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Abstra
t. In this paper we study approximate seeds of strings, that is, sub-

strings of a given string x that 
over (by 
on
atenations or overlaps) a super-

string of x, under a variety of distan
e rules (the Hamming distan
e, the edit

distan
e, and the weighted edit distan
e). We solve the smallest distan
e ap-

proximate seed problem and the restri
ted smallest approximate seed problem

in polynomial time and we prove that the general smallest approximate seed

problem is NP-
omplete.

Keywords: regularities, seeds, approximate seeds, Hamming distan
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1 Introdu
tion

Finding regularities in strings is useful in a wide area of appli
ations whi
h involve

string manipulations. Mole
ular biology, data 
ompression and 
omputer-assisted

musi
 analysis are 
lassi
 examples. By regularities we mean repeated strings of an

approximate nature. Examples of regularities in
lude repetitions, periods, 
overs and

seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(n logn)-time algorithms [11, 6, 27℄ for �nding repetitions, that

is, equal adja
ent substrings, in a string x, where n is the length of x. Apostoli
o and

Breslauer [2℄ gave an optimal O(log logn)-time parallel algorithm (i.e., total work is

O(n logn)) for �nding all the repetitions.

The prepro
essing of the Knuth-Morris-Pratt algorithm [22℄ �nds all periods of

x in linear time� in fa
t, all periods of every pre�x of x. Apostoli
o, Breslauer

and Galil [3℄ derived an optimal O(log logn)-time parallel algorithm for �nding all

periods.

�
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The fa
t that in pra
tise it was often desirable to relax the meaning of �repetition�,

has led more re
ently to the study of a 
olle
tion of related patterns��
overs� and

�seeds�. Covers are similar to periods, but now overlaps, as well as 
on
atenations, are

allowed. The notion of 
overs was introdu
ed by Apostoli
o, Fara
h and Iliopoulos

in [5℄, where a linear-time algorithm to test superprimitivity, was given (see also

[8, 9, 18℄). Moore and Smyth [29℄ and re
ently Li and Smyth [25℄ gave linear time-

time algorithms for �nding all 
overs of a string x. In parallel 
omputation, Iliopoulos

and Park [19℄ obtained an optimal O(log logn) time algorithm for �nding all 
overs

of x. Apostoli
o and Ehrenfeu
ht [4℄ and Iliopoulos and Mou
hard [17℄ 
onsidered

the problem of �nding maximal quasiperiodi
 substrings of x. A two-dimensional

variant of the 
overing problem was studied in [12, 15℄, and a minimum 
overing by

substrings of a given length in [20℄.

An extension of the notion of 
overs, is that of seeds; that is, 
overs of a superstring

of x. The notion of seeds was introdu
ed by Iliopoulos, Moore and Park [16℄ and an

O(n logn)-time algorithm was given for 
omputing all seeds of x. A parallel algorithm

for �nding all seeds was presented by Berkman, Iliopoulos and Park [7℄, that requires

O(logn) time and O(n logn) work.

In appli
ations su
h as mole
ular biology and 
omputer-assisted musi
 analysis,

�nding exa
t repetitions is not always su�
ient. A more appropriate notion is that

of approximate repetitions ([10, 13℄); that is, �nding strings that are �similar� to a

given pattern, by allowing errors. In this paper, we 
onsider three di�erent kinds of

�similarity� (approximation): the Hamming distan
e, the edit dis
tan
e [1, 35℄ and a

generalization of the edit distan
e, the weighted edit distan
e, where di�erent 
osts

are assigned to ea
h substitution, insertion and deletion for ea
h pair of symbols.

Approximate repetitions have been studied by Landau and S
hmidt [24℄, who

derived an O(kn logk logn)-time algorithm for �nding approximate squares whose

edit distan
e is at most k in a text of length n. S
hmidt also gave an O(n

2

logn)

algorithm for �nding approximate tandem or nontandem repeats in [31℄ whi
h uses an

arbitrary s
ore for similarity of repeated strings. More re
ently, Sim, Iliopoulos, Park

and Smyth provided polynomial time algorithms for �nding approximate periods [33℄

and, Sim, Park, Kim and Lee solved the approximate 
overs problem in [34℄.

In this paper, we introdu
e the notion of approximate seeds, an approximate

version of seeds. We solve the smallest distan
e approximate seed problem and the

restri
ted smallest approximate seed problem and we prove that the more general

smallest approximate seed problem is NP-
omplete.

The paper is organized as follows. In se
tion 2, we present some basi
 de�nitions.

In se
tion 3, we des
ribe the notion of approximate seeds and we de�ne the three

problems studied in this paper. In se
tion 4, we present the algorithms that solve the

�rst two problems and the proof that the third problem is NP-
omplete. Se
tion 5


ontains our 
on
lusion.

2 Preliminaries

A string is a sequen
e of zero or more symbols from an alphabet �. The set of all

strings over � is denoted by �

�

. The length of a string x is denoted by jxj. The

empty string, the string of length zero, is denoted by ". The i-th symbol of a string

x is denoted by x[i℄.
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A string w is a substring of x if x = uwv, where u; v 2 �

�

. We denote by x[i::j℄

the substring of x that starts at position i and ends at position j. Conversely, x is


alled a superstring of w. A string w is a pre�x of x if x = wy, for y 2 �

�

. Similarly,

w is a su�x of x if x = yw, for w 2 �

�

. We 
all a string w a subsequen
e (also 
alled

a subword [14℄) of x (or x is a supersequen
e of w) if w is obtained by deleting zero or

more symbols at any positions from x. For example, a
e is a subsequen
e of aab
def .

For a given set S of strings, a string w is 
alled a 
ommon supersequen
e of S if s is

a supersequen
e of every string in S.

The string xy is a 
on
atenation of the strings x and y. The 
on
atenation of k


opies of x is denoted by x

k

. For two strings x = x[1::n℄ and y = y[1::m℄ su
h that

x[n � i + 1::n℄ = y[1::i℄ for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x[1::n℄y[i + 1::m℄ is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring y of x is 
alled a repetition in x, if x = uy

k

v, where u; y; v are

substrings of x and k � 2, jyj 6= 0. For example, if x = aababab, then a (appearing in

positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in x; in

parti
ular a

2

= aa is 
alled a square and (ab)

3

= ababab is 
alled a 
ube.

A substring w is 
alled a period of a string x, if x 
an be written as x = w

k

w

0

where k � 1 and w

0

is a pre�x of w. The shortest period of x is 
alled the period of

x. For example, if x = ab
ab
ab, then ab
, ab
ab
 and the string x itself are periods

of x, while ab
 is the period of x.

A substring w of x is 
alled a 
over of x, if x 
an be 
onstru
ted by 
on
atenating

or overlapping 
opies of w. We also say that w 
overs x. For example, if x = ababaaba,

then aba and x are 
overs of x. If x has a 
over w 6= x, x is said to be quasiperiodi
;

otherwise, x is superprimitive.

A substring w of x is 
alled a seed of x, if w 
overs one superstring of x (this 
an

be any superstring of x, in
luding x itself). For example, aba and ababa are some

seeds of x = ababaab.

We 
all the distan
e Æ(x; y) between two strings x and y, the minimum 
ost to

transform one string x to the other string y. There are several well known distan
e

fun
tions, des
ribed in the next paragraph. The spe
ial symbol � is used to represent

the absen
e of a 
hara
ter.

2.1 Distan
e fun
tions

The edit distan
e between two strings is the minimum number of edit operations

that transform one string into another. The edit operations are the insertion of an

extraneous symbol (e.g., � ! a), the deletion of a symbol (e.g., a ! �) and the

substitution of a symbol by another symbol (e.g., a ! b). Note that in the edit

distan
e model we only 
ount the number of edit operations, 
onsidering the 
ost of

ea
h operation equal to 1.

The Hamming distan
e between two strings is the minimum number of substitu-

tions (e.g., a ! b) that transform one string to the other. Note that the Hamming

distan
e 
an be de�ned only when the two strings have the same length, be
ause it

does not allow insertions and deletions.

We also 
onsider a generalized version of the edit distan
e model, the weighted

edit distan
e, where the edit operations no longer have the same 
osts. It makes use
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a b 
 a e �

j j j

a b � d e g

Figure 1: Alignment example

of a penalty matrix, a matrix that spe
i�es the 
ost of ea
h substitution for ea
h pair

of symbols, and the insertion and deletion 
ost for ea
h 
hara
ter. A penalty matrix

is a metri
 when it satis�es the following 
onditions for all a; b; 
 2 � [ f�g:

� Æ(a; b) � 0,

� Æ(a; b) = Æ(b; a),

� Æ(a; a) = 0, and

� Æ(a; 
) � Æ(a; b) + Æ(b; 
) (triangle inequality).

The similarity between two strings 
an be seen by using an alignment ; that is, any

pairing of symbols subje
t to the restri
tion that if lines were drawn between paired

symbols, as in Figure 1, the lines would not 
ross. The equality of the lengths 
an be

obtained by inserting or deleting zero or more symbols. In our example, the string

�ab
ae� is transformed to �abdeg� by deleting, substituting and inserting a 
hara
ter

at positions 3, 4 and 6, respe
tively. Note that this is not the only possible alignment

between the two strings.

We say that a distan
e fun
tion Æ(x; y) is a relative distan
e fun
tion if the lengths

of strings x and y are 
onsidered in the value of Æ(x; y); otherwise it is an absolute

distan
e fun
tion. The Hamming distan
e and the edit distan
e are examples of

absolute distan
e fun
tions. There are two ways to de�ne a relative distan
e between

x and y:

� First, we 
an �x one of the two strings and de�ne a relative distan
e fun
tion

with respe
t to the �xed string. The error ratio with respe
t to x is de�ned to

be d=jxj, where d is an absolute distan
e between x and y.

� Se
ond, we 
an de�ne a relative distan
e fun
tion symmetri
ally. The symmetri


error ratio is de�ned to be d=l, where d is an absolute distan
e between x and

y, and l = (jxj+ jyj)=2 [32℄. Note that we may take l = jxj+ jyj, in whi
h 
ase

everything is the same ex
ept that the ratio is multiplied by 2.

If d is the edit distan
e between x and y, the error ratio with respe
t to x or the

symmetri
 error ratio is 
alled a relative edit distan
e. The weighted edit distan
e 
an

also be used as a relative distan
e fun
tion be
ause the penalty matrix 
an 
ontain

arbitrary 
osts.

3 Problem De�nitions

De�nition 1 Let x and s be strings over �

�

, Æ be a distan
e fun
tion and t be

a number. We 
all s a t-approximate seed of x if and only if there exist strings

s

1

; s

2

; : : : ; s

r

(s

i

6= ") su
h that
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(i) Æ(s; s

i

) � t, for 1 � i � r, and

(ii) there exists a superstring y = uxv, juj < jsj and jvj < jsj, of x that 
an be


onstru
ted by overlapping or 
on
atenating 
opies of the strings s

1

; s

2

; : : : ; s

r

.

Ea
h s

i

, 1 � i � r, will be 
alled a seed blo
k of x.

Note that y 
an be any superstring of x, in
luding x itself (in whi
h 
ase, s is

an approximate 
over). Note, also, that there 
an be several versions of approximate

seeds a

ording to the de�nition of distan
e fun
tion Æ.

An example of an approximate seed is shown in Figure 2. For strings x =

BABACCB and s = ABAB, s is an approximate seed of x with error 1 (ham-

ming distan
e), be
ause there exist the strings s

1

= ABAB; s

2

= ABAC; s

3

=

CBAB, su
h that the distan
e between s and ea
h s

i

is no more than 1, and by


on
atenating or overlapping the strings s

1

; s

2

; s

3

we 
onstru
t a superstring of x,

y = ABABACCBAB.

A B A B A C C B A B

s

1

s

2

s

3

Figure 2: Approximate Seed example.

We 
onsider the following three problems related to approximate seeds.

Problem 1 Smallest Distan
e Approximate Seed Let x be a string of length

n, s be a string of length m, and Æ be a distan
e fun
tion. Find the minimum number

t su
h that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no di�eren
e whether

Æ is an absolute distan
e fun
tion or an error ratio with respe
t to s. If a threshold

k � jsj on the edit distan
e is given as input to Problem 1, the problem asks whether

s is a k-approximate seed of x or not (the k-approximate seed problem). Note that if

the edit distan
e is used for Æ, it is trivially true that s is an jsj-approximate seed of

x.

Problem 2 Restri
ted Smallest Approximate Seed Given a string x of

length n, �nd a substring s of x su
h that: s is a t-approximate seed of x and there

is no substring of x that is a k-approximate seed of x for all k < t.

Sin
e any substring of x 
an be a 
andidate for s, the length of s is not (a priori)

�xed in this problem. Therefore, we need to use a relative distan
e fun
tion (i.e.,

an error ratio or a weighted edit distan
e) rather than an absolute distan
e fun
tion.

For example, if the absolute edit distan
e is used, every substring of x of length 1 is

a 1-approximate seed of x. Moreover, we assume that s is of length at most jxj=2,

be
ause, otherwise the longest proper pre�x of x (or any long pre�x of x) 
an easily

be
ome an approximate seed of x with a small distan
e. This assumption will be

applied to Problem 3, too.
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Problem 3 Smallest Approximate Seed Given a string x of length n, �nd a

string s su
h that: s is a t-approximate seed of x and there is no substring of x that

is a k-approximate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s 
an now be any string, not ne
essarily

a substring of x. Obviously, this problem is harder than the previous one; we will

prove that it is NP-
omplete.

4 Algorithms and NP-Completeness

4.1 Problem 1

Our algorithm for Problem 1 
onsists of two steps. Let n = jxj and m = jsj.

1. Compute the distan
e between s and every substring of x.

We denote by w

ij

the distan
e between s and x[i::j℄, for 1 < i � j < n. Note

that, by de�nition of approximate seeds, x[i::n℄ 
an be mat
hed to any pre�x

of s, and x[1::j℄ 
an be mat
hed to any su�x of s (be
ause s has to 
over

any superstring of x). Thus, we denote w

in

the minimum value of the distan
es

between all pre�xes of s and x[i::n℄, and w

1j

the minimum value of the distan
es

between all su�xes of s and x[1::j℄.

2. Compute the minimum t su
h that s is a t-approximate seed of x.

We use dynami
 programming to 
ompute t as follows. Let t

i

be the minimum

value su
h that s is a t

i

-approximate seed of x[1::i℄. Let t

0

= 0. For i = 1 to n,

we 
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg (1)

The value t

n

is the minimum t su
h that s is a t-approximate seed of x.

To 
ompute the distan
e between two strings, x and y, in step 1, a dynami


programming table, 
alled the D table, of size (jxj + 1) � (jyj + 1), is used. Ea
h

entry D[i; j℄; 0 � i � jxj and 0 � j � jyj, stores the minimum 
ost of transforming

x[1::i℄ to y[1::j℄. Initially, D[0; 0℄ = 0; D[i; 0℄ = D[i� 1; 0℄ + Æ(x[i℄;�) and D[0; j℄ =

D[0; j�1℄+Æ(�; y[j℄). Then we 
an 
ompute all the entries of the D table in O(jxjjyj)

time by the following re
urren
e:

D[i; j℄ = min

8

>

<

>

:

D[i� 1; j℄ + Æ(x[i℄;�)

D[i; j � 1℄ + Æ(�; y[j℄)

D[i� 1; j � 1℄ + Æ(x[i℄; y[j℄)

where Æ(a; b) is the 
ost of substituting 
hara
ter a with 
hara
ter b, Æ(a;�) is the


ost of deleting a and Æ(�; a) is the 
ost of inserting a.

The se
ond step of the algorithm is 
omputed as shown in Figure 3. For every h,

we 
over x[h+1::i℄ with one 
opy of s, with error w

h+1;i

. What is left to be 
overed is

x[1::h℄. We obtain this by 
overing either x[1::h℄, with error t[h℄, or x[1::h + 1℄, with

error t[h+ 1℄, : : : or x[1::i� 1℄, with error t[i� 1℄, (in general x[1::j℄, with error t[j℄);

we 
hoose the x[1::j℄ (the shaded box) that gives the smallest error. Note that, this

box 
overs a superstring of x[1::j℄.
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x

1
i

h+ 1

n

s

j

Figure 3: The se
ond step of the algorithm.

Theorem 1 Problem 1 
an be solved in O(mn

2

) time when a weighted edit distan
e

is used for Æ. If the edit or the Hamming distan
e is used for Æ, it 
an be solved in

O(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takes O(mn

2

) time, sin
e we make a

D table of size (m+1)�(n�i+2) for ea
h position i of x. The fa
t that a superstring

of x, rather than x itself, has to be �
overed� does not in
rease the time 
omplexity,

if we use the following pro
edure: instead of 
omputing a new D-table between ea
h

s[1::k℄ (resp. s[k::m℄) and x[i::n℄ (resp. x[1::j℄), we just make one D-table between

s and x[i::n℄ (resp. s

R

(x[1::j℄)

R

) and take the minimum value of the last 
olumn of

this table.

In step 2, we 
an 
ompute the minimum t in O(n

2

) time as follows. The inner

min loop of formula (1) 
an be 
omputed in 
onstant time by reusing the min values


omputed in the previous round. The outer min loop is repeated i times, for 1 � i �

n, i.e., O(n

2

) repetitions.

Thus, the total time 
omplexity is O(mn

2

).

When the edit distan
e is used for the measure of similarity, this algorithm for

Problem 1 
an be improved. In this 
ase, Æ(a; b) is always 1 if a 6= b and Æ(a; b) = 0

otherwise. Now it is not ne
essary to 
ompute the edit distan
es between s and the

substrings of x whose lengths are larger than 2m be
ause their edit distan
es with

s will ex
eed m. (It is trivially true that s is an m-approximate seed of x.) Step 1

now takes O(m

2

n) time sin
e we make a D table of size (m+ 1)� (2m+ 1) for ea
h

position of x. Also, step 2 
an be done in O(mn) time sin
e we 
ompare O(m) values

at ea
h position of x. Thus, the time 
omplexity is redu
ed to O(m

2

n).

However, we 
an do better. Step 1 
an be solved in O(mn) time by the algorithm

due to Landau, Myers and S
hmidt [23℄. Given two strings x and y and a forward

(resp. ba
kward) solution for the 
omparison between x and y, the algorithm in [23℄

in
rementally 
omputes a solution for x and by (resp. yb) in O(k) time, where b is an

additional 
hara
ter and k is a threshold on the edit distan
e. This 
an be done due

to the relationship between the solution for x and y and the solution for x and by.

When k = m (i.e., the threshold is not given) we 
an 
ompute all the edit distan
es

between s and every substring of x whose length is at most 2m in O(mn) time using

this algorithm. Re
ently, Kim and Park [21℄ gave a simpler O(mn)-time algorithm

for the same problem. Therefore, we 
an solve Problem 1, in O(mn) time if the edit

distan
e is used for Æ. When the threshold k is given as input for Problem 1, it 
an

be solved in O(kn) time be
ause ea
h step of the above algorithm takes O(kn) time.

If we use the Hamming distan
e for Æ, in step 1 we 
onsider only the substrings

of x of length m. (Re
all that the Hamming distan
e is de�ned only between strings

of equal length) Sin
e there are O(n) su
h substrings, and we need O(m) time to


ompute the distan
e between ea
h substring and s, step 1 takes O(mn) time. Also,

as in the 
ase of the edit distan
e, step 2 
an be done in O(mn) time (we 
ompare

O(m) values at ea
h position of x). Thus, the overall time 
omplexity is O(mn). �
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x

x

x[j::n℄

s

i

i+m-2

s = x[i::i +m� 2℄

(Previous D table)

Newly 
omputed

row

x

x

x[j::n℄

s

i

i+m-1

s = x[i::i +m� 1℄

(New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a 
andidate

for approximate seed. Let s be su
h a 
andidate string. Re
all that, sin
e the length

of s is not �xed in this 
ase, we need to use a relative distan
e fun
tion (rather than

an absolute distan
e fun
tion); that is, an error ratio, in the 
ase of the Hamming or

edit distan
e, or a weighted edit distan
e.

When the relative edit distan
e is used for the measure of similarity, Problem 2


an be solved in O(n

4

) time by our algorithm for Problem 1. If we take ea
h substring

of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in

[23℄), it takes O(jsjn) time for ea
h s. Sin
e there are O(n

2

) substrings of x, the

overall time is O(n

4

).

For weighted edit distan
es (as well as for relative edit distan
es), we 
an solve

Problem 2 in O(n

4

) time, without using the somewhat 
ompli
ated algorithm in [23℄.

Like before, we 
onsider every substring of x as 
andidate string s, and we solve

Problem 1 for x and s. But, we do this, by pro
essing all the substrings of x that

start at position i, at the same time, as follows.

Let T be the minimum distan
e so far. Initially, T = 1. For ea
h i; 1 � i � n,

we pro
ess the n� i + 1 substrings that start at position i as 
andidate strings. Let

m be the length of a 
hosen substring of x as s. Initially, m = 1.

1. Take x[i::i + m � 1℄ as s and 
ompute w

hj

, for all 1 � h � j � n. This


omputation 
an be done by making n D tables with s and ea
h of the n

su�xes of x. By adding just one row to ea
h of previous D tables (i.e., n D

tables when s = x[i::i +m� 2℄), we 
an 
ompute these new D tables in O(n

2

)

time. See Figure 4. (Note that when m = 1, we 
reate new D tables.)

2. Compute the minimum distan
e t su
h that s is a t-approximate seed of x. This

step is similar to the se
ond step of the algorithm for Problem 1. Let t

i

be the

minimum value su
h that s is a t

i

-approximate seed of x[1::i℄ and t

0

= 0. For

i = 1 to n, we 
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg

The value t

n

is the minimum t su
h that s is a t-approximate seed of x. If t

n

is

smaller than T , we update T with t

n

. If m < n� i+ 1, in
rease m by 1 and go

to step 1.

When all the steps are 
ompleted, the �nal value of T is the minimum distan
e

and the substring s that is a T -approximate seed of x is an answer to Problem 2.
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(Note that there 
an be more than one substring s that are T -approximate seeds of

x).

Theorem 2 Problem 2 
an be solved in O(n

4

) time when a weighted edit distan
e

or a relative edit distan
e is used for Æ. When a relative Hamming distan
e is used

for Æ, Problem 2 
an be solved in O(n

3

) time.

Proof. For a weighted edit distan
e, we make n D tables in O(n

2

) time in step 1

and 
ompute the minimum distan
e in O(n

2

) time in step 2. For m = 1 to n� i+ 1,

we repeat the two steps. Therefore, it takes O(n

3

) time for ea
h i and the total time


omplexity of this algorithm is O(n

4

). If a relative edit distan
e is used, the algorithm


an be slightly simpli�ed, as in Problem 1, but it still takes O(n

4

) time.

For a relative Hamming distan
e, it takes O(n) time for ea
h 
andidate string and

sin
e there are O(n

2

) 
andidate strings, the total time 
omplexity is O(n

3

). �

4.3 Problem 3

Given a set of strings, the shortest 
ommon supersequen
e (SCS) problem is to �nd

a shortest 
ommon supersequen
e of all strings in the set. The SCS problem is NP-


omplete [26, 30℄. We will show that Problem 3 is NP-
omplete by a redu
tion from

the SCS problem. In this se
tion we will 
all Problem 3 the SAS problem (abbreviation

of the smallest approximate seed problem). The de
ision versions of the SCS and SAS

problems are as follows:

De�nition 2 (SCS) Given a positive integer m and a �nite set S of strings from �

�

where � is a �nite alphabet, the SCS problem is to de
ide if there exists a 
ommon

supersequen
e w of S su
h that jwj � m.

De�nition 3 (SAS) Given a number t, a string x from (�

0

)

�

where �

0

is a �nite

alphabet, and a penalty matrix, the SAS problem is to de
ide if there exists a string

u su
h that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-
omplete.

5 Con
lusions

In this paper, we solved the smallest distan
e approximate seed problem, in O(mn)

time for the Hamming and edit distan
e and O(mn

2

) for the weighted edit distan
e,

and the restri
ted smallest approximate seed problem, in O(n

4

) time for the edit and

weighted edit distan
e and O(n

3

) for the Hamming distan
e. We also proved that the

smallest approximate seed problem is NP-
omplete.

The signi�
an
e of our work 
omes from the fa
t that we solved the �rst two

problems for approximate seeds, with exa
tly the same time 
omplexities as those

for approximate periods [33℄ and approximate 
overs [34℄, despite the fa
t that seeds

allow overlaps, as well as 
on
atenations, and 
over a superstring of a string x (rather

than 
overing the string x itself).
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