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Abstra
t. This paper proposes an e�
ient algorithm to solve the problem of

string mat
hing with mismat
hes. For a text of length n and a pattern of length

m over an alphabet �, the problem is known to be solved in O(j�jn logm)

time by 
omputing a s
ore by the fast Fourier transformation (FFT). Atallah

et al. introdu
ed a randomized algorithm in whi
h the time 
omplexity 
an

be de
reased by the trade-o� with the a

ura
y of the estimates for the s
ore.

The algorithm in the present paper yields an estimate with smaller varian
e


ompared to that the algorithm by Atallah et al., moreover, and 
omputes the

exa
t s
ore in O(j�jn logm) time. The present paper also gives two methods to

improve the algorithm and an exa
t estimation of the varian
e of the estimates

for the s
ore.

Keywords: string mat
hing with mismat
hes, FFT, 
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algorithm, randomized algorithm.

1 Introdu
tion

String mat
hing [4, 5℄ is the problem to obtain all the o

urren
es of a (short) string


alled a pattern in a (long) string 
alled a text. We 
onsider string mat
hing with

mismat
hes whi
h allows inexa
t mat
h introdu
ed by substitution. Let � be an

alphabet and Æ the Krone
ker fun
tion from � � � to f0; 1g, that is, for a; b 2 �,

Æ(a; b) is 1 if a = b, 0 otherwise. The problem with mismat
hes is generally solved

by 
omputing the s
ore ve
tor C(T; P ) between a text T = t

1

� � � t

n

and a pattern

P = p

1

� � � p

m

as follows:

C(T; P ) = (


1

; : : : ; 


i

; : : : ; 


n�m+1

); where 


i

=

m

X

j=1

Æ(t

i+j�1

; p

j

):
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We 
an 
ompute the s
ore ve
tor using the fast Fourier transform (FFT) in

O(n logm) time, if the s
ore ve
tor is represented as a 
onvolution, that is, if the

Krone
ker fun
tion is expressed by a produ
t of two mappings from � to a set of

numbers. This approa
h was developed by Fis
her and Paterson [6℄ and is simply

summarized in Gus�eld [7℄. However, pra
ti
ally, the time 
omplexity of the algo-

rithm depends on the number of alphabets. One of the reason for the di�
ulties is

that the Krone
ker fun
tion 
an not be written as a produ
t of mappings dire
tly.

For example, if � = fa; b; 
g, the generalized algorithm in [7℄ needs three mappings

�

1

, �

2

, and �

3

whi
h 
onvert symbols into f1; 0g as the following table.

�

1

�

2

�

3

a 1 0 0

b 0 1 0


 0 0 1

Then, we have Æ(a; b) =

P

3

`=1

�

`

(a) � �

`

(b) and the s
ore ve
tor is obtained by 
om-

puting the 
onvolution

P

m

j=1

�

`

(t

i+j�1

) � �

`

(p

j

) for 1 � i � n three times.

Atallah et al. [1℄ introdu
ed a randomized algorithmwhere the time 
omplexity has

a trade-o� with the a

ura
y of the estimates for the s
ore ve
tor. In this algorithm,

symbols are 
onverted into 
omplex numbers with a primitive �-th root ! of unity

and the Hermitian inner produ
t is used for the 
onvolution. Then, the s
ore ve
tor

is obtained as the average of the results of 
onvolutions with respe
t to all possible

mappings '

`

from � to f0; : : : ; j�j � 1g, that is,




i

=

1

j�j

j�j

X

`=1

m

X

j=1

!

'

`

(t

i+j�1

)�'

`

(p

j

)

;

where � is the set of all mappings �

`

. (A deterministi
 algorithm 
onstru
ted by those

mappings requires the 
omputation of the 
onvolution j�j

j�j

times.) An estimate

for the s
ore ve
tor is the average of the results with respe
t to some mappings


hosen independently and uniformly from �. Let k be the number of randomly


hosen samples. Then, the time 
omplexity is O(kn logm). They showed that the

expe
tation of the estimates equals to the s
ore ve
tor and the varian
e is bounded

by (m� 


i

)

2

=k. Baba et al. [2℄ improved this algorithm by simplifying the mappings

whi
h 
onverts the strings into numbers. The 
odomain of the mappings is the set

f�1; 1g instead of the set of 
omplex numbers. Then, the s
ore ve
tor is




i

=

1

j�j

j�j

X

`=1

m

X

j=1

�

`

(t

i+j�1

) � �

`

(p

j

):

Baba et al. [3℄ pointed out that the algorithms whi
h 
ompute the s
ore ve
tor by

FFT are distinguished by the mappings whi
h 
onvert strings into numbers in ea
h

algorithm, and the exa
t s
ore is obtained by repeating the O(n logm) operation j�j

times.

In this paper, we propose an e�
ient algorithm to solve string mat
hing in whi
h

the varian
e of the estimates is not greater than (m � 


i

)

2

=k. Moreover, the exa
t

s
ore ve
tor is 
omputed in O(j�jn logm) time. We also give a stri
t evaluation of

the varian
e and introdu
e two methods to improve our algorithm.
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2 E�
ient Algorithm

We propose an e�
ient algorithm for string mat
hing with mismat
hes. The time


omplexity of a deterministi
 algorithm and the varian
e of the estimates for the

s
ore ve
tor are obtained by analyzing the mappings whi
h 
onvert the symbols to

the numbers. Let p be the smallest prime number whi
h is greater than or equal to the


ardinality j�j of the alphabet. The 
odomain of the mappings is the p-adi
 number

�eld Z

p

. Sin
e su
h a prime number is less than 2j�j � 2 (Chebyshev's theorem), a

deterministi
 algorithm with this mappings 
omputes the s
ore ve
tor between a text

of length n and a pattern of length m in O(j�jn logm) time. Moreover, in the same

way as the algorithm by Atallah et al, we 
an 
onstru
t a randomized algorithm in

whi
h the varian
e of the estimates for the s
ore ve
tor is independent to j�j.

2.1 E�
ient Mapping

Let ' be a bije
tive mapping from � to f0; 1; � � � j�j � 1g. For 0 � x � p � 1 and

a 2 �, we de�ne a mapping �

x

as

�

x

(a) = !

x�'(a)

; (1)

where ! is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a; b 2 �,

Æ(a; b) =

1

p

p�1

X

x=0

�

x

(a) � �

x

(b);

where !

y

= !

�y

.

Proof. If a = b, we have �

x

(a) � �

x

(b) = !

0

= 1 for any 0 � x � p � 1. Hen
e,

the right side of the equation is equal to 1. If a 6= b, the di�eren
e '(a)� '(b) is an

element of Z

p

nf0g. Therefore, x � ('(a) � '(b)) is valued 0; : : : ; p � 1 modulo p for

0 � x � p� 1. Thus, we have

P

p�1

x=0

�

x

(a) � �

x

(b) =

P

p�1

x=0

!

x�('(a)�'(b))

= 0. 2

Lemma 2 By using the mapping �

x

, the s
ore ve
tor between a text of length n and

a pattern of length m over an alphabet � 
an be 
omputed in O(j�jn logm) time.

Proof. By the de�nition of the s
ore ve
tor and Lemma 1, the s
ore ve
tor is




i

=

1

p

p�1

X

x=0

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): (2)

Therefore, the s
ore ve
tor is obtained by 
omputing the 
onvolution

f(i) =

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) (1 � i � n)

p times. Sin
e p = O(j�j), we have the lemma. 2
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2.2 Analysis of Varian
e

In the same way as the algorithm by Atallah et al. [1℄, we 
an 
onstru
t a randomized

algorithm in whi
h an estimate for the s
ore ve
tor is obtained by 
hoosing some

mappings from �. We de�ne a sample s

i

of an element 


i

of the s
ore ve
tor to be

s

i

=

m

X

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

):

Let k be the number of 
hosen samples. Then, an estimate ŝ

i

for the element 


i

of

the s
ore ve
tor is de�ned by

ŝ

i

=

1

k

k

X

`=1

s

i

:

By Eq. (2), it is 
lear that the mean of the estimates is equal to 


i

. The following

lemma gives the upper-bound of the varian
e of the estimates.

Lemma 3 In a randomized algorithm 
onstru
ted with the mapping �

x

, the varian
e

of the estimates for the s
ore ve
tor is bounded by (m� 


i

)

2

=k.

Proof. We denote by V (X) the varian
e of a random variable X. By the de�nition

of the estimate and the basi
 property of varian
e, we have V (ŝ

i

) = V (s

i

)=k. Sin
e

�

x(`)

(a) � �

x(`)

(a) = 1 and j�

x(`)

(a) � �

x(`)

(b)j = 1 for any 1 � ` � j�j and any a; b 2 �,

the varian
e of the samples is V (s

i

) =

P

j�j

`=1

(

P

m

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

)� 


i

)

2

=j�j �

(m� 


i

)

2

. 2

2.3 Des
ription of Algorithm

We des
ribe the algorithm whi
h uses the mapping �

x

in detail. The input is a text

string T = t

1

� � � t

n

, a pattern string P = p

1

� � � p

m

over an alphabet �, and a number k

of iterations in this algorithm. The output is an estimate for the s
ore ve
tor C(T; P )

if k < p, the exa
t s
ore ve
tor if k = p, where p is the smallest prime number su
h

that j�j � p. By the standard te
hnique [4℄ of partitioning the text, we 
an assume

n = (1 + �)m for � = O(m). The algorithm is 
onstru
ted by iterations of the

following operations.

� 
onvert the text into a numeri
al sequen
es �

x

(T ) = !

'

x

(t

1

)

� � �!

'

x

(t

(1+�)m

)

by

the mapping �

x

from � to f!

0

; : : : ; !

p�1

g;

� 
onvert the pattern into �

x

(P ) = !

�'

x

(p

1

)

� � �!

�'

x

(p

m

)

by �

x

and pad with �m

zeros;

� 
ompute the sample s

i

for 1 � i � (1 + �)m as the 
onvolution of �

x

(T ) and

the reverse of the padded �

x

(P ) by FFT.

The output is 
omputed as the average of the results of the 
onvolution for 1 �

x � k. If k = p, by Lemma 2, the output is equal to the s
ore ve
tor. If k < p,

the output is regarded as an estimate for the s
ore ve
tor obtained by a randomized

algorithm with �sampling without repla
ement�. Therefore, by Lemma 3 the varian
e

of the estimates is ((p� k)=(p� 1)) � (V (s

i

)=k).
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Theorem 1 By the algorithm with the mapping �

x

, the exa
t s
ore between a text of

length n and a pattern of length m over an alphabet � is 
omputed in O(j�jn logm)

time. Moreover, an estimate for the s
ore ve
tor is 
omputed in O(kn logm) time,

where k is the number of iterations in the algorithm and the varian
e of the estimates

is bounded by (p� k)(m� 


i

)

2

=(p� 1)k.

In generally, the varian
e of the estimates obtained by sampling without repla
e-

ment is

j�j � k

j�j � 1

� V (ŝ

i

)

where � is the set of all mappings whi
h 
onvert symbols into numbers. The 
ardi-

nality j�j of the set is j�j

j�j

in the algorithm by Atallah et al [1℄. and 2

j�j

in one

by Baba et al [2℄. Hen
e, the �nite-size 
orre
tion term (j�j � k)=(j�j � 1) is not so

e�e
tive.

A key distinguishing feature of our algorithm is that the exa
t s
ore 
an be 
om-

puted in a pra
ti
al time. Sin
e j�j is large in the two randomized algorithms, their

deterministi
 versions 
onstru
ted in a similar way as our algorithm are not pra
ti
al

for a large alphabet. Although the deterministi
 algorithm generalized by Gus�eld [7℄


an be extended to a randomized algorithm in the same way as our algorithm, the

varian
e of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two te
hniques to improve the algorithm in the previous se
tion.

3.1 Removal of Defe
tive Mapping

Our mappings 
onvert the di�erent symbols to the distin
t numeri
al values. But

only the mapping �

0


onverts all symbols to 0. Therefore, we remove the mapping

�

0

from the set �. That is possible without 
omputing 
onvolution.

By Eq. (1), Æ(a; b) =

1

p

P

p�1

x=0

�

x

(a) � �

x

(b) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + �

0

(a) � �

0

(b)) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + 1). Therefore, the s
ore ve
tor is 


i

=

P

m

j=1

1

p

(

P

p�1

x=1

�(t

i+j�1

) �

�(p

j

)+1) =

1

p

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) ��

x

(p

j

)+

m

p

: To randomize the 
omputation of 


i

,

we de�ne 


0

i

as follows: 


0

i

=

1

p�1

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): Hen
e, 


i

=

p�1

p




0

i

+

m

p

:

We de�ne a sample s

0

i

of an element 


0

i

to be

s

0

i

=

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

):

And an estimate

^

s

0

i

is de�ned by

^

s

0

i

=

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)

where 1 � k � p� 1.
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And an estimate ŝ

i

for the element 


i

of the s
ore ve
tor is de�ned by

ŝ

i

=

p� 1

p

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) +

m

p

(3)

where 1 � k � p� 1.

By the di�nition of a varian
e, V (s

i

) =

(p�1)

2

p

2

V (s

0

i

). Moreover, be
ause the number

of mappings de
rease by one, the varian
e in 
onsideration of that is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m� 


i

)

2

k

: (4)

3.2 Removal of Imaginary Part

The magnitude of �

x

(a) � �

x

(b) in Eq. (1) is 1. We used this magnitude for the

analysis of the varian
e until this point. However, the real part is independent of the

imaginary part. Therefore, those parts of Eq. (1) 
an be 
omputed separately.

Let <(v) be a real part of a 
omplex number v. By Lemma 1,

1

p

P

p�1

x=0

�

x

(a) ��

x

(b)

returns 0 or 1. Therefore, we 
an remove the imaginary part. Then, Æ(a; b) =

<(

1

p

P

p�1

x=0

�

x

(a) � �

x

(b)) for any a; b 2 �. By the de�nition of the s
ore, 


i

=

P

m

j=1

<(

1

p

P

p�1

x=0

�

x

(t

i+j�1

) � �

x

(p

j

)): Sin
e the order of addition is not restri
ted, the

s
ore ve
tor is




i

=

1

p

p�1

X

x=0

<(

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)):

The 
omputation of the 
omplex number is ne
essary to 
ompute 
onvolution with

FFT. We only have to omit the imaginary part after the 
omputation of FFT. By this

omission, the 
omputation of both the sum of the imaginary part and the magnitude

of 
omplex number be
ome unne
essary.

The varian
e is the poorest when in
onsistent m � 
 
hara
ters are ea
h a kind

of symbol on the text and the pattern. In su
h a 
ase, �

`

(a) � �

`

(b) is �xed without

in�uen
e of j. By Eq. (1), <(�

x

(a) � �

x

(b)) = 
os �

`

, where �

`

=

2�x�('(a)�'(b))

p

. Then,

the random variable s

i

is following.

s

i

=

m

X

j=1

<(�

`

(a) � �

`

(b)) =

m

X

j=1


os �

`

= 


i


os 0+(m�


i

) 
os �

`

= 


i

+(m�


i

) 
os �

`

:

The varian
e V (s

i

) of this random variable s

i

are followings.

V (s

i

) =

p

X

`=1

(


i

+ (m� 


i

) 
os �

`

� 


i

)

2

�

1

p

=

1

p

p

X

`=1

((m� 


i

) 
os �

`

)

2

=

1

p

(m� 


i

)

2

p

X

`=1


os

2

�

`

=

(m� 


i

)

2

p

p

X

`=1

1 + 
os �

`

2
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=

(m� 


i

)

2

2p

(

p

X

`=1

1 +

p

X

`=1


os �

`

)

=

(m� 


i

)

2

2p

(p+ 0)

=

(m� 


i

)

2

2

(5)

By V (ŝ

i

) = V (s

i

)=k, the varian
e of the estimates ŝ

i

is bounded by

(m� 


i

)

2

2k

: (6)

3.3 Varian
e of Improved Algorithm

We showed two improvement points. That both 
an be applied to the basi
 algorithm

at a time.

Now, the 
hange point of the algorithm from the basis one shown in Subse
tion 2.3

is showed in the followings.

� We remove �

0

, and 
hoose a sample from the remaining mappings.

� An estimate ŝ

0

i

is 
omputed using that samples.

� Only a real part is used for a 
omputation of an estimate from the result of

FFT.

� We 
ompute ŝ

i

by Eq. (3), and make it the estimate of 


i

.

When these improvements are applied, by Eq. (4) and Eq. (6), the varian
e of the

estimates is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m� 


i

)

2

2k

:

It is smaller than one in the algorithm of Se
tion 2.

4 Exa
t Estimation of Varian
e

Atallah et al. presented an upper bound of the varian
e of the estimates for the s
ore

in their algorithm as (m � 


i

)

2

=k. The reason for this varian
e is that their set of

mappings in
ludes many mappings whi
h 
onvert some di�erent symbols into same

numeri
al value. One of the features of our mappings is that it does not 
onvert some

di�erent symbols into same numeri
al value be
ause a single ex
eptional mapping

was removed in Subse
tion 3.1. Using this feature, we give an exa
t estimation of the

varian
e based on our mappings.

Let a; b be symbols in �. If a produ
t �(a) � �(b) in one position is independent

of it in other position, the estimate of

P

(m�


i

)

j

�

x

(t

j

) � �

x

(p

j

) is 0: The two following


onditions must be satis�ed for that. One of those 
onditions is that a symbol in one

position is independent of symbols in other positions. In this paper, we suppose that


ondition. The independen
e 
an not be expe
ted in the general English text mu
h.

But, we expe
t high independen
e about the 
omparison of the produ
t �(a) � �(b).

�

�

In this paper, we did not get to the veri�
ation of that point. It is a future work.
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Another 
ondition is the following lemma.

Lemma 4 If all mappings 
onvert di�erent symbols into distin
t numeri
al values,

then the produ
t �(a) � �(b) in one position is independent of that in other position.

Proof. Let t

1

; t

2

; p

1

; p

2

be symbols in �, x a value whi
h 
an be returned by mappings

and r the number of kinds of x. Let �

x

be a set of the mappings whi
h 
onvert more

than one of some symbols into x, and �

xy

denotes �

x

\ �

y

. We de�ne D

x

as the

di�eren
e between the number of x whi
h the mappings 
onvert a given symbol into

and the number of mappings used for it. The number of 
ertain value x whi
h a


ertain symbol a 
onvert to is

j�j

r

be
ause

P

j�j

`=1

�

`

(a) = 0. Then, the number of


ertain value x whi
h all the symbols 
onvert to is �. Therefore, j�

x

j = j�j �D

x

. In

the mapping that 
onverts the di�erent symbols to the distin
t numeri
al values, �

x

equal to �.

Pr(X) denotes the probability of event X. Let A be the event �(t

1

) � �(p

1

) = x

and B the event �(t

2

) � �(p

2

) = x. And let A

0

be the event �(t

1

) = d

1

, A

00

the event

�(p

1

) = d

2

, B

0

the event �(t

2

) = d

3

, and B

00

the event �(p

2

) = d

4

.

If a 
ertain event o

urred, that a result of a mapping was value x, the mapping in

the next event is restri
ted to mappings whi
h return value x. After the event A, a set

of mappings is �

d

1

d

2

be
ause the mapping returned d

1

and d

2

were used in the event

A. A probability that a mapping return a value x is (the number of 
ombinations

of the mapping and the symbol whi
h 
an return x)/(the produ
t of the number of

mappings and the number of symbols). Then we have

Pr(B

0

) =

1

r

� j�j � j�j

j�j � j�j

=

1

r

;

Pr(B

00

jB

0

) =

1

r

� j�j � j�j

j�

d

3

j � j�j

=

j�j

r � j�

d

3

j

;

Pr(B) =

r�1

X

d

3

=0

Pr(B

0

) Pr(B

00

jB

0

) =

r�1

X

d

3

=0

(

1

r

�

j�j

r � j�

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

j�

d

3

j

);

and

Pr(BjA) =

r�1

X

d

3

=0

(

j�j

r � j�

d

1

d

2

j

�

j�j

r � j�

d

1

d

2

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

2

j�

d

1

d

2

j � j�

d

1

d

2

d

3

j

):

We get Pr(BjA) 6= Pr(B), hen
e �(t

1

) � �(p

1

) is not independent of �(t

2

) � �(p

2

).

However, if � = �

d

1

d

2

= �

d

1

d

2

d

3

, then Pr(BjA) = Pr(B). This 
ondition is satis-

�ed only when all mappings should 
onvert di�erent symbols into distin
t numeri
al

values. 2

Other two mappings 
an not satisfy the 
ondition of Lemma 4 while only our

mappings 
an satisfy it in 
ase of j�j = p. Therefore, we add a dummy symbol in


ase of j�j < p. Then we 
an 
orre
t a sampling bias be
ause we 
an know that by

the dummy symbol in advan
e.

When �

`

is drawn uniformly randomly from �, the random variable ŝ is ŝ =

1

k

P

k

`=1

P

m

j=1

�

`

(t

j

) � �

`

(p

j

):

Then, we get the following lemma.
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Lemma 5 Given that the produ
t �(a)��(b) in one position is independent of that in

other position. When 
 symbols align in the m symbols, the varian
e V (ŝ) of random

variable s are

V (ŝ) =

m� 


i

k

:

Proof. Let s

j

be the random variable as �

`

(t

j

) � �

`

(p

j

), then s

j

= �

`

(t

j

) � �

`

(p

j

) =

!

d(t

j

;p

j

)

where d(t

j

; p

j

) = x � ( (t

j

)�  (p

j

)). s

(t

j

=p

j

)

denotes that s in t

j

= p

j

and

s

(t

j

6=p

j

)

denotes that s in t

j

6= p

j

.

If t

j

= p

j

, s

j

= 1. If t

j

6= p

j

, s

j

= !

d(t

j

;p

j

)

: Then, those means are E(s

(t

j

=p

j

)

) =

1; E(s

(t

j

6=p

j

)

) =

P

p�1

x=0

!

d(t

j

;p

j

)

�

1

p

= 0: And those varian
e are V (s

(t

j

=p

j

)

) = (s

(t

j

=p

j

)

�

E(s

(t

j

=p

j

)

))

2

� 1 = (1 � 1)

2

� 1 = 0; V (s

(t

j

6=p

j

)

) =

P

p�1

x=0

(s

(t

j

6=p

j

)

�E(s

(t

j

6=p

j

)

))

2

�

1

p

=

1

p

P

p�1

x=0

(j!

d(t

j

;p

j

)

j)

2

=

1

p

P

p�1

x=0

1 = 1:

Be
ause we assume that the produ
t �(a) � �(b) in one position is independent of

that in other position, a varian
e V (s) of s are the simple total of a varian
e of every

position. Then, V (s) =

P




V (s

(t

j

=p

j

)

)+

P

m�


i

V (s

(t

j

6=p

j

)

) =

P




0+

P

m�


i

1 = m� 


i

:

Using k samples s, a varian
e V (ŝ) of the estimate s is V (ŝ) =

1

k

V (s). Then

V (ŝ) =

m� 


i

k

:

2

This analysis 
an be applied to the algorithm whi
h improvement in Se
tion 3 was

added to.

Then Eq. (5) 
hanges as follow,

V (s

j(t

j

6=p

j

)

) =

p�1

X

x=0

(s

j(t

j

6=p

j

)

� E(s

j(t

j

6=p

j

)

))

2

1

p

=

1

p

p�1

X

x=0

(
os

2�g(a; b)

p

� 0)

2

=

1

p

p�1

X

x=0


os

2

2�g(a; b)

p

=

1

p

p�1

X

x=0

1 + 
os

2�g(a;b)

p

2

=

1

2p

(

p�1

X

x=0

1 +

p�1

X

x=0


os

2�g(a; b)

p

)

=

1

2

(7)

By Eq. (7), we analyze the varian
e as the proof of Lemma 5.

V (ŝ) =

m� 


i

2k

: (8)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The varian
e of the estimates for the s
ore in our algorithm is

V (ŝ) =

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

m� 


i

2k

:
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Con
lusion

We gave an e�
ient randomized algorithm for string mat
hing with mismat
hes. This

randomized algorithm uses 
onvolution with FFT, like that proposed by Atallah et

al. and Baba et al. We used the mappings whi
h 
onvert the symbols to the p-

adi
 number �eld. One of the features of our mappings is that it does not 
onvert

some di�erent symbols into same numeri
al value. By that feature, the varian
e of the

estimate of the s
ore ve
tor is smaller. The other feature of our mappings is that there

are not so many mappings. The number of mapping is p�1 where j�j � p < 2j�j�2.

We analyzed the varian
e of the estimates for the s
ore in this algorithm. And it

is very small as 
ompared to the randomized algorithms proposed in the past. The

varian
e in this algorithm is

(p�1)

2

p

2

�

p�1�k

p�2

�

m�


i

2k

. Its time 
omplexity is O(kn logm)

where k is the number of samples, and the upper bound of k is p � 1. When k is

p� 1, this algorithm is deterministi
, and the estimate be
omes the real value.

Experiments with read texts and the evaluation of 
omputation time are future

work. We have a plan to apply the method for pattern extra
tion from Web pages [8℄.
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