
A Note on Cro
hemore's Repetitions Algorithm

a Fast Spa
e-EÆ
ient Approa
h

1

Franti�sek Fran�ek

1

, W. F. Smyth

1;2

, and Xiangdong Xiao

1

1

Algorithms Resear
h Group, Department of Computing & Software

M
Master University, Hamilton, Ontario, Canada L8S 4K1

(www.
as.m
master.
a/
as/resear
h/groups.html)

2

S
hool of Computing, Curtin University, GPO Box U-1987

Perth WA 6845, Australia

e-mail: franek�m
master.
a, smyth�m
master.
a

Abstra
t. The spa
e requirement of Cro
hemore's repetitions algorithm is

generally estimated to be about 20MN bytes of memory, where N is the length

of the input string and M the number of bytes required to store the integer

N . The same algorithm
an also be used in other
ontexts, for instan
e to

ompute the suÆx tree of the input string in O(N logN) time for the purpose

of data
ompression. In su
h
ontexts the large spa
e requirement of the algo-

rithm is a signi�
ant drawba
k. There are of
ourse several newer spa
e-eÆ
ient

algorithms with the same time
omplexity that
an
ompute suÆx trees or ar-

rays. However, in a
tual implementations, these algorithms may not be faster

than Cro
hemore's. Therefore, we
onsider it interesting enough to des
ribe a

new approa
h based on the same mathemati
al prin
iples and observations that

were put forth in Cro
hemore's original paper, but whose spa
e requirement is

10MN bytes. Additional advantages of the approa
h are the ease with whi
h

it
an be implemented in C/C++ (as we have done) and the apparent speed of

su
h an implementation in
omparison to other implementations of the original

algorithm.

1 Introdu
tion

Cro
hemore's algorithm [C81℄
omputes all the repetitions in a �nite string x of length

N in O(N logN) time. The algorithm in fa
t
omputes rather more and
an be used,

for instan
e, to
ompute the suÆx tree of x, hen
e possibly as a tool for expressing x

in a
ompressed form. In su
h
ontexts the spa
e requirement be
omes as important

as the time
omplexity. It appears that known implementations of Cro
hemore's algo-

rithm require at least 20MN bytes of memory for the task of re�ning the equivalen
e

lasses alone, where M is the number of bytes required to store the integer N .

Here we present a di�erent implementation based on the mathemati
al properties

and observations of [C81℄ and thus having the same time
omplexity O(N logN) as

the original algorithm. However, the new data stru
tures used for the representation

1

Supported in part by grants from the Natural S
ien
es & Engineering Resear
h Coun
il of

Canada.

36

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

of
lasses and for the exe
ution of the re�nement pro
ess allow the spa
e requirement

to be substantially redu
ed.

There are several newer spa
e-eÆ
ient algorithms to
ompute suÆx trees or arrays

(notably [U92℄, [MM93℄) of the same worst-
ase
omplexity as Cro
hemore's. The

motivation for our investigation of a spa
e-eÆ
ient implementation of the
lassi
al

Cro
hemore's algorithm that may be
ompetetive with these newer algorithms stems

from the fa
t that the a
tual implementations of these algorithms may not in fa
t be

any faster.

A large memory saving
omes from the fa
t that our algorithm requires storage

for only N
lasses at any given time, rather than 2N as in the original algorithm.

This alone brings the spa
e requirement down to 15MN . Of
ourse there is some

extra pro
essing related to this redu
tion in spa
e, but it does not a�e
t the time

omplexity, and in fa
t it appears that in pra
ti
e our implementation runs a good

deal faster than the standard implementation proposed in [C81℄. A further 5MN

spa
e redu
tion is a
hieved by smart utilization of the spa
e:

� allowing spa
e to be shared by data stru
tures, as in memory multiplexing |

for example, if a queue empties faster than a sta
k grows, then they
an share

the same memory segment;

� spreading one data stru
ture a
ross several others, as in memory virtualization.

Taken together, these \tri
ks" bring the spa
e requirement down to 10MN .

Additional advantages of this approa
h are the ease with whi
h it
an be imple-

mented in C/C++ (as we have done) and, as remarked above, its apparent speed in

omparison to other implementations of the original algorithm.

In this paper we do not due to spa
e limitations provide any detailed
omputer

instru
tions, but we try to give a high-level des
ription of our approa
h, so that the

reader
an understand how the spa
e savings are a
hieved.

In our dis
ussion below we assume that the reader is familiar with both

Cro
hemore's algorithm and its mathemati
al foundation. We make the usual as-

sumption required for Cro
hemore's algorithm that the alphabet is ordered; therefore

we are able to assume further that the
lasses
orresponding to the �rst level (p = 1)

an be
omputed in O(N logN) time.

For better
omprehension, we present the algorithm in two stages. The �rst stage,

FSX15 (with spa
e requirement 15MN bytes), exhibits all important pro
edural and

ontrol aspe
ts of our algorithm without the
ompli
ations of memory multiplex-

ing and virtualization. Then the se
ond stage, FSX10, in
orporates the
hanges

required by memory multiplexing and virtualization to redu
e the spa
e requirement

to 10MN . Finally, we present some rough results of
omputer runs that
ompare the

time and spa
e requirements of our approa
h with those of a standard implementation

of Cro
hemore's algorithm.

2 Data Stru
tures for FSX15

Re
all that for ea
h p = 1; 2; : : :, Cro
hemore's algorithm a
ts on a given string x =

x[1::N ℄ to
ompute equivalen
e
lasses fi

1

; i

2

; : : : ; i

r

g, where for every 1 � j < h � r,

x[i

j

::i

j

+p�1℄ = x[i

h

::i

h

+p�1℄:

37

Pro
eedings of the Prague Stringology Conferen
e '02

The positions i

j

in ea
h
lass are maintained in in
reasing sequen
e: i

j

< i

j+1

,

1 � j < r. At ea
h step of the algorithm, ea
h
lass C

p

that is not a singleton

is de
omposed into a family of sub
lasses C

p+1;s

; of these sub
lasses, the one of

largest
ardinality is
alled big, the others are small. A straightforward approa
h to

this de
omposition would require order N

2

time in the worst
ase, but Cro
hemore's

algorithm redu
es this time requirement by
arrying out the de
omposition from p

to p+1 only with respe
t to the small
lasses identi�ed at step p. Sin
e ea
h posi-

tion
an belong to a small
lass only O(logN) times, it follows that the total time

requirement is O(N logN). As remarked in the introdu
tion, we may assume that

the
lasses
orresponding to p = 1 have initially been
omputed in O(N logN) time.

Note that the version of Cro
hemore's algorithm dis
ussed here does not expli
itly

ompute repetitions; we will be interested only in redu
ing ea
h of the equivalen
e

lasses to a singleton.

We will use an integer array of size N to represent the
lasses
omputed at step

p. We have several requirements:

� we need to keep the elements of the
lasses in as
ending order;

� we need an eÆ
ient way to delete any element (so that we need to represent

ea
h
lass as a doubly-linked list);

� we need an eÆ
ient way to insert a new element at the end of a
lass (and hen
e

we need a link to the last element of the
lass);

� we need eÆ
ient a

ess to the size of a
lass;

� we need eÆ
ient a

ess to a
lass (and hen
e we need a link to the �rst element

of the
lass);

� last but not least, we need an eÆ
ient way to determine to whi
h
lass a given

element belongs.

To satisfy all these requirements, we use six integer arrays of size N :

� CNext[1..N℄ emulates forward links in the doubly-linked list. Thus CNext[i℄ =

j > i means that j is the next element (position) in the
lass that i belongs to.

If there is no position j > i in the
lass, then CNext[i℄ = null.

� CPrev[1..N℄ emulates ba
kward links in the doubly-linked list. Thus CPrev[i℄=

j < i means that j is the previous element (position) in the
lass that i belongs

to. If there is no position j < i in the
lass, then CPrev[i℄ = null.

� CMember[1..N℄ keeps tra
k of membership. Thus CMember[i℄ = k means that

element i belongs to the
lass with index k (i 2

k

), while CMember[i℄ = null

means that at this moment i is not member of any
lass.

� CStart[1..N℄ keeps links to the starting (smallest) element in ea
h
lass.

Thus CStart[k℄ = i means that the
lass

k

starts with the element i, while

CStart[k℄ = null means that at this moment the
lass

k

is empty.

38

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

� CEnd[1..N℄ keeps links to the �nal (largest) element in ea
h
lass. Thus

CEnd[k℄ = i means that the
lass

k

ends with the element i; the value of

CEnd[k℄ is meaningful only when CStart[k℄ 6= null.

� CSize[1..N℄ re
ords the size of ea
h
lass. Thus CSize[k℄ = r means that

the
lass

k

ontains r elements; the value of CSize[k℄ is meaningful only when

CStart[k℄ 6= null.

Suppose that there exists a
lass

3

= f4; 5; 8; 12g, indi
ating that the substrings

of length 3 beginning at positions 4; 5; 8; 12 of x are all equal. Then

3

would be

represented as follows:

CNext[4℄ = 5; CNext[5℄ = 8; CNext[8℄ = 12; CNext[12℄ = null;

CPrev[12℄ = 8; CPrev[8℄ = 5; CPrev[5℄ = 4; CPrev[4℄ = null;

CMember[4℄ = CMember[5℄ = CMember[8℄ = CMember[12℄ = 3;

CStart[3℄ = 4; CEnd[3℄ = 12; CSize[3℄ = 4:

We need to tra
k the empty
lasses, and for that we need a simple integer sta
k

of size N , CEmptySta
k, that holds the indexes of the empty (and hen
e available)

lasses. This sta
k, as well as all other list stru
tures used by Cro
hemore's algorithm,

is implemented as an array that requires MN bytes of storage. Su
h an approa
h

saves time by allowing all spa
e allo
ation to take pla
e only on
e, as part of program

initialization. We introdu
e two operations on the sta
k, CEmptySta
kPop() that

removes the top element from the sta
k and returns it, andCEmptySta
kPush(i)

that inserts the element i at the top of the sta
k.

We shall pro
ess
lasses from one re�nement level p to the next level p+1 by

moving the elements from one
lass to another, one element at a time. We view the

lasses as permanent
ontainers and distribute the elements among them, so that at

any given moment we need at most N
lasses. This means that the
on�guration

of
lasses at level p is destroyed the moment we move a single element. But, as we

shall see, we do not really need to keep the old level inta
t if we preserve an essential

\snapshot" of it before we start tinkering with it.

What we need to know about level p will be preserved in two queues, SElQueue

and SCQueue. SElQueue
ontains all the elements in small
lasses in level p, organized

so that the elements from the same small
lass are grouped together in the queue and

stored in as
ending order. SCQueue
ontains the �rst element from ea
h small
lass,

thus enabling us to identify in SElQueue the start of ea
h new
lass. Therefore, when

these queues are
reated, we must be
areful to pro
ess the small
lasses of level p in

the same order for both of them. For instan
e, if level p had three small
lasses,

3

= f2; 4; 5; 8g;

0

= f3; 6; 7; 11g;

5

= f12; 15g;

SElQueue
ould
ontain 2; 4; 5; 8; 3; 6; 7; 11; 12; 15 in that order, while the
orrespond-

ing SCQueue would
ontain 2; 3; 12. The order of the
lasses (

3

followed by

0

followed

by

5

) is not important; what is important that the same order is used in order to

reate SElQueue and SCQueue. After the two queues have been
reated, we do not

need level p any more and we
an start modifying it. Of
ourse we suppose that we

have available the usual queue operations:

39

Pro
eedings of the Prague Stringology Conferen
e '02

� SElQueueHead() (remove the �rst element from the queue and return it);

� SElQueueInsert(i) (insert the element i at the end of the queue);

� SElQueueInit() (initialize the queue to empty).

Analogous operations are available also for SCQueue.

When re�ning
lass

k

in level p using an element i from
lass

k

0

, we might need

to move element i�1 from

k

to a new or an existing
lass. To manage this pro
essing,

we keep an auxiliary array of size N , Refine[1..N℄. Initially, when we start using the

lass

k

0

for re�nement, all entries in Refine[℄ are null. If a new
lass

h

is
reated

in level p+1 by moving i�1 out of
lass

k

and into

h

as its �rst element, we set

Refine[k℄ h. If later on we move another element from

k

as a result of re�nement

by the same
lass

k

0

, we use the value Refine[k℄ to tell us where to move it to. This

requires that when we start re�ning by a new
lass, we have to restore Refine[℄ to

its original null state. Sin
e we
annot a�ord to traverse the whole array Refine[℄

without destroying the O(N logN) time
omplexity, we need to store a re
ord of

whi
h positions in Refine[℄ were previously given a non-null value. For this we

make use of a simple sta
k, RefSta
k: every assignment to Refine[k℄
auses the

index k to be pushed onto the sta
k RefSta
k. As before, we assume that we have

available the usual sta
k operations RefSta
kPop() and RefSta
kPush(i).

Sin
e after
ompleting the re�nement of the
lasses in level p, we must determine

the small
lasses in level p+1, we therefore need to maintain throughout the re�nement

pro
ess
ertain families of
lasses (to be more pre
ise, families of
lass indexes). As

noted above, a family
onsists of the
lasses in level p + 1 that were formed by

re�nement of the same
lass in level p. A family may or may not in
lude the original

lass from level p itself (it may
ompletely disappear if we remove all its elements

during the re�nement). We need an eÆ
ient way to insert a new
lass in a family

(the order is not important), an eÆ
ient way to delete a
lass from a family, and

�nally an eÆ
ient way to determine to what family (if any) a
lass belongs. These

fa
ilities
an be made available by representing the families as doubly-linked lists

implemented using arrays, just as we did previously with the
lasses themselves. In

this
ase, however, the Size[℄ and End[℄ arrays are not required, so we
an get

by with only four arrays, as follows:

� FNext[1..N℄ emulates the forward links (as in CNext[℄).

� FPrev[1..N℄ emulates the ba
kward links (as in CPrev[℄).

� FMember[1..N℄ keeps tra
k of membership (as in CMember[℄). Whenever

FMember[i℄ = null, it means that

i

is not a member of any family.

� FStart[1..N℄ gives the �rst
lass in ea
h family (as in CStart[℄).

Note that
lasses in families do not need to be maintained in numeri
al order, as was

true earlier of positions in
lasses.

To summarize, in order to implement Cro
hemore's algorithm, it is suÆ
ient to

allo
ate 15 arrays, ea
h of whi
h provides storage spa
e for exa
tly N integers of

length M , thus altogether 15MN bytes of storage: CNext, CPrev, CMember, CStart,

CEnd, CSize, CEmptySta
k, SElQueue, SCQueue, RefSta
k, Refine, FStart, FNext,

FPrev, and FMember.

40

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

3 Data Stru
tures for FSX10

As the �rst step in redu
ing the spa
e
omplexity further, we are going to eliminate

the CSize[℄ and CEnd[℄ arrays. For the very �rst element, say s, in a
lass,

CPrev[s℄= null, while for the very last element, say e, CNext[e℄= null. But we

have another way to dis
ern the beginning of the
lass (CStart[℄), so that CPrev[℄

be
omes super
uous. Thus we
an store CPrev[s℄ e, a dire
t link to the end of the

lass. This yields an eÆ
ient means to dis
ern the end of the
lass, and so we
an

store in CNext[e℄ the size of the
lass. Hen
e CPrev[CStart[j℄℄ takes on the role

of CEnd[j℄, while CNext[CPrev[CStart[j℄℄℄ takes on the role of CSize[j℄. This is

straightforward and the
ode need only be slightly modi�ed to a

ommodate it. All

we have to do is make sure that when inserting or deleting an element in or from a

lass, we update properly the end link and the size. When traversing a
lass, we have

to make sure that we properly re
ognize the end (we
annot rely on the null value

to stop us as in FSX15). We have in fa
t \virtualized" the memory for CEnd[℄ and

CSize[℄, and so redu
ed the spa
e
omplexity to 13MN .

When we take an element from SElQueue and use it for the purpose of re�nement,

at most one new
lass is
reated and thus at most one lo
ation of Refine[℄ is

updated. This simple observation allows RefSta
k and SElQueue to share the same

memory segment, as long as we make sure that RefSta
k grows from left to right,

while the queue is always right justi�ed in the memory segment. The
hanges in

the
ode required to a

ommodate this are not very great | all we have to do is to

determine before �lling SElQueue what position we have to start with. In essen
e,

we have \multiplexed" the same memory segment and brought the spa
e
omplexity

down to 12MN .

The number of elements in SCQueue is the same as the number of small
lasses,

whi
h is less than or equal to the number of non-empty
lasses; thus the size of

SCQueue plus the size of CEmptySta
k at any given moment is at most N . This simple

observation allows CEmptySta
k and SCQueue to share the same memory segment, as

long as we make sure that CEmptySta
k is growing from left to right, while the queue

is always right justi�ed in the memory segment. Again, as above, the
hanges in the

ode required to a

ommodate this are not major. We again have \multiplexed" the

same memory segment and brought the spa
e
omplexity down to 11MN .

The �nal memory saving
omes from the fa
t that FPrev[℄ for the very �rst

lass in a family and FNext[℄ for the very last
lass in the same family are set to

null and hen
e redundant for the same reasons as des
ribed above for CPrev[℄ and

CNext[℄. We
an thus \virtualize" the memory for the array Refine[℄. We will

have to index it in reverse and we will use all the unused slots in FStart[℄ (i.e. slots

with indexes > FStartTop) as well as the unne
essary FNext[℄ slots. The formula

is rather simple. Instead of storing r in Refine[i℄, we will use

SetRe�ne(i,r)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

FStart[j℄ r

else

FNext[FPrev[FStart[j℄℄℄ r

end SetRe�ne

and instead of fet
hing a value from Refine[i℄ we will use

41

Pro
eedings of the Prague Stringology Conferen
e '02

integer GetRe�ne(i)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

return FStart[j℄

else

return FNext[FPrev[FStart[j℄℄℄

end GetRe�ne

The modi�
ation of the
ode is more
omplex in this
ase, sin
e we have to tra
k the

ends of the family lists as we do for
lass lists; more importantly, when a new family

is
reated, we have to save the Refine[℄ value stored in that so-far-unused slot k

that now is going to be o

upied by the start link of the family list, and store k at

the end of the list instead. This \virtualization" of the memory for Refine[℄ brings

the spa
e
omplexity down to the �nal value of 10MN .

4 Informative Experimental Results

To estimate the e�e
t of our spa
e redu
tion on time requirement, we have imple-

mented two versions of Cro
hemore's algorithm:

� a na��ve array-based version, FSX20, that exe
utes Cro
hemore's algorithm using

20 arrays ea
h of length N words:

� a version of FSX10 that requires 10 arrays ea
h of length N words.

Thus both of these implementations are word-based: assuming a word-length of 32

bits, the value of M is a
tually �xed at 4.

We expe
t that FSX20 will exe
ute Cro
hemore's algorithm about as fast as it

an be exe
uted, but at the
ost of requiring exa
tly 20N words of storage. A version

that implemented standard list-pro
essing te
hniques rather than arrays to handle the

queues, sta
ks and lists required by Cro
hemore's algorithm would generally require

less storage: 11N words for arrays plus a variable amount up to 13N for the list

stru
tures. However, as a result of the time required for dynami
 spa
e allo
ation,

su
h a version would
ertainly run several times slower than FSX20.

We must remark at this point that the experiments performed have only an in-

formative value, for we
ondu
ted them without
ontrolling many aspe
ts depending

on the platform (as memory
a
hing, virtual memory system paging et
.), nor did we

perform a proper statisti
al evaluation to
ontrol for other fa
tors not depending on

the platform (load on the ma
hine, implementation biases et
.) Thus, we really do

not
laim any signi�
ant
on
lusions for the a
tual algorithms whose implementations

were tested.

We have run FSX20 and FSX10 against a variety of long strings (up to 3.8 million

bytes): long Fibona

i strings, �les from the Calgary
orpus, and others. The results

indi
ate that FSX10 seems to require 20-30% more time than FSX20, in most
ases

a small pri
e to pay for a 52% redu
tion in spa
e.

42

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

Referen
es

[C01℄ Calgary Corpus

http://links.uwaterloo.
a/
algary.
orpus.html

[C81℄ Maxime Cro
hemore, An optimal algorithm for
omputing the rep-

etitions in a word, IPL 12-5 (1981) 244-250.

[MM93℄ Udi Manber & Gene W. Myers, SuÆx arrays: a new method for

on-line string sear
hes, SIAM J. Comput. 22-5 (1993) 935-948.

[U92℄ Esko Ukkonen, Constru
ting suÆx trees on-line in linear time,

Pro
. IFIP 92, vol. I (1992) 484-492.

43

