
A Work-Optimal Parallel Implementation of

Lossless Image Compression by Blo
k Mat
hing

Sergio De Agostino

S
hool of Computing

Armstrong Atlanti
 State University

11935 Aber
orn Street

Savannah, Georgia 31419

USA

e-mail: agos�armstrong.edu

Abstra
t. Storer suggested that fast en
oders are possible for two-dimensional

lossless 
ompression by showing a square greedy mat
hing LZ1 heuristi
 for bi-

level images, whi
h 
an be implemented by a simple hashing s
heme [S96℄. In

this paper, we show a work-optimal parallel algorithm using a re
tangle greedy

mat
hing te
hnique requiring O(logM logn) time on the PRAM EREW model,

where n is the size of the image and M the maximum size of a re
tangle.

Key words: lossless image 
ompression, sliding di
tionary, parallel algorithm,

PRAM EREW

1 Introdu
tion

Textual substitution 
ompression methods (often 
alled \LZ" methods due to the

work of Lempel and Ziv [LZ76℄) have been designed by Lempel and Ziv [LZ77, ZL78℄

and Storer and Szymanski [SS82℄. These methods parse a string in phrases and

repla
e them with pointers to 
opies, 
alled targets of the pointers, that are stored in a

di
tionary. The en
oded string is a sequen
e of pointers (some of whi
h may represent

single 
hara
ters). Stati
 methods are when the di
tionary is known in advan
e. By


ontrast, with dynami
 methods (LZ1 [LZ77℄ and LZ2 [ZL78℄) the di
tionary may be


onstantly 
hanging as the data is pro
essed (see [BCW90, St88℄ for referen
es).

Storer [S96℄ and Storer and Helfgott [SH97℄ generalized the LZ1 method to lossless

image 
ompression and suggested that very fast en
oders are possible by showing a

square greedy mat
hing LZ1 
ompression heuristi
, whi
h 
an be implemented by a

simple hashing s
heme and a
hieves 60 to 70 per
ent of the 
ompression of JBIG1 on

the CCITT bi-level image test set.

With LZ1 text 
ompression, one simply pro
eeds from left to right making mat
hes

in greedy fashion between a substring in the 
urrent position and a 
opy in the part

of the string already seen. A key advantage of LZ1 
ompression is that de
oding is

always simple and fast. Another advantage is that it is relatively easy to implement.

The two key issues for pra
ti
al implementations are how the en
oder sear
hes for

mat
hes and how pointers are en
oded.

1



Pro
eedings of the Prague Stringology Conferen
e '02

An image has to be s
anned in some linear order. In order to a
hieve a good


ompression performan
e, bidimensional mat
hes have to be 
omputed. In [SH97℄, a

square-mat
h en
oding algorithm is proposed using a simple hashing s
heme dire
ted

to bi-level images. A 64K table with one position for ea
h possible 4x4 subarray is the

only data stru
ture used. All-zero and all-one squares are handled di�erently. The

en
oding s
heme is to pre
ede ea
h item with a 
ag �eld indi
ating whether there is

a mono
hromati
 square, a mat
h or raw data. When there is a mat
h, the 4 x 4

subarray in the 
urrent position is hashed to yield a pointer to a 
opy. This pointer

is used for the 
urrent square greedy mat
h and then repla
ed in the hash table by a

pointer to the 
urrent position.

To improve the 
ompression performan
e, it was also introdu
ed a slower re
tangle

greedy mat
hing te
hnique requiring O(M logM) time where M is the size of the

mat
h [SH97℄. Therefore, O(n logM) is the best sequential time for an image of size

n if we 
ompress by re
tangle mat
hing with M the maximum size of a re
tangle.

Both heuristi
s work with an unrestri
ted window. In [CDG01℄ a re
tangle greedy

mat
hing heuristi
 using a �nite window and a bound to the mat
h size was pre-

sented. The heuristi
 is suitable for a fast implementation similar to the one in [S96℄

and a
hieves 75 to 90 per
ent of the 
ompression of JBIG1 on the CCITT bi-level

image test set. In this paper, we show a work-optimal PRAM EREW implementation

of lossless image 
ompression by blo
k mat
hing requiring O(logM logn) time whi
h

uses a re
tangle greedy mat
hing te
hnique similar to the one in [CDG01℄. The par-

allel heuristi
 a
hieves 95 to 97 per
ent of the 
ompression of the sequential heuristi


mentioned above [CDL02℄. In se
tion 2, we show how the sequential heuristi
 works.

In se
tion 3, we explain the parallel algorithm. In se
tion 4, 
on
lusions and future

work are given.

2 The Re
tangle Greedy Mat
hing Te
hnique

The 
ompression heuristi
 s
ans an image n x m row by row (raster s
an) (the greedy

mat
hing te
hnique 
ould work with any other s
an des
ribed in [SH97℄). We denote

with p

i;j

the pixel in position (i; j). The pro
edure for �nding the largest re
tangle

with left upper 
orner (i; j) that mat
hes a re
tangle with left upper 
orner (k; h) is

des
ribed in Fig. 1.

At the �rst step, the pro
edure 
omputes the longest possible width for a re
tangle

mat
h in (i; j) with respe
t to the position (k; h). The re
tangle 1 x ` 
omputed at

the �rst step is the 
urrent re
tangle mat
h and the sizes of its sides are stored in

side1 and side2. In order to 
he
k whether there is a better mat
h than the 
urrent

one, the longest one-dimensional mat
h on the next row and 
olumn j, not ex
eeding

the 
urrent width, is 
omputed with respe
t to the row next to the 
urrent 
opy and

to 
olumn h. Its length is stored in the temporary variable width and the temporary

variable length is in
reased by one. If the re
tangle R whose sides have size width

and length is greater than the 
urrent mat
h, the 
urrent mat
h is repla
ed by R.

We iterate this operation on ea
h row until the area of the 
urrent mat
h is greater

or equal to the area of the longest feasible width-wide re
tangle, sin
e no further

improvement would be possible at that point. For example, in Fig. 2 we apply the

pro
edure to �nd the largest re
tangle mat
h between position (0; 0) and (6; 6).

2



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blo
k Mat
hing

Figure 1: Computing the largest re
tangle mat
h in (i; j) and (k; h).

A one-dimensional mat
h of width 6 is found at step 1. Then, at step 2 a better

mat
h is obtained whi
h is 2 x 4. At step 3 and step 4 the 
urrent mat
h is still 2 x 4

sin
e the longest mat
h on row 3 and 9 has width 2. At step 5, another mat
h of width

2 provides a better re
tangle mat
h whi
h is 5 x 2. At step 6, the pro
edure stops sin
e

the longest mat
h has width 1 and the re
tangle mat
h 
an 
over at most 7 rows. It

follows that 5 x 2 is the greedy mat
h sin
e a re
tangle of width 1 
annot have a larger

area. Obviously, this pro
edure 
an be used for 
omputing the largest mono
hromati


re
tangle in a given position (i; j) as well. If the 4 x 4 subarray in position (i; j)

is mono
hromati
, then we 
ompute the largest mono
hromati
 re
tangle in that

position. Otherwise, we 
ompute the largest re
tangle mat
h in the position provided

by the hash table and update the table with the 
urrent position. If the subarray

is not hashed to a pointer, then it is left un
ompressed and added to the hash table

with its 
urrent position. The positions 
overed by mat
hes are skipped in the linear

s
an of the image.

As pointed out in [SH97℄, for typi
al bi-level images this s
heme is extremely

fast for square mat
hes and there is no signi�
ant slowdown over simply reading and

writing the image. As mentioned in the introdu
tion, in [SH97℄ it is shown that the

re
tangle greedy mat
hing te
hnique requires O(M logM) time where M is the size

of the mat
h. Therefore, O(n logM) is the best sequential time for an image of size n

if we 
ompress by re
tangle mat
hing with M the maximum size of a re
tangle. The

en
oding s
heme is to pre
ede ea
h item with a 
ag �eld indi
ating whether there

is a mono
hromati
 square (0 for white, 10 for bla
k), a mat
h (110) or raw data

(111). Pointers are en
oded with the straightforward en
oding with three integers

for x, y and size while a simple variable-length 
ode is used to spe
ify the size of a

mono
hromati
 square. We also mentioned in the introdu
tion that a key issue for

3



Pro
eedings of the Prague Stringology Conferen
e '02

Figure 2: The largest mat
h in (0,0) and (6,6) is 
omputed at step 5.

pra
ti
al implementations is how pointers are en
oded. As pointed out in [SH97℄, good

pointer 
oding s
hemes are important for text 
ompression and be
ome even more

important for images sin
e the number of mat
hes that are used is typi
ally less than

the number found and the straightforward 
oding uses many more bits per pointer.

With re
tangular mat
hes this issue be
omes even more signi�
ant. The en
oding of

mono
hromati
 re
tangles is a dominant fa
tor of the 
ompression performan
e and

the eÆ
ien
y of the method in
reases with large images.

In [CDG01℄ we experimented our re
tangle greedy mat
hing algorithm with a

bounded size di
tionary de�ned by a window 
omprising the last 64K pixels read. We

bounded by twelve the number of bits to en
ode either the width or the length of a

re
tangle mat
h. We use either four or eight or twelve bits to en
ode one re
tangle

side. Therefore, nine di�erent kinds of re
tangle are de�ned. A pointer is en
oded in

the following way:

� the 
ag �eld indi
ating the type of item;

� if the item is not mono
hromati
, sixteen bits whi
h are raw or indi
ating the

position of the mat
h in the window;

� three or four bits en
oding one of the nine kinds of re
tangle;

� bits for the length and the width.

Larger re
tangles are less frequent but still relevant for the 
ompression performan
e.

Then, four bits are used to indi
ate when twelve bits or eight and twelve bits are

needed for the length and the width. This way of en
oding re
tangles plays a relevant

role for the 
ompression performan
e. In fa
t, it wastes four bits when twelve bits are

required for the sides but saves four to twelve bits when four or eight bits suÆ
e. On

4



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blo
k Mat
hing

the CCITT bi-level image test set, we a
hieved 75 to 90 per
ent of the 
ompression

of JBIG1.

3 The Parallel Algorithm

To a
hieve logarithmi
 time we partition an m x n image I in x x y re
tangular

areas where x and y are �(log

1=2

mn). In parallel for ea
h area, one pro
essor applies

the sequential parsing algorithm so that in logarithmi
 time ea
h area will be parsed

in re
tangles, some of whi
h are mono
hromati
. We do not allow overlapping of

the mono
hromati
 re
tangles when we apply the sequential algorithm to ea
h area.

Ea
h pro
essor 
ould work with a sliding window of size 64K and bounded mat
hes,

using the same pointer en
oding s
heme des
ribed in the previous se
tion. However,

before en
oding we wish to 
ompute larger mono
hromati
 re
tangles. If we 
ompute

unbounded mono
hromati
 re
tangles, the 
oding for them 
ould be the 
ag �eld, log

m bits for the length and log n bits for the width.

In the des
ription of the algorithm, we use four m x n matri
es RC, CC, W and

L whi
h are determined by the parsing pro
edure on ea
h area. RC[i; j℄ and CC[i; j℄

are equal to zero if I[i; j℄ is not 
overed by a mono
hromati
 re
tangle, otherwise

they are equal to the row and 
olumn 
oordinate of the left upper 
orner of the

mono
hromati
 re
tangle. W [i; j℄ and L[i; j℄ are equal to zero if I[i; j℄ is not 
overed

by a mono
hromati
 re
tangle, otherwise they are equal to the width and length of

the mono
hromati
 re
tangle. We also use four matri
es TRC, TCC, TW and TR

to store temporary values needed for the 
omputation of the �nal parsing, whi
h are

initially set to RC, CC, W and L. The pro
edure to 
ompute larger mono
hromati


re
tangles works as in Fig. 3.

Basi
ally, we try to merge mono
hromati
 re
tangles adja
ent on the horizontal

boundaries and then on the verti
al boundaries, doubling in this way the length and

width of ea
h area at ea
h step. It is always the re
tangle of an area in odd position

with respe
t either to the verti
al or horizontal order whi
h tries to merge with the

adja
ent re
tangle in the next area. Generally, this merging operation 
auses that the

re
tangles split into two or three subre
tangles. The re
tangle from whi
h we start

the merging is split in at most two subre
tangles sin
e we want to preserve the upper

left 
orner. The merging is realized by updating the temporary matri
es storing the

information on the mono
hromati
 re
tangles 
omputed on the image. If we obtain a

larger re
tangle then we update the original matri
es, otherwise we 
ontinue merging

by working with the temporary values to see if we 
an get a larger re
tangle later.

We des
ribe the pro
edure more in details. At the �rst line internal to the main

loop (Figure 3), we 
onsider in parallel the left lower 
orners of mono
hromati
 re
t-

angles of the areas in odd positions whi
h are adja
ent to a mono
hromati
 re
tangle

with the same 
olor in the next area below. Then, at line 3 we 
hange the width and

length of the re
tangle 
onsidered, where the length is the sum of the lengths of the

two adja
ent re
tangles and the width 
hanges if the right 
orners of the re
tangle in

the next area are to the left of the right 
orners of the other re
tangle. At line 4 and

5 the values in the temporary matri
es are 
hanged also for the pixels in the next

area sin
e they merged. Obviously, these 
hanges 
an be made with optimal work in

logarithmi
 time. As mentioned above, the merging 
auses a splitting of re
tangles

into subre
tangles and the values in the temporary matri
es must be rede�ned also

5



Pro
eedings of the Prague Stringology Conferen
e '02

Figure 3: How to 
ompute mono
hromati
 re
tangles in parallel.

for the pixels 
overed by the other re
tangles produ
ed by the merging. This is done

from line 6 to 10. In parallel we 
onsider all the pixels for whi
h, a

ording to the

temporary values, either they are not on the leftmost 
olumn of a re
tangle and the

adja
ent pixels in front of them result to be on the rightest 
olumn of a re
tangle

(line 6) or they are on the leftmost 
olumn (line 7). For ea
h of them, we 
ompute

the 
losest pixel to the right for whi
h, a

ording to the temporary values, either it

is not on the rightmost 
olumn of a re
tangle and the next pixel results to be on the

leftmost 
olumn of a re
tangle (line 8) or it is on the rightmost 
olumn of a re
tan-

gle (line 9). Being this pixel the 
losest to the one 
omputed in lines 6 and 7, they

must be on the rightmost and leftmost 
olumn of the same mono
hromati
 re
tangle

respe
tively. This is rede�ned in the temporary matri
es at line 10. At this point,

for ea
h left upper 
orner of a mono
hromati
 re
tangle (line 11) if we obtained a

larger re
tangle after the merging (line 12) we 
an ovewrite the information on the

6



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blo
k Mat
hing

new re
tangle on the original matri
es (line 13). Observe that this way of updating

the matri
es may introdu
e overlapping of the mono
hromati
 re
tangles. Then, we

repeat the same pro
edure trying to merge re
tangles horizontally (line 14{26).

To analize the 
omplexity of the algorithm, it is enough to 
onsider that at ea
h

iteration of the main loop we double the sides of the areas and to re
all the 
lassi
al

parallel pre�x 
omputation te
hnique. All the statements inside the loop require

logarithmi
 time with optimal parallel work (lines 8{9 and 21{22 by parallel pre�x).

Sin
e no operation is exe
uted if there is nothing to merge, the total running time

with optimal parallel work is O(log n logM), where M is the maximum size of a

mono
hromati
 re
tangle. Then, from the matri
es we 
an easily derive the sequen
e

of pointers with optimal parallel work and logarithmi
 time by parallel pre�x.

4 Con
lusions

In this paper, we showed a work-optimal parallel algorithm for lossless image 
ompres-

sion by blo
k mat
hing using a re
tangle greedy mat
hing te
hnique whi
h requires

O(logM logn) time. The algorithm is suitable for an implementation on pra
ti
al

parallel ar
hite
tures as meshes of trees, multigrids and pyramids.

As future work, a detailed study on how the algorithm must be implemented on

these ar
hite
tures 
ould be provided. Also, pra
ti
al parallel algorithms for de
om-

pression should be designed.

Referen
es

[BCW90℄ Bell T.C., Cleary J.G., Witten I.H: Text Compression. Prenti
e Hall.

[CDG01℄ Cinque L., De Agostino S., Grande E: LZ1 Compression of Binary Im-

ages using a Simple Re
tangle Greedy Mat
hing Te
hnique. IEEE Data

Compression Conferen
e, 492.

[CDL02℄ Cinque L., De Agostino S., Liberati F.: A Parallel Algorithm for Lossless

Image Compression by Blo
k Mat
hing. IEEE Data Compression Confer-

en
e, 450.

[LZ76℄ Lempel A., Ziv J: On the Complexity of Finite Sequen
es. IEEE Trans-

a
tions on Information Theory, 22, 75-81.

[LZ77℄ Lempel A., Ziv J: A Universal Algorithm for Sequential Data Compres-

sion. IEEE Transa
tions on Information Theory, 23, 337-343.

[St88℄ Storer J.A.: Data Compression: Methods and Theory. Computer S
ien
e

Press.

[S96℄ Storer J. A.: Lossless Image Compression using Generalized LZ1-Type

Methods. IEEE Data Compression Conferen
e, 290-299.

[SH97℄ Storer J. A., Helfgott H.: Lossless Image Compression by Blo
k Mat
hing.

The Computer Journal, 40, 137-145.

7



Pro
eedings of the Prague Stringology Conferen
e '02

[SS82℄ Storer J. A., Szymanski T. G.: Data Compression via Textual Substitu-

tion. Journal of ACM, 29, 928-951.

[ZL78℄ Ziv J., Lempel A.,: Compression of Individual Sequen
es via Variable

Rate Coding. Transa
tions on Information Theory, 24, 530-536.

8


