
Approximate Seeds of Strings

Manolis Christodoulakis

1

and Costas S. Iliopoulos

1

and

Kunsoo Park

2�

and Jeong Seop Sim

3

1

Department of Computer S
ien
e,

King's College London

e-mail: {manolis,
si}�d
s.k
l.a
.uk

2

S
hool of Computer S
ien
e and Engineering,

Seoul National University

e-mail: kpark�theory.snu.a
.kr

3

Ele
troni
s and Tele
ommuni
ations Resear
h Institute

Daejeon 305-350, Korea

e-mail: simjs�etri.re.kr

Abstra
t. In this paper we study approximate seeds of strings, that is, sub-

strings of a given string x that
over (by
on
atenations or overlaps) a super-

string of x, under a variety of distan
e rules (the Hamming distan
e, the edit

distan
e, and the weighted edit distan
e). We solve the smallest distan
e ap-

proximate seed problem and the restri
ted smallest approximate seed problem

in polynomial time and we prove that the general smallest approximate seed

problem is NP-
omplete.

Keywords: regularities, seeds, approximate seeds, Hamming distan
e, edit dis-

tan
e, weighted edit distan
e, penalty matrix.

1 Introdu
tion

Finding regularities in strings is useful in a wide area of appli
ations whi
h involve

string manipulations. Mole
ular biology, data
ompression and
omputer-assisted

musi
 analysis are
lassi
 examples. By regularities we mean repeated strings of an

approximate nature. Examples of regularities in
lude repetitions, periods,
overs and

seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(n logn)-time algorithms [11, 6, 27℄ for �nding repetitions, that

is, equal adja
ent substrings, in a string x, where n is the length of x. Apostoli
o and

Breslauer [2℄ gave an optimal O(log logn)-time parallel algorithm (i.e., total work is

O(n logn)) for �nding all the repetitions.

The prepro
essing of the Knuth-Morris-Pratt algorithm [22℄ �nds all periods of

x in linear time� in fa
t, all periods of every pre�x of x. Apostoli
o, Breslauer

and Galil [3℄ derived an optimal O(log logn)-time parallel algorithm for �nding all

periods.

�

Work supported by IMT 2000 Proje
t AB02, MOST grant M1-0309-06-0003, and Royal So
iety

grant.

25

Pro
eedings of the Prague Stringology Conferen
e '03

The fa
t that in pra
tise it was often desirable to relax the meaning of �repetition�,

has led more re
ently to the study of a
olle
tion of related patterns��
overs� and

�seeds�. Covers are similar to periods, but now overlaps, as well as
on
atenations, are

allowed. The notion of
overs was introdu
ed by Apostoli
o, Fara
h and Iliopoulos

in [5℄, where a linear-time algorithm to test superprimitivity, was given (see also

[8, 9, 18℄). Moore and Smyth [29℄ and re
ently Li and Smyth [25℄ gave linear time-

time algorithms for �nding all
overs of a string x. In parallel
omputation, Iliopoulos

and Park [19℄ obtained an optimal O(log logn) time algorithm for �nding all
overs

of x. Apostoli
o and Ehrenfeu
ht [4℄ and Iliopoulos and Mou
hard [17℄
onsidered

the problem of �nding maximal quasiperiodi
 substrings of x. A two-dimensional

variant of the
overing problem was studied in [12, 15℄, and a minimum
overing by

substrings of a given length in [20℄.

An extension of the notion of
overs, is that of seeds; that is,
overs of a superstring

of x. The notion of seeds was introdu
ed by Iliopoulos, Moore and Park [16℄ and an

O(n logn)-time algorithm was given for
omputing all seeds of x. A parallel algorithm

for �nding all seeds was presented by Berkman, Iliopoulos and Park [7℄, that requires

O(logn) time and O(n logn) work.

In appli
ations su
h as mole
ular biology and
omputer-assisted musi
 analysis,

�nding exa
t repetitions is not always su�
ient. A more appropriate notion is that

of approximate repetitions ([10, 13℄); that is, �nding strings that are �similar� to a

given pattern, by allowing errors. In this paper, we
onsider three di�erent kinds of

�similarity� (approximation): the Hamming distan
e, the edit dis
tan
e [1, 35℄ and a

generalization of the edit distan
e, the weighted edit distan
e, where di�erent
osts

are assigned to ea
h substitution, insertion and deletion for ea
h pair of symbols.

Approximate repetitions have been studied by Landau and S
hmidt [24℄, who

derived an O(kn logk logn)-time algorithm for �nding approximate squares whose

edit distan
e is at most k in a text of length n. S
hmidt also gave an O(n

2

logn)

algorithm for �nding approximate tandem or nontandem repeats in [31℄ whi
h uses an

arbitrary s
ore for similarity of repeated strings. More re
ently, Sim, Iliopoulos, Park

and Smyth provided polynomial time algorithms for �nding approximate periods [33℄

and, Sim, Park, Kim and Lee solved the approximate
overs problem in [34℄.

In this paper, we introdu
e the notion of approximate seeds, an approximate

version of seeds. We solve the smallest distan
e approximate seed problem and the

restri
ted smallest approximate seed problem and we prove that the more general

smallest approximate seed problem is NP-
omplete.

The paper is organized as follows. In se
tion 2, we present some basi
 de�nitions.

In se
tion 3, we des
ribe the notion of approximate seeds and we de�ne the three

problems studied in this paper. In se
tion 4, we present the algorithms that solve the

�rst two problems and the proof that the third problem is NP-
omplete. Se
tion 5

ontains our
on
lusion.

2 Preliminaries

A string is a sequen
e of zero or more symbols from an alphabet �. The set of all

strings over � is denoted by �

�

. The length of a string x is denoted by jxj. The

empty string, the string of length zero, is denoted by ". The i-th symbol of a string

x is denoted by x[i℄.

26

Approximate Seeds of Strings

A string w is a substring of x if x = uwv, where u; v 2 �

�

. We denote by x[i::j℄

the substring of x that starts at position i and ends at position j. Conversely, x is

alled a superstring of w. A string w is a pre�x of x if x = wy, for y 2 �

�

. Similarly,

w is a su�x of x if x = yw, for w 2 �

�

. We
all a string w a subsequen
e (also
alled

a subword [14℄) of x (or x is a supersequen
e of w) if w is obtained by deleting zero or

more symbols at any positions from x. For example, a
e is a subsequen
e of aab
def .

For a given set S of strings, a string w is
alled a
ommon supersequen
e of S if s is

a supersequen
e of every string in S.

The string xy is a
on
atenation of the strings x and y. The
on
atenation of k

opies of x is denoted by x

k

. For two strings x = x[1::n℄ and y = y[1::m℄ su
h that

x[n � i + 1::n℄ = y[1::i℄ for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x[1::n℄y[i + 1::m℄ is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring y of x is
alled a repetition in x, if x = uy

k

v, where u; y; v are

substrings of x and k � 2, jyj 6= 0. For example, if x = aababab, then a (appearing in

positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in x; in

parti
ular a

2

= aa is
alled a square and (ab)

3

= ababab is
alled a
ube.

A substring w is
alled a period of a string x, if x
an be written as x = w

k

w

0

where k � 1 and w

0

is a pre�x of w. The shortest period of x is
alled the period of

x. For example, if x = ab
ab
ab, then ab
, ab
ab
 and the string x itself are periods

of x, while ab
 is the period of x.

A substring w of x is
alled a
over of x, if x
an be
onstru
ted by
on
atenating

or overlapping
opies of w. We also say that w
overs x. For example, if x = ababaaba,

then aba and x are
overs of x. If x has a
over w 6= x, x is said to be quasiperiodi
;

otherwise, x is superprimitive.

A substring w of x is
alled a seed of x, if w
overs one superstring of x (this
an

be any superstring of x, in
luding x itself). For example, aba and ababa are some

seeds of x = ababaab.

We
all the distan
e Æ(x; y) between two strings x and y, the minimum
ost to

transform one string x to the other string y. There are several well known distan
e

fun
tions, des
ribed in the next paragraph. The spe
ial symbol � is used to represent

the absen
e of a
hara
ter.

2.1 Distan
e fun
tions

The edit distan
e between two strings is the minimum number of edit operations

that transform one string into another. The edit operations are the insertion of an

extraneous symbol (e.g., � ! a), the deletion of a symbol (e.g., a ! �) and the

substitution of a symbol by another symbol (e.g., a ! b). Note that in the edit

distan
e model we only
ount the number of edit operations,
onsidering the
ost of

ea
h operation equal to 1.

The Hamming distan
e between two strings is the minimum number of substitu-

tions (e.g., a ! b) that transform one string to the other. Note that the Hamming

distan
e
an be de�ned only when the two strings have the same length, be
ause it

does not allow insertions and deletions.

We also
onsider a generalized version of the edit distan
e model, the weighted

edit distan
e, where the edit operations no longer have the same
osts. It makes use

27

Pro
eedings of the Prague Stringology Conferen
e '03

a b
 a e �

j j j

a b � d e g

Figure 1: Alignment example

of a penalty matrix, a matrix that spe
i�es the
ost of ea
h substitution for ea
h pair

of symbols, and the insertion and deletion
ost for ea
h
hara
ter. A penalty matrix

is a metri
 when it satis�es the following
onditions for all a; b;
 2 � [f�g:

� Æ(a; b) � 0,

� Æ(a; b) = Æ(b; a),

� Æ(a; a) = 0, and

� Æ(a;
) � Æ(a; b) + Æ(b;
) (triangle inequality).

The similarity between two strings
an be seen by using an alignment ; that is, any

pairing of symbols subje
t to the restri
tion that if lines were drawn between paired

symbols, as in Figure 1, the lines would not
ross. The equality of the lengths
an be

obtained by inserting or deleting zero or more symbols. In our example, the string

�ab
ae� is transformed to �abdeg� by deleting, substituting and inserting a
hara
ter

at positions 3, 4 and 6, respe
tively. Note that this is not the only possible alignment

between the two strings.

We say that a distan
e fun
tion Æ(x; y) is a relative distan
e fun
tion if the lengths

of strings x and y are
onsidered in the value of Æ(x; y); otherwise it is an absolute

distan
e fun
tion. The Hamming distan
e and the edit distan
e are examples of

absolute distan
e fun
tions. There are two ways to de�ne a relative distan
e between

x and y:

� First, we
an �x one of the two strings and de�ne a relative distan
e fun
tion

with respe
t to the �xed string. The error ratio with respe
t to x is de�ned to

be d=jxj, where d is an absolute distan
e between x and y.

� Se
ond, we
an de�ne a relative distan
e fun
tion symmetri
ally. The symmetri

error ratio is de�ned to be d=l, where d is an absolute distan
e between x and

y, and l = (jxj+ jyj)=2 [32℄. Note that we may take l = jxj+ jyj, in whi
h
ase

everything is the same ex
ept that the ratio is multiplied by 2.

If d is the edit distan
e between x and y, the error ratio with respe
t to x or the

symmetri
 error ratio is
alled a relative edit distan
e. The weighted edit distan
e
an

also be used as a relative distan
e fun
tion be
ause the penalty matrix
an
ontain

arbitrary
osts.

3 Problem De�nitions

De�nition 1 Let x and s be strings over �

�

, Æ be a distan
e fun
tion and t be

a number. We
all s a t-approximate seed of x if and only if there exist strings

s

1

; s

2

; : : : ; s

r

(s

i

6= ") su
h that

28

Approximate Seeds of Strings

(i) Æ(s; s

i

) � t, for 1 � i � r, and

(ii) there exists a superstring y = uxv, juj < jsj and jvj < jsj, of x that
an be

onstru
ted by overlapping or
on
atenating
opies of the strings s

1

; s

2

; : : : ; s

r

.

Ea
h s

i

, 1 � i � r, will be
alled a seed blo
k of x.

Note that y
an be any superstring of x, in
luding x itself (in whi
h
ase, s is

an approximate
over). Note, also, that there
an be several versions of approximate

seeds a

ording to the de�nition of distan
e fun
tion Æ.

An example of an approximate seed is shown in Figure 2. For strings x =

BABACCB and s = ABAB, s is an approximate seed of x with error 1 (ham-

ming distan
e), be
ause there exist the strings s

1

= ABAB; s

2

= ABAC; s

3

=

CBAB, su
h that the distan
e between s and ea
h s

i

is no more than 1, and by

on
atenating or overlapping the strings s

1

; s

2

; s

3

we
onstru
t a superstring of x,

y = ABABACCBAB.

A B A B A C C B A B

s

1

s

2

s

3

Figure 2: Approximate Seed example.

We
onsider the following three problems related to approximate seeds.

Problem 1 Smallest Distan
e Approximate Seed Let x be a string of length

n, s be a string of length m, and Æ be a distan
e fun
tion. Find the minimum number

t su
h that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no di�eren
e whether

Æ is an absolute distan
e fun
tion or an error ratio with respe
t to s. If a threshold

k � jsj on the edit distan
e is given as input to Problem 1, the problem asks whether

s is a k-approximate seed of x or not (the k-approximate seed problem). Note that if

the edit distan
e is used for Æ, it is trivially true that s is an jsj-approximate seed of

x.

Problem 2 Restri
ted Smallest Approximate Seed Given a string x of

length n, �nd a substring s of x su
h that: s is a t-approximate seed of x and there

is no substring of x that is a k-approximate seed of x for all k < t.

Sin
e any substring of x
an be a
andidate for s, the length of s is not (a priori)

�xed in this problem. Therefore, we need to use a relative distan
e fun
tion (i.e.,

an error ratio or a weighted edit distan
e) rather than an absolute distan
e fun
tion.

For example, if the absolute edit distan
e is used, every substring of x of length 1 is

a 1-approximate seed of x. Moreover, we assume that s is of length at most jxj=2,

be
ause, otherwise the longest proper pre�x of x (or any long pre�x of x)
an easily

be
ome an approximate seed of x with a small distan
e. This assumption will be

applied to Problem 3, too.

29

Pro
eedings of the Prague Stringology Conferen
e '03

Problem 3 Smallest Approximate Seed Given a string x of length n, �nd a

string s su
h that: s is a t-approximate seed of x and there is no substring of x that

is a k-approximate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s
an now be any string, not ne
essarily

a substring of x. Obviously, this problem is harder than the previous one; we will

prove that it is NP-
omplete.

4 Algorithms and NP-Completeness

4.1 Problem 1

Our algorithm for Problem 1
onsists of two steps. Let n = jxj and m = jsj.

1. Compute the distan
e between s and every substring of x.

We denote by w

ij

the distan
e between s and x[i::j℄, for 1 < i � j < n. Note

that, by de�nition of approximate seeds, x[i::n℄
an be mat
hed to any pre�x

of s, and x[1::j℄
an be mat
hed to any su�x of s (be
ause s has to
over

any superstring of x). Thus, we denote w

in

the minimum value of the distan
es

between all pre�xes of s and x[i::n℄, and w

1j

the minimum value of the distan
es

between all su�xes of s and x[1::j℄.

2. Compute the minimum t su
h that s is a t-approximate seed of x.

We use dynami
 programming to
ompute t as follows. Let t

i

be the minimum

value su
h that s is a t

i

-approximate seed of x[1::i℄. Let t

0

= 0. For i = 1 to n,

we
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg (1)

The value t

n

is the minimum t su
h that s is a t-approximate seed of x.

To
ompute the distan
e between two strings, x and y, in step 1, a dynami

programming table,
alled the D table, of size (jxj + 1) � (jyj + 1), is used. Ea
h

entry D[i; j℄; 0 � i � jxj and 0 � j � jyj, stores the minimum
ost of transforming

x[1::i℄ to y[1::j℄. Initially, D[0; 0℄ = 0; D[i; 0℄ = D[i� 1; 0℄ + Æ(x[i℄;�) and D[0; j℄ =

D[0; j�1℄+Æ(�; y[j℄). Then we
an
ompute all the entries of the D table in O(jxjjyj)

time by the following re
urren
e:

D[i; j℄ = min

8

>

<

>

:

D[i� 1; j℄ + Æ(x[i℄;�)

D[i; j � 1℄ + Æ(�; y[j℄)

D[i� 1; j � 1℄ + Æ(x[i℄; y[j℄)

where Æ(a; b) is the
ost of substituting
hara
ter a with
hara
ter b, Æ(a;�) is the

ost of deleting a and Æ(�; a) is the
ost of inserting a.

The se
ond step of the algorithm is
omputed as shown in Figure 3. For every h,

we
over x[h+1::i℄ with one
opy of s, with error w

h+1;i

. What is left to be
overed is

x[1::h℄. We obtain this by
overing either x[1::h℄, with error t[h℄, or x[1::h + 1℄, with

error t[h+ 1℄, : : : or x[1::i� 1℄, with error t[i� 1℄, (in general x[1::j℄, with error t[j℄);

we
hoose the x[1::j℄ (the shaded box) that gives the smallest error. Note that, this

box
overs a superstring of x[1::j℄.

30

Approximate Seeds of Strings

x

1
i

h+ 1

n

s

j

Figure 3: The se
ond step of the algorithm.

Theorem 1 Problem 1
an be solved in O(mn

2

) time when a weighted edit distan
e

is used for Æ. If the edit or the Hamming distan
e is used for Æ, it
an be solved in

O(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takes O(mn

2

) time, sin
e we make a

D table of size (m+1)�(n�i+2) for ea
h position i of x. The fa
t that a superstring

of x, rather than x itself, has to be �
overed� does not in
rease the time
omplexity,

if we use the following pro
edure: instead of
omputing a new D-table between ea
h

s[1::k℄ (resp. s[k::m℄) and x[i::n℄ (resp. x[1::j℄), we just make one D-table between

s and x[i::n℄ (resp. s

R

(x[1::j℄)

R

) and take the minimum value of the last
olumn of

this table.

In step 2, we
an
ompute the minimum t in O(n

2

) time as follows. The inner

min loop of formula (1)
an be
omputed in
onstant time by reusing the min values

omputed in the previous round. The outer min loop is repeated i times, for 1 � i �

n, i.e., O(n

2

) repetitions.

Thus, the total time
omplexity is O(mn

2

).

When the edit distan
e is used for the measure of similarity, this algorithm for

Problem 1
an be improved. In this
ase, Æ(a; b) is always 1 if a 6= b and Æ(a; b) = 0

otherwise. Now it is not ne
essary to
ompute the edit distan
es between s and the

substrings of x whose lengths are larger than 2m be
ause their edit distan
es with

s will ex
eed m. (It is trivially true that s is an m-approximate seed of x.) Step 1

now takes O(m

2

n) time sin
e we make a D table of size (m+ 1)� (2m+ 1) for ea
h

position of x. Also, step 2
an be done in O(mn) time sin
e we
ompare O(m) values

at ea
h position of x. Thus, the time
omplexity is redu
ed to O(m

2

n).

However, we
an do better. Step 1
an be solved in O(mn) time by the algorithm

due to Landau, Myers and S
hmidt [23℄. Given two strings x and y and a forward

(resp. ba
kward) solution for the
omparison between x and y, the algorithm in [23℄

in
rementally
omputes a solution for x and by (resp. yb) in O(k) time, where b is an

additional
hara
ter and k is a threshold on the edit distan
e. This
an be done due

to the relationship between the solution for x and y and the solution for x and by.

When k = m (i.e., the threshold is not given) we
an
ompute all the edit distan
es

between s and every substring of x whose length is at most 2m in O(mn) time using

this algorithm. Re
ently, Kim and Park [21℄ gave a simpler O(mn)-time algorithm

for the same problem. Therefore, we
an solve Problem 1, in O(mn) time if the edit

distan
e is used for Æ. When the threshold k is given as input for Problem 1, it
an

be solved in O(kn) time be
ause ea
h step of the above algorithm takes O(kn) time.

If we use the Hamming distan
e for Æ, in step 1 we
onsider only the substrings

of x of length m. (Re
all that the Hamming distan
e is de�ned only between strings

of equal length) Sin
e there are O(n) su
h substrings, and we need O(m) time to

ompute the distan
e between ea
h substring and s, step 1 takes O(mn) time. Also,

as in the
ase of the edit distan
e, step 2
an be done in O(mn) time (we
ompare

O(m) values at ea
h position of x). Thus, the overall time
omplexity is O(mn). �

31

Pro
eedings of the Prague Stringology Conferen
e '03

x

x

x[j::n℄

s

i

i+m-2

s = x[i::i +m� 2℄

(Previous D table)

Newly
omputed

row

x

x

x[j::n℄

s

i

i+m-1

s = x[i::i +m� 1℄

(New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a
andidate

for approximate seed. Let s be su
h a
andidate string. Re
all that, sin
e the length

of s is not �xed in this
ase, we need to use a relative distan
e fun
tion (rather than

an absolute distan
e fun
tion); that is, an error ratio, in the
ase of the Hamming or

edit distan
e, or a weighted edit distan
e.

When the relative edit distan
e is used for the measure of similarity, Problem 2

an be solved in O(n

4

) time by our algorithm for Problem 1. If we take ea
h substring

of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in

[23℄), it takes O(jsjn) time for ea
h s. Sin
e there are O(n

2

) substrings of x, the

overall time is O(n

4

).

For weighted edit distan
es (as well as for relative edit distan
es), we
an solve

Problem 2 in O(n

4

) time, without using the somewhat
ompli
ated algorithm in [23℄.

Like before, we
onsider every substring of x as
andidate string s, and we solve

Problem 1 for x and s. But, we do this, by pro
essing all the substrings of x that

start at position i, at the same time, as follows.

Let T be the minimum distan
e so far. Initially, T = 1. For ea
h i; 1 � i � n,

we pro
ess the n� i + 1 substrings that start at position i as
andidate strings. Let

m be the length of a
hosen substring of x as s. Initially, m = 1.

1. Take x[i::i + m � 1℄ as s and
ompute w

hj

, for all 1 � h � j � n. This

omputation
an be done by making n D tables with s and ea
h of the n

su�xes of x. By adding just one row to ea
h of previous D tables (i.e., n D

tables when s = x[i::i +m� 2℄), we
an
ompute these new D tables in O(n

2

)

time. See Figure 4. (Note that when m = 1, we
reate new D tables.)

2. Compute the minimum distan
e t su
h that s is a t-approximate seed of x. This

step is similar to the se
ond step of the algorithm for Problem 1. Let t

i

be the

minimum value su
h that s is a t

i

-approximate seed of x[1::i℄ and t

0

= 0. For

i = 1 to n, we
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg

The value t

n

is the minimum t su
h that s is a t-approximate seed of x. If t

n

is

smaller than T , we update T with t

n

. If m < n� i+ 1, in
rease m by 1 and go

to step 1.

When all the steps are
ompleted, the �nal value of T is the minimum distan
e

and the substring s that is a T -approximate seed of x is an answer to Problem 2.

32

Approximate Seeds of Strings

(Note that there
an be more than one substring s that are T -approximate seeds of

x).

Theorem 2 Problem 2
an be solved in O(n

4

) time when a weighted edit distan
e

or a relative edit distan
e is used for Æ. When a relative Hamming distan
e is used

for Æ, Problem 2
an be solved in O(n

3

) time.

Proof. For a weighted edit distan
e, we make n D tables in O(n

2

) time in step 1

and
ompute the minimum distan
e in O(n

2

) time in step 2. For m = 1 to n� i+ 1,

we repeat the two steps. Therefore, it takes O(n

3

) time for ea
h i and the total time

omplexity of this algorithm is O(n

4

). If a relative edit distan
e is used, the algorithm

an be slightly simpli�ed, as in Problem 1, but it still takes O(n

4

) time.

For a relative Hamming distan
e, it takes O(n) time for ea
h
andidate string and

sin
e there are O(n

2

)
andidate strings, the total time
omplexity is O(n

3

). �

4.3 Problem 3

Given a set of strings, the shortest
ommon supersequen
e (SCS) problem is to �nd

a shortest
ommon supersequen
e of all strings in the set. The SCS problem is NP-

omplete [26, 30℄. We will show that Problem 3 is NP-
omplete by a redu
tion from

the SCS problem. In this se
tion we will
all Problem 3 the SAS problem (abbreviation

of the smallest approximate seed problem). The de
ision versions of the SCS and SAS

problems are as follows:

De�nition 2 (SCS) Given a positive integer m and a �nite set S of strings from �

�

where � is a �nite alphabet, the SCS problem is to de
ide if there exists a
ommon

supersequen
e w of S su
h that jwj � m.

De�nition 3 (SAS) Given a number t, a string x from (�

0

)

�

where �

0

is a �nite

alphabet, and a penalty matrix, the SAS problem is to de
ide if there exists a string

u su
h that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-
omplete.

5 Con
lusions

In this paper, we solved the smallest distan
e approximate seed problem, in O(mn)

time for the Hamming and edit distan
e and O(mn

2

) for the weighted edit distan
e,

and the restri
ted smallest approximate seed problem, in O(n

4

) time for the edit and

weighted edit distan
e and O(n

3

) for the Hamming distan
e. We also proved that the

smallest approximate seed problem is NP-
omplete.

The signi�
an
e of our work
omes from the fa
t that we solved the �rst two

problems for approximate seeds, with exa
tly the same time
omplexities as those

for approximate periods [33℄ and approximate
overs [34℄, despite the fa
t that seeds

allow overlaps, as well as
on
atenations, and
over a superstring of a string x (rather

than
overing the string x itself).

33

Pro
eedings of the Prague Stringology Conferen
e '03

Referen
es

[1℄ A. Aho and T. Peterson. A minimum distan
e error-
orre
ting parser for
ontext-

free languages. SIAM J. Computing, 1:305�312, 1972.

[2℄ A. Apostoli
o and D. Breslauer. An optimalO(log logN)-time parallel algorithm

for dete
ting all squares in a string. SIAM Journal on Computing, 25(6):1318�

1331, 1996.

[3℄ A. Apostoli
o, D. Breslauer, and Z. Galil. Optimal parallel algorithms for peri-

ods, palindromes and squares. Pro
. 19th Int. Colloq. Automata Languages and

Programming, 623:296�307, 1992.

[4℄ A. Apostoli
o and A. Ehrenfeu
ht. E�
ient dete
tion of quasiperiodi
ities in

strings. Theoreti
al Computer S
ien
e, 119(2):247�265, 1993.

[5℄ A. Apostoli
o, M. Fara
h, and C. S. Iliopoulos. Optimal superprimitivity testing

for strings. Information Pro
essing Letters, 39(1):17�20, 1991.

[6℄ A. Apostoli
o and F. P. Preparata. Optimal o�-line dete
tion of repetitions in a

string. Theoreti
al Computer S
ien
e, 22:297�315, 1983.

[7℄ O. Berkman, C. S. Iliopoulos, and K. Park. The subtree max gap problem

with appli
ation to parallel string
overing. Information and Computation,

123(1):127�137, 1995.

[8℄ D. Breslauer. An on-line string superprimitivity test. Information Pro
essing

Letters, 44(6):345�347, 1992.

[9℄ D. Breslauer. Testing string superprimitivity in parallel. Information Pro
essing

Letters, 49(5):235�241, 1994.

[10℄ T. Crawford, C. S. Iliopoulos, and R. Raman. String mat
hing te
hniques for

musi
al similarity and melodi
 re
ognition. Computing in Musi
ology, 11:73�100,

1998.

[11℄ M. Cro
hemore. An optimal algorithm for
omputing repetitions in a word.

Information Pro
essing Letters, 12(5):244�250, 1981.

[12℄ M. Cro
hemore, C. S. Iliopoulos, and M. Korda. Two-dimensional pre�x string

mat
hing and
overing on square matri
es. Algorithmi
a, 20:353�373, 1998.

[13℄ M. Cro
hemore, C. S. Iliopoulos, and H. Yu. Algorithms for
omputing evolu-

tionary
hains in mole
ular and musi
al sequen
es. In Pro
. 9th Australasian

Workshop on Combinatorial Algorithms, pages 172�185, 1998.

[14℄ M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15℄ C. S. Iliopoulos and M. Korda. Optimal parallel superprimitivity testing on

square arrays. Parallel Pro
essing Letters, 6(3):299�308, 1996.

[16℄ C. S. Iliopoulos, D. Moore, and K. Park. Covering a string. Algorithmi
a, 16:288�

297, 1996.

34

Approximate Seeds of Strings

[17℄ C. S. Iliopoulos and L. Mou
hard. An O(n logn) algorithm for
omputing all

maximal quasiperiodi
ities in strings. In Pro
. Computing: Australasian Theory

Symposium, pages 262�272. Le
ture Notes in Computer S
ien
e, 1999.

[18℄ C. S. Iliopoulos and K. Park. An optimal O(log logn)-time algorithm for parallel

superprimitivity testing. J. Korea Inform. S
i. So
., 21:1400�1404, 1994.

[19℄ C. S. Iliopoulos and K. Park. A work-time optimal algorithm for
omputing all

string
overs. Theoreti
al Computer S
ien
e, 164:299�310, 1996.

[20℄ C. S. Iliopoulos and W. F. Smyth. On-line algorithms for k-
overing. In Pro-

eedings of the 9th Australasian Workshop On Combinatorial Algorithms, pages

97�106, Perth, WA, Australia, 1998.

[21℄ S. Kim and K. Park. A dynami
 edit distan
e table. In Pro
. 11th Symp.

Combinatorial Pattern Mat
hing, volume 1848, pages 60�68. Springer, Berlin,

2000.

[22℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern math
ing in strings.

SIAM Journal on Computing, 6(1):323�350, 1977.

[23℄ G. M. Landau, E. W. Myers, and J. P. S
hmidt. In
remental string
omparison.

SIAM Journal on Computing, 27(2):557�582, 1998.

[24℄ G. M. Landau and J. P. S
hmidt. An algorithm for approximate tandem repeats.

In Pro
eedings of the 4th Annual Symposium on Combinatorial Pattern Mat
hing,

number 684, pages 120�133, Padova, Italy, 1993. Springer-Verlag, Berlin.

[25℄ Y. Li and W. F. Smyth. An optimal on-line algorithm to
ompute all the
overs

of a string.

[26℄ D. Maier. The
omplexity of some problems on subsequen
es and supersequen
es.

Journal of the ACM, 25(2):322�336, 1978.

[27℄ M. G. Main and R. J. Lorentz. An algorithm for �nding all repetitions in a

string. Journal of Algorithms, 5:422�532, 1984.

[28℄ M. Middendorf. More on the
omplexity of
ommon superstring and superse-

quen
e problems. Theoreti
al Computer S
ien
e, 125(2):205�228, 1994.

[29℄ D. Moore and W. F. Smyth. A
orre
tion to �An optimal algorithm to
ompute

all the
overs of a string�. Information Pro
essing Letters, 54(2):101�103, 1995.

[30℄ K. J. Räihä and E. Ukkonen. The shortest
ommon supersequen
e problem

over binary alphabet is NP-
omplete. Theoreti
al Computer S
ien
e, 16:187�

198, 1981.

[31℄ J. P. S
hmidt. All highest s
oring paths in weighted grid graphs and its appli
a-

tion to �nding all approximate repeats in strings. SIAM Journal on Computing,

27(4):972�992, 1998.

[32℄ P. H. Sellers. Pattern re
ognition geneti
 sequen
es by mismat
h density. Bulletin

of Mathemati
al Biology, 46(4):501�514, 1984.

35

Pro
eedings of the Prague Stringology Conferen
e '03

[33℄ J. S. Sim, C. S. Iliopoulos, K. Park, and W. F. Smyth. Approximate periods of

strings. Theoreti
al Computer S
ien
e, 262:557�568, 2001.

[34℄ J. S. Sim, K. Park, S. Kim, and J. Lee. Finding approximate
overs of strings.

Journal of Korea Information S
ien
e So
iety, 29(1):16�21, 2002.

[35℄ R. Wagner and M. Fisher. The string-to-string
orre
tion problem. Journal of

the ACM, 21:168�173, 1974.

36

