
single outdegree node is compressed to a single node.
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Many different methods for constructing suffix trees and suffix arrays have been de-
veloped [49, 44, 26, 47]. The importance of suffix trees for our purpose is that they
has the following properties: 1) The leaves represent exactly the suffixes of S, and 2)
The lowest common ancestor (LCA) of any two nodes is the longest common prefix
of the strings they represent.

We can thus make the following observation [15]. Let S be a string composed of the
concatenation of all text rows followed by all pattern rows. The following queries are
equivalent:

1. Pattern row Pi0 equals text subrow Ti1j, where j0 ≤ j ≤ j0 + k − 1.

2. The length of the longest common prefix of the suffixes of S starting at Pi0 and
Ti1j1 is at least m.

3. The length of the LCA in S’s suffix tree of the nodes representing the suffixes
that start at Pi0 and Ti1j1 is at least m.

The suffix tree for the concatenation of the text and pattern rows can be constructed
in time O(n2 log log |Σ|). All we need now is a method for finding the lowest common
ancestor of two nodes in a tree in constant time.

It was pointed out by Landau and Vishkin [41], that the Harel and Tarjan [37] al-
gorithm does precisely that. Harel and Tarjan showed that given any n-node tree,
one can preprocess the tree in time O(n) in a manner that allows subsequent LCA
queries in time O(1).

We now have all the components for a different exact two dimensional matching
algorithm [15].

1. Construct the text and pattern suffix tree and preprocess for LCA.

2. Scan the text down the columns, from left to right. Run the KMP algorithm
modified in a way that symbol comparison is replaced by checking if the LCA
length is at least m.

Time: 1. O(n2 log log |Σ|) 2. O(n2).

Total Time: O(n2 log log |Σ|).
It should be stressed that more modern and direct methods for solving this problem
exist, using suffix arrays [38]. Also, other algorithms for computing the LCA in a tree
exist [45, 19, 24].

2.2 Convolutions

Convolutions were officially introduced to the field of pattern matching Fischer and
Paterson [27]. Denote by A ⊗ B the convolution of arrays A and B. A convolution
uses two initial functions, A and B, to produce a third function A⊗B. We formally
define a discrete convolution.

Definition: Let A be a real-valued function whose domain is {0, ..., n} and B a
real-valued function whose domain is {0, ..., m}. We may view A and B as arrays of
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numbers, whose lengths are n + 1 and m + 1, respectively. The discrete convolution
of A and B is the polynomial multiplication

A ⊗ B[j] =

m
∑

i=1

A[j + i]B[i], j = 0, ..., n − m.

In the general case, the convolution can be computed by using the Fast Fourier
Transform (FFT) [25]. This can be done in time O(n log m), in a computational model
with word size O(log m). Fischer and Paterson used convolutions for solving exact
string matching with “don’t cares” (a special character that matches all symbols) in
time O(log |Σ|n log m).

We can use the string matching with don’t care problem to solve the two dimensional
matching problem as follows (actually the same idea can be used for d-dimensional
matching [13] ).

Without loss of generality, we may assume that the text is of size 2m× 2m. This can
be achieved by dividing the text into four overlapping grids of 2m× 2m matrices. In
the following discussion we assume,then, that n = 2m.

Let Tn×n be the text matrix, Pm×m be the pattern matrix. Let L[1:n2] be the linear
representation of T in row major order, and let M[1:(m−1)n+m] be the vector:

Mi =















































P1,i for i = 1 to m

φ for i = m + 1 to n

P2,i−n for i = n + 1 to m + n

φ for i = n + m + 1 to 2n
·
·
·
Pm,i−(m−1)n for i = (m − 1)n + 1 to (m − 1)n + m

Matching M in L (and taking care of boundary conditions) is equivalent to matching
P in T . What is actually being done is padding the pattern with wildcards up to the
size of the text dimension. The boundary condition can then be handled on line.

Time: The reduction is to string matching with don’t cares with text of size n2

and pattern of size O(mn). This is solved by the convolutions method in time
O(| logΣ|n2 log m), but since n = 2m the time is O(| logΣ|m2 log m). For a gen-
eral n the time is O(| logΣ|n2 log m).

2.3 Periodicity Analysis

All the previously discussed two dimensional matching algorithms are reductions of
the problem into one dimension. These reductions all cost at least an additional log |Σ|
factor. A uniquely two dimensional approach to pattern matching was introduced [4].
This technique analyzes the two dimensional structure of the pattern and makes use
of it in the text scanning step. We will see that this allows an alphabet independent
text scanning. This technique also proved useful in compressed matching [7], and in
developing optimal parallel algorithms for two dimensional matching [8, 23].
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The two-dimensional periodicity idea: A periodic pattern may contain loca-
tions, other than the origin, where the pattern can be superimposed on itself without
mismatch. Suppose our pattern is non periodic, i.e. there are no such locations, other
than the origin. We could then narrow down the number of potential candidates for
a pattern appearance in the text in a fashion that insures that all such candidates
are “sufficiently far” from each other. Verification of a candidate could then be done
in the naive character-by-character comparison, but the time would still be linear
because the candidates do not overlap.

In the next sections we will look more closely into two dimensional periodicity and
its application to exact matching.

2.3.1 Two Dimensional Periodicity

In a periodic string, a smallest period can be found whose concatenation generates
the entire string. In two dimensions, if an array were to extend infinitely so as to
cover the plane, the one-dimensional notion of a period could be generalized to a unit
cell of a lattice. But, a rectangular array is not infinite and may cut a unit cell in
many different ways at its edges.

Instead of defining two-dimensional periodicity on the basis of some subunit of the
array, Amir and Benson [4] use the idea of self-overlap. This idea applies also to
strings. A string w is periodic if the longest prefix p of w that is also a suffix of w

is at least half the length of w. For example, if w = abcabcabcab, then p = abcabcab

and since it is over half as long as w, w is periodic. This definition implies that w

may overlap itself starting in the fourth position.

The preceding idea easily generalizes to two-dimensions as illustrated by the following
preliminary definitions. Let A be an array. A prefix of A is a rectangular subarray
that contains one corner element of A. A suffix is a rectangular subarray that contains
the diagonally opposite corner. A is periodic if the largest prefix that is also a suffix
has dimensions greater than half those of A. Again, this implies that A may overlap
itself if the prefix of one copy of A is aligned with the suffix of a second copy of A.

Notice that the choice of the corner in which to put the prefix is arbitrary. Because of
the symmetry, the prefix may be assigned to either the upper left or lower left corners
of A. This clearly gives us two directions in which A can be periodic. Following [4]
we classify the type of periodicity of A based on whether it has periodicity in either
or both of these directions. To simplify the discussion, we describe square arrays.
The results can be extended to all rectangular arrays (see [4]).

We begin with some formal definitions of two-dimensional periodicity and related
concepts. Let A[0 . . .m−1, 0 . . .m−1] be an m×m square array. Each element of A

contains a symbol from an alphabet Σ. We can divide the array into four quadrants,
labeled in a counterclockwise direction from upper left, quadrants I,II,III, and IV.
Given two copies of A, one directly on top of the other. The two copies are said to
be in register because some (in this case all) of the elements overlap, and overlapping
elements contain the same symbol. If we can slide the upper copy over the lower
copy to a point where the copies are again in register, then at least one of the corner
elements of the upper array will overlap an element of the lower array. The element
in the lower copy that is under this corner is the source. We say that the array is
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quadrant I symmetric if an overlapping corner is element A(0, 0). The element in the
lower copy is a quadrant I source. Quadrants II, III and IV symmetry and sources
are similarly defined.

Let the array be quadrant I symmetric and let the upper and lower copies be in
register when element A(0, 0) overlaps element A(r, c), the source. Then there exists
a quadrant I symmetry vector ~vI = r~y + c~x where ~x is the horizontal unit vector
in the direction of increasing column index and ~y is the vertical unit vector in the
direction of increasing row index. If the array is quadrant II symmetric, then the
upper and lower copies are in register when A(m−1, 0) overlaps A(r, c). The quadrant
II symmetry vector is vII = (r − (m − 1))~y + c~x. Note that the coefficient on ~y is
negative for quadrant II. The quadrants III and IV symmetry vectors are defined
similarly.

The length of a symmetry vector is the maximum of the absolute values of its coeffi-
cients. If the length of a symmetry vector is < m

2
, then the vector is periodic.

For the classification scheme, we need to pick the shortest symmetry vector for each of
quadrants I and II. But, there may be several shortest vectors in a given quadrant.
Also, the same orthogonal vector may be shortest in both quadrants. Let BI be the
set of shortest non-vertical vectors in quadrant I and let BII be the set of shortest non-
horizontal vectors in quadrant II. The basis vectors for array A are vector ~v1 ∈ BI

(if any) with smallest r value and the vector ~v2 ∈ BII (if any) with smallest c value.
In other words, ~v1 is the closest to horizontal in BI and ~v2 is the closest to vertical
in BII .

The four categories of two-dimensional periodicity are:

� Non-periodic—A has no periodic vectors.

� Lattice periodic—Both quadrants I and II of A have a periodic basis vector.
All quadrant I sources which occur in quadrant I fall on the nodes of a lattice
which is defined by these vectors. The same is true for quadrant II sources in
quadrant II. Specifically, let ~v1 and ~v2 be the periodic basis vectors in quadrants
I and II respectively. Then, for all integers i, j such that (0, 0) + i~v1 + j~v2 is
an element of quadrant I, that element is a quadrant I source and no other
elements in quadrant I are quadrant I sources. Similarly, for all ı̂, ̂ such that
(m − 1, 0) + ı̂~v1 + ̂~v2 is an element of quadrant II, that element is a quadrant
II source and no others.

� Line periodic—One quadrant of A has a periodic vector and one does not. The
sources in the quadrant with the periodic vector all fall on one line. Specifically,
if quadrant I is the quadrant with the periodic basis vector ~v1, then for all i

such that (0, 0) + i~v1 is an element in quadrant I, that element is a quadrant I

source and no others.

� Radiant periodic—This category is identical to the line periodic category,
except that in the quadrant with the periodic vector, the sources fall on several
lines which all radiate from the quadrant’s corner. We do not describe the exact
location of the sources because these depend on the specific array, except we
note that none is a linear combination of both basis vectors for the array.
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It should be noted that later applications required some finer grained characterizations
of periodicity [36, 14].

2.3.2 The Dueling Method

Dueling was first used by Vishkin for efficient parallel string matching algorithms [48].
The idea is to provide, in constant time, a method that eliminates one of two com-
peting candidates for pattern occurrence. This elimination is based on identifying
locations where the two candidates expect conflicting symbols. Vishkin used string
periodicity properties to guarantee that such locations exist for every two overlapping
candidates.

The dueling idea was extended to two dimensions by amir, Benson and Farach [6, 5].
It turned out that even where there is no periodicity, a judicious use of dueling can
provide a simple and alphabet-independent O(n2) algorithm for two dimensional exact
matching.

Text processing is accomplished in two stages: Candidate Consistency and Candidate
verification. A candidate is a location in the text where the pattern may occur.
We denote a candidate starting at text location T [r, c] by (r, c). We say that two
candidates (r, c) and (x, y) are consistent if they expect the same text characters in
their region of overlap (two candidates with no overlap are trivially consistent).

Initially, we have no information about the text and therefore all text locations are
candidates. However, not all text locations are consistent. During the candidate con-
sistency phase, we eliminate candidates until all remaining candidates are pairwise
consistent. During the candidate verification phase, we check the candidates against
the text to see which candidates represent actual occurrences of patterns. We ex-
ploit the consistency of the surviving candidates to rule out large sets of candidates
with single text comparisons (since all consistent candidates expect the same text
character).

Candidate Consistency: This is done with two sweeps of the text. The first
eliminates inconsistent candidates within each column, and the second eliminates all
inconsistent candidates in the text. The result of these two sweeps are potential
sources, none of which can conflict with any other. This means that if we verify
that one of these potential sources is indeed the source of a pattern occurrence then
all potential sources within the verified area are guaranteed to overlap the verified
area. Thus, verification need not ever backtrack. The details of the O(n2) candidate
consistency algorithms can be found in [6].

Candidate Verification: As mentioned above, we are guaranteed that all consistent
candidate sources overlap consistently with the pattern. We only need to verify that
they are indeed pattern sources. This can be done in linear time by the time-tested
sport cheer - the wave.

The idea of the wave is for each element to jump up and wave a pair 〈i, j〉 whose
meaning is that this element has to be tested against P [i, j]. There may be several
such options for some locations, but any will do because the candidate sources are now
all compatible. The waved pair, in addition to knowledge of candidate sources, causes
the element immediately below the waving location to wave its own pair. When all
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column waves are done we do row waves and every text element now needs a single
comparison. For further details on the wave, see [6, 11].

3 Approximate Matching of Rectangular Arrays

One possible string matching generalization that has been researched is approximate
string matching - finding all occurrences of a pattern in a text where differences are
allowed.

Three types of differences were distinguished [43]:

1. A pattern character corresponds to a different character in the text (mismatch).

2. A text character is deleted (deletion).

3. A pattern character is deleted (insertion).

Two problems were considered in the one dimensional case: The string matching with
k mismatches problem (the k mismatches problem) - find all occurrences of the pattern
in the text with at most k type-1 differences. The string matching with k differences
problem (the k differences problem) - find all occurrences of the pattern in the text
with at most k differences of type 1. 2. or 3.

Abrahamson [1] used a divide-and-conquer approach in conjunction with the convo-
lutions method to solve the string mismatches problem in time O(n

√
m log m). His

algorithm writes, for every text location, the number of mismatches that will occur
it the pattern is compared with the text starting at that location.

Landau and Vishkin [41] gave a O(nk) algorithm for the k-differences problem.

In this section we consider approximate pattern matching where both text and pattern
are rectangles.

INPUT: Text array T [n × n] and P [m × m] where all elements of P and T are in
alphabet Σ, and integer k. OUTPUT: All occurrences of the pattern in the text with
at most k differences.

The definition of insertion and deletion in multidimensions need clarification. The
effect of insertion and deletion may be different depending on the implementation.
We illustrate with a two dimensional example. If a matrix is transmitted serially a
deleted character means an appropriate shift of the entire array. However, it may be
the case that the array is transmitted column by column with an EOD indication
between them. In that case, a deletion or insertion affects only the column it appears
in. Following Krithivasan and Sitalakshmi [40] and Amir and Landau [13] we assume
the latter situation. It is clear that the case where a deletion or insertion affects only
the row it appears in can be handled in a similar manner.

Krithivasan and Sitalakshmi [40] solved this problem in time O(n2mk). This was im-
proved by Amir and Landau to O(n2k2) (O(n2k) if only mismatch errors are allowed).

The idea was using dynamic programming to handle the insertion and deletion prob-
lems, and suffix trees to identify runs of matching pattern and text substrings.
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4 Approximate Matching of Non Rectangular Pat-

terns

The approximate two dimensional problem we saw in section 3 was defined with both
the pattern and text being rectangular matrices. In reality, it is usually necessary to
match non-rectangular shapes. The techniques presented in section 3 seem inadequate
in dealing with nonrectangular arrays.

4.1 Mismatches

In section 2.2 it was shown that multi-dimensional matching can be reduced to string
matching by appropriate padding with don’t care characters. Such a padding allows
solving the exact two-dimensional matching problem, or the k-mismatches problem
for any shape in time O(|Σ|n2 log m). We simply pad the matrix appropriately so
only the given shape is matched.

The |Σ| factor in the complexity results from the fact that we need to do |Σ| con-
volutions. In each one we count the number of pattern mismatches for a different
alphabet symbol ([13]).

This method is clearly efficient for bounded small alphabets. For unbounded alpha-
bets we may use the Abrahamson-Kosaraju divide-and-conquer technique to achieve
time O(n2

√
m log m).

4.2 Mismatches, Insertions and Deletions

Pattern matching provides many examples of powerful techniques that solves various
different problems. However, when some criteria are combined, there is no ready
solution. For example, convolutions solve the “don’t care” problem, and the mis-
matches problem, but can not be used when insertions and deletions are introduced.
Automata methods or suffix trees work mainly for exact matching. But if presented
with the problem of matching with differences and don’t cares then there is no known
efficient method that can solve it.

Amir and Farach [12] made the first advance in the direction of efficiently solving
the k-difference matching problem for non-rectangular patterns. A novel method was
used, that combines the power of convolutions, dynamic programming and subword
trees. It proved effective in solving the two-dimensional k-difference matching problem
for half-rectangular patterns in time O(kn2

√
m log m

√
k log k +k2n2), where n2 is the

area of the text and m is the height of the pattern.

Definition: A left half-rectangular pattern is a list of variable-length rows, P1, ..., Pm.
The pattern is represented by stacking each row Pi above row Pi+1 with Pi,1 directly
above Pi+1,1.

Intuitively, the leftmost border of the pattern is a vertical line, and every horizontal
cut of the figure is a single segment. One may similarly define a right, top or bottom
half-rectangle depending on whether the right, top or bottom border is a straight
edge.
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This algorithm is efficient for any pattern that can be split into a “small” number of
half-rectangular shapes. An example is any convex shape in an orientation where the
longest diameter is vertical. We are searching for all locations where a half-rectangular
pattern matches the text allowing no more than k mismatches, insertions (in rows)
and deletions (in rows) errors.

To achieve this result some new tools were needed. Efficient solutions to two problems
were provided. These problems are the smaller matching problem and the k-aligned
ones with location problem.

The smaller matching problem is: INPUT: Text string T = T0, .., .Tn−1 and pattern
string P = P0, ..., Pm−1 where Ti, Pi ∈ N . OUTPUT: All locations i in T where
Ti+k−1 ≥ Pk k = 1, ..., m. In words, every matched element of the pattern is not
greater than the corresponding text element.

The smaller matching problem with a forest partial order is defined similarly with
the exception that the order relation is that induced by a given forest. Both these
problems can be solved in time O(n

√
m log m).

The motivation for the k-aligned ones with locations problem stems from the use of
convolutions in pattern matching. The power behind all known convolution-based
string matching algorithms is multiplication of polynomials with binary coefficients
(0, 1). Polynomial multiplication can be done efficiently by using Fast Fourier Trans-
form [3]. The result of such a polynomial multiplication is the number of 1’s in the
pattern that are aligned with 1’s in the text at each position. However, all informa-
tion about the location of these aligned 1’s is lost. These locations were found in time
O(k3n log m log k) in [12].

Specifically, the k-aligned ones with location problem is: INPUT: Text string
T = T0, ..., Tn−1 and pattern string P0, ..., Pm−1 where Ti, Pi ∈ {0, 1}. OUTPUT:

All locations i in T where
m

∑

l=0

Tl+iPl ≤ k

and for each such i, all indices i1, ..., ik where Pij = Tl+ij = 1.

Recently, using superimposed codes, the k-aligned ones with locations problem has
been solved O(kn log m log k) [17].

5 Scaled Matching

All the problems we have seen so far were useful mainly in solving matching with
“local errors” prolems. We mentioned that in reality we may be interested in matching
patterns whose occurrence in the text is of different scale than provided by the pattern.
For example, reading a newspaper one encounters letters of the alphabet in various
sizes.

A “clean” version of the problem may be defined as follows [15]:

The string aa...a where the symbol a is repeated k times (to be denoted ak), is referred
to as a scaled to k. Similarly, consider a string A = a1 · · · al. A scaled to k (Ak) is
the string ak

1, ..., a
k
l .

12
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Let P [m × m] be a two-dimensional matrix over a finite alphabet Σ. Then P scaled
to k (P k) is the km × km matrix where every symbol P [i, j] of P is replaced by a
k × k matrix whose elements all equal the symbol in P [i, j]. More precisely,

P k[i, j] = P [⌈ i

k
⌉, ⌈ j

k
⌉].

The problem of two-dimensional pattern matching with scaling is defined as follows:
INPUT: Pattern matrix P [i, j] i = 1, ...m; j = 1, ..., m and Text matrix T [i, j] i =
1, ..., n; j = 1, ..., n where n > m. OUTPUT: all locations in T where an occurrence
of P scaled to k starts, for any k = 1, ..., ⌊ n

m
⌋.

The basic algorithmic design strategy of Amir-Landau-Vishkin [15] can be viewed
as realizing the following approach: For each scale k, try to select only a fraction
of 1

k
among the n columns and seek k-occurrences only in these columns. Since

each selected column intersects n rows, this leads to consideration of O(n2

k
) elements.

Summing over all scales, we get O(n2) multiplied by the harmonic sum
∑

n
m

i=1
1
i
, whose

limit is log n
m

making the total number of elements scanned O(n2 log n
m

).

A final intuitive step was to select also a 1
k

fraction of the rows. Since
∑

n
m

i=1
1
i2

is
bounded by a constant, the number of elements decreases now to

O(n2

n
m

∑

i=1

1

i2
) = O(n2).

A simpler, alphabet-independent algorithm, that can be generalized to dictionary
scaled matching was presented in [11].

A key technique in all discrete scaling algorithms is the Range Minimum Problem.
Defined as follows:

Definition: Let L = [l1, ..., ln] be an array of n numbers. A Range Minimum query
is of the form:

Given a range of indices [i, ..., j], where 1 ≤ i ≤ j ≤ n, return an index k i ≤
k ≤ j such that lk = min{li, ..., lj}.

In [34] it was shown that a list of length n can be preprocessed in time O(n) such
that subsequent range minimum queries can be answered in constant time.

In scaled matching we are naturally interested in locations where there are many
consecutive rows (columns) with the same elements. The range-minimum queries
allow finding these areas in constant time. This can be achieved by preprocessing
for every text location the longest common prefix of it, and the subrow immediately
above it.

6 The Geometric Model

Everything we have seen so far suffers greatly from the encounter with “real-life prob-
lems”. There is some justification for dealing with discrete scales in a combinatorial

13



Proceedings of the Prague Stringology Conference ’04

sense, since it is not clear what is a fraction of a pixel. However, in reality an object
may appear in non-discrete scales. It is necessary to, both, define the combinatorial
meaning of such scaling, and present efficient algorithms for the problem’s solution.
The rotation problem, presents similar challenges. What is the discrete meaning of
a rotated pattern? The answer to both above problems involves a Geometric Model
for two-dimensional matching.

Until now, we considered the text and pattern to be matrices of alphabet symbols.
The new idea, first proposed by Landau and Vishkin [42] is to consider the text and
pattern as large rectangles composed of unit squares. These unit squares are “colored”
by a picture of reality. For the sake of scaling and rotation, we consider the color of
the center of a unit square as the color of the square. We will define the meaning of
this geometric model for scaling and rotation in more detail in sections 6.1 and 6.2.
However, for historical reasons we mention that Landau and Vishkin’s motivation
for defining the geometric model was the digitization process. For all intents the
granularity of the world is so fine as to be considered continuous. Nevertheless,
when a photo is taken, the image is projected onto a pixel map with much coarser
granularity. Landau and Vishkin viewed the process as sampling unit squares and
assigning an image pixel the color of its sampled center. This idea is used for the
geometric definition of rotation and scaling to sizes that are not natural numbers.

6.1 Scaling

Amir, Butman, Lewenstein and Porat [10] present a definition for scaled pattern
matching with arbitrary real scales. The definition is pleasing in a “real-world” sense.
Below see “lenna” scaled to non-discrete scales by this definition and the results look
natural (see Figure 1). This definition was inspired by the idea of digitizing analog
signals by sampling, however, it does not assume an underlying continuous function
thus stays on the combinatorial pattern matching field. This seems to be the natural
way to define combinatorially the meaning of scaling in the signal processing sense.

Figure 1: An original image, scaled by 1.3 and scaled by 2, using the combinatorial
definition of scaling.

This definition, that had been sought by researchers in pattern matching since at
least 1990, captures scaling as it occurs in images, yet has the necessary combinatorial

14
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features that allows developing deterministic algorithms and analysing their worst-
case complexity. Indeed Amir, Butman, Lewenstein and Porat [10] present a two
dimensional efficient algorithm for real scaled pattern matching.

The definition of two-dimensional scaled matching is an extension of the one dimen-
sional definition.

Definition Let T be a two-dimensional n × n array over some finite alphabet Σ.

1. The unit pixels array for T (T 1X) consists of n2 unit squares, called pixels in the
real plane R2. The corners of the pixel T [i, j] are (i−1, j−1), (i, j−1), (i−1, j),
and (i, j). Hence the pixels of T form a regular n × n array covering the area
between (0, 0), (n, 0), (0, n), and (n, n). Point (0, 0) is the origin of the unit
pixel array. The center of each pixel is the geometric center point of its square
location. Each pixel T [i, j] is identified with the value from Σ that the original
array T had in that position. We say that the pixel has a color from Σ. See
figure 2 for an example of the grid and pixel centers of a 7 × 7 array.

2. Let r ∈ ℜ, r > 1. The r-ary pixels array for T (T rX) consists of n2 r-squares,
each of dimension r × r whose origin is (0, 0) and covering the area between
(0, 0), (nr, 0), (0, nr), and (nr, nr). The corners of the pixel T [i, j] are ((i −
1)r, (j − 1)r), (ir, (j − 1)r), ((i − 1)r, jr), and (ir, jr). The center of each pixel
is the geometric center point of its square location.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

T[1,1] T[1,2] T[1,3]

T[2,1] T[2,2] T[2,3]

T[3,1] T[3,20 T[3,3]

T[7,7]

T[5,4]

Figure 2: The grid and pixel centers of a unit pixel array for a 7 × 7 array.

Notation: Let r ∈ ℜ. ‖r‖ denotes the rounding of r, i.e.

‖r‖ =

{

⌊r⌋ if the fraction part of r is less than .5;
⌈r⌉ otherwise.
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In this definition we round 0.5 up. There may be cases where we need to round 0.5
down. For this we denote:

|⌊r⌋| =

{

⌊r⌋ if the fraction part of r is not more than .5;
⌈r⌉ otherwise.

Definition Let T be an n × n text array and P be an m × m pattern array over
alphabet Σ. Let r ∈ ℜ, 1 ≤ r ≤ n

m
.

We say that there is an occurrence of P scaled to r at text location [i, j] if the following
condition hold:

Let T 1X be the unit pixels array of T and P rX be the r-ary pixel arrays of P . Translate
P rX onto T 1X in a manner that the origin of P rX coincides with location (i−1, j−1)
of T 1X . Every center of a pixel in T 1X which is within the area covered by (i− 1, j −
1), (i − 1, j − 1 + mr), (i − 1 + mr, j − 1) and (i − 1 + mr, j − 1 + mr) has the same
color as the r-square of P rX in which it falls.

The colors of the centers of the pixels in T 1X which are within the area covered by
(i− 1, j − 1), (i− 1, j − 1+mr), (i− 1+mr, j − 1) and (i− 1+mr, j − 1+mr) define
a ‖mr‖ × ‖mr‖ array over Σ. This array is denoted by P r and called P scaled to r.

It is possible to find all scaled occurrences of an m × m pattern in an n × n text in
time O(n2m2). Such an algorithm, while not trivial, is nonetheless achievable with
known techniques. In [10] an O(nm3 +n2m log m) algorithm was presented. Suitable
trade-offs lead to an algorithm whose running time is O(n1.5m2

√
log m).

The efficiency of the algorithm results from the properties of scaling. The scaling
definition needs to accommodate a conflict between two notions, the continuous (rep-
resented by the real-number scale), and the discrete (represented by the array rep-
resentation of the images). Understanding, and properly using, the shift from the
continuous to the discrete and back are key to the efficiency of the algorithms.

6.2 Rotation

The pattern matching with rotation problem is that of finding all occurrences of a
two dimensional pattern in a text, in all possible rotations. An efficient solution to
the problem proved elusive even though many researchers were thinking about it for
over a decade. Part of the problem was lack of a rigorous definition to capture the
concept of rotation in a discrete pattern.

The major breakthrough came when Fredriksson and Ukkonen [31] resorted to a
geometric interpretation of text and pattern and provided the following definition.

Let P be a two-dimensional m × m array and T be a two-dimensional n × n array
over some finite alphabet Σ. As in the previous section, the array of unit pixels for
T consists of n2 unit squares, called pixels in the real plane R2. The corners of the
pixel for T [i, j] are (i−1, j −1), (i, j−1), (i−1, j), and (i, j). Hence the pixels for T

form a regular n × n array covering the area between (0, 0), (n, 0), (0, n), and (n, n).
The center of each pixel is the geometric center point of the pixel. Each pixel T [i, j]
is identified with the value from Σ that the original text had in that position. We say
that the pixel has a color from Σ.
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The array of pixels for pattern P is defined similarly. A different treatment is neces-
sary for patterns with odd sizes and for patterns with even sizes. For simplicity’s sake
we assume throughout the rest of this paper that the pattern is of size m×m and m

is even. The rotation pivot of the pattern is its exact center, the point (m
2
, m

2
) ∈ R2.

See Figure 3 for an example of the rotation pivot of a 4 × 4 pattern P .

0 1 2 3 4

0

1

2

3

4

P

rotation pivot

Figure 3: The rotation pivot of a 4 × 4 pattern P .

Consider now a rigid motion (translation and rotation) that moves P on top of T .
Consider the special case where the translation moves the grid of P precisely on top
of the grid of T , such that the grid lines coincide.

Assume that the rotation pivot of P is at location (i, j) on the text grid, and that the
pattern lies under the text. The pattern is now rotated, centered at (i, j), creating
an angle α between the x-axes of T and P . P is said to be at location ((i, j), α)
under T . Pattern P is said to have an occurrence at location ((i, j), α) if the center
of each pixel in T has the same color as the pixel of P under it, if there is such a
pixel. When the center of a text pixel is exactly over a vertical (horizontal) border
between text pixels, the color of the pattern pixel left (below) to the border is chosen.
Consider some occurrence of P at location ((i0, j0), α). This occurrence defines a
non-rectangular substring of T that consists of all the pixel of T whose centers are
inside pixels of P . We call this string P rotated by α, and denote it by P α. Note that
there is an occurrence of P at location ((i, j), α) if and only if P α occurs at (i, j).

Fredriksson, Navarro and Ukkonen [29] give two possible definitions for rotation. One
is as described above and the second is, in some way, the opposite. P is placed over
the text T . More precisely, assume that the rotation pivot of P is on top of location
(i, j) on the text grid. The pattern is now rotated, centered at (i, j), creating an
angle α between the x-axes of T and P . P is said to be at location ((i, j), α) over
T . Pattern P is said to have an occurrence at location ((i, j), α) if the center of each
pixel in P has the same color as the pixel of T under it.

While the two definitions of rotation, “over” and “under”, seem to be quite similar,
they are not identical. For example, in the “pattern over text” model there exist
angles for which two pattern pixel centers may find themselves in the same text pixel.
Alternately, there are angles where there are “holes” in the rotated pattern, namely
there is a text pixel that does not have in it a center of a pattern pixel, but all text
pixels around it have centers of pattern pixels. See Figure 4 for an example.
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Figure 4: An example of a “hole” in the pattern. Text pixel T [3, 5] has no pattern
pixel over it, but the pixels T [2, 5] and T [3, 6] have pattern pixel centers.

The challenges of “discretizing” a continuous image are not simple. In the Image
Processing field, stochastic and probabilistic tools need to be used because the images
are “smoothed” to compensate for the fact that the image is presented in a far coarser
granularity than in reality. The aim of the the pattern matching community has been
to fully discretize the process, thus our different definitions. However, this puts us
in a situation where some “gut” decisions need to be made regarding the model that
best represents “reality”. It is our feeling that in this context the “pattern under
text” model is more intuitive since it does not allow anomalies such as having two
pattern centers over the same text pixel (a contradiction) nor does it create “holes”
in the rotated pattern For examples of the rotated patterns in the two models see
Figure 5.

Most of the algorithms for rotated matching are filtering algorithms that behave well
on average but that have a bad worst case complexity (e.g. [32, 29, 33]). In three
papers ([30, 9, 28]), there is a O(n2m3) worst case algorithm for rotated matching.
All worst-case algorithms basically work by enumerating all possible rotated patterns
and solving a two dimensional dictionary matching problem on the text. In [9] it was
proven that there are Θ(m3) such rotated patterns. The high complexity results from
the fact that the dictionary patterns have “don’t care” symbols in them and thus,
essentially, every pattern needs to be sought separately.

In [16], Amir, Kapah and Tsur present the first rotated matching algorithms whose
time is better than O(n2m3). The scanning time of their algorithms is O(n2m2).
These results are achieved by identifying monotonicity properties on the rotated pat-
terns. These properties allow using transitivity-based dictionary matching algorithms,
cutting the worst-case time by an m factor.

7 Conclusions and Open Problems

We have scanned some of the problems and techniques in two dimensional matching.
Clearly, we are still far from our motivation of actually finding a given template in an
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Figure 5: An example of some possible 2-dimensional arrays that represent one pat-
tern. Fig (a) — the original pattern. Figures (b)–(d) are computed in the “pattern
over the text” model. Fig (b) — a representation of the pattern rotated by 190.
Fig (c) — Pattern rotated by 210. Fig (d) — Pattern rotated by 260. Figures (e)–(f)
are computed in the “pattern under the text” model. Fig (e) — Pattern rotated by
170. Fig (f) — Pattern rotated by 260.

image. What we have are various techniques for solving different subproblems, but we
need one method to solve them all. We need a scaled-rotated-approximate-dictionary
matching of nonrectangular patterns and that seems a great challenge indeed.

There are many technical open problems that were left in the wake of the results de-
scribed in this survey, such as a real-time suffix tree construction algorithm, approxi-
mate indexing and dictionary matching algorihtms, and even more efficient algorithms
for rotations. Other problems are new methods for general convolutions, multidimen-
sional extensions that are dimension-independent, dictionary matching with “don’t
cares”. But the grand inspiration continues to be integration of these solutions to a
general matching algorithm.

We may never reach that goal, but the way sure is exciting...
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