
Constrution of the CDAWG for a Trie

Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara,

Masayuki Takeda, and Setsuo Arikawa

Department of Informatis, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: fs-ine, hoshino, ayumi, takeda, arikawag�i.kyushu-u.a.jp

Abstrat. Trie is a tree struture to represent a set of strings. When the

strings have many ommon pre�xes, the number of nodes in the trie is muh

less than the total length of the strings. In this paper, we propose an algorithm

for onstruting the Compat Direted Ayli Word Graph for a trie, whih

runs in linear time and spae with respet to the number of nodes in the trie.

Key words: Pattern mathing, Index struture, Trie, SuÆx trie, SuÆx tree,

DAWG, CDAWG, Linear time algorithm

1 Introdution

Crohemore and V�erin displayed a relationship among suÆx tries, suÆx trees, Di-

reted Ayli Word Graphs (DAWGs), and Compat Direted Ayli Word Graphs

(CDAWGs) [CV97℄. It states that a suÆx tree (DAWG, resp.) an be obtained by

ompating (minimizing, resp.) the orresponding suÆx trie. Similarly, a CDAWG

an be obtained by either ompating the orresponding DAWG or minimizing the

orresponding suÆx tree.

It is known that all of these indexing strutures, exept suÆx tries, an be on-

struted in linear time and spae: Weiner [Wei73℄, MCreight [MC76℄, and Ukko-

nen [Ukk95℄ for suÆx trees, and Blumer et al. [BBH

+

85℄ for DAWGs.

In [BBH

+

87℄ Blumer et al. gave an algorithm for onstruting a CDAWG by

ompating the orresponding DAWG. Diret onstrution of a CDAWG from a

given string is also important, sine the hidden onstant of the spae omplexity

of CDAWGs is stritly smaller than those of suÆx trees and DAWGs [BBH

+

87℄.

Atually, Crohemore and V�erin [CV97℄ gave the �rst algorithm that diretly on-

struts CDAWGs, whih is based on MCreight's algorithm for suÆx trees. Reently,

Inenaga et al. [IHS

+

01a℄ developed an on-line algorithm for the diret onstrution

of CDAWGs, whih is based on Ukkonen's algorithm.

Their algorithm an also onstrut a CDAWG for a set S of strings in linear time

with respet to the total length ` of the strings in S. In this paper, we onsider the

ase that the set S is given in the form of a trie, as input. Sine the trie shares

ommon pre�xes of the strings in S, the number n of nodes of the trie is less than `.

We show a non-trivial extension of the algorithm that onstruts CDAWG for a trie

in O(n) time and spae.

Some related work an be seen in literature: Kosaraju [Kos89℄ introdued the

suÆx tree for a reversed trie, and showed an algorithm to onstrut it in O(n logn)

1

Proeedings of the Prague Stringology Conferene '01

time. Breslauer [Bre98℄ redued it to O(n) time. On the other hand, our algorithm

onstruts a CDAWG for a (normal) trie. We remark that our algorithm an be easily

adopted to onstrut suÆx trees and DAWGs instead of CDAWGs, with a slight

modi�ation in the same way as in [IHS

+

01b℄. That means, all of these indexing

strutures for a trie an be onstruted in linear time with respet to the number of

nodes in the trie.

2 Preliminaries

The Compat Direted Ayli Word Graph (CDAWG) an be seen as either the

ompation of the Direted Ayli Word Graph (DAWG), or the minimization of

the suÆx tree [BBH

+

87, CV97℄. In this setion, we reall the properties of CDAWGs,

ompared with those of suÆx trees.

2.1 Notations

Let � be a �nite alphabet. An element of �

�

is alled a string. Strings x, y, and z are

said to be a pre�x, fator, and suÆx of the string w = xyz, respetively. The sets of

pre�xes, fators, and suÆxes of a string w are denoted by Pre�x(w), Fator(w), and

SuÆx(w), respetively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. The ith symbol of a string w is denoted by w[i℄ for

1� i�jwj, and the fator of a string w that begins at position i and ends at position

j is denoted by w[i :j℄ for 1� i�j�jwj. For onveniene, let w[i :j℄ = " for j<i.

Given a set S of strings, let kSk represent the total length of the strings in S, and

jSj the ardinality of S. The sets of pre�xes, fators, and suÆxes of the strings in S

are denoted by Pre�x(S), Fator(S), and SuÆx(S), respetively.

2.2 Compat Direted Ayli Word Graphs

Here we show the properties of CDAWGs. For omparison, we �rst reall the proper-

ties of suÆx trees. The suÆx tree for a set S of strings is a rooted tree whose edges

are labeled with strings in Fator(S) (see Fig. 1). We denote by STree(S) the suÆx

tree for S. We here assume that eah string w

i

in S=fw

1

; : : : ; w

k

g ends with a unique

endmarker $

i

=2�, where 1� i�k. Let S

0

=fw

1

$

1

; : : : ; w

k

$

k

g. On the above assump-

tion, every string in SuÆx(S

0

) is assoiated with a leaf node in STree(S

0

). STree(S

0

)

has the following properties:

1. It has a root node, at most kSk�1 internal nodes, and kSk+jSj leaf nodes.

2. The root node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same

letter.

4. Any string in Fator(S) is represented by a path starting at the root node.

5. Any string in SuÆx(S

0

) is represented by a path starting at the root node and

ending at a leaf node.

2

Constrution of the CDAWG for a Trie

m

m
m

a

a

l
l

m

a

l

a

m
m

a

l
l

l

Figure 1: STree(S) for S = fmammalg. Sine the last letter l plays the role of the endmarker, the

endmarker is omitted.

The ompat direted ayli word graph (CDAWG) was �rst introdued by

Blumer et al. [BBH

+

87℄. The CDAWG for a set S of strings is a direted ayli graph

with edges labeled by strings in Fator(S) (see Fig. 2). We denote by CDAWG(S) the

CDAWG for S. We similarly assume that eah string in S ends with a unique end-

marker. It is beause the algorithm for onstruting the CDAWG for a set of strings,

whih was given in [IHS

+

01a℄, requires the endmarkers. Remark that for any set S of

strings CDAWG(S

0

), whose edges labeled with $

i

are removed for any i (1� i � jSj),

is equal to the CDAWG of S. CDAWG(S

0

) has the following properties:

1. It has an initial node, at most kSk�1 internal nodes, and jSj �nal nodes.

2. The initial node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same

letter.

4. Any string in Fator(S) is represented by a path starting at the initial node.

5. Any string in SuÆx(S

0

) is represented by a path starting at the initial node and

ending at a �nal node.

6. Suppose that a path spelling out �2�

�

ends at a node v. If a string � is always

preeded by 2�

�

and �=� in any string x2S

0

suh that �2Fator(x), the

path spelling out � also ends at node v.

m

m

a

a

l

a

m
m
a

l

l

l

Figure 2: CDAWG(S) for S = fmammalg. Sine the last letter l plays the role of the endmarker,

the endmarker is omitted.

3

Proeedings of the Prague Stringology Conferene '01

In Fig. 2, one an see that the path spelling out a ends at the same node as the

one spelling out ma, with regard to the property 6 written above. This is beause a

is always preeded by m in string mammal.

Hereafter, we denote by (u; �; v) an edge labeled with � whih starts at node u

and ends at node v, both in CDAWGs and suÆx trees.

2.3 Trie and Reversed Trie

Given a set S = fw

1

; : : : ; w

k

g suh that w

i

=2 SuÆx(w

j

) for any 1 � i 6= j � k,

onsider the set S

00

= fw

1

$: : : w

k

$g where $ denotes the ommon endmarker. Then

the reversed trie for S

00

is a tree in whih strings in SuÆx(S

00

) are merged as long and

many as possible [Bre98℄ (see Fig. 3). We assoiate eah node in a reversed trie with

a unique number, as in Fig. 3. We write as Trie

R

(S

00

) the reversed trie for a set S

00

of strings. Every string in Pre�x(S

00

) is represented by a path beginning from a leaf

node. The number of nodes in Trie

R

(S

00

) is at most kS

00

k�jS

00

j+2. If the strings in

S

00

have long and many ommon suÆxes, the number of nodes in Trie

R

(S

00

) is by far

smaller than the upper bound kS

00

k�jS

00

j+2.

$

a

a

aa

a
a

a

a

b

b

b

b
c

01

2

3

4

6

78

9
101112

13

5

14

Figure 3: Trie

R

(S

00

) for S

00

= faaab$; aa$; aa$; ab$; bab$; ba$g

On the other hand, for a set S

0

= fw

1

$

1

; : : : ; w

k

$

k

g where $

i

denotes the endmarker

for w

i

(1� i�k), the trie for a set S

0

of strings is a tree in whih strings in Pre�x(S

0

)

are merged as long and many as possible (see Fig. 4). We denote the trie for a set S

0

by Trie(S

0

). It is easy to see that the number of nodes in Trie(S

0

) is at most kS

0

k+1.

Thanks to the unique endmarkers, tries do not require the ondition that reversed

tries instead do. That is, even if a string x2S

0

belongs to Pre�x(y) for some string

y 2S

0

, the path spelling out x always ends at a leaf node in Trie(S

0

). For example,

although string aa is a pre�x of aaab in Fig. 4, the path spelling out aa$

3

ends at leaf

node 8.

a

a

a

a
b

b

b

b

c

c

$1

$2

$3

$4

$5

$6

0

1

2

3 4 5

6 7

8

9 10 11

12

13
14 15

16

Figure 4: Trie(S

0

) for S

0

= faaab$

1

; aa$

2

; aa$

3

; ab$

4

; bab$

5

; ba$

6

g

Tries are used as inputs of our algorithm that will be introdued in Setion 4.

4

Constrution of the CDAWG for a Trie

3 Algorithm to Construt the CDAWG for a Set

of Strings

This setion is devoted to realling the algorithm to onstrut the CDAWG for a

set of strings, whih was proposed in [IHS

+

01a℄. By illustrating the onstrution of

CDAWG(ababb$) in Fig. 5, we roughly show how the algorithm builds a CDWAG.

More detailed desription of the algorithm an be seen in [IHS

+

01b℄. For simpliity,

we have put a single string to the input of the algorithm in Fig. 5.

F

I

a

F

a

b b

I

F

a

b
b

I

a
a

F

a
b b

I

a
a b
b

a
b b

I

a
b

1

F

c
c

c

a
b b

a

b

1

F

c

c

c2

b

b

a
b

c

b

c
b

b

I

a
b b

a
b

1

F

c

c

c2

b

b

a
b

c
b

c

b

b

I

c

c

c

c
c

a
b b

a
b

1

F

c

c

c

2

b

b

a
b
c
b

$

b

I

c

c

c

c
c

3

$
$

$

a : ab : aba : abab : ababc :

ababcb : ababcbc$:ababcbc :

F

I

B B B B B B

B B B

$

$

$

ε :

Σ Σ Σ Σ Σ Σ

Σ Σ Σ

Figure 5: Constrution of CDAWG(w) for w = ababb$. The broken lines represent the suÆx

links, and the gray starred points represent the ative points.

3.1 SuÆx Links

As in literature [Wei73, MC76, Ukk95℄ about the onstrution of suÆx trees, this

algorithm to onstrut CDAWGs also utilizes suÆx links. By means of the suÆx

links, the time omplexity of these algorithms an be linear.

Let us assume that in a CDAWG the shortest path from the initial node to a node

v spells out � = �, where �; � 2 �

�

and 2 �. Then, node v has the suÆx link

that points to a node u suh that the path spelling out � is the longest path from

the initial node to the node u. The algorithm determines the suÆx link of eah node

during the onstrution of a CDAWG. For example, at phase abab in Fig. 5, one an

5

Proeedings of the Prague Stringology Conferene '01

see that the suÆx link of node 1, at whih the path spelling out b ends, aordingly

points to the initial node the empty string " orresponds to. The suÆx link of the

initial node points to a speial node, the bottom node, as in [Ukk95℄. It has an edge

labeled with � that represents an arbitrary letter in the alphabet � in this ase. With

this bottom node, we do not need to treat the initial node as an exeption during

the onstrution of a CDAWG. In Fig. 5, the bottom node, the initial node, and the

�nal node are expressed by B, I, and F , respetively. Until the onstrution of the

CDAWG of the whole input string is �nished, the suÆx link of the �nal node is left

unde�ned (see the 1st phase to 8th in Fig 5), sine the node to whih the suÆx link

of the �nal node points an hange during the onstrution. This implies that we

annot ahieve a linear time algorithm if we update the suÆx link of the �nal node

at every phase. It an happen that a node r, whih was the latest reated in some

phase, does not have the suÆx link until another node is newly reated in the phase,

beause the new node is just the one to whih the suÆx link of r should point.

3.2 The Ative Point

The gray starred point in Fig. 5 denotes the loation from whih the algorithm starts

to update the urrent CDAWG at the next phase. This is alled ative point similarly

in [Ukk95℄. An ative point p is represented by the pair of a node v and a string

� suh that p an be reahed from node v along the edge whose label begins with

�. In the running example, the ative point is represented by (2; ") at phase ababb,

whereas it is represented by (2;) at phase ababb.

From now on, we sketh how the ative point moves and stops in a phase. Suppose

that the algorithm has already �nished a phase and now faes phase with 2 �,

that is, a letter follows in the input string. Then there an be four ases, that is,

the ative point is now:

(1) on a node that has an outgoing edge whose label begins with letter ;

(2) on a node that has no outgoing edge whose label begins with letter ;

(3) on the middle of an edge and followed by letter in the label of the edge;

(4) on the middle of an edge and not followed by letter in the label of the edge.

In ase (1), the ative point advanes by letter along the edge and then stops over

there. This an be seen between phase ab and phase aba in Fig. 5. If it faes ase

(3) in the following phases, the ative point keeps on moving and stopping along the

edge, as seen in phase abab. In ase (2), a new edge labeled with is reated and

then onneted from the node the ative point is now on to the �nal node. The

ative point then moves to another node via the suÆx link in order to hek if there

is an outgoing edge whose label begins with letter . Finally, in ase (4), a new node

is reated where the ative point presents, splits the edge into two over there, and

reates a new edge labeled with from the new node to the �nal node. Then the

algorithm has to look for the loation where the ative point will move next.

We illustrate how the algorithm behaves after faing ase (4). See phase abab and

phase abab in Fig. 5. Sine the ative point of phase abab an not move along the

edge any longer beause dose not follow ab there, new node 1 is reated and then a

6

Constrution of the CDAWG for a Trie

new edge labeled with is reated and onneted to the �nal node. After that, the

algorithm has to �nd the loation where the ative point next moves. Sine node 1

does not have the suÆx link yet, the ative point moves bakwards to node I that

has the suÆx link. After arriving at node B via the suÆx link of node I, it resumes

moving along the path orresponding to ab, where ab is the part of the label of the

edge that the ative point moved bakwards. Remark that, although the one spelling

out ab from node I onsists of an edge, the path spelling out ab from node B onsists

of two edges. Anyway, the ative point �nally arrives in the middle of edge (I; bab; F)

while spelling out ab from the bottom node.

3.3 Edge Merging

(The above story still ontinues here.) Sine the ative point annot move with

spelling out from the urrent loation, it seems neessary to reate a new node

and a new edge labeled with over there. However, the fat is that letter b is always

preeded by letter a in string abab and that node 1 whih orresponds to ab obviously

has an edge labeled with . That is why edge (I; bab; F) is merged into node 1 with

label b, that is, it beomes (I; b; 1). After that, the ative point again moves bakwards

to I and arrives at B via the suÆx link of I. It then stops just on node I spelling

out b. Creating a new edge (I; ; F), the ative point moves to node B via the suÆx

link and then moves and stops on node I while spelling out .

As seen above, thanks to the bottom node, we an obtain the following lemma

similarly in [Ukk95℄.

Lemma 1 For any string w and any i (1� i�jwj), CDAWG(w[1 : i�1℄) always has

the loation on whih the ative point of phase w[1 : i℄ stops.

The above lemma holds in ase of a set of strings, as well.

3.4 Node Separation

The ompletely opposite thing to edge merging above mentioned, node separation an

also happen, as seen at phase ababb in Fig. 5. Reall that the ative point was on

node I at phase abab. Then sine the letter b follows string abab, the ative point

moves to node 1. Note that it has arrived at node 1 along the edge labeled by b whih

does not ompose the longest path from node I to node 1. Then node 1 is separated

into two, that is, a new node 2 is reated with the same outgoing edges as those of

node 1, and edge (I; b; 1) beomes (I; b; 2). The reason of the above is that letter b

is not always preeded by letter a in string ababb, though it was in string abab. If

node 1 had inoming edges omposing shorter paths between node I and 1 than the

path whih ontains the edge the ative point traveled, the last edges in all the paths

would be also redireted to node 2.

3.5 Update of Edges Entering to Final Node

Given a set S = fw

1

; : : : ; w

k

g, a label of any edge in CDAWG(S) is implemented with

a triple of integers (h; i; j) suh that the label orresponds to w

h

[i :j℄, where 1�h �k.

Let us hereafter all i and j starting position and ending position, respetively. We

7

Proeedings of the Prague Stringology Conferene '01

make the ending position of every edge whih enters to the �nal node refer to the

integer e in the �nal node. By inreasing e eah time the CDAWG is extended with

a new letter, we obtain the onstant time update of all the edges entering to the �nal

node.

As a result of the above disussion, the following theorem holds.

Theorem 1 (Inenaga et al., [IHS

+

01a℄) For a �xed alphabet, the CDAWG for a

set S of strings an be diretly onstruted on-line, in linear time and spae with

respet to kSk+jSj.

4 Algorithm to Construt the CDAWG for a Trie

We are now ready to show our main algorithm that onstruts CDAWGs for tries.

First we note that the CDAWG for Trie(S) is the same as the CDAWG of S for any

set S of string, exept only one thing. While the label of an edge in CDAWG(S) is

implemented by a triple of integers (h; i; j) representing the starting position i and

ending position j of the label in the h-th string in S, that in the CDAWG for Trie(S)

refers to a pair of nodes in Trie(S), between of whih there is the string orresponding

to the label.

The basi ation of the algorithm for Trie(S) is to update the CDAWG inremen-

tally, synhronized with the depth-�rst traversal of Trie(S). The key idea to ahieve

the linear time onstrution is as follows.

(1) Trae the advaned point q in the CDAWG so that the path from the root node

to q oinides with the path from the root node to node v, where v is the node

urrently visited in the trie.

(2) Create a new node in the CDAWG where the advaned point q is, before step-

ping into the �rst branh at eah branhing node in the trie.

We will explain the detail in the sequel. Suppose that, after having traveled nodes

with sanning �2�

�

in Trie(S), the algorithm enounters a node v having k (� 2)

branhes in Trie(S). Moreover suppose that it then hooses an edge with whih a

path spelling out � and ending at a leaf node begins. After updating the CDAWG

with string ��, the algorithm has to update it with the other strings represented in

Trie(S). Notie that the urrent CDAWG already has the path representing � from

the initial node, whih orresponds to pre�xes of at least k strings in S. Thus the

algorithm has only to restart updating the CDAWG from the loation to whih �

orresponds and to ontinue traversing Trie(S) from the node v. For that purpose,

we trae the advaned point q mentioned in (1) above.

Let us now larify the aim of (2). The aim is to make the advaned point q be an

expliit node whenever the algorithm enounters a branhing node in Trie(S). That

is, the referene pair of q should then beome of the form (s; ") for some node s.

What is the matter if the advaned point q is not expliit before stepping into the

�rst branh? Assume that the advaned point q was referred as (u;) with some node

u and string 6= " when the algorithm enountered the node v orresponding to � in

Trie(S). After �nishing updating the CDAWG with ��, the algorithm fouses bak

8

Constrution of the CDAWG for a Trie

on v and q=(u;). The matter is that the referene (u;) might not be anonial any

longer: the path spelling out may ontain extra nodes. Namely, the path spelling

out may have been split while the algorithm updated the CDAWG with string �.

A onrete example is shown in Fig. 6.

a ab bc $1

$2

0 1 2 5 643
a

98b

a

b

b

c

I

F1

$1

a
b b

I

cc
c

$1

F1

3

2

1

a

b

a

b
a

$1

$1

c
a

b
a

$1

7

7

input trie

Figure 6: Trie(S) for S = fabaab$

1

; abb$

2

g is shown left. When the algorithm fouses on node

3 in Trie(S), it needs to memorize the loation in the CDAWG orresponding to ab. Sine there

is no node but F

1

at the loation, it is memorized by a referene pair (I; ab). After having visited

node 7 in Trie(S), the algorithm updates the CDAWG from (I; ab), and with node 3 in the trie.

However, sine the path spelling ab dose not onsist of an edge any more, the algorithm has to �nd

the nearest node from the loation the path ends on, that is, node 2. We have to avoid this, beause

traversing the path spelling ab in the CDAWG just deserves traversing Trie(S) from node 0 to 3.

If the algorithm sans suh extra nodes, its time omplexity an beome quadrati

with respet to the number of nodes in Trie(S). In order to avoid this matter, the

algorithm reates a new node s so that the ative point is guaranteed to be on an

expliit node. However, the algorithm dose not merge any other edges beause at the

moment it is unknown how many edges should be merged into the new node s. Of

ourse, if =", there is no need to reate any new node.

The algorithm is desribed as follows.

main routine

urrent node := 0; /* the root node in the trie */

ative point := (I; "); /* the initial node in the CDAWG */

advaned point := (I; "); /* the initial node in the CDAWG */

traverse-and-update(urrent node; ative point; advaned point);

proedure traverse-and-update(urrent node; ative point; advaned point)

Let label set be the set of labels of the outgoing edges of urrent node;

if jlabel setj = 0 then return;

else if jlabel setj � 2 then reate-node(advaned point);

for eah 2 label set do

new ative point := update-CDAWG(; ative point);

Let new advaned point be the loation where ative point advanes with ;

Let v be the node to whih the edge labeled points;

9

Proeedings of the Prague Stringology Conferene '01

traverse-and-update(v; new ative point; new advaned point);

The variable urrent node indiates the node that the algorithm urrently fouses on

in Trie(S). The variable advaned point is of the form of a referene pair (u; �), where

u is the parent node nearest to advaned point. As mentioned above, the string � is

atually implemented by a pair of nodes in Trie(S).

In the proedure traverse-and-update, the funtion update-CDAWG updates the

CDAWG with a letter . update-CDAWG is the same as the one for the onstrution of

the CDAWG for a set of strings [IHS

+

01a, IHS

+

01b℄, exepting that update-CDAWG

reates a new edge stemming from the node latest reated by funtion reate-node.

An example of the onstrution of the CDAWG for a trie is shown in Fig. 7.

Finally, we have the following theorem.

Theorem 2 The proposed algorithm onstruts the CDAWG for a trie in linear time

and spae with respet to the number of nodes in the trie.

Proof. We �rst explain that the modi�ation of the funtion update-CDAWG and the

funtion reate-node itself do not a�et the linearity of the algorithm.

Suppose that an input trie has n nodes. It is lear that the number of nodes

visited by advaned point in the CDAWG is at most n. Hene it takes O(n) time

to alulate advaned point all through the onstrution. Furthermore suppose that

m nodes in Trie(S) are branhing. It is lear that m < n, beause any trie has at

least one leaf node. Therefore, funtion reate-node reates at most m nodes in the

CDAWG, and it implies that the time omplexity of reate-node is O(m). This implies

the modi�ation, reating new edges due to the nodes made by funtion reate-node,

takes O(m) time as well.

We from now on verify the overall linearity of the proposed algorithm. The matter

we have to larify is the upper bound of the number of nodes ative point visits

throughout the onstrution. Assume that a node v in the trie has k branhes and

there is a path spelling � between the root and v. When urrent node arrives at

node v in the trie for the �rst time, funtion reate-node reates a new node u where

advaned point is in the CDAWG. Then ative point may traverse at most kj�j nodes

from p to the initial node via suÆx links until �nding the loation it an stop on.

However, k � j�j. Therefore, for a trie with n nodes, the number of nodes ative point

visits throughout the onstrution is O(j�jn). Thus, if � is a �xed alphabet, the

proposed algorithm onstruts the CDAWG for a trie in O(n) time and spae. 2

5 Conlusion

We gave an algorithm for onstruting the CDAWG for a trie in linear time and

spae with respet to the number of nodes in the trie. The truth is, with a slight

modi�ation, the proposed algorithm an be adopted to onstrut the suÆx tree and

the DAWG for a trie. When input strings are given in the form of a trie, the pro-

posed algorithm onstruts the CDAWG for the strings faster than the one presented

in [IHS

+

01a℄ diretly does from a set of the strings, espeially when the strings have

many ommon pre�xes. As the spae omplexity of CDAWGs is bounded stritly

10

Constrution of the CDAWG for a Trie

0

a ab b

c
$1

$20 71 2 5 6

43
input trie :

0 1

0

a

2

a
b b

0

1

4

a
b

b
c

c

$1
1

0

F1

$1

$1

c

2 5

a

6 7

a
b b

c

$11

0

F1

$1

c

a
b

F2

$2

$2

3

a
b

b

0

1
c

c

c
$1

a
b

b
c

c

$1
1

0

F1

$1

$1

c
$1

a

b
b

c

$1
1

0

F1

$1

c
$1

a

a
b

b

c

$1
1

0

F1

$1

c
$1

b

$1$2

current_node

Figure 7: Constrution of the CDAWG for Trie(S), where S = fab$

1

; abab$

2

g. The gray starred

point represents ative point, and the blak dotted point represents advaned point. For simpliity,

the bottom node is omitted. As node 2 in the trie is branhing, a new node 1 is reated in the

CDAWG when urrent node arrives at node 2 for the �rst time. After urrent node visits node 4,

the algorithm updates the CDAWG with urrent node = 2 and advaned point = 1.

11

Proeedings of the Prague Stringology Conferene '01

lower than that of suÆx trees, the algorithm presented in this paper also allows to

save memory spae.

Referenes

[BBH

+

85℄ Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeuht,

M. T. Chen, and Joel Seiferas. The smallest automaton reognizing the

subwords of a text. Theoretial Computer Siene, 40:31{55, 1985.

[BBH

+

87℄ Anselm Blumer, Janet Blumer, David Haussler, Ross MConnell, and An-

drzej Ehrenfeuht. Complete inverted �les for eÆient text retrieval and

analysis. Journal of the ACM, 34(3):578{595, 1987. Preliminary version

in: STOC'84.

[Bre98℄ Dany Breslauer. The suÆx tree of a tree and minimizing sequential trans-

duers. Theoretial Computer Siene, 191:131{144, 1998.

[CV97℄ Maxime Crohemore and Renaud V�erin. On ompat direted ayli

word graphs. In J. Myielski, G. Rozenberg, and A. Salomaa, editors,

Strutures in Logi and Computer Siene, volume 1261 of Leture Notes

in Computer Siene, pages 192{211. Springer-Verlag, 1997.

[IHS

+

01a℄ Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki

Takeda, Setsuo Arikawa, Gianarlo Mauri, and Giulio Pavesi. On-line on-

strution of ompat direted ayli word graphs (to appear). In Pro.

12th Annual Symposium on Combinatorial Pattern Mathing, July 2001.

[IHS

+

01b℄ Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki

Takeda, and Setsuo Arikawa. On-line onstrution of ompat direted

ayli word graphs. Tehnial Report DOI-TR-CS-183, Department of

Informatis, Kyushu University, January 2001. (To appear).

[Kos89℄ S. Rao Kosaraju. Fast pattern mathing in trees. In Pro. 30th IEEE

Symp. on Foundations of Computer Siene, pages 178{183, 1989.

[MC76℄ Edward M. MCreight. A spae-eonomial suÆx tree onstrution algo-

rithm. Journal of the ACM, 23(2):262{272, April 1976.

[Ukk95℄ Esko Ukkonen. On-line onstrution of suÆx trees. Algorithmia,

14(3):249{260, 1995.

[Wei73℄ Peter Weiner. Linear pattern mathing algorithms. In Pro. 14th Annual

Symposium on Swithing and Automata Theory, pages 1{11, Otober 1973.

12

