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Abstra
t. This paper dis
usses the number of legal strings of n pairs of paren-

theses as well as a stru
ture of the set of these strings. As the number of su
h

strings is known to be the Catalan number, a stru
ture of Catalan numbers is

thereby developed. A re
ursive fun
tion is developed that 
ounts the set and


al
ulates the Catalan number. The fun
tion uses two parameters and is thus

a generalization of Catalan numbers.
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1 Introdu
tion

This paper 
on
erns the problem of 
al
ulating the number of legal strings of paren-

theses that 
an be 
onstru
ted from n pairs of parentheses. This number is known to

be the Catalan number. There is a large literature of Catalan number interpretations

and 
onne
tions [2, 3, 4, 5, 6, 7℄. Stanton and White have a proof of the 
orre-

sponden
e between Catalan numbers and legal parentheti
al strings[7℄. The Catalan

number is de�ned as

C

n

=

�

2n

n

�

� (n+ 1):

The ordinary meaning of \legal strings" of parentheses is intended here: 1) The

strings are 
onventionally 
onstru
ted from left to right. 2) At any point in the

string, the number of left parentheses is equal to or greater than the number of right

parentheses. 3) all of the 2n parentheses are used.

For example, C

3

= 5; the legal strings of 3 pairs of parentheses are

( ( ( ) ) ), ( ( ) ( ) ), ( ( ) )( ), ( ) ( ( ) ), and ( ) ( ) ( ).

The paper o�ers a way to 
al
ulate Catalan numbers with a re
ursive fun
tion

and a stru
ture of the strings and the number.
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2 Outline

Four areas emerge from 
onsideration of this fun
tion:

2.1 A Chart

This is a 
hart of the 
onstru
tion of the C

n

legal parentheti
al strings 
omposed of

n pairs of parentheses. The number of su
h strings is an interpretation of Catalan

numbers. The 
hart 
an be interpreted as a rooted tree. Evaluation of the fun
tion


ounts the leaves of the tree.

2.2 A Fun
tion

The fun
tion, denoted here by B

n;m

, uses two parameters. The n

th

Catalan number,

C

n

, is produ
ed by B

n;0

. The domain of both parameters of B

n;m

is the non-negative

integers. In the re
ursive des
ent, m takes on values both higher and lower than n.

2.3 A Generalization

This generalization of Catalan numbers is based on the two parameters. It in
ludes

C

n

:

2.4 A Stru
ture

This stru
ture of Catalan numbers is suggested by the 
hart but 
an be expressed

algebrai
ally.

3 Elaboration

3.1 The Chart

The idea behind the 
hart is simply writing the legal parentheti
al expressions a
-


ording to the de�nition above.

(

(

(

(

(

(

(

(

)

)

)

)

E.g. (()())

Figure 1: Forming all legal arrangements of 3 pairs of parentheses
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Consider this as a rooted tree. Ea
h edge represents adding a parenthesis. If there

are two edges des
ending from a vertex, then there is a 
hoi
e of adding a left or right

parenthesis at that point. By following all paths from the root to a leaf, all legal

expressions have been written. Note that �nal right parentheses are not needed to


ount leaves.

The steps in drawing the 
hart are:

1. Start at the top with n pairs of parentheses.

2. Stop if there are no more left parentheses.

3. Draw a verti
al line downwards. This represents a left parenthesis and \uses"

one. If the number of left parentheses used (before this one was drawn) ex
eeds

the number of right ones used, draw another line from the same starting point

but to the right and then 
urving downwards. This represents a right parenthesis

and uses one.

4. Repeat steps 2, 3, and 4 for ea
h end point.

The vertex at the botton of ea
h line drawn represents the parentheti
al string as


onstru
ted so far.

These 
onventions are somewhat arbitrary, as 
onventions must be, but they result

in a pi
ture that is regular and easy to understand. The 
hart was helpful in de�ning

the fun
tion and dis
overing the stru
ture.

3.2 The Fun
tion

B

n;m

=

8

<

:

B

n�1;m+1

+B

n;m�1

if (n > 0) ^ (m > 0)

B

n�1;m+1

if (n > 0) ^ (m = 0)

1 if (n = 0)

Ea
h part of the 
hart 
orresponds to a 
ase of the fun
tion. Figure 2 relates the

parts of the 
hart to the 
ases of the fun
tion.

Where one line descends from a vertex
B(n,m)=B(n−1,m+1)

Where two lines descend from a vertex
B(n,m)=B(n−1,m+1)+B(n,m−1)

Where no lines descend from a veretx
B(n,m)=1

Figure 2: Relationship between the 
hart and 
ases of the fun
tion
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(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Figure 3: Parameters of B

3;0

at ea
h vertex

The parameters of the fun
tion B

n;m

take on di�erent values at di�erent points in

the re
ursive des
ent. Figure 3 shows the parameters at ea
h stage for B

3;0

.

Parameter n represents the number of left parentheses that 
an be used from that

point onward. Parameter m represents the number of additional right parentheses

needed to balan
e the number of left parentheses already used. Considered 
onstru
-

tively, m represents the number of right parentheses that may be written at that

point. When a left parenthesis is written, n is redu
ed and m is in
reased. When a

right parenthesis is written, m is redu
ed.

Of 
ourse, on
e the fun
tion is de�ned, it is freed of any ne
essary tie to paren-

theses.

If we say it is possible for any re
ursive fun
tion to be simple, then this fun
tion

is simple and perhaps more fundamental than the 
losed form. The 
losed form is

simpler to write. However, while the notation for \2n 
hoose n" is simple, it implies

more 
omplex ideas. The 
losed form has multipli
ation and division operations.

While the 
omparisons in the re
ursive fun
tions are obvious and expli
itly shown,

there are also 
omparisons implied in any evaluation of the 
losed form.

Assuming that it is not possible to do algebra with the re
ursive fun
tion, it

seems less useful than the 
losed form. However, it is possible to do substitutions.

For example, B

4;1


an be restated as B

3;2

+ B

4;0

, and vi
e versa. Substitution 
ould

be used to de�ne the fun
tion di�erently, but the way the fun
tion was de�ned above

seems simple and it �ts well with the parentheses 
hart.

B

n;0

is far less eÆ
ient 
omputationally than the 
losed form. This will be devel-

oped in the Appendix.

3.3 The Generalization

This fun
tion is a generalization of Catalan numbers. The standard Catalan number

C

n

= B

n;0

. Table 1 also in
ludes some of the others:
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M=0 1 2 3 4 5

N=0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 2 5 9 14 20 27

3 5 14 28 48 75 110

4 14 42 90 165 275 429

5 42 132 297 572 1001 1638

6 132 429 1001 2002 3640 6188

7 429 1430 3432 7072 13260 23256

8 1430 4862 11934 25194 48450 87210

Table 1: Generalized Catalan Numbers B

n;m

for n 2 [0; 8℄, m 2 [0; 5℄.

3.4 The Stru
ture

The stru
ture 
an be expressed as:

C

n

= B

n�3;3

+ 2C

n�1

or as

C

n

= B

n�3;3

+ 2B

n�1;0

The 
hart for C

n


an be 
hara
terized as having a left lobe and two equal right

lobes. The right lobes are equal both in stru
ture and value. They are also ea
h equal

to C

n�1

in stru
ture and value. Figures 4, 5, and 6 show the stru
ture.

(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Right lobe Right lobe

Left lobe

Figure 4: Stru
ture of C

n

In Figure 5, the numeri
 parameters are repla
ed by symboli
 parameters in terms

of n and m. The 
hart \grows" from the bottom as n in
reases. The three lobes will

always have the values B

n�3;3

, B

n�2;1

, and B

n�2;1

. These 
an be put in 
orresponden
e

to the ways legal strings of parentheses may start: ( ( (, ( ( ), ( ) (. This is a basis

of a partition of any set of legal strings.
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Left lobe

(

(

(

(

(

(

(

(

)

)

)

)

 

Right lobe Right lobe

n,0

n−1,1

n−2,2

n−3,3 n−2,1

n−1,0

n−2,1

Figure 5: Stru
ture of C

n


ontd.

Right lobeLeft lobe Right lobe

C

C2

3

Figure 6: Stru
ture of C

4

or B

4;0

Figure 6 emphasizes the nested repetitions of stru
ture. Note that C

3

(or C

n�1

)

is found twi
e and C

2

(or C

n�2

) is found four times.

The left lobe is di�erent. It starts out smaller than either right lobe and then

be
omes larger, perhaps approa
hing the sum of the two right lobes as n gets large.

The value of the left lobe is B

n�3;3

. Here's a table of the �rst few values:

n 3 4 5 6 7 8

B

n�3;3

1 4 14 48 165 572

Table 2: Values of the left lobe B

n�3;3

for n 2 [3; 8℄.

These values were re
ognized by the On-Line En
y
lopedia of Integer Sequen
es

as Sequen
e A002057, named the Fourth Convolution of Catalan Numbers [5℄. This

sequen
e is not pursued here.
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4 Further Work

1. What are appli
ations or interpretations of the generalized Catalan numbers?

2. There is doubtless something inherent in the problem that is re
e
ted in the

stru
ture, but it is not obvious what. The stru
ture looks natural in terms of

the 
hart, but the 
hart is just one pi
ture of one interpretation. Why not two

lobes? Four? Why any?

3. What is the pre
ise behavior of the size of the left lobe?

4. Is B

n�3;3

the Fourth Convolution of Catalan numbers?

5 Con
lusion

Consideration of the set of legal strings of n pairs of parentheses exposes a stru
ture

of this set and of Catalan numbers. The rules for 
onstru
tion of legal strings of

parentheses 
an be re
ast from a general statement of prin
iples to parti
ular state-

ments of all the 
ases. This restatement 
an be expressed as a 
hart showing all of

the 
ases.

Examination of the 
hart shows the stru
ture of the sets of strings. Given that

the 
ount of legal strings is known to be the Catalan number, the 
hart exposes a

simple and easily understood stru
ture of Catalan numbers. Interpreting the 
hart

as a graph, a re
ursive fun
tion B

n;m


ounts the leaves of the graph (a tree) and

therefore 
al
ulates the Catalan number.

Taken together, the 
hart and the fun
tion provide a useful tool for gaining an

intuitive understanding of an important 
ombinatorial number. Developing the fun
-

tion would be a good problem for students studying re
ursive fun
tions.

The fun
tion B

n;m

is interesting in its own right. First, it is remarkably sim-

ple, using only addition, subtra
tion, and 
omparison. It should probably should be


onsidered more fundamental than the 
losed form whi
h additionally uses multipli-


ation, division, and fa
torials. Se
ond, the fun
tion B

n;m

has two parameters and is

thus a generalization of Catalan numbers.

6 Appendix. Computational Complexity and Ef-

�
ien
y.

The 
losed form for 
al
ulating C

n

is 
learly more eÆ
ient than the re
ursive B

n;0

.

However, examining 
omplexity and eÆ
ien
y 
an further illuminate the stru
ture

of parentheti
al strings and Catalan numbers. The 
omplexity of the 
losed form is

linear in n while that of B

n;0

is exponential.

This se
tion will only treat B

n;0

to fa
ilitate 
omparison with the 
losed form.

The term \C

n

" is used here to denote the number, not the method of 
al
ulating it.
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6.1 Comparison with the 
losed form.

Even without a pre
ise expression for the 
omplexity of B

n;m

, it is possible to reason

about 
omplexity and do some measurements of it. The reasoning goes like this: 1)

The 
omplexity of B

n;0

is greater than the number C

n

. 2) C

n

is greater than the


omplexity of the 
losed form. 3) Therefore the 
omplexity of B

n;0

is greater than

that of the 
losed form. (It is mu
h greater.)

The unit 
ounted for the 
losed form is the number of multipli
ations. After


an
eling 
ommon fa
tors in the numerator and the denominator, the 
losed form


an be expressed as (2n)(2n � 1):::(2n � (n + 2)), 
alling for n � 2 multipli
ations,

here 
alled f(n).

The unit 
ounted for B

n;0

is the number of exe
utions of the fun
tion. In many

ar
hite
tures these two measures would not be 
ommensurate. However, the sizes of

the 
omplexity numbers dominate any di�eren
e. Using C

n

as a 
omplexity number,

the expression (2n)(2n� 1):::(2n� (n+ 2)) expands to a degree n� 1 polynomial in

n, here 
alled g(n).

It 
an be seen that f(n) is little-oh of g(n) sin
e lim

n!1

f(n)=g(n) = 0. In other

words, f(n) grows more slowly than g(n). In this 
ase it grows mu
h more slowly [8℄.

The fa
t that the 
omplexity of B

n;0

is greater than the number C

n

is 
lear from

the 
hart. The 
hart has C

n

leaves, ea
h 
ontributing 1 to the number of exe
utions.

In addition there are many intermediate nodes above the leaves, so that the sum

of all exe
utions is greater than C

n

. All this demonstrates that the 
omputational


omplexity of the 
losed form is little-oh of the 
omplexity of B

n;0

.

A numeri
 measurement of B

n;0

is shown in Table 3. (The algorithm based on

B

n;m


an be instrumented to 
ount exe
utions by the appropriate pla
ement of \+1"

in the 
ases of the fun
tion.)

n 3 4 5 6 7 8

n� 2 1 2 3 4 5 6

B

n;0

13 36 106 328 1034 3485

Table 3: Complexity of the 
losed form vs. B

n;0

.

6.2 Complexity of di�erent implementations of B

n;m

.

6.2.1 \Bottom-up" implementation of a re
ursive fun
tion.

Due to the highly repetitive stru
ture of B

n;m

, results toward the bottom of the 
hart

are re
al
ulated many times over. To justify this, 
onsider that the tree gets mu
h

wider than it is high. For example, at n = 8 the number of leaves is C

n

= 1430.

The longest path from the root to a leaf is 2n � 1. This shows that many of the


omputations are towards the bottom.

Blass and Gurevi
h use the term \bottom-up" to des
ribe the use of pre
al
ulated

results to avoid many re
al
ulations [1℄. As an example, the following fragment of

pseudo-
ode expresses the B

n;m

as an algorithm. It avoids re
al
ulation of B

n;m

for

m;n 2 [0; 3℄.
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The values of T are from Table 1. Note that the 
ases are not disjoint. The order

of exe
ution resolves ambiguity.

var T = new Array ([1,1,1,1℄, [1,2,3,4℄, [2,5,9,14℄, [5,14,28,48℄);

fun
tion B(n,m) f

if ((n<4)&&(m<4)) return (T[n℄[m℄);

if ((n>0)&&(m>0)) return (B(n-1, m+1) + B(n, m-1));

if ((n>0)&&(m==0)) return (B(n-1, m+1));

if (n==0) return (1);

g

Table 4 shows measured 
omplexity for this version.

n 3 4 5 6 7 8

top-down 13 36 106 328 1054 3485

bottom-up 1 2 5 13 52 212

Table 4: Complexity of top-down vs. bottom up evaluation of B

n;0

.

6.2.2 Parallel Pro
essing.

The stru
ture of B

n;m

presents both obsta
les and opportunities for parallelization.

The word \exe
utions" will be used here the way \pro
esses" and \threads" are often

used.

Dividing the work.

It is easy to divide the fun
tion into parts to run on separate pro
essors. Consider

pla
ing a horizontal line on a drawing of the 
hart su
h as Figure 4. Horizontal lines


an be drawn at various levels. The point at whi
h the new line interse
ts a verti
al

line marks a pla
e where a separate pro
ess 
an 
onsist of all the exe
utions below the

interse
tion. The level of the horizontal line would determine the number of parts.

This method would be suitable for a multi-pro
essor with few pro
essors.

Another approa
h uses the fa
t that the se
ond 
ase 
alls for two 
hild evaluations

of the fun
tion. One of these 
ould be sent to another pro
essor. This would lead to

many requests for pro
essors at large n.

Laten
y.

Laten
y is another important fa
tor in parallelization. \Laten
y" is used here to

mean the time to initiate and terminate an exe
ution, in
luding passing parameters

and returning results. Sin
e the amount of pro
essing in the fun
tion is small, laten
y

would be very important if the fun
tion were distributed over many pro
essors.

A Single Instru
tion Multiple Data (SIMD) ma
hine with many pro
essors and

low laten
y would be good here. It would also take advantage of the fa
t that ea
h

exe
ution of the algorithm would use the same small program. However, in general

the stru
ture of the fun
tion would limit its use on ma
hines with large numbers of

pro
essors unless laten
y was very small.
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Inter-pro
ess 
ommuni
ation.

Sin
e there would be no peer-to-peer 
ommuni
ation among exe
utions, an exe
ution

would never be interrupted and suspended in the middle of pro
essing. Network


ontention and overhead would both bene�t from this 
hara
teristi
 of B

n;m

. Of


ourse, there is mu
h passing of parameters and results. This 
ontributes to laten
y,

as developed above, and would be a signi�
ant use of resour
es.
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