Approximate Seeds of Strings

Manolis Christodoulakis' and Costas S. Iliopoulos' and
Kunsoo Park?* and Jeong Seop Sim?

! Department of Computer Science,
King’s College London
e-mail: {manolis, csi}@dcs.kcl.ac.uk

2 School of Computer Science and Engineering,
Seoul National University
e-mail: kpark@theory.snu.ac.kr

3 Electronics and Telecommunications Research Institute
Daejeon 305-350, Korea
e-mail: simjsQ@etri.re.kr

Abstract. In this paper we study approximate seeds of strings, that is, sub-
strings of a given string z that cover (by concatenations or overlaps) a super-
string of z, under a variety of distance rules (the Hamming distance, the edit
distance, and the weighted edit distance). We solve the smallest distance ap-
proximate seed problem and the restricted smallest approzimate seed problem
in polynomial time and we prove that the general smallest approzimate seed
problem is NP-complete.

Keywords: regularities, seeds, approximate seeds, Hamming distance, edit dis-
tance, weighted edit distance, penalty matrix.

1 Introduction

Finding reqularities in strings is useful in a wide area of applications which involve
string manipulations. Molecular biology, data compression and computer-assisted
music analysis are classic examples. By regularities we mean repeated strings of an
approximate nature. Examples of regularities include repetitions, periods, covers and
seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(nlogn)-time algorithms [11, 6, 27| for finding repetitions, that
is, equal adjacent substrings, in a string =, where n is the length of . Apostolico and
Breslauer [2] gave an optimal O(loglogn)-time parallel algorithm (i.e., total work is
O(nlogn)) for finding all the repetitions.

The preprocessing of the Knuth-Morris-Pratt algorithm [22] finds all periods of
x in linear time— in fact, all periods of every prefix of x. Apostolico, Breslauer
and Galil [3] derived an optimal O(loglogn)-time parallel algorithm for finding all
periods.

*Work supported by IMT 2000 Project AB02, MOST grant M1-0309-06-0003, and Royal Society
grant.

25

Proceedings of the Prague Stringology Conference 03

The fact that in practise it was often desirable to relax the meaning of “repetition”,
has led more recently to the study of a collection of related patterns—‘covers” and
“seeds”. Covers are similar to periods, but now overlaps, as well as concatenations, are
allowed. The notion of covers was introduced by Apostolico, Farach and Iliopoulos
in [5], where a linear-time algorithm to test superprimitivity, was given (see also
[8, 9, 18]). Moore and Smyth [29] and recently Li and Smyth [25] gave linear time-
time algorithms for finding all covers of a string z. In parallel computation, [liopoulos
and Park [19] obtained an optimal O(loglogn) time algorithm for finding all covers
of . Apostolico and Ehrenfeucht [4] and Iliopoulos and Mouchard [17] considered
the problem of finding maximal quasiperiodic substrings of x. A two-dimensional
variant of the covering problem was studied in [12, 15|, and a minimum covering by
substrings of a given length in [20].

An extension of the notion of covers, is that of seeds; that is, covers of a superstring
of . The notion of seeds was introduced by Iliopoulos, Moore and Park [16] and an
O(nlogn)-time algorithm was given for computing all seeds of z. A parallel algorithm
for finding all seeds was presented by Berkman, Iliopoulos and Park [7], that requires
O(logn) time and O(nlogn) work.

In applications such as molecular biology and computer-assisted music analysis,
finding exact repetitions is not always sufficient. A more appropriate notion is that
of approzimate repetitions (|10, 13]); that is, finding strings that are “similar” to a
given pattern, by allowing errors. In this paper, we consider three different kinds of
“similarity” (approximation): the Hamming distance, the edit disctance [1, 35] and a
generalization of the edit distance, the weighted edit distance, where different costs
are assigned to each substitution, insertion and deletion for each pair of symbols.

Approximate repetitions have been studied by Landau and Schmidt [24|, who
derived an O(knlogklogn)-time algorithm for finding approximate squares whose
edit distance is at most k in a text of length n. Schmidt also gave an O(n?logn)
algorithm for finding approximate tandem or nontandem repeats in [31] which uses an
arbitrary score for similarity of repeated strings. More recently, Sim, Iliopoulos, Park
and Smyth provided polynomial time algorithms for finding approximate periods [33]
and, Sim, Park, Kim and Lee solved the approximate covers problem in [34].

In this paper, we introduce the notion of approximate seeds, an approximate
version of seeds. We solve the smallest distance approximate seed problem and the
restricted smallest approrimate seed problem and we prove that the more general
smallest approrimate seed problem is NP-complete.

The paper is organized as follows. In section 2, we present some basic definitions.
In section 3, we describe the notion of approximate seeds and we define the three
problems studied in this paper. In section 4, we present the algorithms that solve the
first two problems and the proof that the third problem is NP-complete. Section 5
contains our conclusion.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet . The set of all
strings over ¥ is denoted by ¥*. The length of a string z is denoted by |z|. The
empty string, the string of length zero, is denoted by . The i-th symbol of a string
x is denoted by x[i].

26

Approximate Seeds of Strings

A string w is a substring of x if © = uwwv, where u,v € ¥*. We denote by x[i..j]
the substring of = that starts at position ¢ and ends at position j. Conversely, z is
called a superstring of w. A string w is a prefiz of z if x = wy, for y € ¥*. Similarly,
w is a suffiz of x if x = yw, for w € ¥*. We call a string w a subsequence (also called
a subword [14]) of = (or x is a supersequence of w) if w is obtained by deleting zero or
more symbols at any positions from x. For example, ace is a subsequence of aabcdef.
For a given set S of strings, a string w is called a common supersequence of S if s is
a supersequence of every string in S.

The string zy is a concatenation of the strings x and y. The concatenation of k
copies of x is denoted by z*. For two strings x = z[1..n] and y = y[1..m] such that
xzln — i+ 1..n] = y[l..9] for some ¢ > 1 (that is, such that z has a suffix equal to
a prefix of y), the string x[1..n]y[i + 1..m] is said to be a superposition of = and y.
Alternatively, we may say that x overlaps with .

A substring y of z is called a repetition in z, if + = uy*v, where u,y,v are
substrings of z and k > 2, |y| # 0. For example, if © = aababab, then a (appearing in
positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in z; in
particular a? = aa is called a square and (ab)?® = ababab is called a cube.

A substring w is called a period of a string x, if can be written as x = w"w’
where k£ > 1 and w' is a prefix of w. The shortest period of x is called the period of
x. For example, if = abcabcab, then abc, abcabe and the string x itself are periods
of x, while abc is the period of .

A substring w of x is called a cover of x, if x can be constructed by concatenating
or overlapping copies of w. We also say that w covers x. For example, if x = ababaaba,
then aba and x are covers of x. If x has a cover w # x, x is said to be quasiperiodic;
otherwise, x is superprimitive.

A substring w of z is called a seed of z, if w covers one superstring of (this can
be any superstring of z, including x itself). For example, aba and ababa are some
seeds of x = ababaab.

We call the distance 6(x,y) between two strings 2 and y, the minimum cost to
transform one string = to the other string y. There are several well known distance
functions, described in the next paragraph. The special symbol A is used to represent
the absence of a character.

k

2.1 Distance functions

The edit distance between two strings is the minimum number of edit operations
that transform one string into another. The edit operations are the insertion of an
extraneous symbol (e.g., A — a), the deletion of a symbol (e.g., @ — A) and the
substitution of a symbol by another symbol (e.g., a — b). Note that in the edit
distance model we only count the number of edit operations, considering the cost of
each operation equal to 1.

The Hamming distance between two strings is the minimum number of substitu-
tions (e.g., a — b) that transform one string to the other. Note that the Hamming
distance can be defined only when the two strings have the same length, because it
does not allow insertions and deletions.

We also consider a generalized version of the edit distance model, the weighted
edit distance, where the edit operations no longer have the same costs. It makes use

27

Proceedings of the Prague Stringology Conference 03

Figure 1: Alignment example

of a penalty matriz, a matrix that specifies the cost of each substitution for each pair
of symbols, and the insertion and deletion cost for each character. A penalty matrix
is a metric when it satisfies the following conditions for all a,b,c € X U {A}:

e §(a,b) >0,

e 0(a,b) =4(b,a),

e §(a,a) =0, and

e d(a,c) <d(a,b) + (b, c) (triangle inequality).

The similarity between two strings can be seen by using an alignment; that is, any
pairing of symbols subject to the restriction that if lines were drawn between paired
symbols, as in Figure 1, the lines would not cross. The equality of the lengths can be
obtained by inserting or deleting zero or more symbols. In our example, the string
“abcae” is transformed to “abdeg” by deleting, substituting and inserting a character
at positions 3, 4 and 6, respectively. Note that this is not the only possible alignment
between the two strings.

We say that a distance function §(z, y) is a relative distance function if the lengths
of strings x and y are considered in the value of §(x,y); otherwise it is an absolute
distance function. The Hamming distance and the edit distance are examples of
absolute distance functions. There are two ways to define a relative distance between
x and y:

e First, we can fix one of the two strings and define a relative distance function
with respect to the fixed string. The error ratio with respect to x is defined to
be d/|x|, where d is an absolute distance between z and y.

e Second, we can define a relative distance function symmetrically. The symmetric
error ratio is defined to be d/I, where d is an absolute distance between x and
y, and [= (|z| + |y|)/2 |32]. Note that we may take I = |z| + |y|, in which case
everything is the same except that the ratio is multiplied by 2.

If d is the edit distance between x and y, the error ratio with respect to x or the
symmetric error ratio is called a relative edit distance. The weighted edit distance can
also be used as a relative distance function because the penalty matrix can contain
arbitrary costs.

3 Problem Definitions

Definition 1 Let z and s be strings over ¥* ¢ be a distance function and ¢ be
a number. We call s a t-approximate seed of z if and only if there exist strings
S1,892,.-.,5 (8; #) such that

28

Approximate Seeds of Strings

(i) 6(s,s;) <t, for 1 <i<r, and

(ii) there exists a superstring y = uzv, |u| < |s| and |v| < |s|, of x that can be
constructed by overlapping or concatenating copies of the strings s, sa, ..., ;.

Each s;, 1 < i < r, will be called a seed block of z.

Note that y can be any superstring of z, including z itself (in which case, s is
an approximate cover). Note, also, that there can be several versions of approximate
seeds according to the definition of distance function 9.

An example of an approximate seed is shown in Figure 2. For strings = =
BABACCB and s = ABAB, s is an approximate seed of z with error 1 (ham-
ming distance), because there exist the strings s; = ABAB,s, = ABAC,s3; =
CBAB, such that the distance between s and each s; is no more than 1, and by
concatenating or overlapping the strings si, ss, s3 we construct a superstring of x,

y = ABABACCBAB.

ABABACCBARB
51 52 53

Figure 2: Approximate Seed example.

We consider the following three problems related to approximate seeds.

Problem 1 SMALLEST DISTANCE APPROXIMATE SEED Let x be a string of length
n, s be a string of length m, and § be a distance function. Find the minimum number
t such that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no difference whether
0 is an absolute distance function or an error ratio with respect to s. If a threshold
k < |s| on the edit distance is given as input to Problem 1, the problem asks whether
s is a k-approximate seed of = or not (the k-approxzimate seed problem). Note that if
the edit distance is used for ¢, it is trivially true that s is an |s|-approximate seed of
x.

Problem 2 RESTRICTED SMALLEST APPROXIMATE SEED Given a string x of
length n, find a substring s of x such that: s is a t-approrimate seed of x and there
s no substring of x that is a k-approximate seed of x for all k < t.

Since any substring of x can be a candidate for s, the length of s is not (a priori)
fixed in this problem. Therefore, we need to use a relative distance function (i.e.,
an error ratio or a weighted edit distance) rather than an absolute distance function.
For example, if the absolute edit distance is used, every substring of x of length 1 is
a l-approximate seed of x. Moreover, we assume that s is of length at most |z|/2,
because, otherwise the longest proper prefix of z (or any long prefix of x) can easily
become an approximate seed of z with a small distance. This assumption will be
applied to Problem 3, too.

29

Proceedings of the Prague Stringology Conference 03

Problem 3 SMALLEST APPROXIMATE SEED Given a string x of length n, find a
string s such that: s is a t-approxrimate seed of x and there is no substring of x that
s a k-approrimate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s can now be any string, not necessarily
a substring of x. Obviously, this problem is harder than the previous one; we will
prove that it is NP-complete.

4 Algorithms and NP-Completeness

4.1 Problem 1
Our algorithm for Problem 1 consists of two steps. Let n = |z| and m = |s|.

1. Compute the distance between s and every substring of x.

We denote by w;; the distance between s and z[i..j], for 1 < i < j < n. Note
that, by definition of approximate seeds, x[i..n] can be matched to any prefix
of s, and z[l..j] can be matched to any suffix of s (because s has to cover
any superstring of). Thus, we denote w;, the minimum value of the distances
between all prefixes of s and z[i..n|, and wy; the minimum value of the distances
between all suffixes of s and z[1..j].

2. Compute the minimum t such that s is a t-approximate seed of x.
We use dynamic programming to compute ¢ as follows. Let ¢; be the minimum
value such that s is a ¢;-approximate seed of z[1..7]. Let ¢y = 0. For i = 1 to n,
we compute ¢; by the following formula:

t; = 01%1’321 {max {hrgjlgl {ti} wnyiit} (1)

The value t,, is the minimum ¢ such that s is a f-approximate seed of .

To compute the distance between two strings, = and y, in step 1, a dynamic
programming table, called the D table, of size (|x| + 1) x (Jy| + 1), is used. Each
entry D[i,j], 0 < i < |z| and 0 < j < |y|, stores the minimum cost of transforming
2[1..1] to y[1..5]. nitially, D[0,0] = 0, D[i,0] = D[i — 1,0] + 6(zi], A) and D[0, j] =
DI[0,j—1]+06(A,y[j]). Then we can compute all the entries of the D table in O(|z||y|)
time by the following recurrence:

Dli—1,7] + o(z[i], A)
Dli—1,5=1] + 6zl y[j])

where §(a,b) is the cost of substituting character a with character b, §(a,A) is the
cost of deleting a and §(A, a) is the cost of inserting a.

The second step of the algorithm is computed as shown in Figure 3. For every h,
we cover x[h+1..7] with one copy of s, with error wy,1 ;. What is left to be covered is
x[1..h]. We obtain this by covering either x[1..h], with error ¢[h], or z[1..h + 1], with
error t[h +1], ... or x[1..i — 1], with error ¢[i — 1], (in general z[1..j], with error ¢[j]);
we choose the z[1..7] (the shaded box) that gives the smallest error. Note that, this
box covers a superstring of z[1..5].

30

Approximate Seeds of Strings

N ANNNWN J
x| [R
1 h+1 J 7 n

Figure 3: The second step of the algorithm.

Theorem 1 Problem 1 can be solved in O(mn?) time when a weighted edit distance
is used for §. If the edit or the Hamming distance is used for ¢, it can be solved in
O(mn) time.

PROOF. For an arbitrary penalty matrix, step 1 takes O(mn?) time, since we make a
D table of size (m+1) x (n—i+2) for each position i of z. The fact that a superstring
of x, rather than x itself, has to be “covered” does not increase the time complexity,
if we use the following procedure: instead of computing a new D-table between each
s[1..k] (resp. s[k..m]) and z[i..n] (resp. z[1..j]), we just make one D-table between
s and x[i..n] (resp. s® (z[1..5])%) and take the minimum value of the last column of
this table.

In step 2, we can compute the minimum ¢ in O(n?) time as follows. The inner
min loop of formula (1) can be computed in constant time by reusing the min values
computed in the previous round. The outer min loop is repeated ¢ times, for 1 < i <
n, i.e., O(n?) repetitions.

Thus, the total time complexity is O(mn?).

When the edit distance is used for the measure of similarity, this algorithm for
Problem 1 can be improved. In this case, 6(a,b) is always 1 if a # b and 6(a,b) = 0
otherwise. Now it is not necessary to compute the edit distances between s and the
substrings of x whose lengths are larger than 2m because their edit distances with
s will exceed m. (It is trivially true that s is an m-approximate seed of x.) Step 1
now takes O(m?n) time since we make a D table of size (m + 1) x (2m + 1) for each
position of x. Also, step 2 can be done in O(mn) time since we compare O(m) values
at each position of z. Thus, the time complexity is reduced to O(m?n).

However, we can do better. Step 1 can be solved in O(mn) time by the algorithm
due to Landau, Myers and Schmidt [23]|. Given two strings 2 and y and a forward
(resp. backward) solution for the comparison between z and y, the algorithm in [23]
incrementally computes a solution for z and by (resp. yb) in O(k) time, where b is an
additional character and £ is a threshold on the edit distance. This can be done due
to the relationship between the solution for and y and the solution for x and by.
When k& = m (i.e., the threshold is not given) we can compute all the edit distances
between s and every substring of 2z whose length is at most 2m in O(mn) time using
this algorithm. Recently, Kim and Park [21] gave a simpler O(mn)-time algorithm
for the same problem. Therefore, we can solve Problem 1, in O(mn) time if the edit
distance is used for §. When the threshold % is given as input for Problem 1, it can
be solved in O(kn) time because each step of the above algorithm takes O(kn) time.

If we use the Hamming distance for §, in step 1 we consider only the substrings
of x of length m. (Recall that the Hamming distance is defined only between strings
of equal length) Since there are O(n) such substrings, and we need O(m) time to
compute the distance between each substring and s, step 1 takes O(mn) time. Also,
as in the case of the edit distance, step 2 can be done in O(mn) time (we compare
O(m) values at each position of x). Thus, the overall time complexity is O(mn). O

31

Proceedings of the Prague Stringology Conference 03

z x
Tl s z| s
i+m-2
/—\ .
Newly computed z+m_1
s =x[i..i +m — 2 x[i..q 1]
(Previous D table (New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a candidate
for approximate seed. Let s be such a candidate string. Recall that, since the length
of s is not fixed in this case, we need to use a relative distance function (rather than
an absolute distance function); that is, an error ratio, in the case of the Hamming or
edit distance, or a weighted edit distance.

When the relative edit distance is used for the measure of similarity, Problem 2
can be solved in O(n*) time by our algorithm for Problem 1. If we take each substring
of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in
[23]), it takes O(]s|n) time for each s. Since there are O(n?) substrings of z, the
overall time is O(n?).

For weighted edit distances (as well as for relative edit distances), we can solve
Problem 2 in O(n*) time, without using the somewhat complicated algorithm in [23].
Like before, we consider every substring of x as candidate string s, and we solve
Problem 1 for z and s. But, we do this, by processing all the substrings of = that
start at position 7, at the same time, as follows.

Let T be the minimum distance so far. Initially, T" = oco. For each i, 1 < i < n,
we process the n — ¢ 4 1 substrings that start at position ¢ as candidate strings. Let
m be the length of a chosen substring of x as s. Initially, m = 1.

1. Take z[i.i +m — 1] as s and compute wy;, for all 1 < h < j < n. This
computation can be done by making n D tables with s and each of the n
suffixes of z. By adding just one row to each of previous D tables (i.e., n D
tables when s = z[i..i + m — 2]), we can compute these new D tables in O(n?)
time. See Figure 4. (Note that when m = 1, we create new D tables.)

2. Compute the minimum distance ¢ such that s is a t-approximate seed of x. This
step is similar to the second step of the algorithm for Problem 1. Let ¢; be the
minimum value such that s is a t;-approximate seed of x[1..i] and t, = 0. For
i =1 to n, we compute t; by the following formula:

t; = 0‘?&2 {max{ m1n {t bowpi,it}

The value t,, is the minimum ¢ such that s is a t-approximate seed of . If ¢,, is
smaller than 7', we update 1" with t,,. If m <n —14+ 1, increase m by 1 and go
to step 1.

When all the steps are completed, the final value of 7" is the minimum distance
and the substring s that is a T-approximate seed of x is an answer to Problem 2.

32

Approximate Seeds of Strings

(Note that there can be more than one substring s that are T-approximate seeds of

Theorem 2 Problem 2 can be solved in O(n?) time when a weighted edit distance
or a relative edit distance is used for . When a relative Hamming distance is used
for §, Problem 2 can be solved in O(n?) time.

PROOF. For a weighted edit distance, we make n D tables in O(n?) time in step 1
and compute the minimum distance in O(n?) time in step 2. Form =1ton —i+1,
we repeat the two steps. Therefore, it takes O(n?) time for each i and the total time
complexity of this algorithm is O(n*). If a relative edit distance is used, the algorithm
can be slightly simplified, as in Problem 1, but it still takes O(n*) time.

For a relative Hamming distance, it takes O(n) time for each candidate string and
since there are O(n?) candidate strings, the total time complexity is O(n?). O

4.3 Problem 3

Given a set of strings, the shortest common supersequence (SCS) problem is to find
a shortest common supersequence of all strings in the set. The SCS problem is NP-
complete [26, 30]. We will show that Problem 3 is NP-complete by a reduction from
the SCS problem. In this section we will call Problem 3 the SAS problem (abbreviation
of the smallest approximate seed problem). The decision versions of the SCS and SAS
problems are as follows:

Definition 2 (SCS) Given a positive integer m and a finite set S of strings from ¥*
where ¥ is a finite alphabet, the SCS problem is to decide if there exists a common
supersequence w of S such that |w| < m.

Definition 3 (SAS) Given a number ¢, a string = from (X')* where ¥’ is a finite
alphabet, and a penalty matrix, the SAS problem is to decide if there exists a string
u such that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-complete.

5 Conclusions

In this paper, we solved the smallest distance approzimate seed problem, in O(mn)
time for the Hamming and edit distance and O(mn?) for the weighted edit distance,
and the restricted smallest approzimate seed problem, in O(n*) time for the edit and
weighted edit distance and O(n?) for the Hamming distance. We also proved that the
smallest approrimate seed problem is NP-complete.

The significance of our work comes from the fact that we solved the first two
problems for approximate seeds, with exactly the same time complexities as those
for approximate periods [33] and approximate covers [34|, despite the fact that seeds
allow overlaps, as well as concatenations, and cover a superstring of a string = (rather
than covering the string x itself).

33

Proceedings of the Prague Stringology Conference 03

References

[1] A. Aho and T. Peterson. A minimum distance error-correcting parser for context-
free languages. STAM J. Computing, 1:305-312, 1972.

[2] A. Apostolico and D. Breslauer. An optimal O(loglog N)-time parallel algorithm
for detecting all squares in a string. STAM Journal on Computing, 25(6):1318—
1331, 1996.

[3] A. Apostolico, D. Breslauer, and Z. Galil. Optimal parallel algorithms for peri-
ods, palindromes and squares. Proc. 19th Int. Collog. Automata Languages and
Programming, 623:296-307, 1992.

[4] A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in
strings. Theoretical Computer Science, 119(2):247-265, 1993.

[5] A. Apostolico, M. Farach, and C. S. Tliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39(1):17-20, 1991.

[6] A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoretical Computer Science, 22:297-315, 1983.

[7] O. Berkman, C. S. Iliopoulos, and K. Park. The subtree max gap problem
with application to parallel string covering. Information and Computation,
123(1):127-137, 1995.

[8] D. Breslauer. An on-line string superprimitivity test. Information Processing
Letters, 44(6):345-347, 1992.

[9] D. Breslauer. Testing string superprimitivity in parallel. Information Processing
Letters, 49(5):235-241, 1994.

[10] T. Crawford, C. S. Tliopoulos, and R. Raman. String matching techniques for
musical similarity and melodic recognition. Computing in Musicology, 11:73-100,
1998.

[11] M. Crochemore. An optimal algorithm for computing repetitions in a word.
Information Processing Letters, 12(5):244-250, 1981.

[12] M. Crochemore, C. S. Tliopoulos, and M. Korda. Two-dimensional prefix string
matching and covering on square matrices. Algorithmica, 20:353-373, 1998.

[13] M. Crochemore, C. S. Tliopoulos, and H. Yu. Algorithms for computing evolu-
tionary chains in molecular and musical sequences. In Proc. 9th Australasian
Workshop on Combinatorial Algorithms, pages 172-185, 1998.

[14] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15] C. S. Tliopoulos and M. Korda. Optimal parallel superprimitivity testing on
square arrays. Parallel Processing Letters, 6(3):299-308, 1996.

[16] C.S. Tliopoulos, D. Moore, and K. Park. Covering a string. Algorithmica, 16:288—
297, 1996.

34

Approximate Seeds of Strings

[17] C. S. Hiopoulos and L. Mouchard. An O(nlogn) algorithm for computing all
maximal quasiperiodicities in strings. In Proc. Computing: Australasian Theory
Symposium, pages 262-272. Lecture Notes in Computer Science, 1999.

[18] C. S. Iliopoulos and K. Park. An optimal O(loglogn)-time algorithm for parallel
superprimitivity testing. J. Korea Inform. Sci. Soc., 21:1400-1404, 1994.

[19] C. S. Tliopoulos and K. Park. A work-time optimal algorithm for computing all
string covers. Theoretical Computer Science, 164:299-310, 1996.

[20] C. S. Tliopoulos and W. F. Smyth. On-line algorithms for k-covering. In Pro-
ceedings of the 9th Australasian Workshop On Combinatorial Algorithms, pages
97-106, Perth, WA, Australia, 1998.

[21] S. Kim and K. Park. A dynamic edit distance table. In Proc. 11th Symp.
Combinatorial Pattern Matching, volume 1848, pages 60—68. Springer, Berlin,
2000.

[22] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mathcing in strings.
STAM Journal on Computing, 6(1):323-350, 1977.

[23] G. M. Landau, E. W. Myers, and J. P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557-582, 1998.

[24] G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.
In Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching,
number 684, pages 120-133, Padova, Italy, 1993. Springer-Verlag, Berlin.

[25] Y. Li and W. F. Smyth. An optimal on-line algorithm to compute all the covers
of a string.

[26] D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322-336, 1978.

[27] M. G. Main and R. J. Lorentz. An algorithm for finding all repetitions in a
string. Journal of Algorithms, 5:422-532, 1984.

[28] M. Middendorf. More on the complexity of common superstring and superse-
quence problems. Theoretical Computer Science, 125(2):205-228, 1994.

[29] D. Moore and W. F. Smyth. A correction to “An optimal algorithm to compute
all the covers of a string”. Information Processing Letters, 54(2):101-103, 1995.

[30] K. J. Rdihd and E. Ukkonen. The shortest common supersequence problem
over binary alphabet is NP-complete. Theoretical Computer Science, 16:187—
198, 1981.

[31] J. P. Schmidt. All highest scoring paths in weighted grid graphs and its applica-
tion to finding all approximate repeats in strings. STAM Journal on Computing,
27(4):972-992, 1998.

[32] P. H. Sellers. Pattern recognition genetic sequences by mismatch density. Bulletin
of Mathematical Biology, 46(4):501-514, 1984.

35

Proceedings of the Prague Stringology Conference 03

[33] J. S. Sim, C. S. Tliopoulos, K. Park, and W. F. Smyth. Approximate periods of
strings. Theoretical Computer Science, 262:557-568, 2001.

[34] J. S. Sim, K. Park, S. Kim, and J. Lee. Finding approximate covers of strings.
Journal of Korea Information Science Society, 29(1):16-21, 2002.

[35] R. Wagner and M. Fisher. The string-to-string correction problem. Journal of
the ACM, 21:168-173, 1974.

36

