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Abstrat. We present here a linear algorithm for the detetion of evolutive

tandem repeats. An evolutive tandem repeat onsists in a series of almost on-

tiguous opies, every opy being similar (using Hamming distane in this artile)

to its predeessor and suessor. From a global view point, evolutive tandem

repeats extend the traditional approximate tandem repeat where eah opy has

to be in a neighborhood of a given model. Due to the lak of algorithms, these

repeats have been disovered in genomi sequenes only reently. In this artile,

we present a two-stage algorithm, where we �rst ompute an array ontaining all

the Hamming distanes between andidates, then we visit this array to build a

omplete evolutive tandem repeat from insulated pairs of opies. Moreover, we

explain how it is still onsistent with the usual tehnique devoted to dynami

programming whih onsists in �lling a omparison matrix and baktraking

through it to �nd an optimal alignment.

Keywords: linear algorithm, evolutive tandem repeats, Hamming distane

1 Introdution

The notion of approximate tandem repeat is generally well-de�ned, from the formal

view point [2, 12℄, it uses a onsensus model, every opy partiipating to this repeat

being very similar to the onsensus. An evolutive tandem repeat has no need for

a onsensus model, the �rst and the last opies might be ompletely di�erent but

every time we are onsidering two suessive opies partiipating to the repeat, they

are very similar to eah other: �nding evolutive tandem repeats is obviously muh

more ompliated than deteting generi tandem repeats for whih usual well-known

strutures, suh as su�x trees, an be used during a preproessing stage [9℄.

Evolutive tandem repeats have been phrased by moleular biologists, for example

in [4℄, and have been observed in real DNA sequenes (see Appendix A for a omplete

example, deteted in A. thaliana). In [5℄, we gave a formal de�nition of evolutive

tandem repeats with jumps then we desribed a quadrati spae and time algorithm

�
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whih detets all the maximal. Even if numerous models and algorithms searhing

for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12℄, none of these

algorithms are able to loate evolutive tandem repeats, as far as we know, we therefore

designed a quadrati algorithm for their detetion, it was based on the onstrution

of two graphs and their visits.

Sine we are looking for loal repetitions having approximatively the average length

of mini (or even miro) satellites and beause we are also looking for a ertain number

of opies (having three or less opies in an evolutive tandem repeats is meaningless),

we are here interested in searhing for opies whose length may vary from 4 to 64 [6℄,

that is usually thousands times less than the size of the sequenes we are studying.

We present in this artile a O((`

max

� `

min

+ 1)� (j

max

� j

min

+ 1)� jwj)-time and

O(j

max

� j

min

+ 1)-spae algorithm where and `

min

and `

max

(resp. j

min

and j

max

)

are the minimal and maximal values of the length of the opies (resp. the jump

between two opies) and w is the studied sequene. More preisely, sine length and

jump values are very small (with respet to the length of the sequene whih an be

ounted in millions of base pairs), we still have an overall linear time-omplexity. So

in pratie, the time omplexity is in O(C � jwj), where C � (61� (j

max

� j

min

).

In setion 2, we reall some basi de�nitions and introdue the evolutive tandem

repeats. In setion 3, we present the ideas of our algorithm. In setion 4, we explain

the onnetion with omparison matries. In setion 5, we present experimental

results and �nally, in setion 6, we onlude.

2 Preliminaries

Let � be an alphabet and �

�

its assoiated free monoid. A word (resp. non empty

word) over � is an element of �

�

(resp. �

+

). The letter of a word w ourring at

position i is denoted by w

i

. The length jwj of a word w is the number of letters of w,

i.e. w = w

1

� � �w

jwj

. We will denote by �

`

the set of all possible words of length `

over �. We denote by u:v (or simply uv) the onatenation of two words u and v.

Consider w = p:f:s for some p; f; s 2 �

�

. Suh p; f; s are respetively pre�x, fator

and su�x of w. We denote f = w[i; j℄ = w

i

w

i+1

� � �w

j�1

w

j

for 1 � i � j � jwj. The

onatenation of n opies of u is denoted by u

n

.

There exist several distanes one an use for the analysis of genomi sequenes. In

this artile, we will onsider the Hamming distane: the Hamming distane between

two words of equal length is the number of positions at whih their orresponding

letters di�er: for u; v 2 �

`

, d

H

(u; v) = Cardfi 2 f1; : : : ; `g j u

i

6= v

i

g:

De�nition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v; "; (j

min

; j

max

);

`; n; (p

i

)

1�i�n

) where v is a word, " is the maximal number of errors between two

onseutive opies, [j

min

; j

max

℄ is the range of the length of a jump (overlap or gap

between two onseutive opies) with (j

max

� j

min

+ 1) � `=2, ` is the length of

the opies, n is the number of opies, p

i

are the starting positions of the opies



i

= v[p

i

; p

i

+ `� 1℄ and

8

>

<

>

:

p

1

= 1; p

n

+ `� 1 = jvj;

j

min

� p

i+1

� (p

i

+ `) � j

max

; 8i 2 f1; : : : ; n� 1g;

d

H

(

i

; 

i+1

) � "; 8i 2 f1; : : : ; n� 1g:
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Example 2.1 Let onsider the word v = aaataaagg.

(v; 1; (�1; 1); 3; 4; (1; 5; 8; 10)) is an e.t.r. with jumps: p

1

= 1, p

2

= 5 (gap), p

3

= 8

and p

4

= 10 (overlap) orresponding to 

1

= aaa, 

2

= aa, 

3

= ag and 

4

= g

(see Fig. 1).

gap overlap

a a a  g g

` `

`

� j

min

� " � "

p

1

p

2

p

3

p

4

` = 3

� j

max

= 1

� " = 1

v =

a

g

g





a



1

=



4

=



3

=



2

= 

aaa

a



a a a t

Fig. 1: Example of an evolutive tandem repeat with jumps

We will onsider only in what follows maximal e.t.r., that is e.t.r. whih is not

embedded in a longer one: onsider for example a word w = gaaagagagggg and

` = 3. The e.t.r. etr

1

= (aagagagg; 1; (�1; 1); 3; 3; (1; 4; 7)) is not maximal in w sine

the repeat etr

2

= (aagagagggg; 1; (�1; 1); 3; 4; (1; 4; 7; 10)) ontains more opies. In

this ase, we say that etr

2

�ontains� etr

1

and remark that etr

2

is a maximal e.t.r. in

w.

In a previous artile [5℄, we �rst onsidered all fators of w having the same length.

For eah fator, we omputed the set of its starting positions using an equivalene

relation on positions in w. Then, we built a graph for whih nodes are these sets

and there exists an edge between two nodes if the orresponding fators are slightly

di�erent in the meaning of the Hamming distane. Next, we omputed a seond graph

namely the `-position graph de�ned as follows:

De�nition 2.2 (`-position graph) Let w be a word and " and jump integers. The

`-position graph orresponding to w, " and jump is the oriented graph PG

`

(w; ";

jump) = (N;E) where

8

>

>

>

<

>

>

>

:

N = f1; :::; jwj � `+ 1g and

E = f(i; i

0

; i

0

� (i + `)) for (i; i

0

) 2 N �N; i < i

0

suh that ji

0

� (i + `)j � jump;

d

H

(w[i; i+ `� 1℄; w[i

0

; i

0

+ `� 1℄) � "g:

Nodes are labeled with all the positions f1; : : : ; jwj� `+1g of fators of length ` and

there exists an edge labeled with d between two nodes if the orresponding positions

are lose in w and if the Hamming distane between their assoiated fators, denoted

d is not greater than a given ". We used a quadrati time but linear spae algorithm

to ompute it. In what follows we denote by (i; i

0

; d) an edge labeled d from the node i

to the node i

0

.

Finally, we looked for all the longest paths in the `-position graph to �nd maximal

e.t.r.
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3 A Linear � Time and Spae � Algorithm

In a previous artile [5℄, we desribed a quadrati spae and time algorithm whih

detets all maximal e.t.r. in a word w. In what follows, we present a linear time

and spae algorithm that starts with the �lling of a �position� array and follows on

with the visit of this array in an attempt to �nd regularities. We will �rst draw the

�big-piture� and will onsolidate the desription by explaining the strutures we used

and the strategies we developed.

The �rst important idea onsists in onsidering every `-mer (fator of length `) as

a sliding window. Sine we have to ompute the distanes between pairs of fators,

we have to use two sliding windows f and f

0

(see Fig. 2): one window, f

0

, ending

at position i will orrespond to the right-most fator (moving sequentially from left

to right, one position at a time) while the other window, f , will orrespond to the

andidates for a pair (ending at a position in the interval [i� `� j

max

; i� `� j

min

℄).

Therefore, we only have to onsider j

max

� j

min

+ 1 possible positions for the left

sliding window, for eah given position of the right sliding window and fous on the

omputation of (j

max

�j

min

+1)�(jwj�`+1) distanes, that is a linear-time and spae

onstrution of a �position� array (emulating the position graph we de�ned in [5℄).

������������
������������
������������
������������

�������������
�������������
�������������
�������������

``

i� 2`� k + 1 i� `+ 1

k

i� `� k i

f f

0

Fig. 2: The two sliding windows f and f

0

The seond important idea is the omputation of the Hamming distane by itself: if

the Hamming distane between the fators of length ` ending at position i and i

0

is

known then the Hamming distane between the fators ending at position i + 1 and

i

0

+ 1 an be omputed in O(1)-time beause (`� 1) omparisons have already been

done. It will speed up the �lling of the position array (see Fig. 3).

`

`

`� 1 omparisons in ommon

w

i+`

: : : w

i�1

w

i

d

H

(w[i+ `; i+ 1℄; w[i

0

+ `; i

0

+ 1)

d

H

(w[i+ `� 1; i℄; w[i

0

+ `� 1; i

0

)

w

i

0

+`

: : : w

i

0

�1

w

i

0

w

i+`�1

w

i

0

+`�1

w

i+1

w

i

0

+1

Fig. 3: Computing Hamming distane on inremental positions

Finally we only have to visit the position array and searh for a series of aeptable

values (smaller than ") loated at appropriate positions (the distane between two

onseutive positions has to belong to [`+ j

min

; `+ j

max

℄).
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A Two-stage Algorithm

We �rst have to ompute the Hamming distanes between every possible pairs of

andidates and �ll the position array D that ontains all these omputations.

De�nition 3.1 Let w = w

1

: : : w

n

be a word over �, ` an integer and k 2 fj

min

; : : : ;

j

max

g. We de�ne D

w;`

k

(i) by

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg

d

H

(w[1; i� `� k℄; w[`+ k + 1; i℄); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g

d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄); 8i 2 f2`+ k; : : : ; jwjg

We assume now that D

w;`

k

(i� 1) has been previously omputed and we would like to

ompute D

w;`

k

(i), i.e we know d

H

(w[i � 2` � k; i � ` � k � 1℄; w[i � `; i � 1℄) and we

would like to ompute d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄).

We therefore de�ne two additional funtions:

� 8a; b 2 �; 11

a

(b) = 0 if b = a, 1 otherwise;

� 8k 2 fj

min

; : : : ; j

max

g; E

w;`

k

(i) = 11

w

i�`�k

(w

i

) if i 2 f` + k + 1; : : : ; jwjg, 0

otherwise.

Lemma 3.1 Let w be a word over �, ` an integer and k 2 fj

min

; : : : ; j

max

g. We have:

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg;

D

w;`

k

(i� 1) + E

w;`

k

(i); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g;

D

w;`

k

(i� 1) + E

w;`

k

(i)� E

w;`

k

(i� `); 8i 2 f2`+ k; : : : ; jwjg:

Proof 1 Let k 2 fj

min

; : : : ; j

max

g and i 2 f2` + k; : : : ; jwjg. If i > 2` + k then

D

w;`

k

(i� 1) = d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄) and therefore

D

w;`

k

(i)

= d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄)

= d

H

(w[i� 2`� k + 1; i� `� k � 1℄; w[i� `+ 1; i� 1℄) + 11

w

i�`�k

(i)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄)� 11

w

i�2`�k

(i� `)+

11

w

i�`�k

(i)

= D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i):

If i = 2` + k then D

w;`

k

(i) = d

H

(w[1; i � ` � k℄; w[` + k + 1; i℄) = d

H

(w[1; i � `�

k � 1℄; w[`+ k + 1; i� 1℄) + 11

w

i�`�k

(w

i

) = D

w;`

k

(i� 1) + E

w;`

k

(i).

But we have E

w;`

k

(i � `) = E

w;`

k

((2` + k) � `) = E

w;`

k

(` + k) = 0, so D

w;`

k

(i) =

D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i).

We prove the other ase in the same manner. 2

The size of the arrays D (where D[k℄[i℄ = D

w;`

k

(i)) and E (where E[k℄[i℄ = E

w;`

k

(i))

is (j

max

� j

min

+ 1)� jwj. In order to �ll these two arrays, we now use a O((j

max

�

j

min

+ 1)� jwj)-time and spae algorithm.

Example 3.1

This example (see Fig. 4) has been obtained with w = aaataagttataataaatgtgta,

` = 4, j

min

= �1, j

max

= 1 and " = 2:

For example D

w;4

�1

(7) = d

H

(w[1; 4℄; w[4; 7℄) = d

H

(aaat; taag) = 2, D

w;4

0

(17) = d

H

(

w[10; 13℄; w[14; 17℄) = d

H

(ata; at) = 1 and D

w;4

1

(28) = d

H

(w[20; 23℄; w[25; 28℄) =

d

H

(atg; gta) = 2.
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��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0 0 0 1 1 1 2 2 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 3 3 3 43

0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1110 11
2 2 3 2 1 1 444444433213211000000 3

1 10 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 10 0 0 0 0 0 1 0 0
gap

overlap

conca−

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

2520151051 28

0 0 0 0 0 1 2 2 2 2 2 3 4 44 3 2 1 1 2 2 3 3 3 3 2 20

a a a a a g t t a t c a a t c c a a a t c g t g t c a

1001 = 2
t c g

g t c a

a t
0 0 0 1 = 1

c a

a t c c
01 0 = 21

a a a

t a a g

at

t

tenation

w

i

E

w;4

�1

(i)

D

w;4

�1

(i)

D

w;4

0

(i)

E

w;4

1

(i)

D

w;4

1

(i)

E

w;4

0

(i)

Fig. 4: D and E arrays

The spae omplexity an be improved as follows.

Sine the values E[k℄[i℄ are independent, we an derease the spae omplexity by

ignoring the �lling of the array E and by omputing E[k℄[i℄ only when needed without

inreasing the time omplexity.

Moreover, for a given `, we only need the last value D

w;`

k

(i � 1) in order to om-

pute D

w;`

k

(i) (see Lemma 3.1), thus we will only store the last olumn of the ar-

ray D. Finally (see Fig. 5), we obtain a O((j

max

� j

min

+ 1) � jwj)-time and

O(j

max

� j

min

+ 1)-spae algorithm (D is an array of size O(j

max

� j

min

+ 1)). If

we are looking for all e.t.r. for opies of length ` 2 [`

min

; `

max

℄,the omplexity is

O((`

max

� `

min

+ 1) � (j

max

� j

min

+ 1) � jwj). From a pratial point of view,

(`

max

� `

min

+ 1) � 61 is muh lower than jwj and the time omplexity is still linear:

O(C � jwj), where C � 61� (j

max

� j

min

).

Constrution of the Longest Paths

The two arrays are ompat representations of the graphs we depited in [5℄, and if

we refer to the traditional graph voabulary, we an assoiate a ell in the position

array and a node in the position graph.

Constrution of the array ontaining the longest paths(w; `; j

min

; j

max

; ")

1 for ` `

min

to `

max

do

2 for i 1 to jwj do

3 C[i℄ �1

4 L[i℄ 0

5 for k  j

min

to j

max

do

6 if (i � `+ k) then

7 D[k℄ 0

8 elseif (i � 2`+ k) then

9 D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)

10 else D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)� 11

w

i�2`�k

(w

i�`

)

11 if (i � 2`+ k) and (D[k℄ � ") and (L[i� 2`� k + 1℄ + 1 > L[i� `+ 1℄) then

12 L[i� `+ 1℄ L[i� 2`� k + 1℄ + 1

13 C[i� `+ 1℄ i� 2`� k + 1

14 return (C;D)

Fig. 5: Constrution of the array ontaining the longest paths

When D

w;`

k

(i) � " and i � 2`+k, the ar between nodes (i�2`�k+1) and (i�`+1)

is added only if it reates a longest path to node (i� `+ 1), moreover the previously
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existing, previously unique ar ending in i� ` + 1 is removed: let a path of length 

ending in (i�`+1), if the length of the path ending in (i�2`�k+1) plus 1 is greater

than , then thear ending in (i� `+1) is removed and the ar from (i� 2`� k+ 1)

to (i� `+ 1) is reated.

Finally eah node i has at most one ar ending in i and therefore the `-position graph

is stored in an array C of integers, where C[i℄ is the index of the head of the ar (C[i℄,

i), and �1 otherwise. We use an array L of integers, where L[i℄ is the length of the

longest path ending in i.

Let C and L be arrays of integers of size jwj (see algorithm Fig. 5).

The determination of the longest paths, orresponding to the maximal e.t.r., uses the

traditional algorithm.

Computation of the Distane between Two Fators of Length

`+ 1

Lemma 3.2 (Computation of D

w;`+1

k

(i)) Let `; j

min

; j

max

and k be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg, D

w;`+1

k

(i) = D

w;`

k+1

(i) +E

w;`

k+1

(i� `);

(see Fig. 6).

Proof 2 Let `; j

min

; j

max

; i and k integers suh that k 2 fj

min

; : : : ; j

max

g and i 2

f2`+ k; : : : ; jwjg. We have

D

w;`+1

k

(i) = d

H

(w[i� 2(`+ 1)� j + 1; i� (`+ 1)� k℄; w[i� (`+ 1) + 1; i℄)

= d

H

(w[i� 2`� k � 1; i� `� k � 1℄; w[i� `; i℄)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `+ 1; i℄) + 11

w

i�2`�k�1

(w

i�`

)

= d

H

(w[i� 2`� (k + 1) + 1; i� `� (k + 1)℄; w[i� `+ 1; i℄)+

11

w

i�2`�k�1

(w

i�`

)

= D

w;`

k+1

(i) + E

w;`

k+1

(i� `):

2

�������������������������� ������������������������

������������

����������

``

`+ 1 `+ 1

i

k + 1

k

i� `� k � 1

i� 2`� k � 1

i� 2`� k

i� `� k � 1 ii� `

i� `+ 1

Fig. 6: Computation of D

w;`+1

k

(i)

������������
������������
������������
������������

������������
������������
������������
������������

����������

��������

``

` + 1 `+ 1

i

k + 1

i� `� k � 1

k

i + 1

i� 2`� k

i� `� k

i� `+ 1

i� 2`� k i� `+ 1

Fig. 7: Computation of D

w;`+1

k

(i+ 1)

Lemma 3.3 (Computation of D

w;`+1

k

(i+ 1)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+k; : : : ; jwjgD

w;`+1

k

(i+1) = D

w;`

k+1

(i)+E

w;`

k+1

(i+1);

(see Fig. 7).

Proof 3 Aording to Lemma 3.2, D

w;`+1

k

(i+1) = D

w;`

k+1

(i+1)+E

w;`

k+1

(i� `+1) and

by De�nition 3.1, D

w;`

k+1

(i + 1) = D

w;`

k+1

(i) � E

w;`

k+1

(i � ` + 1) + E

w;`

k+1

(i + 1), therefore,

D

w;`+1

k

(i+ 1) = D

w;`

k+1

(i) + E

w;`

k+1

(i + 1).

2
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Lemma 3.4 (Computation of D

w;`+1

k

(i)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg

D

w;`+1

k

(i) = D

w;`

k+1

(i) + E

w;`

k+1

(i� `)

= D

w;`

k+1

(i� 1) + E

w;`

k+1

(i):

4 Evolutive Tandem Repeats and Comparison Ma-

tries

Comparison Matries

We will now explain the onnetion between the arrays we are omputing and using,

and well-known tehniques used by several algorithms devoted to sequene ompari-

son.

A traditional tehnique in sequene omparison onsists in the onstrution and the

visit of the two-dimension matrix, where a ell (i; i

0

) ontains the omparison sore,

i.e. the distane, between a fator ending at position i in one sequene and a fator

ending at position i

0

in the other sequene.

Computing the positions of all the approximate repeats in one sequene an be arried

out by omparing the sequene with itself, that is by onstruting a spei� symmetri

square matrix, like the one we are presenting in Fig. 8. Note that Fig. 9 represents

the arrays D and E orresponding to the three white diagonals of Fig. 8.
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Fig. 8: Matrix and its diagonals for ` = 3,

j

min

= �1; j

max

= 1 and " = 1
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0
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Fig. 9: The arrays D and E orrespond-

ing to the three white diagonals

In this matrix, the ontent of a ell (i; i

0

) ontains informations orresponding to

d

H

(w[i � 2; i℄; w[i

0

� 2; i

0

℄). One an observe four di�erent kinds of ells: dark gray

ells orrespond to unde�ned distanes (i < ` or i

0

< `, the fators are not long enough
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to ompute d

H

(w[i� 2; i℄; w[i

0

� 2; i

0

℄), therefore only d

H

(w[i℄; w[i

0

℄) is reported in the

upper left orner), light gray ells orrespond to useless ells suh that i

0

� i < `+j

min

or i

0

� i > `+ j

max

, white ells ontain three values as expressed in Fig. 8 and are the

only ells that are really needed and �nally dashed ells tik opies partiipating to a

potential e.t.r. (for example, the dashed ell (3; 7) states that d

H

(w[1; 3℄; w[5; 7℄) � ",

that is d

H

(at; aa) � 1, whih is orret).

Remark 4.1 Dashed ells ontributing to a diagonal indiate a potential larger re-

peat: (3; 9) and (4; 10) (orresponding respetively to d

H

(at; ag) � 1 and d

H

(ta;

ga) � 1) an establish the existene of a longer repeat (in this example d

H

(ata;

aga) � 1) but more generally, dashed ells (i; i

0

) and (i+ 1; i

0

+ 1), that is d

H

(w[i�

2; i℄; w[i

0

� 2; i

0

℄) � 1 and d

H

(w[i � 1; i + 1℄; w[i

0

� 1; i

0

+ 1℄) � 1, does not imply

neessarily that d

H

(w[i� 2; i + 1℄; w[i

0

� 2; i

0

+ 1℄) � 1 (onsider (6; 8) and (7; 9) for

example).

Assume now that we are searhing for approximate tandem repeats of length ` = 3,

with an error rate " = 1 and j

min

= �1; j

max

= 1, one we have built our matrix, the

hunt for the repeats an be arried out by visiting one row at a time and reporting

regions ontaining ells with a lower right value smaller than " every at least `+j

min

=

3� 1 = 2 and at most `+ j

max

= 3 + 1 = 4 positions. In this matrix (see Fig. 10), if

we onsider the third row, one an �nd suh ells in olumns 3, 7 and 9 and therefore

dedue that there exists an approximate repetition starting at position 1 and ending

at position 9: as a matter of fat, ataaag is an approximate tandem repeat with

jumps, the letter a loated at position 4 orresponds to a gap between opies 

1

= at

and 

2

= aa, the letter a loates at position 7 orresponds to an overlap between

opies 

2

= aa and 

3

= ag. This is more or less the onept Sagot and Myers used

in [12℄ for �nding mirosatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly di�erent, the loation of a

opy partiipating to the e.t.r. depends only on the loation of its predeessor, `,

the length of the opies and j

min

; j

max

the aeptable jump between two onseutive

opies.

Consider a opy belonging to the e.t.r. that ends at position i, its suessor must ends

at a spei� position (between i+`+j

min

and i+`+j

max

) in the matrix, we therefore

have to searh for a dashed ell at positions (i; i

0

) for i+`+ j

min

� i

0

� i+`+ j

max

. If

there exists suh a ell, it gives us a signi�ant information about the way the opies

are onneted: if i + ` + j

min

� i

0

� i + `� 1 there is an overlap of length i + `� i

0

between the opies, if i

0

= i+` the opies are ontiguous, if i+`+1 � i

0

� i+`+j

max

there exists a gap of length i

0

� i� ` between the opies. Therefore, for every row i,

we only have to onsider (j

max

� j

min

) + 1 ells. In order to �nd e.t.r. we therefore

have to ompute and visit the diagonals starting in olumns i+`+j

min

to i+`+j

max

.

That leads to omputing and visiting only O((j

max

� j

min

+ 1)� jwj) ells.

The left-most diagonal, starting in ell (1; `+ j

min

+ 1), orresponds to the maximal

authorized overlap, while the right-most diagonal, starting in ell (1; ` + j

max

+ 1),

orresponds to the maximal authorized gap. We an therefore build a matrix that

sums up all these informations as depited in Fig. 8. The three white diagonals are
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Fig. 10: Two dimension matrix orresponding to the omparison of ataaagatg

with itself, for ` = 3 and " = 1

the only ones that need to be omputed (even if in this matrix, we show all the ells).

Moreover, the omputation of the three diagonals is equivalent to the omputation of

the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequenes, we built ran-

dom sequenes over the alphabet fa; ; g; tg and no e.t.r. has been deteted (for the

same rapameters as below), it appears that this kind of repetition is not an artifat.

Moreover we foused on real sequenes from A. thaliana and for testing purpose we

used sequenes with length varying from 10kb to 200kb (see Fig. 11).

The average behaviour of the timing urves orresponds to that we were expeting.

Time and spae onsumptions enabled us to searh for e.t.r. in whole hromosomes,

we studied more spei�ally A. thaliana whih possesses �ve hromosomes (their

length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Conlusion and Perspetives

In this artile, we presented a both spae and time linear algorithm for the detetion

of evolutive tandem repeats. Furthermore, we implemented this approah, developed

a web interfae (see Fig. 12, http://abiss.rihan.fr/~rgroult/index.php) that
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Fig. 11: Exeution times on sequenes, where l is the length of the opies, e is the

maximal Hamming distane and j is the jump

presents the opies, the alterations and sums up informations relative to the repeats.

We are now looking for this kind of repeats in omplete genomes, we found several

interesting e.t.r. that are not inherited from approximate tandem repeats. We are

still in the proess of studying the way it works, from the biologist viewpoint and we

are trying to �gure out their role, preferred loation and number in di�erent genomes.

Sine onsidering Hamming distane is somehow restritive, we are moving forward

by designing an algorithm that makes use of Levenshtein distane (whih allows indels

as well as substitution) instead of Hamming distane.
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A An Example of e.t.r. Ourring in A. thaliana,

hr 4 (17Mb)

We found numerous e.t.r. in hr 4 (17Mb) of A. thaliana, here is an example appearing

in an exon of the AT4G38590.1 gene.

./evorep -m11 -e3 -j1 -r4 -f ~/at4.fasta

->

- number of e.t.r.: 662

- time: 0m38.758s

Example of found e.t.r.

#================================================

# Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4

# Sequene: > at4.seq (17Mb)

# Exeution time: 38 se.

17245698 17245709 17245719 17245731 17245743 17245755 17245767

aaagatgagaagaagaagaaagaagataaagagaagaggaagaggagatgaagatgatgatgaagaagaag

[ aagaag

17245698 aaagatgaga

17245709 agaagaagaaa

17245719 agaagataaag

17245731 gaagaggaag

17245743 ggagatgaag

17245755 tgatgatgaag

17245767 agaagaagaag

#================================================

We investigated this sequene using �tandem repeat �nder� [2℄ and �mreps� [7℄ and

obtained:

->

Tandem Repeat Finder:

Indies Period Copy Consensus Perent Perent Sore A C G T Entropy(0-2)

Size Number Size Mathes Indels

No Repeats Found!

->

./mreps -err 3 -minp 2 -from 1 -exp 3.0

* Proessing window [1 : 80℄ *

from -> to : size <per.> [exp.℄ repetition

----------------------------------------------------

1 -> 18 : 18 <5> [3.60℄ aaag atgag aagaa gaa
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5 -> 25 : 21 <6> [3.50℄ gatgag aagaag aagaaa gaa

8 -> 40 : 33 <4> [8.25℄ gaga agaa gaag aaag aaga taaa gag aaga g

10 -> 32 : 23 <7> [3.29℄ gaagaag aagaaag aagataa ag

11 -> 33 : 23 <5> [4.60℄ aagaa gaaga aagaa gataa aga

20 -> 80 : 61 <6> [10.17℄ aaagaa gataaa gagaa gaggaa gagga gatgaa

[ gatgat gatgaa gaagaa gaagaa g

30 -> 80 : 51 <9> [5.67℄ aagagaag aggaagagg agatgaag atgatgatg

[ aagaagaag aagaag

30 -> 80 : 51 <12> [4.25℄ aagagaagagg aagaggagatg aagatgatgatg

[ aagaagaagaag aag

36 -> 47 : 12 <4> [3.00℄ aaga ggaa gagg

60 -> 80 : 21 <4> [5.25℄ atga tgaa gaag aaga agaa g

----------------------------------------------------

RESULTS: There are 10 maximal repetitions in the segment proessed
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