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Abstrat. Here, we have designed and implemented algorithms for string

mathing with gaps for musial melodi reognition on polyphoni musi using

bit-wise operations. Musi analysts are often onerned with �nding ourrenes

of patterns (motifs), or repetitions of the same pattern, possibly with variations,

in a sore. An important example of exibility required in sore searhing arises

from the nature of polyphoni musi. Within a ertain time span eah of the

simultaneously-performed voies in a musial omposition does not, typially,

ontain the same number of notes. So `melodi events' ourring in one voie

may be separated from their neighbours in a sore by intervening events in

other voies. Sine we annot generally rely on voie information being present

in the sore we need to allow for temporal `gaps' between events in the mathed

pattern.

Key words: exat string mathing, approximate string mathing, gaps, pat-

tern reognition, omputer-assisted musi analysis, bit-wise operation

1 Introdution

This paper fouses on a set of string pattern-mathing problems that arise in musial

analysis, and espeially in musial information retrieval. Musi analysts are often

onerned with �nding ourrenes of patterns, or repetitions of the same pattern,

possibly with variations, in a sore, while omputer sientists often have to perform

similar tasks on strings (sequenes of symbols from an alphabet). Many objets an

be viewed as strings: a text �le, for instane, is a sequene of haraters from the

ASCII alphabet; a DNA ode is a sequene of haraters from the alphabet A,C,G,T

(representing the base proteins whih onstitute DNA). Similarly, a musial sore an
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be viewed (at one level) as a string: at a very rudimentary level, the alphabet ould

simply be the set of notes in the hromati or diatoni notation, or the set of intervals

that appear between notes (e.g. pith may be represented as MIDI numbers and pith

intervals as number of semitones).

Monophoni musi (that is, musi in whih a single note only sounds at any

given time) lends itself well to a one-dimensional string mathing approah, and

eÆient mathing algorithms for single-line melody-retrieval have been applied with

some suess. The polyphoni situation (where several voies or instruments may

be performing together, and any number of notes may be sounding at any given

time) is more omplex, however, beause of the temporal interation between non-

simultaneous events in di�erent voies. Where full knowledge about the voiing of the

musi data (in both the searh-pattern and the target) is available, mathing ould be

done by suessive searhes on eah voie in turn. In many musi-retrieval or analysis

appliations, espeially where the data has been prepared by enoding a printed sore

in onventional musial notation, this is possible. But in the general ase the data is

likely to be imperfetly-spei�ed in terms of its voiing, typially depending on how

it is obtained: from audio, for example, even given perfet note-extration, voiing

information is likely to be derivable only approximately, if at all. Therefore, we need

to allow for temporal gaps between musial events in the mathed pattern.

When we onsider the approximate version of this problem we do not require a

perfet mathing but a mathing that is good enough to satisfy ertain riteria. The

problem of �nding substrings of a text similar to a given pattern has been extensively

studied in reent years beause it has a variety of appliations inluding �le om-

parison, spelling orretion, information retrieval, searhing for similarities among

biosequenes and omputerized musi analysis. One of the most ommon variants of

the approximate string mathing problem is that of �nding substrings that math the

pattern with at most k-di�erenes. In this ase, k de�nes the approximation extent of

the mathing (the edit distane with respet to the three edit operations { mismath,

insert, delete). There is another type of approximate mathing; Æ-approximate math-

ing. It is well known that a musial sore an be represented as a string. This an be

aomplished by de�ning the alphabet to be the set of notes in the hromati or dia-

toni notation or the set of intervals that appear between notes. These algorithms an

be easily used in the analysis of musial works in order to disover similarities between

di�erent musial entities that may lead to establishing a \harateristi signature"

[CIR98℄.

In addition, eÆient algorithms for omputing approximate mathing and repeti-

tions of substrings are also used in moleular biology [FLSS93, KMGL88, MJ93℄ and

partiularly in DNA sequening by hybridization, reonstrution of DNA sequenes

from known DNA fragments, in human organ and bone marrow transplantation as

well as the determination of evolutionary trees among distint speies.

Beause exat mathing may not help us to �nd ourrenes of a partiular melody

in a musial work due to the transformation of the partiular melody throughout the

whole musial work we are ompelled to use approximate mathing that an absorb,

to some extent, this transformation and report the ourrenes of this melody. The

transformation in di�erent ourrenes of a partiular melody throughout a musial

play is translated into errors of di�erent ourrenes of a substring with respet to

an initial pattern. Quantity Æ de�nes the error margins of suh an approximation.
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In [CCIMP99℄, algorithms Shift-And and Shift-Plus were presented as eÆient

solutions to �nd all Æ-ourrenes of a given pattern in a text. The Shift-And algorithm

is based on the onstant time omputation of di�erent states for eah symbol in

the text by using bitwise tehniques. Therefore, the overall omplexity is linear

to the size of the text. In [IK02℄, approximate distributed mathing problem for

polyphoni musi is solved in linear time. We must also mention that it is possible to

adapt eÆient exat pattern mathing algorithms to this kind of approximation. For

example, in [CILP01℄ adaptations of the Tuned-Boyer-Moore [HS91℄ and the Skip-

Searh [CLP98℄ algorithm were presented.

The organization of the paper is as follows. Some de�nitions are given in setion 2.

In setion 3, Æ-ourrene with �-bounded gaps for monophoni musi is onsidered.

In setion 4 we onsider the problem of omputing exat mathing with �-bounded

gaps for polyphoni musi. Finally, we give some onlusions and future work in

setion 5.

2 De�nitions

Let � be an alphabet. A string is de�ned as a sequene of zero or more symbols from

�. The empty string, that is the string with zero symbols, is denoted by ". The set of

all strings over an alphabet � is denoted as �

�

. A string x of length n is represented

by the sequene x

1

; x

2

; : : : ; x

n

, where x

i

2 � for 1 � i � n. We all w a substring of

string x if x is of the form uwv for u; v 2 �

�

. We also say that substring w ours

at position juj+ 1 of string x. The starting position of w in x is the position juj+ 1

while position juj+ jwj is said to be the end position of w in x. A string w is a pre�x

of x if x is of the form wu and is a suÆx if x is of the form uw.

We de�ne as the onatenation of two strings x and y the string xy. The on-

atenations of k opies of a string x is denoted by x

k

. Note that self-onatenations

an result in strings of exponential size. For two strings x = x

1

; x

2

; : : : ; x

n

and

y = y

1

; y

2

; : : : ; y

m

suh that x

n�i+1

; : : : ; x

n

= y

1

: : : y

i

for some i � 1, the string

x

1

; : : : ; x

n

; y

i

; : : : ; y

m

is the superposition of x and y. In this ase we say that x and

y overlap.

At this point, we are going to give formally the notion of error introdued in

approximate string mathing. Assume that Æ and  are integers. Two symbols a, b of

alphabet � are said to be Æ-approximate, denoted as a =

Æ

b, if and only if ja� bj � Æ.

We say that two strings x, y are Æ-approximate, denoted as x

Æ

= y if and only if

jxj = jyj and x =

Æ

y.

Two strings x, y are said to be -approximate, denoted as x =



y , if and only

if jxj = jyj and

P

jxj

i=1

jx

i

� y

i

j < . Furthermore, we say that two strings x, y are

(Æ; )-approximate if both onditions are satis�ed.

The error in the �rst ase (Æ-approximate) is de�ned loally for eah symbol in a

string. In the seond ase (-approximate) the error is de�ned in a more global sense

and allows us to distribute the error on the symbols unevenly.
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3 Æ-ourrene with �-bounded gaps for monopho-

ni musi

The problem of omputing Æ-ourrene with �-bounded gaps is formally de�ned as

follows: given a string t = t

1

; : : : ; t

n

, a pattern p = p

1

; : : : ; p

m

and integers �, Æ,

hek whether there is a Æ-ourrene of p in t with gaps whose sizes are bounded by

onstant � (Fig. 1).

The basi idea of the algorithm desribed in [CIPR00℄ is the omputation of

ontinuously inreasing pre�xes of pattern p in text t so that �nally we ompute

the Æ-ourrene of the whole pattern p. That is, the algorithm is an inremental

proedure that is based on dynami programming. The algorithm is shown in Fig. 2.

Figure 1: Æ-ourrene with �-bounded gaps for Æ = 1; � = 2

begin

D[0℄[0℄ 1;

for i 1 to m do D[i℄[0℄ 0;

for j  1 to n do D[0℄[j℄ j;

for i 1 to m do

for j  1 to n do

if p[i℄ =

Æ

t[j℄ and j �D[i� 1℄[j � 1℄ � � + 1 and D[i� 1℄[j � 1℄ > 0

then D[i℄[j℄ j;

elseif p[i℄ 6=

Æ

t[j℄ and j �D[i℄[j � 1℄ < � + 1 then D[i℄[j℄ D[i℄[j � 1℄;

else D[i℄[j℄ 0;

for j  0 to n do

if D[m℄[j℄ > 0 then OUTPUT(j);

end

Figure 2: Algorithm for Æ-ourrene with �-bounded gaps

This algorithm will be adapted to the problem of �nding a singular pattern in a

singular text (monophoni musi) without any major modi�ations. Fig. 3 shows 2

bars from Mihael Niman's piee and a melody whih listeners an easily ognize.

If we set the value � = 3 (3 gaps allowed), the algorithm an �nd this melody

in the sore, while we have to set a large number of k (at least k = 12) to �nd it

using k-di�erene approximate mathing algorithms. The time omplexity of this

algorithm is O(nm), where n is the number of the musial events in the sore, whih

is equivalent to the number of notes in the sore sine this is monophoni musi, and

m is the length of the pattern. The running time is shown in Fig. 4.
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Figure 3: 2 bars from Mihael Niman's piee and its melody. If � � 3, this melody

will be found.

Figure 4: Running time of the algorithm \Æ-ourrene with �-bounded gaps for

monophoni musi". Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

4 Exat mathing with �-bounded gaps for poly-

phoni musi

We need to modify the algorithm in order to solve the problem in polyphoni musi.

Here, we will work on exat mathing with �-bounded gaps for polyphoni musi, and

Æ-ourrene will not be onsidered, as the adjaent pith does not neessarily mean

the most relevant note for a melody. Also, we will suppress the MIDI pith numbers

by dividing by 12 in order to �nd otave-displaed mathes as well. Therefore, `C' is

`1', `C#' and `Db' are `2', `D' is `3', and so on, and the size of alphabet j�j will be

12.

We are going to use bit arrays and bit-wise operations to deal with several voies

at one. Let Tx[i℄ (1 � i � m, m is the length of a pattern) be a bit array of

size j�j for the position i of the pattern, and Ty[j℄ (1 � j � n, n is the number of

musial events in a plural text) be a bit array of size j�j for the j-th musial event

of the plural text. If x[i℄ ontains a note `8', then the 8th position of Tx[i℄ will be 0,

otherwise 1, where 0 represents `math' and 1 represents `mismath'. Similarly, if y[j℄

ontains notes `3', `4' and `9', then the 3rd and 4th and 9th position of Ty[j℄ will be

0, otherwise 1. These bit arrays will be used in the searhing phase to hek whether

there is a math or not.

Fig. 5 shows the modi�ed algorithm and the overall time omplexity is O(N+nm),

where N is the total number of notes in the sore, and n is the number of the musial

events, and m is the length of the pattern, and Fig. 6 shows its running time. Fig. 7
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Preproessing

begin

for j  1 to m do Tx[j℄ 2

�

� 1� 2

x[j℄

;

for i 1 to n do

Ty[i℄ 2

�

� 1;

for eah suppressed pith p in y[i℄ do Ty[i℄ Ty[i℄ & (2

�

� 1� 2

p

);

end

Searhing

begin

D[0℄[0℄ 1;

for i 1 to m do D[i℄[0℄ 0;

for j  1 to n do D[0℄[j℄ j;

for i 1 to m do

for j  1 to n do

if (Tx[i℄ j Ty[j℄) = Tx[i℄ and j �D[i� 1℄[j � 1℄ � �+ 1

and D[i� 1℄[j � 1℄ > 0 then D[i℄[j℄ j;

elseif (Tx[i℄ j Ty[j℄) 6= Tx[i℄ and j �D[i℄[j � 1℄ < �+ 1

then D[i℄[j℄ D[i℄[j � 1℄;

else D[i℄[j℄ 0;

for j  0 to n do

if D[m℄[j℄ > 0 then OUTPUT(j);

end

Figure 5: Modi�ed algorithm for polyphoni musi

and Fig. 9 show examples of the preproessing phase for 1 bar from Mozart's piano

sonata and Debussy's Clair de Lune, respetively, and Fig. 8 and Fig. 10 show their

searhing phases.

Figure 6: Running time of the modi�ed algorithm for polyphoni musi (N = 4n).

Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

5 Conlusion and further work

Approximate (Æ-ourrene) string mathing with gaps for monophoni musi is solved

in O(nm) time, where n is the number of musial events (whih is equivalent to the

number of notes in a sore for monophoni musi), and m is the length of a pattern.

Exat string mathing with gaps for polyphoni musi (a plural text and a singular
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Figure 7: Preproessing phase for 1 bar from a Mozart's piano sonata and a pattern.

(N = 11; n = 8; m = 3)

Figure 8: Searhing phase using bit-wise operations for 1 bar from the Mozart's piano

sonata and the patten. (� = 3)
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Figure 9: Preproessing phase for 1 bar from Clair de Lune and a pattern. (N =

30; n = 18; m = 4)

Figure 10: Searhing phase using bit-wise operations for 1 bar from Clair de Lune

and the patten. (� = 1)
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pattern) is solved in O(N + nm) time, where N is the total number of notes in a

sore, and n is the number of musial events (n � N), and m is the length of a

pattern. Using the same tehnique, exat string mathing problem for a plural text

and a plural pattern will be solved in O(N +M + nm) time, where M is the total

number of notes in the plural pattern. However, we have not solved approximate

string mathing with gaps for polyphoni musi, beause \small Æ" does not really

mean \more relevant" in musi. In this partiular sense, k-di�erene algorithms ould

be more useful, although it is inevitable to have large k and many false mathes. We

need to design an eÆient algorithm for this problem.
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