
A Work-Optimal Parallel Implementation of

Lossless Image Compression by Blok Mathing

Sergio De Agostino

Shool of Computing

Armstrong Atlanti State University

11935 Aberorn Street

Savannah, Georgia 31419

USA

e-mail: agos�armstrong.edu

Abstrat. Storer suggested that fast enoders are possible for two-dimensional

lossless ompression by showing a square greedy mathing LZ1 heuristi for bi-

level images, whih an be implemented by a simple hashing sheme [S96℄. In

this paper, we show a work-optimal parallel algorithm using a retangle greedy

mathing tehnique requiring O(logM logn) time on the PRAM EREW model,

where n is the size of the image and M the maximum size of a retangle.

Key words: lossless image ompression, sliding ditionary, parallel algorithm,

PRAM EREW

1 Introdution

Textual substitution ompression methods (often alled \LZ" methods due to the

work of Lempel and Ziv [LZ76℄) have been designed by Lempel and Ziv [LZ77, ZL78℄

and Storer and Szymanski [SS82℄. These methods parse a string in phrases and

replae them with pointers to opies, alled targets of the pointers, that are stored in a

ditionary. The enoded string is a sequene of pointers (some of whih may represent

single haraters). Stati methods are when the ditionary is known in advane. By

ontrast, with dynami methods (LZ1 [LZ77℄ and LZ2 [ZL78℄) the ditionary may be

onstantly hanging as the data is proessed (see [BCW90, St88℄ for referenes).

Storer [S96℄ and Storer and Helfgott [SH97℄ generalized the LZ1 method to lossless

image ompression and suggested that very fast enoders are possible by showing a

square greedy mathing LZ1 ompression heuristi, whih an be implemented by a

simple hashing sheme and ahieves 60 to 70 perent of the ompression of JBIG1 on

the CCITT bi-level image test set.

With LZ1 text ompression, one simply proeeds from left to right making mathes

in greedy fashion between a substring in the urrent position and a opy in the part

of the string already seen. A key advantage of LZ1 ompression is that deoding is

always simple and fast. Another advantage is that it is relatively easy to implement.

The two key issues for pratial implementations are how the enoder searhes for

mathes and how pointers are enoded.

1



Proeedings of the Prague Stringology Conferene '02

An image has to be sanned in some linear order. In order to ahieve a good

ompression performane, bidimensional mathes have to be omputed. In [SH97℄, a

square-math enoding algorithm is proposed using a simple hashing sheme direted

to bi-level images. A 64K table with one position for eah possible 4x4 subarray is the

only data struture used. All-zero and all-one squares are handled di�erently. The

enoding sheme is to preede eah item with a ag �eld indiating whether there is

a monohromati square, a math or raw data. When there is a math, the 4 x 4

subarray in the urrent position is hashed to yield a pointer to a opy. This pointer

is used for the urrent square greedy math and then replaed in the hash table by a

pointer to the urrent position.

To improve the ompression performane, it was also introdued a slower retangle

greedy mathing tehnique requiring O(M logM) time where M is the size of the

math [SH97℄. Therefore, O(n logM) is the best sequential time for an image of size

n if we ompress by retangle mathing with M the maximum size of a retangle.

Both heuristis work with an unrestrited window. In [CDG01℄ a retangle greedy

mathing heuristi using a �nite window and a bound to the math size was pre-

sented. The heuristi is suitable for a fast implementation similar to the one in [S96℄

and ahieves 75 to 90 perent of the ompression of JBIG1 on the CCITT bi-level

image test set. In this paper, we show a work-optimal PRAM EREW implementation

of lossless image ompression by blok mathing requiring O(logM logn) time whih

uses a retangle greedy mathing tehnique similar to the one in [CDG01℄. The par-

allel heuristi ahieves 95 to 97 perent of the ompression of the sequential heuristi

mentioned above [CDL02℄. In setion 2, we show how the sequential heuristi works.

In setion 3, we explain the parallel algorithm. In setion 4, onlusions and future

work are given.

2 The Retangle Greedy Mathing Tehnique

The ompression heuristi sans an image n x m row by row (raster san) (the greedy

mathing tehnique ould work with any other san desribed in [SH97℄). We denote

with p

i;j

the pixel in position (i; j). The proedure for �nding the largest retangle

with left upper orner (i; j) that mathes a retangle with left upper orner (k; h) is

desribed in Fig. 1.

At the �rst step, the proedure omputes the longest possible width for a retangle

math in (i; j) with respet to the position (k; h). The retangle 1 x ` omputed at

the �rst step is the urrent retangle math and the sizes of its sides are stored in

side1 and side2. In order to hek whether there is a better math than the urrent

one, the longest one-dimensional math on the next row and olumn j, not exeeding

the urrent width, is omputed with respet to the row next to the urrent opy and

to olumn h. Its length is stored in the temporary variable width and the temporary

variable length is inreased by one. If the retangle R whose sides have size width

and length is greater than the urrent math, the urrent math is replaed by R.

We iterate this operation on eah row until the area of the urrent math is greater

or equal to the area of the longest feasible width-wide retangle, sine no further

improvement would be possible at that point. For example, in Fig. 2 we apply the

proedure to �nd the largest retangle math between position (0; 0) and (6; 6).

2



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blok Mathing

Figure 1: Computing the largest retangle math in (i; j) and (k; h).

A one-dimensional math of width 6 is found at step 1. Then, at step 2 a better

math is obtained whih is 2 x 4. At step 3 and step 4 the urrent math is still 2 x 4

sine the longest math on row 3 and 9 has width 2. At step 5, another math of width

2 provides a better retangle math whih is 5 x 2. At step 6, the proedure stops sine

the longest math has width 1 and the retangle math an over at most 7 rows. It

follows that 5 x 2 is the greedy math sine a retangle of width 1 annot have a larger

area. Obviously, this proedure an be used for omputing the largest monohromati

retangle in a given position (i; j) as well. If the 4 x 4 subarray in position (i; j)

is monohromati, then we ompute the largest monohromati retangle in that

position. Otherwise, we ompute the largest retangle math in the position provided

by the hash table and update the table with the urrent position. If the subarray

is not hashed to a pointer, then it is left unompressed and added to the hash table

with its urrent position. The positions overed by mathes are skipped in the linear

san of the image.

As pointed out in [SH97℄, for typial bi-level images this sheme is extremely

fast for square mathes and there is no signi�ant slowdown over simply reading and

writing the image. As mentioned in the introdution, in [SH97℄ it is shown that the

retangle greedy mathing tehnique requires O(M logM) time where M is the size

of the math. Therefore, O(n logM) is the best sequential time for an image of size n

if we ompress by retangle mathing with M the maximum size of a retangle. The

enoding sheme is to preede eah item with a ag �eld indiating whether there

is a monohromati square (0 for white, 10 for blak), a math (110) or raw data

(111). Pointers are enoded with the straightforward enoding with three integers

for x, y and size while a simple variable-length ode is used to speify the size of a

monohromati square. We also mentioned in the introdution that a key issue for

3



Proeedings of the Prague Stringology Conferene '02

Figure 2: The largest math in (0,0) and (6,6) is omputed at step 5.

pratial implementations is how pointers are enoded. As pointed out in [SH97℄, good

pointer oding shemes are important for text ompression and beome even more

important for images sine the number of mathes that are used is typially less than

the number found and the straightforward oding uses many more bits per pointer.

With retangular mathes this issue beomes even more signi�ant. The enoding of

monohromati retangles is a dominant fator of the ompression performane and

the eÆieny of the method inreases with large images.

In [CDG01℄ we experimented our retangle greedy mathing algorithm with a

bounded size ditionary de�ned by a window omprising the last 64K pixels read. We

bounded by twelve the number of bits to enode either the width or the length of a

retangle math. We use either four or eight or twelve bits to enode one retangle

side. Therefore, nine di�erent kinds of retangle are de�ned. A pointer is enoded in

the following way:

� the ag �eld indiating the type of item;

� if the item is not monohromati, sixteen bits whih are raw or indiating the

position of the math in the window;

� three or four bits enoding one of the nine kinds of retangle;

� bits for the length and the width.

Larger retangles are less frequent but still relevant for the ompression performane.

Then, four bits are used to indiate when twelve bits or eight and twelve bits are

needed for the length and the width. This way of enoding retangles plays a relevant

role for the ompression performane. In fat, it wastes four bits when twelve bits are

required for the sides but saves four to twelve bits when four or eight bits suÆe. On

4



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blok Mathing

the CCITT bi-level image test set, we ahieved 75 to 90 perent of the ompression

of JBIG1.

3 The Parallel Algorithm

To ahieve logarithmi time we partition an m x n image I in x x y retangular

areas where x and y are �(log

1=2

mn). In parallel for eah area, one proessor applies

the sequential parsing algorithm so that in logarithmi time eah area will be parsed

in retangles, some of whih are monohromati. We do not allow overlapping of

the monohromati retangles when we apply the sequential algorithm to eah area.

Eah proessor ould work with a sliding window of size 64K and bounded mathes,

using the same pointer enoding sheme desribed in the previous setion. However,

before enoding we wish to ompute larger monohromati retangles. If we ompute

unbounded monohromati retangles, the oding for them ould be the ag �eld, log

m bits for the length and log n bits for the width.

In the desription of the algorithm, we use four m x n matries RC, CC, W and

L whih are determined by the parsing proedure on eah area. RC[i; j℄ and CC[i; j℄

are equal to zero if I[i; j℄ is not overed by a monohromati retangle, otherwise

they are equal to the row and olumn oordinate of the left upper orner of the

monohromati retangle. W [i; j℄ and L[i; j℄ are equal to zero if I[i; j℄ is not overed

by a monohromati retangle, otherwise they are equal to the width and length of

the monohromati retangle. We also use four matries TRC, TCC, TW and TR

to store temporary values needed for the omputation of the �nal parsing, whih are

initially set to RC, CC, W and L. The proedure to ompute larger monohromati

retangles works as in Fig. 3.

Basially, we try to merge monohromati retangles adjaent on the horizontal

boundaries and then on the vertial boundaries, doubling in this way the length and

width of eah area at eah step. It is always the retangle of an area in odd position

with respet either to the vertial or horizontal order whih tries to merge with the

adjaent retangle in the next area. Generally, this merging operation auses that the

retangles split into two or three subretangles. The retangle from whih we start

the merging is split in at most two subretangles sine we want to preserve the upper

left orner. The merging is realized by updating the temporary matries storing the

information on the monohromati retangles omputed on the image. If we obtain a

larger retangle then we update the original matries, otherwise we ontinue merging

by working with the temporary values to see if we an get a larger retangle later.

We desribe the proedure more in details. At the �rst line internal to the main

loop (Figure 3), we onsider in parallel the left lower orners of monohromati ret-

angles of the areas in odd positions whih are adjaent to a monohromati retangle

with the same olor in the next area below. Then, at line 3 we hange the width and

length of the retangle onsidered, where the length is the sum of the lengths of the

two adjaent retangles and the width hanges if the right orners of the retangle in

the next area are to the left of the right orners of the other retangle. At line 4 and

5 the values in the temporary matries are hanged also for the pixels in the next

area sine they merged. Obviously, these hanges an be made with optimal work in

logarithmi time. As mentioned above, the merging auses a splitting of retangles

into subretangles and the values in the temporary matries must be rede�ned also

5



Proeedings of the Prague Stringology Conferene '02

Figure 3: How to ompute monohromati retangles in parallel.

for the pixels overed by the other retangles produed by the merging. This is done

from line 6 to 10. In parallel we onsider all the pixels for whih, aording to the

temporary values, either they are not on the leftmost olumn of a retangle and the

adjaent pixels in front of them result to be on the rightest olumn of a retangle

(line 6) or they are on the leftmost olumn (line 7). For eah of them, we ompute

the losest pixel to the right for whih, aording to the temporary values, either it

is not on the rightmost olumn of a retangle and the next pixel results to be on the

leftmost olumn of a retangle (line 8) or it is on the rightmost olumn of a retan-

gle (line 9). Being this pixel the losest to the one omputed in lines 6 and 7, they

must be on the rightmost and leftmost olumn of the same monohromati retangle

respetively. This is rede�ned in the temporary matries at line 10. At this point,

for eah left upper orner of a monohromati retangle (line 11) if we obtained a

larger retangle after the merging (line 12) we an ovewrite the information on the

6



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blok Mathing

new retangle on the original matries (line 13). Observe that this way of updating

the matries may introdue overlapping of the monohromati retangles. Then, we

repeat the same proedure trying to merge retangles horizontally (line 14{26).

To analize the omplexity of the algorithm, it is enough to onsider that at eah

iteration of the main loop we double the sides of the areas and to reall the lassial

parallel pre�x omputation tehnique. All the statements inside the loop require

logarithmi time with optimal parallel work (lines 8{9 and 21{22 by parallel pre�x).

Sine no operation is exeuted if there is nothing to merge, the total running time

with optimal parallel work is O(log n logM), where M is the maximum size of a

monohromati retangle. Then, from the matries we an easily derive the sequene

of pointers with optimal parallel work and logarithmi time by parallel pre�x.

4 Conlusions

In this paper, we showed a work-optimal parallel algorithm for lossless image ompres-

sion by blok mathing using a retangle greedy mathing tehnique whih requires

O(logM logn) time. The algorithm is suitable for an implementation on pratial

parallel arhitetures as meshes of trees, multigrids and pyramids.

As future work, a detailed study on how the algorithm must be implemented on

these arhitetures ould be provided. Also, pratial parallel algorithms for deom-

pression should be designed.

Referenes

[BCW90℄ Bell T.C., Cleary J.G., Witten I.H: Text Compression. Prentie Hall.

[CDG01℄ Cinque L., De Agostino S., Grande E: LZ1 Compression of Binary Im-

ages using a Simple Retangle Greedy Mathing Tehnique. IEEE Data

Compression Conferene, 492.

[CDL02℄ Cinque L., De Agostino S., Liberati F.: A Parallel Algorithm for Lossless

Image Compression by Blok Mathing. IEEE Data Compression Confer-

ene, 450.

[LZ76℄ Lempel A., Ziv J: On the Complexity of Finite Sequenes. IEEE Trans-

ations on Information Theory, 22, 75-81.

[LZ77℄ Lempel A., Ziv J: A Universal Algorithm for Sequential Data Compres-

sion. IEEE Transations on Information Theory, 23, 337-343.

[St88℄ Storer J.A.: Data Compression: Methods and Theory. Computer Siene

Press.

[S96℄ Storer J. A.: Lossless Image Compression using Generalized LZ1-Type

Methods. IEEE Data Compression Conferene, 290-299.

[SH97℄ Storer J. A., Helfgott H.: Lossless Image Compression by Blok Mathing.

The Computer Journal, 40, 137-145.

7



Proeedings of the Prague Stringology Conferene '02

[SS82℄ Storer J. A., Szymanski T. G.: Data Compression via Textual Substitu-

tion. Journal of ACM, 29, 928-951.

[ZL78℄ Ziv J., Lempel A.,: Compression of Individual Sequenes via Variable

Rate Coding. Transations on Information Theory, 24, 530-536.

8


