A Note on Randomized Algorithm for String
Matching with Mismatches

Kensuke Baba, Ayumi Shinohara,
Masayuki Takeda, Shunsuke Inenaga, and Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: {baba, ayumi, takeda, s-ine, arikawa}@i.kyushu-u.ac.jp

Abstract. Atallah et al. [ACDO1] introduced a randomized algorithm for string
matching with mismatches, which utilized fast Fourier transformation (FFT)
to compute convolution. It estimates the score vector of matches between text
string and a pattern string, i.e. the vector obtained when the pattern is slid
along the text, and the number of matches is counted for each position. In this
paper, we simplify the algorithm and give an exact analysis of the variance of
the estimator.

Key words: Pattern matching, mismatch, FFT, convolution, randomized al-
gorithm

1 Introduction

Let T = ty,...,t, be a text string and P = py,...,p, be a pattern string over
an alphabet Y. String matching problem is to find all occurrences of the pattern
P in the text T. Approximate string matching problem is to find all occurrences
of small variations of the original pattern P in the text 7. Substitution, inser-
tion, and deletion operations are often allowed to introduce the variations. In this
paper, we allow the substitution operation only. The derived problem is usually
called string matching with mismatches. It is essentially to compute the score vec-
tor C(T,P) = (¢1,...,¢n_my1) between T and P, where each ¢; counts the number
of matches between the substring ¢;,...,%;1,, 1 of the text T and the pattern P.
If ¢; = m, the pattern exactly occurs at position 7 in the text. Fig. 1 shows an
example of the score vector. A reasonable amount of effort has been paid for this
problem [Abr87, BYG92, BYP96, FP74, Kar93]. Refer the textbooks [CR94, Gus97]
to know the history and various results.

Recently, Atallah et al. [ACDO1] introduced a randomized algorithm of Monte-
Carlo type which returns an estimation of the score vector C'(T, P). The estimation
is performed by averaging independent equally distributed estimates. Let k& be the
number of ramdomly sampled estimations, then the time complexity is O(knlogm)
by utilizing a fast Fourier transformation (FFT). They showed that the expected
value of the estimation is equal to the score vector, and that the variance is bounded
by (m — ¢;)?*/k.

In this paper, we give a slight simplification of their algorithm. Moreover, we
analyze the variance of the estimator exactly.

Proceedings of the Prague Stringology Conference 02

1 1 2 3 4 5 6 7 8 10
text a ¢ b a b b a c ¢ b
pattern a b b a c
a b b a c
a b b a c
a b b a ¢
a b b a ¢
a b b C
C; 31 1 5 2 0

Figure 1: Score vector between the text acbabbaccb and the pattern abbac.

2 Preliminaries

Let NV be the set of non-negative integers. Let ¥ be a finite alphabet. An element of

¥* is called a string. The length of a string w is denoted by |w|. The empty string is

denoted by e, that is, || = 0. We denote the cardinality of a set S by |S| or #5S.
We define a function ¢ from ¥ x ¥ to {0,1} by

1 if a =0,
5(“’b):{ 0 ifa#b.

For a text string T' = t,t5...%, and a pattern string P = pips...pm, the score
vector of matches between T and P is defined as C(T, P) = (¢1, ¢, .. ., Cnmy1), Where
¢i = Y52y 0(tiyj—1,pj). That is, ¢; is the number of matches between the text and
the pattern when the first letter of the pattern in positioned in front of the ith letter
of the string.

3 Deterministic Algorithm

In this section, we introduce a deterministic algorithm to compute the score vector
for given text 7" and pattern P. Although it might not be practical for large alphabet,
it will be a base for the randomized algorithm explored in the next section.

3.1 Binary Alphabet Case

We first consider a binary alphabet ¥ = {a,b}. We define a function ¢ : ¥ — {—1,1}
by ¢(a) = 1 and 9(b) = —1. By using 1), we convert the strings 7" and P into the
sequences of integers as follows.

A Note on Randomized Algorithm for String Matching with Mismatches

Lemma 1 Forany1<i<n—m+1, ¢; = (a +m)/2.

Proof. Since ¢; = #{j | tixj—1 = p;, 1 < j < m}, we have al = #{j | tivjo1 =
pi, 1 <j<m}—#{j|tixj-1 #pj, 1 <j<m}=c¢—(m—¢)=2¢—m. Thus
¢ = (a¥ +m)/2. O

The above lemma implies that we have only to compute AY(T, P) to get the score
vector C'(T, P). Since the sequence AY(T, P) is the convolution of ¢(T) with the
reverse of ¢(P), we can calculate all the a;’s simultaneously by the use of fast Fourier
transform (FFT) in O(nlogm) time as follows. As is stated in [ACDO01], we addition-
ally apply the standard technique [CR94] of partitioning the text into overlapping
chunks of size (1 4+ a)m each, and then processing each chunk separately. Processing
one chunk gives us awm components of C'. Since we have n/(am) chunks and each

chunk can be computed in O((1 + a)mlog((1 + a)m)) by FFT, the total time com-
plexity is 2~ - O((1 4+ a)mlog((1 + a)m)) = O (%nlog((l + a)m)) = O(nlogm)

by choosing o = O(m).

Theorem 1 For a binary alphabet, the score vector C' can be exactly computed in
O(nlogm) time.

3.2 General Case

We now consider general case |X| > 2. Let Uy be the set of all mappings from ¥ to
{—1,1}. Remark that |Us| = 2/*/. We abbreviate Uy, with ¥ when ¥ is clear from
the context. The next lemma is obvious.

Lemma 2 For any ¢ € Uy, and any a,b € ¥,
_ [1 ifgla) =(b),
sw-vo =1 TS0
Lemma 3 For any a,b € X,
7 2 vl vlb) = 8(e.b)

Proof. In case of a = b, then t(a) = 1(b) for any) € W. Therefore 1(a) - (b)) =1
for any 1) by Lemma 2, and the sum Zw@p Y (a) - 1(b) equals to the cardinality of W.
Thus, the left side of the equation is unity.

To prove the lemma in case of a # b, we show a more general proposition:

o) (da) - 0(b) =0 if di# by dn # b (0> 0).

PeE
By the assumption that b is distinct from dy,-- -, d,,
D W(dy) - p(dy) - (b)

= D wd) e w(da) 1+ Y () (da) - (1)

1/)(17):1’1/)6\1; w(b)zfla"/)elp

Thus, by the proposition for n = 1, the left side of the equation is zero. O

11

Proceedings of the Prague Stringology Conference 02

Theorem 2 Forany 1 <i<m-—n-+1,
1
G = |—Z : (1)
YEW

Proof. By the definition of a;/’ and Lemma 3, the right side of the equation can be
changed as follows.

S B B) SRR

PYeW 1[16\117 1
= Z PIEICERIR)
Jj=1 wE‘I’

= Zé(tﬂrjflapj)-
=1

Since the last formula is the definition of ¢;, the theorem is proved. O

Theorem 3 C(T, P) can be ezactly computed in O(2"nlogm) time.

Proof. By Theorem 2 ¢; is the mean of a! for every ¢ € Uy, therefore C(T, P)
is obtained by computing all AY(T, P). Since each A¥(T,P) can be computed in
O(nlogm) time, we can calculate C(T, P) in O(2*Inlogm) time. O

We note that if the alphabet X is infinite, by splitting the text in chunks of length
O(m) to be dealt with independently ensures it will work with an alphabet size O(m),
so that C(T, P) can be exactly computed in O(2°™nlogm).

4 Randomized Algorithm

A shortcoming of the deterministic algorithm in the last section is that the running
time is exponential with respect to the size of alphabet. It is not practical for large
alphabet. In this section, we propose a randomized algorithm which was inspired by
Atallah et al. [ACDO1].

Let us noticed that Theorem 2 can be interpreted as follows. FEach ¢; is the
mean of random variable X; = Y™, 9(ti1j1) - ¢(p;), assuming that ¢ is drawn
uniformly randomly from W. The observation leads us to the following randomized
algorithm. Tnstead of computing all vectors Ay (T, P) = (a¥,ay,...,a"_,, ;) where
al = >y ¥(tivj—1) - ¥(p;) to average them, we compute only & samples of them
for randomly chosen vy, ..., € ¥. Since the expected value of X; equals to ¢;, it
will give a good estimation for large enough k. We will give a formal proof of it, and
exactly analyze the variance of X; in the sequel. Fig. 2 illustrates the core part of the
algorithm for the basic case n = (1 4+ a)m

We now analyze the mean and the variance of the estimator ¢;. Since all the

random variable ¢; are defined in a similar way, we generically consider the random

variable .
=222 vl

=1 j=1

P?‘Il—‘

12

A Note on Randomized Algorithm for String Matching with Mismatches

Procedure ESTIMATESCORE
Input: a text T'=1t; ...%14+a)m and a pattern P =p;...p,, in X7,
Output: an estimate for the score vector C(T, P).
for / :=1 to k do begin
randomly and uniformly select a v, from Uy.
Let Ty = 1»(T). Note that T} is a sequence over {—1,1} of length (1 + a)m.
Let P, be the concatenation of ¢,(P) with trailing am zeros.
compute the vector Cy as the convolution of T, with the reverse of P, by FFT.

end
k

.1
compute the vector C' = z E Cy and output it as an estimate of C(T, P).
=1

Figure 2: Randomized Algorithm

where the ¢;’s and the p;’s are fixed and mapping 1’s are independently and uniformly
selected from Wy,. The definition implies that $ is the mean of £ random variables

which are drawn from independent and identical distribution. The random variable
can be defined by

s =Y e(t) - (py),

1

j:
and the mean F($) and variance V(3) are

V(s)
o

The number ¢ of matches between T'=1%,...t,, and P =py...p,, is

Cc = Zé(tj’pj)'
j=1

Lemma 4 The mean of s is equal to c.

BE(3) = E(s) and V(3) =

Proof. By Lemma 3,

B(3) = E(s) = ﬁ S s

pew

- ﬁ S wlt) - vlpy)

pew j=1

- Zﬁzwm (p)

=1 1 pew
m
=) 4(ty,p))
=1

Thus, the mean of s is ¢. O

Proceedings of the Prague Stringology Conference 02

In order to analyze the variance of s accurately, we introduce the following function
pr.p: Y x ¥ — N depending on text T =t ...t, and pattern P = p; ...py,,, which
give a statistics of T" and P.

pr.p(a,b) =#{j [t; =aand p; =b, 1 <j <m}

For example, let 7" = aabac and P = abbba. Then prp(a,b) = 2, prp(a,a) =
pr.p(b,b) = pr.p(c,a) =1, and the others are zero. We omit the subscription T, P of
pr,p in the sequel. In addition, we use the following expression.

7(a,b) = p(a,b) + p(b, a).
The next lemma is obvious from the definition.
1
Lemma 5 Z pla,b) = 5 Z 7(a,b) = m.
(a,b)eX XX (a,h)eX XX
The next lemma gives the exact variance of s, in terms of p.

Lemma 6 The variance of § is

. 1
V(8) = 2> (p(a,)’ + pla,b) - plb,a)).
aFb
Proof. Since the mean of s equals to ¢ by Lemma 4,
o1 11)
V() = V) = g e =0

By the definition of p,

s =) dla)-v(b)-pla,b)

(a,b)ETXT

= Zp(av b) + ZWG) 'Qb(b) -p(a, b)a and

= aFb
c = Zp(a,b).
Therefore,
ﬁDs 0 = @ﬂz (Zp<a,b>+2¢(a>-w-p(a,b>>—me,b))
Yev e a=b ab a—b
= LS () wd) - pland)
| |¢E\IJ a#b
= |—1|Z > w(a) w(b>-p(a,b>) (Z w(a'>-¢(b'>-p(agy)>
Yew \ azb o' 7Y
= X wa)) plab) - vle)) -l
VEV a#b o AV
= S (o, by 3 o V)= 3 (@) - (b)) - (b) |
v
a#b a' £V Yew

14

A Note on Randomized Algorithm for String Matching with Mismatches

Let us take a(a,b,a’,b') =] Z W(a W(a') - (1), and show that

pew

1 ifeithera=a" and b="¥V,0r a =10 and o' = b,
0 otherwise,

a(a,b,a b)) = {

by the case analysis whether there exists a distinct character from the others in
a,b,a’,b'. If there exists such a character, then «(a,b,a’,b') = 0 by the proof of
Lemma 3. If there does not exist such a character, then we have either a = o’ and
b=10,0ra=10 and b = a' by the assumption that both a # b and @’ # '. Then,
by Lemma 3 and the fact that ¢ (a)®> = 1 for any ¢y € ¥ and any a € ¥ since

¥(a) € {-1,1},
ala,b,a' V') =] Zw =1.

YeT
Thus,
V(s = —Zpab (a,b) + p(b,a))
a#b
= —Z)2+ p(a,b) - p(b,a)) .
a#b
O

Moreover, by the definition of 7, we have

Z (p(a, b)2 + p(a, b) ’ p(b, a)) = 5 (p(a, b)2 + 2/)(@1 b)) p(b, a) + p(b, a)Z)

a#b a#b

Therefore, the variance can be exactly restated in term of 7 as follows, which might
be more intuitive.

Theorem 4 The variance of § is

V(s) = %ZT(a, b2,

a<b
Remind that 7(a,b) represented the number of positions j = 1,...,m in T and
P, such that (t;,p;) is either (a,b) or (b,a). If T" exactly matches P, then V(§) =0,
which implies that the estimation is always m, without any error. On the other hand,
since)., 7(a,b) = m — ¢, the variance V() is maximized for inputs which have
no match and are constructed by only two characters, for example, T = aaaaaa,

P = bbbbbb, and 7" = aaabba, P = bbbaab.

We now state the bound of the variance of s in terms of m and ¢, that exactly fits
to the one proved by Atallah et al. [ACDO1].

15

Proceedings of the Prague Stringology Conference 02

Lemma 7 The variance of § is bounded as follows.

(m —c)?

V($) < —

Proof. By Lemma 5,

mec = 3 pab) - pab)

(a,b)EX XX

Therefore, by Theorem 4,

(m —¢)? L1 C)
V() = E(Zm,m) - ()

a<b a<b
1 *
-3 (e),
a<b a'<b

where Z 7(a',b") expresses the sum of 7(a', b'") except for the two cases a' = a,b' = b

a' <b’
and o' = b,b' = a. Since 7(a,b) > 0 for any a and b, the last formula is not less than

zero. U

We now have the main theorem.

Theorem 5 Algorithm ESTIMATESCORE runs in O(knlogm) time. The mean of
the estimation equals to the score vector C, and the variance of each entry is bounded

by (m —¢;)?/k.

5 Conclusion

We gave a randomized algorithm for string matching with mismatches, which can
be regarded as a slight simplification of the one due to Atallah et al. [ACDO01]. For
comparison, we give a brief description of their algorithm. It treats the set U’ of all

mappings from ¥ to {0,1,...,|3| — 1}, and the basic equation is
- ti P;)
S) e g
PYew j=1
where w is a primitive |X|th root of unity. When |X| = 2, we know w = —1, and that

the equation (2) directly corresponds to the equation (1) in ours. The difference is
how to treat general alphabet |X| > 2. In our algorithm, the converted sequence ¢ (7T')

16

A Note on Randomized Algorithm for String Matching with Mismatches

is simply over {—1, 1}, while in their algorithm +(T") is over {1,w,w?,...,w™=1} that
are complex numbers. When computing the convolution by FFT, the computation of
the former will be much simpler (and possibly faster) than the latter. From the view
point of the precision of the numerical calculations, the former might be preferable to
the latter, although we have not yet studied explicitly. Moreover, this simplification
enabled us to reach the exact estimation of the variance (Theorem 4), by fairly prim-
itive discussion. An interesting point is that the variance is still independent from
the size of alphabet, although we map ¥ into {—1, 1}, instead of {0,1,...,|Z| —1}.

In their paper [ACDO01], they considered various extensions, such as string match-
ing with classes, class components, “never match” and “always match” symbols,
weighted case, and higher dimension arrays. We think our simplification will be
valid without any difficulty for all those extensions, although we have not completely
verified them yet.

References

[Abr87] K. Abrahamson. Generalized string matching. SIAM Journal on Comput-
ing, 16(6):1039-1051, 1987.

[ACDO1] M. J. Atallah, F. Chyzak, and P. Dumas. A randomized algorithm for
approximate string matching. Algorithmica, 29:468-486, 2001.

[BYG92] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
Communications of the ACM, 35:74-82, 1992.

[BYP96] R. A. Baeza-Yates and C. H. Perleberg. Fast and practical approximate
string matching. Information Processing Letters, 59(1):21-27, 1996.

[CR94] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
New York, 1994.

[FP74] M. J. Fischer and M. S. Paterson. String-matching and other prodeucts. In
Complezity of Computation (Proceedings of the SIAM-AMS Applied Math-
ematics Symposium, New York, 1973), pages 113-125, 1974.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press, New York, 1997.

[Kar93] H. Karloff. Fast algorithms for approximately couting mismatches. Infor-
mation Processing Letters, 48(2):53-60, 1993.

17

