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Abstra
t. Brzozowski's minimization algorithm is based on two su

essive de-

terminization operations. There is a paradox between its (worst 
ase) expo-

nential 
omplexity and its ex
eptionally good performan
e in pra
ti
e. Our

aim is to analyze the way the twofold determinization performs the minimiza-

tion of a deterministi
 automaton. We give a 
hara
terization of the equiva-

len
e 
lasses of A w.r.t. the set of states of the automaton 
omputed by the

�rst determinization. The se
ond determinization is expe
ted to 
ompute these

equivalen
e 
lasses. We show that it 
an be repla
ed by a spe
i�
 pro
edure

based on the 
lasses 
hara
terization, whi
h leads to a more eÆ
ient variant of

Brzozowski's algorithm.
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1 Introdu
tion

It is well known that given a regular language L over an alphabet � there exists a


anoni
al deterministi
 automaton whi
h re
ognizes L, namely the minimal (deter-

ministi
) automaton of L, whose states are the left quotients of L w.r.t. the words of

�

�

. This automaton, denoted by A

L

, is unique (up to an isomorphism) and it has a

minimal number of states [13℄. Moreover, it 
an be 
omputed from any determinis-

ti
 automaton re
ognizing L by merging states whi
h have identi
al right languages.

There exist numerous algorithms to minimize a deterministi
 automaton. Watson

published a taxonomy on this topi
 [18℄.

Among the various possible 
onstru
tions, Brzozowski's minimization algorithm [3℄

is of a spe
i�
 interest, regarding to several 
riteria whi
h are dis
ussed below. Let us

�rst re
all how it works. Let A be a (non ne
essarily deterministi
) automaton, d(A)

be the subset automaton of A and r(A) be the reverse automaton of A. Brzozowski's

algorithm is based on the following theorem:

A

L

= d(r(d(r(A))))

This is a deep result sin
e it relates DFA minimization to a basi
 operation, the de-

terminization one. Let us mention that it has been generalized by Mohri to the 
ase of
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bideterminizable transdu
ers de�ned on the tropi
al semiring [12℄. Brzozowski's the-

orem is also a fundamental tool for the 
omputation of the nondeterministi
 minimal

automata of a regular language. Let us 
ite the implementation [6℄ of the 
anoni-


al automaton C

L

de�ned by Carrez [4, 1℄ and the 
onstru
tion of the fundamental

automaton F

L

by Matz and Pottho� [11℄.

We are here espe
ially interested by algorithmi
 and 
omplexity features. Watson

used the fa
t that Brzozowski's algorithm 
an take a nondeterministi
 automaton

as input to design an algorithm whi
h dire
tly 
onstru
ts a minimal deterministi


automaton from a regular expression [19℄. Sin
e our aim is to study the way Br-

zozowski's algorithm performs a minimization, we will essentially 
onsider the 
ase

when the initial automaton is a deterministi
 one. The paradox is the following: sin
e

Brzozowski's algorithm performs two determinizations, its (worst 
ase) 
omplexity is

exponential w.r.t. the number of states of the initial automaton; nevertheless, as

reported by Watson [18℄, Brzozowski's algorithm has proved to be ex
eptionally good

in pra
ti
e, usually out-performing Hop
roft's algorithm [7℄ signi�
antly. Let us add

that the average 
omplexity of the algorithm has been proved to be exponential for

group automata, although they likely are a favourable 
ase sin
e they are both de-

terministi
 and 
odeterministi
 [14℄.

Our 
ontribution is the following. Let A be a deterministi
 automaton. We give a


hara
terization of the equivalen
e 
lasses of A w.r.t. the set of states of dr(A), that

is after the �rst determinization. The se
ond determinization is expe
ted to 
ompute

these equivalen
e 
lasses. We show it 
an be repla
ed by a spe
i�
 pro
edure based

on the 
lasses 
hara
terization, whi
h leads to a more eÆ
ient variant of Brzozowski's

algorithm.

Next se
tion re
alls some useful notations and de�nitions of automata theory.

Se
tion 3 is espe
ially devoted to determinization and minimization operations. Se
-

tion 4 presents Brzozowski's minimization algorithm and its proof. Se
tion 5 provides

an original analysis of the algorithm and the variant it leads to.

2 Preliminaries

Let us �rst review basi
 notions and terminology 
on
erning �nite automata and

regular languages. For further details, 
lassi
al books [2, 8℄ or handbooks [20℄ are

ex
ellent referen
es.

Let � be a non-empty �nite set of symbols, 
alled the alphabet. Symbols are

denoted by x

1

; x

2

; : : : ; x

m

. A word u over � is a �nite sequen
e (y

1

; y

2

; :::; y

n

) of

symbols, usually written y

1

y

2

:::y

n

. The length of a word u, denoted juj is the number

of symbols in u. The empty word denoted by " has a zero length. If u = y

1

y

2

:::y

n

and

v = z

1

z

2

:::z

p

are two words over �, their 
on
atenation u �v, usually written uv, is the

word y

1

y

2

:::y

n

z

1

z

2

:::z

p

. The set of all the words over � is denoted �

�

. A language over

� is a subset of �

�

. The operations of union, 
on
atenation and star over the subsets

of �

�

are 
alled regular operations. The regular languages over � are the languages

obtained from the �nite subsets of �

�

by using a �nite number of regular operations.

A (�nite) automaton is a 5-tupleM = (Q;�; Æ; I; F ) where Q is a (�nite) set of

states, � is a �nite alphabet, I � Q is the set of initial states, F � Q is the set of

�nal states, and Æ is the transition fun
tion. The automatonM is deterministi
 (M

is a DFA) if and only if jIj = 1 and Æ is a mapping from Q� � to Q. OtherwiseM
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is a NFA and Æ is a mapping from Q � � to 2

Q

. The automaton M is 
omplete if

and only if Æ is a full mapping. A path ofM is a sequen
e (q

i

; a

i

; q

i+1

), i = 1; : : : ; n,

of 
onse
utive edges. Its label is the word w = a

1

a

2

: : : a

n

. A word w = a

1

a

2

: : : a

n

is re
ognized by the automaton M if there is a path with label w su
h that q

1

2 I

and q

n+1

2 F . The language L(M) re
ognized by the automaton M is the set of

words whi
h it re
ognizes. Two automata M and M

0

are equivalent if and only if

they re
ognize the same language. A state is a

essible (resp. 
oa

essible) if and

only if there is a path from an initial state to this state (resp. from this state to a

�nal state). An automaton is trim if and only if all its states are both a

essible and


oa

essible.

Kleene's theorem [10℄ states that a language is regular if and only if it is re
ognized

by a �nite automaton.

Let q be a state ofA = (Q;�; Æ; i; F ). The right language of q is the language L

A

d

(q)

(written L

d

(q) if not ambiguous) re
ognized by the automaton A

d

(q) = (Q;�; Æ; q; F )

obtained from A by making q the unique initial state. The left language of q is

the language L

A

g

(q) (written L

g

(q) if not ambiguous) re
ognized by the automaton

A

g

(q) = (Q;�; Æ; i; q) obtained from A by making q the unique �nal state. We will

use the following proposition:

Proposition 1 An automaton is deterministi
 if and only if the left languages of its

states are pairwise disjoint.

The reverse r(u) of the word u is de�ned as follows: r(") = " and, if u = u

1

u

2

:::u

p

,

then r(u) = v

1

v

2

:::v

p

, with v

i

= u

p�i+1

, for all i from 1 to p. The reverse of the

language L is the language r(L) = fu j r(u) 2 Lg. The reverse of the automaton

A = (Q;�; Æ; I; F ) is the automaton r(A) = (Q;�; r(Æ); F; I), obtained from A by

swapping the role of initial and �nal states and by reversing the transitions.

We will use the following propositions, where A is a trim automaton:

Proposition 2 If A re
ognizes the language L then r(A) re
ognizes the language

r(L).

Proposition 3 If the left (resp. right) language of the state q in A is L

g

(q) (resp.

L

d

(q)), then its left (resp. right) language in r(A) is L

d

(q) (resp. L

g

(q)).

3 Determinization and minimization operations

3.1 Determinization

De�nition 1 Let A = (Q;�; Æ; I; F ) be a NFA. The subset-automaton of A is the

automaton d(A) = (Q

0

;�; Æ

0

; fi

0

g; F

0

) de�ned as follows [8, 20℄:

� Set of states: A deterministi
 state is a set of nondeterministi
 states; for all

q

0

in Q

0

, we have q

0

� Q.

� Initial state: The initial state in d(A) is the set I of initial states in A.
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� Set of transitions: Let q

0

be a deterministi
 state and a be a symbol in �. If the

transition from q

0

on symbol a is de�ned, then, by 
onstru
tion, its target is the

state Æ

0

(q

0

; a) su
h that:

Æ

0

(q

0

; a) =

[

q2q

0

Æ(q; a): (3)

� Set of �nal states: A deterministi
 state is �nal if and only if it 
ontains at

least one �nal nondeterministi
 state: q

0

2 F

0

, q

0

\ F 6= ;.

We will use the following proposition:

Proposition 4 The right language of a state q

0

of d(A) is equal to the union of the

right languages of the states q of A belonging to the subset q

0

.

Let n (resp. n') be the number of states in A (resp. in d(A)). As stated by Rabin

and S
ott [16℄, the upper bound n

0

� 2

n

�1 
an be rea
hed. Moreover, the automaton

d(A) 
an be 
omputed with the following 
omplexity [15, 5℄: O(

p

n2

2n

) when using

lists, and O(n

2

(logn)2

n

) when using balan
ed sear
h trees.

3.2 Minimization

The (left) quotient of a regular language L w.r.t. a word u of �

�

is the language

u

�1

L = fv 2 X

�

j uv 2 Lg. The minimal automaton A

L

of a regular language L is

de�ned as follows:

� the set of states is the set of quotients of L,

� the initial state is L,

� the �nal states are the quotients whi
h 
ontain the empty word,

� the transition fun
tion is su
h that Æ(u

�1

L; x) = (ux)

�1

L.

The automaton A

L

is unique up to an isomorphism and it has a minimal number of

states [13℄. We will use the following proposition:

Proposition 5 A (deterministi
, 
omplete, a

essible) automaton is minimal if and

only if the right languages of its states are all di�erent.

The automaton A

L


an be 
omputed from any deterministi
 automaton re
ogniz-

ing L by merging states whi
h are equivalent w.r.t. Nerode equivalen
e:

s � t, [s � u 2 F , t � u 2 F , 8u 2 �

�

℄

Computing Nerode equivalen
e 
an be realized with a O(n

2

) 
omplexity [13℄.

Using the notion of 
oarsest partition leads to a 
omplexity of O(nlog(n)) [7℄.
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4 Brzozowski's minimization algorithm

Let A be an automaton. Let d(A) (resp. r(A)) be the subset automaton (resp. the

reverse automaton) of A. We will write dr(A) for d(r(A)), rdr(A) for r(d(r(A))) and

drdr(A) for d(r(d(r(A)))).

Brzozowski's algorithm is based on the following theorem [3℄:

Theorem 1 (Brzozowski, 1962) Given a (non ne
essarily deterministi
) automaton

A re
ognizing a regular language L, the minimal deterministi
 automaton A

L

of L


an be 
omputed by the formula:

A

L

= drdr(A)

Proof. The proof is based on Propositions (1){(5). By 
onstru
tion, the automaton

drdr(A) is deterministi
, 
omplete and a

essible. From Proposition (2) it re
ognizes

the language L. Let us show that the right languages of drdr(A) are all distin
t. From

Proposition (1) the left languages of dr(A) are pairwise disjoint. From Proposition

(3) the right languages of rdr(A) are the left languages of dr(A). Therefore they are

pairwise disjoint. From Proposition (4) a right language of drdr(A) is a union of right

languages of rdr(A). Sin
e the right languages of rdr(A) are pairwise disjoint, the

right languages of drdr(A) are all distin
t. Thus, by Proposition (5) the automaton

drdr(A) is minimal.

5 Analysis of Brzozowski's algorithm

5.1 Split and join for minimizing

Let A be an automaton whi
h re
ognizes a regular language L. We study the trans-

formation of the sequen
e S

d

= (L

A

d

(q))

q2Q

of the right languages of the states of A,

when the twofold determinization is performed:

S

d

!

rdr

S

1

d

!

drdr

S

2

d

Noti
e that sin
e the languages of S

1

d

are pairwise disjoint and the languages of S

2

d

are all distin
t, S

1

d

and S

2

d

are sets. Let us remind that the right language of a state

is a (left) quotient of L if A is deterministi
 and a subset of the interse
tion of some

(left) quotients of L ifA is nondeterministi
. The �rst determinization splits the right

languages of A into disjoint pie
es, whereas the se
ond one joins the pie
es in order to

re
ombine the set of (left) quotients of L. The e�e
t of the twofold determinization

is illustrated by the Example 1. This example is intentionally simple: the initial

automaton is deterministi
 and even minimal.

Example 1

Let q

1

and q

2

be two states of A. We suppose that there exist three distin
t words,

u, v and w su
h that: L

A

d

(q

1

) = fu; vg, L

A

d

(q

2

) = fv; wg, fq j u 2 L

A

d

(q)g = fq

1

g,

fq j w 2 L

A

d

(q)g = fq

2

g and fq j v 2 L

A

d

(q)g = fq

1

; q

2

g. We suppose that there exist
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two distin
t words, s and t su
h that: L

A

g

(q

1

) = fsg, L

A

g

(q

2

) = ftg, fq j s 2 L

A

g

(q)g =

fq

1

g and fq j t 2 L

A

g

(q)g = fq

2

g.

The determinization of r(A) produ
es the three states q

0

1

, q

0

2

and q

0

3

of dr(A) su
h

that: q

0

1

= fq

1

g, q

0

2

= fq

2

g and q

0

3

= fq

1

; q

2

g. The right languages of q

0

1

, q

0

2

and q

0

3

in

rdr(A) are pairwise disjoint (they are respe
tively equal to fug, fwg and fvg).

The e�e
t of the �rst determinization is that the two right languages fu; vg and

fv; wg of A have been split into three right languages in rdr(A): fug, fwg and fvg.

Noti
e that the left languages of q

0

1

, q

0

2

and q

0

3

in rdr(A) are respe
tively equal to

fsg, ftg and fs; tg and thus all distin
t. This is due to the fa
t that A is deterministi


(see Proposition (6)).

The determinization of rdr(A) produ
es the two states q

00

1

and q

00

2

of drdr(A) su
h

that: q

00

1

= fq

0

1

; q

0

3

g and q

00

2

= fq

0

2

; q

0

3

g. The right languages of q

00

1

and q

00

2

in drdr(A)

are distin
t (they are respe
tively equal to fu; vg and fv; wg).

The e�e
t of the se
ond determinization is that the three right languages fug, fwg

and fvg of rdr(A) have been joined into two right languages in drdr(A): fu; vg and

fv; wg.

5.2 The deterministi
 
ase

Brzozowski's algorithm 
an be applied to a nondeterministi
 automaton. Here we

fo
us on the 
ase when A is deterministi
. Proposition (6) is due to Brzozowski [3℄.

Proposition (7) and Corollary (1) are very likely not original. These propositions are

gathered in this se
tion for sake of 
ompleteness.

Proposition 6 If A is deterministi
, then dr(A) is the minimal automaton of r(L).

Proof. Sin
e A is deterministi
, its left languages are pairwise disjoint, and so are

the right languages of r(A). The right languages of dr(A), whi
h are unions of right

languages of r(A), are therefore all distin
t.

Proposition 7 If A is deterministi
, then a state of rdr(A) is a union of Nerode

equivalen
e 
lasses of the automaton A.

Proof. The transition fun
tion of r(A) is denoted by Æ

r

. Let q

1

and q

2

be two states

of A = (Q;�; Æ; i; F ). We have:

q

1

� q

2

, [L

A

d

(q

1

) = L

A

d

(q

2

), L

r(A)

g

(q

1

) = L

r(A)

g

(q

2

)℄

Let q

0

be a state of dr(A). By 
onstru
tion, there exists a word u of �

�

su
h that

q

0

= Æ

r

(F; u). We have: q 2 Æ

r

(F; u) , u 2 L

r(A)

g

(q). Therefore, q

1

and q

2

are

equivalent if and only if they are su
h that: q

1

2 Æ

r

(F; u) , q

2

2 Æ

r

(F; u). Thus, a

state of rdr(A) is a union of equivalen
e 
lasses of states in A.

Corollary 1 Let A be a deterministi
 automaton re
ognizing a regular language L.

Let n be the number of states of A. Let r be the number of (left) quotients of L. Then

the deterministi
 
omplexity of r(A) is 2

r

� 2

n

.
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The following proposition leads to a 
hara
terization of the equivalen
e 
lasses of

A. It says that two states p and q of A are equivalent if and only if they belong to

the same states of dr(A). This property 
an be seen as a 
orollary of Proposition (8).

Proposition 8 Let p and q be two states of A. It holds:

p � q , [p 2 P , q 2 P , 8P 2 Q

dr(A)

℄

Proof. We have: p � q , [u 2 L

d

(p) , u 2 L

d

(q), 8u 2 �

�

℄. Moreover L

d

(p) =

S

p2P

r(L

g

(P )), with P 2 Q

dr(A)

. Hen
e the result.

6 A variant of Brzozowski's minimization algorithm

We still assume that A is deterministi
. We show that the Proposition (8) leads

to an original 
omputation of the equivalen
e 
lasses of the states of A after the

determinization of r(A) is a
hieved. On the one hand this result allows us to have

a better understanding of how Brzozowski's algorithm performs the minimization:

the se
ond determinization a
tually is a state-equivalen
e-based pro
edure. On the

other hand it yields a variant of Brzozowski's minimization algorithm, where the

se
ond determinization is repla
ed by a more eÆ
ient 
omputation of the equivalen
e


lasses.

The Algorithm 1 
omputes the equivalen
e 
lasses of A. The partition of Q

initially 
ontains two sets: Q � F and F . At ea
h step of the algorithm, a set Y of

1. Begin

2. Partition fQ� F; Fg

3. Waiting  fFg

4. While Waiting 6= ; do begin

5. X  First(Waiting)

6. Waiting  Waiting � fXg

7. Pro
essed Pro
essed [ fXg

8. for all a 2 � do begin

9. Z  Æ

r

(X; a); if Z 62 Pro
essed then Waiting  Waiting [ Z

10. end

11. for all Y 2 Partition do begin

12. K  X \ Y

13. if K 6= ; then Partition Partition [K

14. if X 6� Y then Partition Partition [ (X �K)

15. if Y 6� Xthen Partition Partition [ (Y �K)

16. end

17. end

18. end

Algorithm 1: Algorithm to extra
t equivalen
e 
lasses of A.
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the 
urrent partition 
ontains possibly equivalent states, in the sense that so far they

belong to the same states of dr(A). Every time a new state X of dr(A) is pro
essed,

it is 
he
ked w.r.t. every set of the partition in order to dete
t sets 
ontaining non-

equivalent states of A. The 
omplexity of the Algorithm 1 is exponential sin
e it


ontains the determinization of r(A). However it is likely more eÆ
ient to extra
t

equivalen
e 
lasses on the 
y than performing a se
ond determinization.

7 Con
lusion

Brzozowski's minimization algorithm is both simple and mysterious. It is based on two

basi
 and easily understandable operations. However the behaviour of the algorithm

is not so obvious. Its average 
omplexity and experimental performan
e are still

unknown or unexplained. This short analysis is intended to 
ontribute to a better

understanding of how this algorithm performs the minimization. In parti
ular it

shows that the pla
e of Brzozowski's algorithm, in a taxonomy su
h as Watson's one,

is among minimization algorithms based on the 
omputation of a state equivalen
e.
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