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Abstra
t. Atallah et al. [ACD01℄ introdu
ed a randomized algorithm for string

mat
hing with mismat
hes, whi
h utilized fast Fourier transformation (FFT)

to 
ompute 
onvolution. It estimates the s
ore ve
tor of mat
hes between text

string and a pattern string, i.e. the ve
tor obtained when the pattern is slid

along the text, and the number of mat
hes is 
ounted for ea
h position. In this

paper, we simplify the algorithm and give an exa
t analysis of the varian
e of

the estimator.
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1 Introdu
tion

Let T = t

1

; : : : ; t

n

be a text string and P = p

1

; : : : ; p

m

be a pattern string over

an alphabet �. String mat
hing problem is to �nd all o

urren
es of the pattern

P in the text T . Approximate string mat
hing problem is to �nd all o

urren
es

of small variations of the original pattern P in the text T . Substitution, inser-

tion, and deletion operations are often allowed to introdu
e the variations. In this

paper, we allow the substitution operation only. The derived problem is usually


alled string mat
hing with mismat
hes. It is essentially to 
ompute the s
ore ve
-

tor C(T; P ) = (


1

; : : : ; 


n�m+1

) between T and P , where ea
h 


i


ounts the number

of mat
hes between the substring t

i

; : : : ; t

i+m�1

of the text T and the pattern P .

If 


i

= m, the pattern exa
tly o

urs at position i in the text. Fig. 1 shows an

example of the s
ore ve
tor. A reasonable amount of e�ort has been paid for this

problem [Abr87, BYG92, BYP96, FP74, Kar93℄. Refer the textbooks [CR94, Gus97℄

to know the history and various results.

Re
ently, Atallah et al. [ACD01℄ introdu
ed a randomized algorithm of Monte-

Carlo type whi
h returns an estimation of the s
ore ve
tor C(T; P ). The estimation

is performed by averaging independent equally distributed estimates. Let k be the

number of ramdomly sampled estimations, then the time 
omplexity is O(kn logm)

by utilizing a fast Fourier transformation (FFT). They showed that the expe
ted

value of the estimation is equal to the s
ore ve
tor, and that the varian
e is bounded

by (m� 


i

)

2

=k.

In this paper, we give a slight simpli�
ation of their algorithm. Moreover, we

analyze the varian
e of the estimator exa
tly.
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Figure 1: S
ore ve
tor between the text a
babba

b and the pattern abba
.

2 Preliminaries

Let N be the set of non-negative integers. Let � be a �nite alphabet. An element of

�

�

is 
alled a string. The length of a string w is denoted by jwj. The empty string is

denoted by ", that is, j"j = 0. We denote the 
ardinality of a set S by jSj or #S.

We de�ne a fun
tion Æ from �� � to f0; 1g by

Æ(a; b) =

�

1 if a = b,

0 if a 6= b.

For a text string T = t

1

t

2

: : : t

n

and a pattern string P = p

1

p

2

: : : p

m

, the s
ore

ve
tor of mat
hes between T and P is de�ned as C(T; P ) = (


1

; 


2

; : : : ; 


n�m+1

), where




i

=

P

m

j=1

Æ(t

i+j�1

; p

j

). That is, 


i

is the number of mat
hes between the text and

the pattern when the �rst letter of the pattern in positioned in front of the ith letter

of the string.

3 Deterministi
 Algorithm

In this se
tion, we introdu
e a deterministi
 algorithm to 
ompute the s
ore ve
tor

for given text T and pattern P . Although it might not be pra
ti
al for large alphabet,

it will be a base for the randomized algorithm explored in the next se
tion.

3.1 Binary Alphabet Case

We �rst 
onsider a binary alphabet � = fa; bg. We de�ne a fun
tion  : �! f�1; 1g

by  (a) = 1 and  (b) = �1. By using  , we 
onvert the strings T and P into the

sequen
es of integers as follows.

 (T ) =  (t

1

);  (t

2

); : : : : : : : : : ;  (t

n

);

 (P ) =  (p

1

);  (p

2

); : : : ;  (p

m

):

Let A

 

(T; P ) = (a

 

1

; a

 

2

; : : : ; a

 

n�m+1

) where a

 

i

=

m

X

j=1

 (t

i+j�1

) �  (p

j

).
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Lemma 1 For any 1 � i � n�m + 1, 


i

= (a

 

i

+m)=2.

Proof. Sin
e 


i

= #fj j t

i+j�1

= p

j

; 1 � j � mg, we have a

 

i

= #fj j t

i+j�1

=

p

j

; 1 � j � mg �#fj j t

i+j�1

6= p

j

; 1 � j � mg = 


i

� (m � 


i

) = 2


i

�m. Thus




i

= (a

 

i

+m)=2. 2

The above lemma implies that we have only to 
ompute A

 

(T; P ) to get the s
ore

ve
tor C(T; P ). Sin
e the sequen
e A

 

(T; P ) is the 
onvolution of  (T ) with the

reverse of  (P ), we 
an 
al
ulate all the a

i

's simultaneously by the use of fast Fourier

transform (FFT) in O(n logm) time as follows. As is stated in [ACD01℄, we addition-

ally apply the standard te
hnique [CR94℄ of partitioning the text into overlapping


hunks of size (1 + �)m ea
h, and then pro
essing ea
h 
hunk separately. Pro
essing

one 
hunk gives us �m 
omponents of C. Sin
e we have n=(�m) 
hunks and ea
h


hunk 
an be 
omputed in O((1 + �)m log((1 + �)m)) by FFT, the total time 
om-

plexity is

n

�m

�O((1 + �)m log((1 + �)m)) = O

�

(1+�)

�

n log((1 + �)m)

�

= O(n logm)

by 
hoosing � = O(m).

Theorem 1 For a binary alphabet, the s
ore ve
tor C 
an be exa
tly 
omputed in

O(n logm) time.

3.2 General Case

We now 
onsider general 
ase j�j > 2. Let 	

�

be the set of all mappings from � to

f�1; 1g. Remark that j	

�

j = 2

j�j

. We abbreviate 	

�

with 	 when � is 
lear from

the 
ontext. The next lemma is obvious.

Lemma 2 For any  2 	

�

and any a; b 2 �,

 (a) �  (b) =

�

1 if  (a) =  (b),

-1 if  (a) 6=  (b).

Lemma 3 For any a; b 2 �,

1

j	j

X

 2	

 (a) �  (b) = Æ(a; b):

Proof. In 
ase of a = b, then  (a) =  (b) for any  2 	. Therefore  (a) �  (b) = 1

for any  by Lemma 2, and the sum

P

 2	

 (a) �  (b) equals to the 
ardinality of 	.

Thus, the left side of the equation is unity.

To prove the lemma in 
ase of a 6= b, we show a more general proposition:

X

 2	

 (d

1

) � � � � �  (d

n

) �  (b) = 0 if d

1

6= b; � � � ; d

n

6= b (n � 0):

By the assumption that b is distin
t from d

1

; � � � ; d

n

,

X

 2	

 (d

1

) � � � � �  (d

n

) �  (b)

=

X

 (b)=1; 2	

 (d

1

) � � � � �  (d

n

) � 1 +

X

 (b)=�1; 2	

 (d

1

) � � � � �  (d

n

) � (�1)

= 0:

Thus, by the proposition for n = 1, the left side of the equation is zero. 2
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Theorem 2 For any 1 � i � m� n+ 1,




i

=

1

j	j

X

 2	

a

 

i

: (1)

Proof. By the de�nition of a

 

i

and Lemma 3, the right side of the equation 
an be


hanged as follows.

1

j	j

X

 2	

a

 

i

=

1

j	j

X

 2	

m

X

j=1

 (t

i+j�1

) �  (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

i+j�1

) �  (p

j

)

=

m

X

j=1

Æ(t

i+j�1

; p

j

):

Sin
e the last formula is the de�nition of 


i

, the theorem is proved. 2

Theorem 3 C(T; P ) 
an be exa
tly 
omputed in O(2

j�j

n logm) time.

Proof. By Theorem 2 


i

is the mean of a

 

i

for every  2 	

�

, therefore C(T; P )

is obtained by 
omputing all A

 

(T; P ). Sin
e ea
h A

 

(T; P ) 
an be 
omputed in

O(n logm) time, we 
an 
al
ulate C(T; P ) in O(2

j�j

n logm) time. 2

We note that if the alphabet � is in�nite, by splitting the text in 
hunks of length

O(m) to be dealt with independently ensures it will work with an alphabet size O(m),

so that C(T; P ) 
an be exa
tly 
omputed in O(2

O(m)

n logm).

4 Randomized Algorithm

A short
oming of the deterministi
 algorithm in the last se
tion is that the running

time is exponential with respe
t to the size of alphabet. It is not pra
ti
al for large

alphabet. In this se
tion, we propose a randomized algorithm whi
h was inspired by

Atallah et al. [ACD01℄.

Let us noti
ed that Theorem 2 
an be interpreted as follows. Ea
h 


i

is the

mean of random variable X

i

=

P

m

j=1

 (t

i+j�1

) �  (p

j

), assuming that  is drawn

uniformly randomly from 	. The observation leads us to the following randomized

algorithm. Instead of 
omputing all ve
tors A

 

(T; P ) = (a

 

1

; a

 

2

; : : : ; a

 

n�m+1

) where

a

 

i

=

P

m

j=1

 (t

i+j�1

) �  (p

j

) to average them, we 
ompute only k samples of them

for randomly 
hosen  

1

; : : : ;  

k

2 	. Sin
e the expe
ted value of X

i

equals to 


i

, it

will give a good estimation for large enough k. We will give a formal proof of it, and

exa
tly analyze the varian
e of X

i

in the sequel. Fig. 2 illustrates the 
ore part of the

algorithm for the basi
 
ase n = (1 + �)m.

We now analyze the mean and the varian
e of the estimator 
̂

i

. Sin
e all the

random variable 
̂

i

are de�ned in a similar way, we generi
ally 
onsider the random

variable

ŝ =

1

k

k

X

`=1

m

X

j=1

 (t

j

) �  (p

j

)
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Pro
edure EstimateS
ore

Input: a text T = t

1

: : : t

(1+�)m

and a pattern P = p

1

: : : p

m

in �

�

.

Output: an estimate for the s
ore ve
tor C(T; P ).

for ` := 1 to k do begin

randomly and uniformly sele
t a  

`

from 	

�

.

Let T

`

=  

`

(T ). Note that T

`

is a sequen
e over f�1; 1g of length (1 + �)m.

Let P

`

be the 
on
atenation of  

`

(P ) with trailing �m zeros.


ompute the ve
tor C

`

as the 
onvolution of T

`

with the reverse of P

`

by FFT.

end


ompute the ve
tor

^

C =

1

k

k

X

`=1

C

`

and output it as an estimate of C(T; P ).

Figure 2: Randomized Algorithm

where the t

j

's and the p

j

's are �xed and mapping  's are independently and uniformly

sele
ted from 	

�

. The de�nition implies that ŝ is the mean of k random variables

whi
h are drawn from independent and identi
al distribution. The random variable


an be de�ned by

s =

m

X

j=1

 (t

j

) �  (p

j

);

and the mean E(ŝ) and varian
e V (ŝ) are

E(ŝ) = E(s) and V (ŝ) =

V (s)

k

:

The number 
 of mat
hes between T = t

1

: : : t

m

and P = p

1

: : : p

m

is


 =

m

X

j=1

Æ(t

j

; p

j

):

Lemma 4 The mean of ŝ is equal to 
.

Proof. By Lemma 3,

E(ŝ) = E(s) =

1

j	j

X

 2	

s

=

1

j	j

X

 2	

m

X

j=1

 (t

j

) �  (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

j

) �  (p

j

)

=

m

X

j=1

Æ(t

j

; p

j

):

Thus, the mean of ŝ is 
. 2
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In order to analyze the varian
e of s a

urately, we introdu
e the following fun
tion

�

T;P

: � � � ! N depending on text T = t

1

: : : t

m

and pattern P = p

1

: : : p

m

, whi
h

give a statisti
s of T and P .

�

T;P

(a; b) = #fj j t

j

= a and p

j

= b; 1 � j � mg

For example, let T = aaba
 and P = abbba. Then �

T;P

(a; b) = 2, �

T;P

(a; a) =

�

T;P

(b; b) = �

T;P

(
; a) = 1, and the others are zero. We omit the subs
ription T; P of

�

T;P

in the sequel. In addition, we use the following expression.

�(a; b) = �(a; b) + �(b; a):

The next lemma is obvious from the de�nition.

Lemma 5

X

(a;b)2���

�(a; b) =

1

2

X

(a;b)2���

�(a; b) = m.

The next lemma gives the exa
t varian
e of ŝ, in terms of �.

Lemma 6 The varian
e of ŝ is

V (ŝ) =

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

Proof. Sin
e the mean of s equals to 
 by Lemma 4,

V (ŝ) =

1

k

V (s) =

1

k

1

j	j

X

 2	

(s� 
)

2

:

By the de�nition of �,

s =

X

(a;b)2���

 (a) �  (b) � �(a; b)

=

X

a=b

�(a; b) +

X

a6=b

 (a) �  (b) � �(a; b); and


 =

X

a=b

�(a; b):

Therefore,

1

j	j

X

 2	

(s� 
)

2

=

1

j	j

X

 2	

  

X

a=b

�(a; b) +

X

a6=b

 (a) �  (b) � �(a; b)

!

�

X

a=b

�(a; b)

!

2

=

1

j	j

X

 2	

 

X

a6=b

 (a) �  (b) � �(a; b)

!

2

=

1

j	j

X

 2	

 

X

a6=b

 (a) �  (b) � �(a; b)

! 

X

a

0

6=b

0

 (a

0

) �  (b

0

) � �(a

0

; b

0

)

!

=

1

j	j

X

 2	

X

a6=b

X

a

0

6=b

0

 (a) �  (b) � �(a; b) �  (a

0

) �  (b

0

) � �(a

0

; b

0

)

=

X

a6=b

 

�(a; b) �

X

a

0

6=b

0

�(a

0

; b

0

)

1

j	j

X

 2	

 (a) �  (b) �  (a

0

) �  (b

0

)

!

:

14
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Let us take �(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a) �  (b) �  (a

0

) �  (b

0

), and show that

�(a; b; a

0

; b

0

) =

�

1 if either a = a

0

and b = b

0

, or a = b

0

and a

0

= b,

0 otherwise,

by the 
ase analysis whether there exists a distin
t 
hara
ter from the others in

a; b; a

0

; b

0

. If there exists su
h a 
hara
ter, then �(a; b; a

0

; b

0

) = 0 by the proof of

Lemma 3. If there does not exist su
h a 
hara
ter, then we have either a = a

0

and

b = b

0

, or a = b

0

and b = a

0

by the assumption that both a 6= b and a

0

6= b

0

. Then,

by Lemma 3 and the fa
t that  (a)

2

= 1 for any  2 	 and any a 2 � sin
e

 (a) 2 f�1; 1g,

�(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a)

2

�  (b)

2

= 1:

Thus,

V (ŝ) =

1

k

X

a6=b

�(a; b) (�(a; b) + �(b; a))

=

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

2

Moreover, by the de�nition of � , we have

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

=

1

2

X

a6=b

�

�(a; b)

2

+ 2�(a; b) � �(b; a) + �(b; a)

2

�

=

1

2

X

a6=b

(�(a; b) + �(b; a))

2

=

1

2

X

a6=b

�(a; b)

2

=

X

a<b

�(a; b)

2

:

Therefore, the varian
e 
an be exa
tly restated in term of � as follows, whi
h might

be more intuitive.

Theorem 4 The varian
e of ŝ is

V (ŝ) =

1

k

X

a<b

�(a; b)

2

:

Remind that �(a; b) represented the number of positions j = 1; : : : ; m in T and

P , su
h that (t

j

; p

j

) is either (a; b) or (b; a). If T exa
tly mat
hes P , then V (ŝ) = 0,

whi
h implies that the estimation is always m, without any error. On the other hand,

sin
e

P

a<b

�(a; b) = m � 
, the varian
e V (ŝ) is maximized for inputs whi
h have

no mat
h and are 
onstru
ted by only two 
hara
ters, for example, T = aaaaaa,

P = bbbbbb, and T = aaabba, P = bbbaab.

We now state the bound of the varian
e of ŝ in terms of m and 
, that exa
tly �ts

to the one proved by Atallah et al. [ACD01℄.
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Lemma 7 The varian
e of ŝ is bounded as follows.

V (ŝ) �

(m� 
)

2

k

:

Proof. By Lemma 5,

m� 
 =

X

(a;b)2���

�(a; b)�

X

a=b

�(a; b)

=

X

a6=b

�(a; b)

=

1

2

X

a6=b

�(a; b)

=

X

a<b

�(a; b):

Therefore, by Theorem 4,

(m� 
)

2

k

� V (ŝ) =

1

k

 

X

a<b

�(a; b)

!

2

�

1

k

X

a<b

�(a; b)

2

=

1

k

X

a<b

 

�(a; b) �

X

a

0

<b

0

�

�(a

0

; b

0

)

!

;

where

X

a

0

<b

0

�

�(a

0

; b

0

) expresses the sum of �(a

0

; b

0

) ex
ept for the two 
ases a

0

= a; b

0

= b

and a

0

= b; b

0

= a. Sin
e �(a; b) � 0 for any a and b, the last formula is not less than

zero. 2

We now have the main theorem.

Theorem 5 Algorithm EstimateS
ore runs in O(kn logm) time. The mean of

the estimation equals to the s
ore ve
tor C, and the varian
e of ea
h entry is bounded

by (m� 


i

)

2

=k.

5 Con
lusion

We gave a randomized algorithm for string mat
hing with mismat
hes, whi
h 
an

be regarded as a slight simpli�
ation of the one due to Atallah et al. [ACD01℄. For


omparison, we give a brief des
ription of their algorithm. It treats the set 	

0

of all

mappings from � to f0; 1; : : : ; j�j � 1g, and the basi
 equation is




i

=

1

j	

0

j

X

 2	

0

m

X

j=1

!

 (t

i+j�1

)� (p

j

)

; (2)

where ! is a primitive j�jth root of unity. When j�j = 2, we know ! = �1, and that

the equation (2) dire
tly 
orresponds to the equation (1) in ours. The di�eren
e is

how to treat general alphabet j�j > 2. In our algorithm, the 
onverted sequen
e  (T )

16



A Note on Randomized Algorithm for String Mat
hing with Mismat
hes

is simply over f�1; 1g, while in their algorithm  (T ) is over f1; !; !

2

; : : : ; !

j�j�1

g that

are 
omplex numbers. When 
omputing the 
onvolution by FFT, the 
omputation of

the former will be mu
h simpler (and possibly faster) than the latter. From the view

point of the pre
ision of the numeri
al 
al
ulations, the former might be preferable to

the latter, although we have not yet studied expli
itly. Moreover, this simpli�
ation

enabled us to rea
h the exa
t estimation of the varian
e (Theorem 4), by fairly prim-

itive dis
ussion. An interesting point is that the varian
e is still independent from

the size of alphabet, although we map � into f�1; 1g, instead of f0; 1; : : : ; j�j � 1g.

In their paper [ACD01℄, they 
onsidered various extensions, su
h as string mat
h-

ing with 
lasses, 
lass 
omponents, \never mat
h" and \always mat
h" symbols,

weighted 
ase, and higher dimension arrays. We think our simpli�
ation will be

valid without any diÆ
ulty for all those extensions, although we have not 
ompletely

veri�ed them yet.
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