
Mathing Numeri Strings under Noise

Veli Mäkinen

1�

, Gonzalo Navarro

2y

, and Esko Ukkonen

1�

1

Department of Computer Siene, P.O Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland.

e-mail: {vmakinen,ukkonen}�s.helsinki.fi

2

Center for Web Researh, Department of Computer Siene, University of Chile

Blano Enalada 2120, Santiago, Chile.

e-mail: gnavarro�d.uhile.l

Abstrat. Numeri string is a sequene of symbols from an alphabet � �

U, where U is some numerial universe losed under addition and subtration.

Given two numeri strings A = a

1

� � � a

m

and B = b

1

� � � b

n

and a distane

funtion d(A;B) that gives the sore of the best (partial) mathing of A and

B, the transposition invariant distane is min

t2U

fd(A + t; B)g, where A + t =

(a

1

+ t)(a

2

+ t) : : : (a

m

+ t). The orresponding mathing problem is to �nd

ourrenes j ofA inB where d(A+t; B

j

0

:::j

) is smaller than some given threshold

and B

j

0

:::j

is a substring of B. In this paper, we give e�ient algorithms for

mathing numeri strings � with and without transposition invariane � under

noise; we onsider distane funtions d(A;B) suh that symbols a 2 A and b 2 B

an be mathed if jb�aj � Æ, or the � largest di�erenes jb�aj an be disarded.

Keywords: approximate mathing, transposition invariane, (Æ;)�mathing

1 Introdution

Transposition invariant string mathing is the problem of mathing two strings when

all the haraters of either of them an be �shifted� by some amount t. By �shifting�

we mean that the strings are sequenes of numbers and we add number t to eah

harater of one of them.

Interest in transposition invariant string mathing problems has reently arisen in

the �eld of musi information retrieval (MIR) [CIR98, LT00, LU00℄. In musi analysis

and retrieval, one often wants to ompare two musi piees to test how similar they

are. A reasonable way of modeling musi is to onsider the pithes and durations

of the notes. Often the durations are omitted, too, sine it is usually possible to

reognize the melody from a sequene of pithes. Hene, our fous is on distane

measures for pith sequenes (of monophoni musi) and their omputation.

We studied the omputation of edit distanes under transposition invariane in

[MNU03℄. We notied that sparse dynami programming is useful in transposition

�

Supported by the Aademy of Finland under grant 22584.

y

Supported by Millenium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.

99

Proeedings of the Prague Stringology Conferene '03

invariant mathing, and obtained e.g. an O(mn log logm) algorithm for transposition

invariant longest ommon subsequene problem.

In this paper, we omplement our earlier results by studying �non-gapped� distane

measures for numeri strings. That is, we study measures where the ith symbol of

the soure is mathed with the ith symbol of the target. To allow some noise in the

values to be ompared, we study measures that either allow mathing symbols that

approximately math (i.e. values are within Æ distane apart), or allow disarding some

amount (�) of largest di�erenes. We show how to ompute the transposition invariant

Hamming distane under noise inO(m logm) time, and transposition invariant sum of

absolute di�erenes (SAD) and maximum absolute di�erene (MAD) distanes under

noise in O(m+ � log�) time, where m is the length of both strings to be ompared.

For the orresponding searh problems we only give the trivial algorithm that

repeats the distane omputation at eah of the n text positions. However, the upper

bound obtained this way for SAD distane is in fat the same as what is known without

transposition invariane (see [Mut95℄, �weighted k�mismathes problem�). We also

onsider the ombined searh problem with SAD and MAD distanes, known as the

(Æ;)�mathing problem; we give an O(mn) algorithm for the transposition invariant

ase of this problem. Again the best known upper bound for (Æ;)�mathing without

transpositions is O(mn) (beause of the SAD distane).

In addition to the distane-spei� results we introdue a more general approah to

takle with noise; many distane measures that allow mathing two haraters a and b

for free when jb�aj � Æ an be omputed easily one the set of possible mathes jM

Æ

j =

jM

Æ

j(A;B) = f(i; j) j jb

j

� a

i

j � Æ; a

i

2 A; b

j

2 Bg has been omputed. We show

how to onstrut this set in O(m log j�j + n log j�j + jM

Æ

jmin(log(Æ + 2); log logm))

time, where � is the alphabet of the two strings to be ompared. After the set M

Æ

is

onstruted, Hamming and MAD distanes and (Æ;)�mathing under noise an be

omputed in time linear in the size of the set.

In the transposition invariant ase, the onstrution of the sets of possible mathes

for all relevant transpositions is useful as well (e.g. for edit distane under noise). We

show how to do this in linear time in the overall size of these sets (plus some additive

fators of m,n, and log j�j).

Some of the results of this paper appear in a tehnial report [MNU02℄.

2 De�nitions

Let � be a �nite numerial alphabet, whih is a subset of some universe U that is

losed under addition and subtration. Let A = a

1

a

2

: : : a

m

and B = b

1

b

2

: : : b

n

be

two numeri strings over �

�

, i.e. the symbols (haraters) a

i

; b

j

of the two strings

are in � for all 1 � i � m; 1 � j � n. We will assume w.l.o.g. that m � n. String

A

0

is a substring of A if A

0

= A

i:::j

= a

i

: : : a

j

for some 1 � i � j � m. String A

00

is a subsequene of A, denoted by A

00

v A, if A

00

= a

i

1

a

i

2

: : : a

i

jA

00

j

for some indexes

1 � i

1

< i

2

< � � � < i

jA

00

j

� m.

When m = n, the following distanes an be de�ned. The Hamming distane

d

H

between strings A and B is d

H

(A;B) = m � jf(i; i) j a

i

= b

i

; 1 � i � mgj.

The maximum absolute di�erene distane d

MAD

between A and B is d

MAD

(A;B) =

max

1�i�m

fja

i

� b

i

j j 1 � i � mg. The sum of absolute di�erenes distane d

SAD

between A and B is d

SAD

(A;B) =

P

m

i=1

ja

i

� b

i

j. Note that d

MAD

is in fat the

100

Mathing Numeri Strings under Noise

maximum metri (l

1

norm) and d

SAD

the Manhattan metri (l

1

norm) when we

interprete A and B as points in m dimensional Eulidean spae.

String A is a transposed opy of B (denoted by A =

t

B) if B = (a

1

+ t)(a

2

+

t) � � � (a

m

+ t) = A + t for some t 2 U. The transposition invariant versions of

the above distane measures d

�

where � 2 fH;MAD; SADg an now be stated as

d

t

�

(A;B) = min

t2U

d

�

(A+ t; B).

So far our de�nitions allow either only exat (transposition invariant) mathes

between some haraters (d

t

H

) or approximate math between all haraters (d

t

MAD

and d

t

SAD

). To relax these onditions, we introdue a onstant Æ > 0. We write a =

Æ

b

when ja � bj � Æ, a; b 2 �. By replaing the equality a = b with a =

Æ

b in the

de�nition of d

t

H

, we get a more error-tolerant version of the distane; let us denote

the new distane d

t;Æ

H

. Similarly, by introduing another onstant � > 0, we an de�ne

distanes d

t;�

MAD

; d

t;�

SAD

suh that the � largest di�erenes ja

i

� b

i

j are disarded.

The approximate string mathing problem, based on the above distane funtions,

is to �nd the minimum distane between A and any substring of B. In this ase we

all A the pattern and denote it P

1:::m

= p

1

p

2

� � �p

m

, and all B the text and denote

it T

1:::n

= t

1

t

2

� � � t

n

, and usually assume that m << n. A losely related problem is

the thresholded searh problem where, given P , T , and a threshold value k � 0, one

wants to �nd all the text positions j suh that d(P; T

j

0

:::j

) � k for some j

0

. We will

refer olletively to these two losely related problems as the searh problem.

Notie that searhing under Hamming distane is known as the k�mismathes

problem [Abr87, ALP01, BYG94, BYP96, GG86, LB86℄. Also, a searh prob-

lem related to distanes d

MAD

and d

SAD

is known as the (Æ;)�mathing problem

[CCIMP99, CILP01, CILPR02℄ in whih ourrenes j are searhed for suh that

d

MAD

(P; T

j

0

:::j

) � Æ and d

SAD

(P; T

j

0

:::j

) � .

Our omplexity results are di�erent depending on the form of the alphabet �. We

will distinguish two ases. An integer alphabet is any alphabet � � Z. For integer

alphabets, j�j will denote max(�) � min(�) + 1. A real alphabet will be any other

� � R, and then j�j denotes the ardinality of �. For any string A = a

1

: : : a

m

, we

will all �

A

= fa

i

j 1 � i � mg the alphabet of A.

Last, we will need some orders for a set of pairs P = f(i; j)g, where a

i

2 A and

b

j

2 B. The row order of P is suh that P is sorted �rst by i (in inreasing order)

and seondary by j (in inreasing order). In olumn order P is sorted �rst by j and

seondary by i. In diagonal order P is sorted �rst by j � i and seondary by i.

3 Mathing under Noise without Transposition In-

variane

We will now present a general and e�ient method that an be used with little

modi�ations for solving both the k�mismathes problem and the (Æ;)�mathing

problem. The time omplexities will depend on the number of possible mathes

between pattern and text haraters. A similar approah will also be used later in

the transposition invariant ase.

Let M

Æ

(P; T) = M

Æ

= f(i; j) j jp

i

� t

j

j � Æg be the set of possible mathes. Let

us assume that we are given M

Æ

in diagonal order. By one traversal over M

Æ

one an

101

Proeedings of the Prague Stringology Conferene '03

easily ompute values S(d) and N(d) for eah diagonal d, where S(d) =

P

fjp

i

� t

j

j j

(i; j) 2 M

Æ

; j � i = dg and N(d) = jf(i; j) j (i; j) 2 M

Æ

; d = j � igj.

Given the arrays S(0 : : : n�m) and N(0 : : : n�m), one an solve various problems.

For example, all values d suh that S(d) � and N(d) = m, orrespond to a (Æ;)�

math starting at position d + 1 of the text. Similarly, if N(d) � m � k when

omputed for M

0

, then there is an ourrene starting at position d + 1 of the text

for the k�mismathes problem.

Thus we have an O(jM

Æ

j + n) algorithm for several problems, if we just manage

to onstrut M

Æ

in linear time in its size.

Theorem 1 Given numeri strings P (pattern) and T (text) of lengths m and n

(m << n), the set of possible mathes M

Æ

(P; T) = f(i; j) j jp

i

� t

j

j � Æg an be

onstruted in time O(j�j + m + n + jM

Æ

jmin(log(Æ + 2); log logm)) on an integer

alphabet, and in time O(m log j�j+n log j�j+jM

Æ

jmin(log(Æ+2); log logm)) on a real

alphabet. Within the same bounds, the set M

Æ

an be onstruted in row, olumn,

or diagonal order.

Proof. Let us �rst onsider the integer alphabet with Æ = 0. We onstrut an array

L(1 : : : j�j), where eah entry L() stores an inreasing list of all positions of P , where

harater ours. Array L an obviously be onstruted by one traversal over P

in O(j�j + m) time. The set M

0

an then be onstruted in olumn order in one

traversal over T by onatenating lists L(t

1

); L(t

2

); : : : L(t

n

). The running time is

O(m+ n+ j�j+ jM

0

j).

For Æ > 0, we onstrut the array L as above but the traversal over T is now

more ompliated. To onstrut the olumn j of M

Æ

we need to merge the 2Æ+1 lists

L(t

j

� Æ); : : : ; L(t

j

+ Æ) into a single list. This merging an be done using a priority

queue P as follows. Add the �rst element, say i, of eah list L() into P by using i

as the priority and as the key. Then repeat the following until all lists are empty:

Take the element with minimum priority, say (i;), from P, and add the next element

from list L() into P. Column j of M

Æ

is onstruted by inserting pair (i; j) at the

end of M

Æ

at eah step. The operations on a priority queue an be supported in

O(log(Æ + 2)) time by using some standard implementation.

Sine the priority values that need to be stored are in the range [1; m℄, we an

implement the priority queue more e�iently using a data struture of van Emde

Boas [vEB77℄. It supports, among other operations, retrieving the smallest value,

inserting a new value, and deleting the smallest value, in O(log logm) amortized time

on values in the range [1; m℄. We an store the values i using this data struture.

Then we an repeat retrieving and deleting the smallest value i until the struture is

empty, adding (i; j) at the end of M

Æ

at eah step. Thus the laimed bound on the

integer alphabet follows.

When the alphabet is real, we an use exatly the same proedure, expet that

the array L needs to be replaed by a binary searh tree. It takes O(m log j�j) time

to onstrut this searh tree. For eah harater of T we need to do a range query

on this tree to retrieve the lists of positions that orrespond to haraters in range

[t

j

� Æ; t

j

+ Æ℄. This will take O(n log j�j) time. Merging an be done similarly as in

the ase of an integer alphabet, so the laimed bound follows.

Finally, the set is in olumn order after the above onstrution. Other orders an

be onstruted easily from the olumn order in time O(m+ n+ jM

Æ

j). �

102

Mathing Numeri Strings under Noise

The above theorem gives e.g. an O(j�j + m + n + jM

0

j) time solution for the

k�mismathes problem on an integer alphabet. This an be �(mn), but in the ex-

peted ase it is muh smaller. An expeted bound �(mn=j�j) is easy to prove; see

e.g. [BYP96℄, where the above algorithmwas originally proposed for the k�mismathes

problem.

4 Mathing under Noise and Transposition Invari-

ane

For this setion, let T = ft

i

= b

i

� a

i

j 1 � i � mg = ft

i

g be the set of transpositions

that make some haraters a

i

and b

i

math. Note that the optimal transposition does

not need, in priniple, to be inluded in T, but we will show that this is the ase for

d

t

H

and d

t;�

SAD

. Note also that jTj = O(j�j) on an integer alphabet and jTj = O(m) in

any ase.

4.1 Hamming Distane

Let A = a

1

: : : a

m

and B = b

1

: : : b

m

, where a

i

; b

i

2 � for 1 � i � m. We onsider

the omputation of transposition invariant Hamming distane d

t;Æ

H

(A;B). That is, we

searh for a transposition tmaximizing the size of set fi j jb

i

�(a

i

+t)j � Æ; 1 � i � mg.

Theorem 2 Given two numeri strings A and B, both of length m, there is an

algorithm for omputing distane d

t;Æ

H

(A;B) inO(j�j+m) time on an integer alphabet,

or in O(m logm) time on a general alphabet.

Proof. It is lear that the Hamming distane is minimized for the transposition in T

that makes the maximum number of haraters math. What follows is a simple voting

sheme, where the most voted transposition wins. Sine we allow a tolerane Æ in the

mathed values, t

i

votes for range [t

i

� Æ; t

i

+ Æ℄. Construt sets S = f(t

i

� Æ; �open�) j

1 � i � mg and E = f(t

i

+ Æ; �lose�) j 1 � i � mg. Sort S [E into a list I using

order

(x

0

; y

0

) <

H

(x; y) if x

0

< x or (x

0

= x and y

0

< y);

where �open�<�lose�. Initialize variable ount = 0. Do for i = 1 to jIj if I(i) =

(x; �open�) then ount = ount+1 else ount = ount�1. Letmaxount be the largest

value of ount in the above algorithm. Then learly d

t;Æ

H

(A;B) = m�maxount, and

the optimal transposition is any value in the range [x

i

; x

i+1

℄, where I(i) = (x

i

; �), for

any i where maxount is reahed. The omplexity of the algorithm is O(m logm).

Sorting an be replaed by array lookup when � is an integer alphabet, whih gives

the bound O(j�j+m) for that ase. �

4.2 Sum of Absolute Di�erenes Distane

We shall �rst look at the basi ase where � = 0. That is, we searh for a transposition

t minimizing d

SAD

(A+ t; B) =

P

m

i=1

jb

i

� (a

i

+ t)j.

103

Proeedings of the Prague Stringology Conferene '03

Theorem 3 Given two numeri strings A and B, both of length m, there is an algo-

rithm for omputing distane d

t

SAD

(A;B) in O(m) time on both integer and general

alphabets.

Proof. Let us onsider T as a multiset, where the same element an repeat multiple

times. Then jTj = m, sine there is one element in T for eah b

i

�a

i

, where 1 � i � m.

Sorting T in asending order gives a sequene t

i

1

� t

i

2

� : : : � t

i

m

. Let t

opt

be the

optimal transposition. We will prove by indution that t

opt

= t

i

bm=2+1

, that is, the

optimal transposition is the median transposition in T.

To start the indution we laim that t

i

1

� t

opt

� t

i

m

. To see this, notie that

d

SAD

(A+(t

i

1

� �); B) = d

SAD

(A+ t

i

1

; B)+m�, and d

SAD

(A+(t

i

m

+ �); B) = d

SAD

(A+

t

i

m

; B) +m�, for any � � 0.

Our indution assumption is that t

i

k

� t

opt

� t

i

m�k+1

for some k. We

may assume that t

i

k+1

� t

i

m�k

, sine otherwise the result follows anyway. First

notie that, independently of the value of t

opt

in the above interval, the ost

P

k

l=1

jb

i

l

� (a

i

l

+ t

opt

)j +

P

m

l=m�k+1

jb

i

l

� (a

i

l

+ t

opt

)j will be the same. Then no-

tie that

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

� �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

)j+ (m � 2k)�, and

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

+ �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

)j+(m�2k)�. This ompletes

the indution, sine we showed that t

i

k+1

� t

opt

� t

i

m�k

.

The onsequene is that t

i

k

� t

opt

� t

i

m�k+1

for maximal k suh that t

i

k

� t

i

m�k+1

,

that is, k = dm=2e. Whenm is odd, it holdsm�k+1 = k and there is only one optimal

transposition, t

i

dm=2e

. When m is even, one easily noties that all transpositions t

opt

,

t

i

m=2

� t

opt

� t

i

m=2+1

, are equally good. Finally, the median an be found in linear

time [BFPRT72℄. �

To get a fast algorithm for d

t;�

SAD

when � > 0 largest di�erenes an be disarded,

we need a lemma that shows that the distane omputation an be inrementalized

from one transposition to another. Let t

i

1

; t

i

2

; : : : ; t

i

m

be the sorted sequene of T.

Lemma 4 One values S

j

and L

j

suh that d

SAD

(A + t

i

j

; B) = S

j

+ L

j

, S

j

=

P

j�1

j

0

=1

t

i

j

� t

i

j

0

, and L

j

=

P

m

j

0

=j+1

t

i

j

0

� t

i

j

, are omputed, the values of S

j+1

and

L

j+1

an be omputed in O(1) time.

Proof. Value S

j+1

an be written as

S

j+1

=

j

X

j

0

=1

t

i

j+1

� t

i

j

0

=

j

X

j

0

=1

t

i

j+1

� t

i

j

+ t

i

j

� t

i

j

0

= j(t

i

j+1

� t

i

j

) + S

j

:

Similar rearranging gives

L

j+1

=

m

X

j

0

=j+2

t

i

j

0

� t

i

j+1

= (m� j)(t

i

j

� t

i

j+1

) + L

j

:

Thus both values an be omputed in onstant time given the values of S

j

and L

j

(and t

i

j+1

). �

Theorem 5 Given two numeri strings A and B both of length m, there is an algo-

rithm for omputing distane d

t;�

SAD

(A;B) in O(m+ � log �) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m+ �) an also be obtained.

104

Mathing Numeri Strings under Noise

Proof. Consider the sorted sequene t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3.

Clearly the andidates for the � outliers (largest di�erenes) are M(k

0

; k

00

) =

ft

i

1

; : : : ; t

i

k

0

; t

i

m�k

00

+1

; : : : t

i

m

g for some k

0

+ k

00

= �. The naive algorithm is then to

ompute the distane in all these �+1 ases: Compute the median of TnM(k

0

; k

00

) for

eah k

0

+ k

00

= � and hoose the minimum distane indued by these medians. These

� + 1 medians an be found as follows: First selet values t

�+1

and t

m��

using the

linear time seletion algorithm [BFPRT72℄. Then ollet and sort all values smaller

than t

�+1

or larger than t

m��

. After seleting the median m

0;�

of T nM(0; �) and

m

�;0

of TnM(�; 0), one an ollet all medians m

k

0

;k

00

of TnM(k

0

; k

00

) for k

0

+k

00

= �,

sine the m

k

0

;k

00

values are those between m

0;�

and m

�;0

. The �+1 medians an thus

be olleted and sorted in O(m + � log �) time, and the additional time to ompute

the distanes for all of these � + 1 medians is O(�m). However, the omputation of

distanes given by onseutive transpositions an be inrementalized using Lemma 4.

First one has to ompute the distane for the median of TnM(0; �), d

SAD

(A+m

0;�

; B),

and then ontinue inrementally from d

SAD

(A+m

k

0

;k

00

; B) to d

SAD

(A+m

k

0

+1;k

00

�1

; B),

until we reah the median of T nM(�; 0), d

SAD

(A +m

�;0

; B) (this is where we need

the medians sorted). Sine the set of outliers hanges when moving from one median

to another, one has to add value t

i

k

0

� t

i

m

to S

m

and value t

i

m

� t

i

k

00

to L

m

, where

S

m

and L

m

are the values given by Lemma 4 (here we need the outliers sorted). The

time omplexity of the whole algorithm is O(m + � log�). On an integer alphabet,

sorting an be replaed by array lookup to yield O(j�j+m+ �). �

4.3 Maximum Absolute Di�erene Distane

We onsider now how d

t;�

MAD

an be omputed. In ase � = 0, we searh for a trans-

position t minimizing d

MAD

(A + t; B) = max

m

i=1

jb

i

� (a

i

+ t)j. In ase � > 0, we are

allowed to disard the k largest di�erenes jb

i

� (a

i

+ t)j.

Theorem 6 Given two numeri strings A and B both of length m, there is an algo-

rithm for omputing distane d

t;�

MAD

(A;B) in O(m+� log�) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m + �) an also be obtained.

Proof. When � = 0 the distane is learly d

t

MAD

(A;B) = (max

i

ft

i

g � min

i

ft

i

g)=2,

and the transposition giving this distane is (max

i

ft

i

g + min

i

ft

i

g)=2. When � > 0,

onsider again the sorted sequene t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3. Again

the � outliers are M(k

0

; k

00

) for some k

0

+ k

00

= � in the optimal transposition. The

optimal transposition is then the value (t

i

m�k

00

+ t

i

k

0

+1

)=2 that minimizes (t

i

m�k

00

�

t

i

k

0

+1

)=2, where k

0

+k

00

= �. The minimum value an be omputed in O(�) time, one

the � + 1 smallest and largest t

i

values are sorted. These values an be seleted in

O(m) time and then sorted in O(� log�) time, or O(j�j+ �) on integer alphabets. �

4.4 Searhing

Up to now we have onsidered distane omputation. Any algorithm to ompute the

distane between A and B an be trivially onverted into a searh algorithm for P in

T by omparing P against every text window of the form T

j�m+1:::j

. Atually, we do

not have any searh algorithm better than this.

105

Proeedings of the Prague Stringology Conferene '03

Lemma 7 For distanes d

t;Æ

H

, d

t;�

SAD

, and d

t;�

MAD

, if the distane an be evaluated in

O(f(m)) time, then the orresponding searh problem an be solved in O(f(m)n)

time.

On the other hand, it is not immediate how to perform transposition invariant

(Æ;)�mathing. We show how the above results an be applied to this ase.

Note that one an �nd in O(mn) time all the ourrenes fjg suh that

d

t

MAD

(P; T

j�m+1:::j

) � Æ, and all the ourrenes fj

0

g where d

t

SAD

(P; T

j

0

�m+1:::j

0

) � .

The (Æ;)�mathes are a subset of fjg \ fj

0

g, but identity does not neessarily hold.

This is beause the optimal transposition an be di�erent for d

t

MAD

and d

t

SAD

.

What we need to do is to verify this set of possible ourrenes fjg \ fj

0

g. This

an be done as follows. For eah possible math j

00

2 fjg \ fj

0

g one an ompute

limits s and l suh that d

MAD

(P + t; T

j

00

�m+1:::j

00

) � Æ for all s � t � l: If the distane

d = d

MAD

(P + t

opt

; T

j

00

�m+1:::j

00

) is given, then s = t

opt

� (Æ� d) and l = t

opt

+ (Æ� d).

On the other hand, note that d

SAD

(P +t; T

j

00

:::j

00

+m�1

), as a funtion of t, is dereasing

until t reahes the median of the transpositions, and then inreasing. Thus, depending

on the relative order of the median of the transpositions with respet to s and l, we

only need to ompute distane d

SAD

(P + t; T

j

00

�m+1:::j

00

) in one of them (t = s, t = l,

or t = t

dm=2e

). This gives the minimum value for d

SAD

in the range [s; l℄. If this value

is � , we have found a math.

One an see that using the results of Theorems 3 and 6 with � = 0, the above

proedures an be implemented so that only O(m) time at eah possible ourrene

is needed. There are at most n ourrenes to test.

Theorem 8 Given two numeri strings P (pattern) and T (text) of lengths m and

n, there is an algorithm for �nding all the transposition invariant (Æ;)�ourrenes

of P in T in O(mn) time on both integer and general alphabets.

4.5 Set of Possible Mathes Revisited

Reall that an edit distane between two strings A and B is the ost of single sym-

bol insertions, deletions, and substitutions to onvert A into B. The unit ost or

Levenshtein distane [Lev66℄ assigns ost 1 to eah operation. If substitutions are

forbidden and other operations have ost 1 the resulting distane is related to the

longest ommon subsequene (LCS) of A and B. See e.g. [MNU03℄ and the referenes

therein (like [Sel80℄) for an introdution and formal de�nition of these edit distanes.

For the sequel, it is only neessary to know the fat [MNU03℄ that the above edit

distanes an be omputed e�iently one the set of possible mathes M = f(i; j) j

a

i

= b

j

; a

i

2 A; b

j

2 Bg is given. Sine we gave an e�ient algorithm in Set. 3

for onstruting M

Æ

= f(i; j) j jb

j

� a

i

j � Æg we immediatedly have algorithms for

edit distanes under noise; just use the sparse dynami programming algorithms of

[MNU03℄ (or others' ited therein) on M

Æ

instead of on M . The e�et of parameter Æ

is that two symbols an be mathed if their values are lose enough. For example, the

method skethed above an be used to ompute the longest approximately ommon

subsequene of two numeri strings.

Now we fous on the transposition invariant edit distanes under noise. Let us

denote the size of M

Æ

as r = r(A;B; Æ) = jM

Æ

(A;B)j. Let us rede�ne T in this setion

to be the set of those transpositions that make some haraters between A and B

106

Mathing Numeri Strings under Noise

exatly Æ apart, that is T = fb

j

� a

i

� Æ j 1 � i � m; 1 � j � ng. The math set

orresponding to a transposition t 2 T is M

Æ

t

= f(i; j) j jb

j

� a

i

� tj � Æg. Notie that

there is always some t 2 T whose math set M

Æ

t

is equal to M

Æ

t

0

, where t

0

2 U. For

most edit distanes (like Levensthtein distane or LCS) same math set means that

the distane will also be the same.

As notied in [MNU03℄ (in the ase Æ = 0) one ould ompute the above edit

distanes by running the basi dynami programming algorithms [Sel80℄ over all pairs

(A+t; B), where t 2 T. In ase Æ > 0, one would just interpret symbols a be b the same

when jb� aj � Æ. One an obtain a more e�ient method using advaned algorithms

at eah transposition. Let us �rst assume that Æ = 0 and let r(A;B) = r(A;B; 0).

The following onnetion was shown in [MNU03℄:

Lemma 9 ([MNU03℄) If an algorithm omputes a distane d(A;B) in

O(r(A;B)f(m;n)) time, then there is an algorithm that omputes the transposition

invariant distane d

t

(A;B) = min

t2T

d(A+ t; B) in O(mnf(m;n)) time.

As a onsequene of the above lemma, we have O(mn polylog(n)) time algorithms

for di�erent edit distanes, sine we manage to onstrut the math sets for all trans-

positions in O(mn polylog(n)) time [MNU03℄. In our noisy ase, the above lemma

extends to giving an O(

P

t2T

jM

Æ

t

jf(m;n)) algorithm, whih equals O(mn polylog(n))

when Æ = 0. To ahieve total running time O(

P

t2T

jM

Æ

t

jf(m;n)), we still need to

show that the sets M

Æ

t

an be onstruted in linear time in their overall size.

Theorem 10 The math sets M

Æ

t

= f(i; j) j a

i

+ t = b

j

g, eah sorted in the olumn

order, for all transpositions t 2 T, an be onstruted in time O(j�j+Æmn) on an inte-

ger alphabet, and in time O(m log j�

A

j+n log j�

B

j+ j�

A

jj�

B

j log(min(j�

A

j; j�

B

j))+

P

t2T

jM

Æ

t

j) on a real alphabet.

Proof. (We extend the proof given in [MNU03℄ for the ase Æ = 0.) On an integer

alphabet we an proeed naively to obtain O(j�j +mn) time using array lookup to

get the transposition where eah pair (i; j) has to be added. For Æ > 0 eah pair (i; j)

is added to entries from b

j

� a

i

� Æ to b

j

� a

i

+ Æ, in O(j�j+ Æmn) time.

The ase of real alphabets is solved as follows. Let us �rst onsider the ase Æ = 0.

Create a balaned tree T

A

where every harater a = a

i

of A is inserted, maintaining

for eah suh a 2 �

A

a list L

a

of the positions i of A, in inreasing order, suh that

a = a

i

. Do the same for B and T

B

. This osts O(m log j�

A

j+n log j�

B

j). Now, reate

an array R(1 : : : j�

A

jj�

B

j), where eah R(k) stores the subset of the math set M

t

k

(in olumn order), where t

k

= b� a, b

j

= b, and a

i

= a for all (i; j) 2 R(k). There is

an entry in R for eah possible pair (a; b), where a 2 �

A

, b 2 �

B

. Clearly R an be

onstruted in O(mn) time one T

A

, T

B

, and the assoiated lists L are given. How-

ever, many pairs an produe the same transposition, thus we have to (i) sort R based

on values t

k

and (ii) merge the partial math sets that orrespond to the same trans-

position. Phase (i) an be implemented to run in O(j�

A

jj�

B

j log(min(j�

A

j; j�

B

j)))

time; onsider w.l.o.g. that j�

A

j � j�

B

j. For �xed a 2 �

A

, we an get the j�

B

j trans-

positions b � a, b 2 �

B

, in inreasing order by a depth-�rst searh on T

B

. Thus we

have j�

A

j lists, eah ontaining j�

B

j transpositions already in order. Merging these

lists (using standard tehniques) takes O(j�

A

jj�

B

j log j�

A

j) time. Phase (ii) an be

implemented to run in O(mn) time; we an traverse through B and for eah b

j

add a

107

Proeedings of the Prague Stringology Conferene '03

new olumn to eah M

t

, where b

j

� a = t, a 2 �

A

. The orret set M

t

an be found

in onstant time sine we an maintain suitable pointers when sorting R in phase (i).

Finally, let us onsider the ase where Æ > 0. As disussed earlier, eah pair

(a; b) produes two relevant transpositions, b � a � Æ and b � a + Æ. We proeed as

before until array R is onstruted and sorted. Consider sliding a window of length

2Æ over the transpositions t

k

in R. Let the middle point of urrent window be at

t. Clearly, the pairs that are inluded in the urrent window produe the whole

math set for transposition t. That is, partial math sets R(l); R(l + 1); : : : ; R(r)

are merged into math set M

Æ

t

, where t

l

= b

j

� a

i

� t � Æ for (all) (i; j) 2 R(l),

t

r

= b

j

0

�a

i

0

� t+Æ for (all) (i

0

; j

0

) 2 R(r), and [l; r℄ is maximal range of R where this

holds. The math sets hange only when the middle points of the sliding window are

from set T = fb� a� Æ j a 2 �

A

; b 2 �

B

g. We an onstrut this set in O(j�

A

jj�

B

j)

time. After sorting it, we an slide the window of length 2Æ stopping at eah middle

point t 2 T , and onstrut eah math set M

Æ

t

by merging the math sets in the

entries of R that are overed by the urrent window.

What is left is to onsider how the merging an be done e�iently. Notie that the

math sets orresponding to onseutive transpositions share a lot in ommon; the

merging does not have to be done by brute fore. We have two ases depending on

whether the onseutive math sets di�er (i) only by one entry of R, or (ii) by several

entries. In ase (i), the range [l; r℄ of R is hanged either to [l + 1; r℄ or to [l; r + 1℄.

Both situations an be handled by one traversal over math set orresponding to [l; r℄

and in the latter ase also over R(r + 1). In ase (ii), the range [l; r℄ of R is hanged

either to [l+ k; r℄ or to [l; r+ k℄ for some k (by de�nition both ranges an not hange

at the same time). Let us onsider the latter situation, sine the �rst is analogous. It

follows that t

r+1

= � � � = t

r+k

, sine otherwise there would be a relevant transposition

t

r+k

0

� Æ, for some 1 < k

0

< k, in between t

r

� Æ and t

r+k

� Æ, whih on�its the fat

that we are moving from one relevant transposition to the next. What follows is that

we an preproess R just like in the ase when Æ = 0, merging onseutive entries

of R having exatly the same transposition in O(mn) time. After this is done, ase

(ii) an be handled just like ase (i). The time omplexity of this merging phase is

bounded by

P

t2T

jM

Æ

t

j. �

Notie that

P

t2T

jM

Æ

t

j � Æmn on an integer alphabet. So the bound on a real

alphabet is analogous to the bound on an integer alphabet.

5 Conluding Remarks

The motivation to study transposition invariant distanes omes from musi infor-

mation retrieval. However, there are also other appliations where these distane

measures are useful. For example, in image omparison one ould use the trans-

position invariant SAD distane to searh for the ourrenes of a small template

inside a large image. With gray-level images the searh would then be �lighting in-

variant�. Combining other invarianes, suh as rotation or saling invariane, with

transposition invariane in a searh algorithm, is a major hallenge.

108

Mathing Numeri Strings under Noise

Referenes

[Abr87℄ K. Abrahamson. Generalized string mathing. SIAM J. Computing,

16(6):1039�1051, 1987.

[ALP01℄ A. Amir, M. Lewenstein, and E. Porat. Approximate Subset Mathing

with Don't Cares. In Pro. 12th Annual ACM-SIAM Symposium on

Disrete Algorithms (SODA'01), pp. 279�288, 2001.

[BYG94℄ R. Baeza-Yates and G. Gonnet. Fast string mathing with mismathes.

Information and Computation, 108(2):187�199, 1994.

[BYP96℄ R. Baeza-Yates and C. Perleberg. Fast and Pratial Approximate

String Mathing. Information Proessing Letters, 59:21�27, 1996.

[BFPRT72℄ M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds

for seletion. J. Computer and System Sienes, 7:448�461, 1972.

[CCIMP99℄ E. Cambouropoulos, M. Crohemore, C.S. Iliopoulos, L. Mouhard, and

Yoan J. Pinzón. Algorithms for omputing approximate repetitions in

musial sequenes. In Pro. 10th Australian Workshop on Combinato-

rial Algorithms, AWOCA'99, R. Raman and J. Simpson, eds., Curtin

University of Tehnology, Perth, Western Australia, pp. 129�144, 1999.

[CIR98℄ T. Crawford, C.S. Iliopoulos, and R. Raman. String mathing teh-

niques for musial similarity and melodi reognition. Computing in

Musiology 11:71�100, 1998.

[CILP01℄ M. Crohemore, C.S. Iliopoulos, T. Leroq, and Y.J. Pinzón. Approx-

imate string mathing in musial sequenes. In Pro. Prague Stringoly

Club (PSC 2001), M. Baliik and M. Simanek, eds, Czeh Tehnial

University of Prague, pp. 26�36, DC-2001-06, 2001.

[CILPR02℄ M. Crohemore, C.S. Iliopoulos, T. Leroq, W. Plandowski, and W.

Rytter. Three Heuristis for Æ�Mathing: Æ�BM Algorithms. In

Pro. 13th Annual Symposium on Combinatorial Pattern Mathing

(CPM'02), Springer-Verlag LNCS 2373, pp. 178�189, 2002.

[GG86℄ Z. Galil and R. Gianarlo. Improved string mathing with k mismathes.

SIGACT News, 17:52�54, 1986.

[LT00℄ K. Lemström and J. Tarhio. Searhing monophoni patterns within

polyphoni soures. In Pro. RIAO 2000, pp. 1261�1279 (vol 2), 2000.

[LU00℄ K. Lemström and E. Ukkonen. Inluding interval enoding into edit

distane based musi omparison and retrieval. In Pro. AISB 2000,

pp. 53�60, 2000.

[Lev66℄ V. Levenshtein. Binary odes apable of orreting deletions, insertions

and reversals. Soviet Physis Doklady 6:707�710, 1966.

109

Proeedings of the Prague Stringology Conferene '03

[LB86℄ G. Landau and U. Vishkin. E�ient string mathing with k mismathes.

Theoretial Computer Siene, 43:239�249, 1986.

[Mut95℄ S. Muthukrishnan. New results and open problems related to non-

standard stringology. In Pro. 6th Annual Symposium on Combinatorial

Pattern Mathing (CPM'95), LNCS 937, pp. 298�317, 1995.

[MNU02℄ V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for Transposition

Invariant String Mathing. TR/DCC-2002-5, Dept. of CS, Univ. Chile,

July 2002,

�ftp://ftp.d.uhile.l/pub/users/gnavarro/ti_mathing.ps.gz�

[MNU03℄ V. Mäkinen, G. Navarro and E. Ukkonen. Algorithms for Transposition

Invariant String Mathing (Extended Abstrat). In Pro. 20th Interna-

tional Symposium on Theoretial Aspets of Computer Siene (STACS

2003), Springer-Verlag LNCS 2607, pp. 191�202, Berlin, February, 2003.

[Sel80℄ P. Sellers. The theory and omputation of evolutionary distanes: Pat-

tern reognition. J. of Algorithms, 1(4):359�373, 1980.

[vEB77℄ P. van Emde Boas. Preserving order in a forest in less than logarithmi

time and linear spae. Inf. Pro. Letters 6(3):80�82, 1977.

110

