Split and join for minimizing: Brzozowski’s
algorithm

J.-M. Champarnaud!, A. Khorsi?, T. Paranthoén!

L LIFAR, University of Rouen, France
{champarnaud,paranthoen}@dir.univ-rouen.fr

2 OSD, University of Djilali Liabes, Sidi-Bel-Abbes, Algeria
ahmed_khorsi@lycos.com

Abstract. Brzozowski’s minimization algorithm is based on two successive de-
terminization operations. There is a paradox between its (worst case) expo-
nential complexity and its exceptionally good performance in practice. Our
aim is to analyze the way the twofold determinization performs the minimiza-
tion of a deterministic automaton. We give a characterization of the equiva-
lence classes of A w.r.t. the set of states of the automaton computed by the
first determinization. The second determinization is expected to compute these
equivalence classes. We show that it can be replaced by a specific procedure
based on the classes characterization, which leads to a more efficient variant of
Brzozowski’s algorithm.

Key words: Finite automata, DFA minimization, Brzozowski’s algorithm.

1 Introduction

It is well known that given a regular language L over an alphabet ¥ there exists a
canonical deterministic automaton which recognizes L, namely the minimal (deter-
ministic) automaton of L, whose states are the left quotients of L w.r.t. the words of
¥*. This automaton, denoted by Ay, is unique (up to an isomorphism) and it has a
minimal number of states [13]. Moreover, it can be computed from any determinis-
tic automaton recognizing L by merging states which have identical right languages.
There exist numerous algorithms to minimize a deterministic automaton. Watson
published a taxonomy on this topic [18].

Among the various possible constructions, Brzozowski’s minimization algorithm [3]
is of a specific interest, regarding to several criteria which are discussed below. Let us
first recall how it works. Let A be a (non necessarily deterministic) automaton, d(.A)
be the subset automaton of A and r(.A) be the reverse automaton of A. Brzozowski’s
algorithm is based on the following theorem:

Ap = d(r(d(r(A))))

This is a deep result since it relates DFA minimization to a basic operation, the de-
terminization one. Let us mention that it has been generalized by Mohri to the case of

96

Split and join for minimizing: Brzozowski’s algorithm

bideterminizable transducers defined on the tropical semiring [12]. Brzozowski’s the-
orem is also a fundamental tool for the computation of the nondeterministic minimal
automata of a regular language. Let us cite the implementation [6] of the canoni-
cal automaton Cj, defined by Carrez [4, 1] and the construction of the fundamental
automaton Fy, by Matz and Potthoff [11].

We are here especially interested by algorithmic and complexity features. Watson
used the fact that Brzozowski’s algorithm can take a nondeterministic automaton
as input to design an algorithm which directly constructs a minimal deterministic
automaton from a regular expression [19]. Since our aim is to study the way Br-
zozowski’s algorithm performs a minimization, we will essentially consider the case
when the initial automaton is a deterministic one. The paradox is the following: since
Brzozowski’s algorithm performs two determinizations, its (worst case) complexity is
exponential w.r.t. the number of states of the initial automaton; nevertheless, as
reported by Watson [18], Brzozowski’s algorithm has proved to be exceptionally good
in practice, usually out-performing Hopcroft’s algorithm [7] significantly. Let us add
that the average complexity of the algorithm has been proved to be exponential for
group automata, although they likely are a favourable case since they are both de-
terministic and codeterministic [14].

Our contribution is the following. Let A be a deterministic automaton. We give a
characterization of the equivalence classes of A w.r.t. the set of states of dr(.A), that
is after the first determinization. The second determinization is expected to compute
these equivalence classes. We show it can be replaced by a specific procedure based
on the classes characterization, which leads to a more efficient variant of Brzozowski’s
algorithm.

Next section recalls some useful notations and definitions of automata theory.
Section 3 is especially devoted to determinization and minimization operations. Sec-
tion 4 presents Brzozowski’s minimization algorithm and its proof. Section 5 provides
an original analysis of the algorithm and the variant it leads to.

2 Preliminaries

Let us first review basic notions and terminology concerning finite automata and
regular languages. For further details, classical books [2, 8] or handbooks [20] are
excellent references.

Let ¥ be a non-empty finite set of symbols, called the alphabet. Symbols are
denoted by zq,%2,...,2n. A word u over X is a finite sequence (y1, Y2, ..., Yn) of
symbols, usually written y;ys...y,. The length of a word u, denoted |u| is the number
of symbols in u. The empty word denoted by ¢ has a zero length. If u = y,9...y,, and
U = 21 25...2p are two words over X, their concatenation u-v, usually written wv, is the
word y1Ys...Yn2122...2,. The set of all the words over X is denoted £*. A language over
Y. is a subset of ¥*. The operations of union, concatenation and star over the subsets
of ¥* are called reqular operations. The regular languages over ¥ are the languages
obtained from the finite subsets of ¥* by using a finite number of regular operations.

A (finite) automaton is a 5-tuple M = (Q, 3,9, I, F)) where @ is a (finite) set of
states, ¥ is a finite alphabet, I C (@) is the set of initial states, F' C () is the set of
final states, and ¢ is the transition function. The automaton M is deterministic (M
is a DFA) if and only if |[I| = 1 and 4 is a mapping from @ x X to). Otherwise M

97

Proceedings of the Prague Stringology Conference 02

is a NFA and § is a mapping from @ x ¥ to 2¢. The automaton M is complete if
and only if ¢ is a full mapping. A path of M is a sequence (¢;, a;,Giv1), i = 1,...,n,
of consecutive edges. Its label is the word w = aqas...a,. A word w = ajas...a,
is recognized by the automaton M if there is a path with label w such that ¢, € I
and ¢,.1 € F. The language L(M) recognized by the automaton M is the set of
words which it recognizes. Two automata M and M’ are equivalent if and only if
they recognize the same language. A state is accessible (resp. coaccessible) if and
only if there is a path from an initial state to this state (resp. from this state to a
final state). An automaton is ¢trim if and only if all its states are both accessible and
coaccessible.

Kleene’s theorem [10] states that a language is regular if and only if it is recognized
by a finite automaton.

Let ¢ be astate of A = (Q, %, 8,4, F). The right language of q is the language L7'(q)
(written Lg(g) if not ambiguous) recognized by the automaton Ay(q) = (Q, %, 4, q, F)
obtained from A by making ¢ the unique initial state. The left language of ¢ is
the language L7'(q) (written Ly(q) if not ambiguous) recognized by the automaton
Ay(q) = (Q,%,6,1,q) obtained from A by making ¢ the unique final state. We will
use the following proposition:

Proposition 1 An automaton is deterministic if and only if the left languages of its
states are pairwise disjoint.

The reverse r(u) of the word u is defined as follows: r(¢) = € and, if u = ujusy...u,,
then r(u) = vive...vp, With v; = u,_;44, for all i from 1 to p. The reverse of the
language L is the language r(L) = {u | r(u) € L}. The reverse of the automaton
A= (Q,%,0,1,F) is the automaton r(A) = (Q,%,r(d), F, I), obtained from A by
swapping the role of initial and final states and by reversing the transitions.

We will use the following propositions, where A is a trim automaton:

Proposition 2 If A recognizes the language L then r(A) recognizes the language
r(L).

Proposition 3 If the left (resp. right) language of the state g in A is Ly(q) (resp.
Lq(q)), then its left (resp. right) language in r(A) is Lqa(q) (resp. Ly(q)).
3 Determinization and minimization operations

3.1 Determinization

Definition 1 Let A = (Q,%,0,1,F) be a NFA. The subset-automaton of A is the
automaton d(A) = (Q',3,0", {i'}, F') defined as follows [8, 20]:

e Set of states: A deterministic state is a set of nondeterministic states; for all
q in Q', we have ¢' C Q.

e Initial state: The initial state in d(A) is the set I of initial states in A.

98

Split and join for minimizing: Brzozowski’s algorithm

e Set of transitions: Let ¢' be a deterministic state and a be a symbol in . If the
transition from ¢ on symbol a is defined, then, by construction, its target is the
state 8'(q', a) such that:

(¢ a) = |Jd(g,0) (3)

qeq’

e Set of final states: A deterministic state is final if and only if it contains at
least one final nondeterministic state: ¢ € F' < ¢ N F # ().

We will use the following proposition:

Proposition 4 The right language of a state ' of d(A) is equal to the union of the
right languages of the states q of A belonging to the subset ¢'.

Let n (resp. n’) be the number of states in A (resp. in d(.A)). As stated by Rabin
and Scott [16], the upper bound n’ < 2™ —1 can be reached. Moreover, the automaton
d(A) can be computed with the following complexity [15, 5]: O(y/n2?") when using
lists, and O(n?(logn)2") when using balanced search trees.

3.2 Minimization
The (left) quotient of a regular language L w.r.t. a word u of ¥* is the language
w 'L ={v € X* | uv € L}. The minimal automaton A;, of a regular language L is
defined as follows:

e the set of states is the set of quotients of L,

e the initial state is L,

e the final states are the quotients which contain the empty word,

e the transition function is such that §(uv 'L, z) = (uz) L.

The automaton A;, is unique up to an isomorphism and it has a minimal number of
states [13]. We will use the following proposition:

Proposition 5 A (deterministic, complete, accessible) automaton is minimal if and
only if the right languages of its states are all different.

The automaton Aj, can be computed from any deterministic automaton recogniz-
ing L by merging states which are equivalent w.r.t. Nerode equivalence:

s=t&[scueFet-ue F,Yue X

Computing Nerode equivalence can be realized with a O(n?) complexity [13].
Using the notion of coarsest partition leads to a complexity of O(nlog(n)) [7].

99

Proceedings of the Prague Stringology Conference 02

4 Brzozowski’s minimization algorithm

Let A be an automaton. Let d(A) (resp. r(A)) be the subset automaton (resp. the
reverse automaton) of A. We will write dr(A) for d(r(.A)), rdr(A) for r(d(r(A))) and
drdr(A) for d(r(d(r(A)))).

Brzozowski’s algorithm is based on the following theorem [3]:

Theorem 1 (Brzozowski, 1962) Given a (non necessarily deterministic) automaton
A recognizing a reqular language L, the minimal deterministic automaton Aj, of L
can be computed by the formula:

Ajp, = drdr(A)

Proof. The proof is based on Propositions (1)—(5). By construction, the automaton
drdr(A) is deterministic, complete and accessible. From Proposition (2) it recognizes
the language L. Let us show that the right languages of drdr(A) are all distinct. From
Proposition (1) the left languages of dr(.A) are pairwise disjoint. From Proposition
(3) the right languages of rdr(A) are the left languages of dr(.A). Therefore they are
pairwise disjoint. From Proposition (4) a right language of drdr(.A) is a union of right
languages of rdr(A). Since the right languages of rdr(A) are pairwise disjoint, the
right languages of drdr(A) are all distinct. Thus, by Proposition (5) the automaton
drdr(A) is minimal.

5 Analysis of Brzozowski’s algorithm

5.1 Split and join for minimizing

Let A be an automaton which recognizes a regular language L. We study the trans-
formation of the sequence Sy = (L7}(q))4eq of the right languages of the states of A,
when the twofold determinization is performed:

1 2
Sd —rdr Sd —>drdr Sd

Notice that since the languages of S} are pairwise disjoint and the languages of S3
are all distinct, S} and S2 are sets. Let us remind that the right language of a state
is a (left) quotient of L if A is deterministic and a subset of the intersection of some
(left) quotients of L if A is nondeterministic. The first determinization splits the right
languages of A into disjoint pieces, whereas the second one joins the pieces in order to
recombine the set of (left) quotients of L. The effect of the twofold determinization
is illustrated by the Example 1. This example is intentionally simple: the initial
automaton is deterministic and even minimal.

Example 1

Let ¢, and qy be two states of A. We suppose that there exist three distinct words,
u, v and w such that: L q) = {u,v}, L} () = {v,w}, {qg | v € L} (q)} = {1},
{glwe LM} ={g} and {q¢| v € L} (q)} = {q1,q2}. We suppose that there exist

100

Split and join for minimizing: Brzozowski’s algorithm

two distinct words, s and t such that: L (q1) = {s}, L;'(q2) = {t}, {q¢ | s € L;}(q)} =
{a} and {q |t € L;'(a)} = {a}.

The determinization of r(A) produces the three states q, ¢4 and ¢y of dr(A) such
that: ¢ ={a1}, ¢ = {q} and ¢§ = {q1,q2}. The right languages of ¢}, ¢, and ¢ in
rdr(A) are pairwise disjoint (they are respectively equal to {u}, {w} and {v}).

The effect of the first determinization is that the two right languages {u,v} and
{v,w} of A have been split into three right languages in rdr(A): {u}, {w} and {v}.

Notice that the left languages of qy, ¢4 and g in rdr(A) are respectively equal to
{s}, {t} and {s,t} and thus all distinct. This is due to the fact that A is deterministic
(see Proposition (6)).

The determinization of rdr(A) produces the two states qf and ¢ of drdr(A) such
that: qf = {4}, ¢5} and ¢§ = {q¢},q}}. The right languages of ¢ and ¢y in drdr(A)
are distinct (they are respectively equal to {u,v} and {v,w}).

The effect of the second determinization is that the three right languages {u}, {w}
and {v} of rdr(A) have been joined into two right languages in drdr(A): {u,v} and

{v, w}.

5.2 The deterministic case

Brzozowski’s algorithm can be applied to a nondeterministic automaton. Here we
focus on the case when A is deterministic. Proposition (6) is due to Brzozowski [3].
Proposition (7) and Corollary (1) are very likely not original. These propositions are
gathered in this section for sake of completeness.

Proposition 6 If A is deterministic, then dr(A) is the minimal automaton of r(L).

Proof. Since A is deterministic, its left languages are pairwise disjoint, and so are
the right languages of r(A). The right languages of dr(A), which are unions of right
languages of r(A), are therefore all distinct.

Proposition 7 If A is deterministic, then a state of rdr(A) is a union of Nerode
equivalence classes of the automaton A.

Proof. The transition function of (. A4) is denoted by d,. Let ¢; and ¢ be two states
of A=(Q,%,0,i, F'). We have:

7 = G2 < [Lﬁt(%) = Lf(%) A LZ(A) (1) = L;(A)(QQ)]

Let ¢’ be a state of dr(A). By construction, there exists a word u of ¥* such that
¢ = 6,(F,u). We have: ¢ € 0,(F,u) & u € L;(A)(q). Therefore, ¢; and ¢, are
equivalent if and only if they are such that: ¢; € §,(F,u) < ¢ € 6,(F,u). Thus, a
state of rdr(.A) is a union of equivalence classes of states in A.

Corollary 1 Let A be a deterministic automaton recognizing a reqular language L.
Let n be the number of states of A. Let r be the number of (left) quotients of L. Then
the deterministic complezity of r(A) is 2" < 2™

101

Proceedings of the Prague Stringology Conference 02

The following proposition leads to a characterization of the equivalence classes of
A. It says that two states p and ¢ of A are equivalent if and only if they belong to
the same states of dr(A). This property can be seen as a corollary of Proposition (8).

Proposition 8 Let p and g be two states of A. It holds:
p=q&[pePeqge P, VP € Quu)

Proof. We have: p = ¢ < [u € Ly(p) & u € Ly(q), Yu € ¥*]. Moreover Ly(p) =
U,ep (Ly(P)), with P € Qgr(4). Hence the result.

6 A variant of Brzozowski’s minimization algorithm

We still assume that A is deterministic. We show that the Proposition (8) leads
to an original computation of the equivalence classes of the states of A after the
determinization of r(A) is achieved. On the one hand this result allows us to have
a better understanding of how Brzozowski’s algorithm performs the minimization:
the second determinization actually is a state-equivalence-based procedure. On the
other hand it yields a variant of Brzozowski’s minimization algorithm, where the
second determinization is replaced by a more efficient computation of the equivalence
classes.

The Algorithm 1 computes the equivalence classes of A. The partition of)
initially contains two sets: () — F and F. At each step of the algorithm, a set Y of

1. Begin

2. Partition < {Q — F, F'}

3. Waiting < {F}

4. While Waiting # () do begin

5. X « First(Waiting)

6. Waiting < Waiting — {X }

7. Processed < Processed U { X}

8. for all ¢ € ¥ do begin

9. 7+ 0,(X,a); if Z ¢ Processed then Waiting < Waiting U Z
10. end

11. for all Y € Partition do begin

12. K+ XnY

13. if K # () then Partition < Partition U K

14. if X ¢ Ythen Partition < Partition U (X — K)
15. if Y ¢ Xthen Partition < PartitionU (Y — K)
16. end

17. end

18. end

Algorithm 1: Algorithm to extract equivalence classes of A.

102

Split and join for minimizing: Brzozowski’s algorithm

the current partition contains possibly equivalent states, in the sense that so far they
belong to the same states of dr(A). Every time a new state X of dr(.A) is processed,
it is checked w.r.t. every set of the partition in order to detect sets containing non-
equivalent states of A. The complexity of the Algorithm 1 is exponential since it
contains the determinization of r(A). However it is likely more efficient to extract
equivalence classes on the fly than performing a second determinization.

7 Conclusion

Brzozowski’s minimization algorithm is both simple and mysterious. It is based on two
basic and easily understandable operations. However the behaviour of the algorithm
is not so obvious. Its average complexity and experimental performance are still
unknown or unexplained. This short analysis is intended to contribute to a better
understanding of how this algorithm performs the minimization. In particular it
shows that the place of Brzozowski’s algorithm, in a taxonomy such as Watson’s one,
is among minimization algorithms based on the computation of a state equivalence.

References

[1] A. Arnold, A. Dicky and M. Nivat, A note about minimal non-deterministic automata,
EATCS Bulletin, 47, 166-169, 1992.

[2] D. Beauquier, J. Berstel, and P. Chrétienne. Eléments d’Algorithmique. Masson, Paris,
1992.

[3] J. A. Brzozowski, Canonical regular expressions and minimal state graphs for definite
events, Mathematical Theory of Automata, MRI Symposia Series, Polytechnic Press,
Polytechnic Institute of Brooklyn, NY,12(1962), 529-561.

[4] C. Carrez, On the Minimalization of Non-deterministic Automaton, Research Report,
Laboratoire de Calcul de la Faculté des Sciences de 1'Université de Lille, 1970.

[5] J.-M. Champarnaud, Subset Construction Complexity for Homogeneous Automata,
Position Automata and ZPC-Structures, Theoret. Comp. Se., 267(2001), 17-34.

[6] F. Coulon, Construction de 'automate canonique d’un langage rationnel, Mémoire de
DFEA, sous la direction de J.-M. Champarnaud, Université de Rouen, 2002.

[7] J. E. Hopcroft, An nlogn algorithm for minimizing states in a finite automaton, in:
Kohavi and Paz, eds, Theory of Machines and Computation, Academic Press, New
York, 189-196, 1971.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

[9] A. Khorsi, Minimisation des automates finis déterministes, Master thesis, sous la di-
rection de D. Ziadi, Université de Sidi-Bel-Abbes, 2002.

[10] S.C. Kleene, Representation of events in nerve nets and finite automata, Automata
Studies, Princeton Univ. Press (1956) 3-42.

103

Proceedings of the Prague Stringology Conference 02

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

0. Matz and A. Potthoff, Computing Small Nondeterministic Finite Automata,
TACAS’95, BRICS Note Series NS-95-2, 74-88, 1995.

M. Mohri, Finite-State Transducers in Language and Speech Processing, Computa-
tional Linguistics, 23:2, 1997.

A. Nerode, Linear Automata Transformation, Proceedings of AMS, 9(1958), 541-544.

C. Nicaud, Etude du comportement en moyenne des automates finis et des langages
rationnels, These, Université Paris 7, France, 2000.

J.-L. Ponty. Algorithmique et implémentation des automates. These, Université de
Rouen, France, 1997.

M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM .J. Res.,
3(2):115-125, 1959.

D. Revuz, Minimization of Acyclic Deterministic Automata in Linear Time, Theoret.
Comput. Sci. 92(1992), 181-189.

B. Watson, Taxonomies and Toolkits of Regular Languages Algorithms, PhD thesis,
Eindhoven University of Technology, The Nederlands, 1995.

B. Watson, Directly Constructing Minimal DFAs: Combining Two Algorithms by
Brzozowski, in S. Yu and A. Paun, eds, CTAA 2000, London, Ontario, Lecture Notes
in Computer Science, 2088(2001), 311-317, Springer.

S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume I, Words, Languages, Grammars, pages 41-110. Springer-
Verlag, Berlin, 1997.

104

