Construction of the CDAWG for a Trie

Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara,
Masayuki Takeda, and Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: {s-ine, hoshino, ayumi, takeda, arikawa}@i.kyushu-u.ac.jp

Abstract. Trie is a tree structure to represent a set of strings. When the
strings have many common prefixes, the number of nodes in the trie is much
less than the total length of the strings. In this paper, we propose an algorithm
for constructing the Compact Directed Acyclic Word Graph for a trie, which
runs in linear time and space with respect to the number of nodes in the trie.

Key words: Pattern matching, Index structure, Trie, Suffix trie, Suffix tree,
DAWG, CDAWG, Linear time algorithm

1 Introduction

Crochemore and Vérin displayed a relationship among suffix tries, suffix trees, Di-
rected Acyclic Word Graphs (DAWGS), and Compact Directed Acyclic Word Graphs
(CDAWGS) [CV97]. It states that a suffix tree (DAWG, resp.) can be obtained by
compacting (minimizing, resp.) the corresponding suffix trie. Similarly, a CDAWG
can be obtained by either compacting the corresponding DAWG or minimizing the
corresponding suffix tree.

It is known that all of these indexing structures, except suffix tries, can be con-
structed in linear time and space: Weiner [Wei73], McCreight [McC76], and Ukko-
nen [Ukk95] for suffix trees, and Blumer et al. [BBH"85] for DAWGs.

In [BBH"87] Blumer et al. gave an algorithm for constructing a CDAWG by
compacting the corresponding DAWG. Direct construction of a CDAWG from a
given string is also important, since the hidden constant of the space complexity
of CDAWGs is strictly smaller than those of suffix trees and DAWGs [BBH*87].
Actually, Crochemore and Vérin [CV97| gave the first algorithm that directly con-
structs CDAWGs, which is based on McCreight’s algorithm for suffix trees. Recently,
Inenaga et al. [THS*01a] developed an on-line algorithm for the direct construction
of CDAWGs, which is based on Ukkonen’s algorithm.

Their algorithm can also construct a CDAWG for a set S of strings in linear time
with respect to the total length ¢ of the strings in S. In this paper, we consider the
case that the set S is given in the form of a trie, as input. Since the trie shares
common prefixes of the strings in S, the number n of nodes of the trie is less than /.
We show a non-trivial extension of the algorithm that constructs CDAWG for a trie
in O(n) time and space.

Some related work can be seen in literature: Kosaraju [Kos89] introduced the
suffix tree for a reversed trie, and showed an algorithm to construct it in O(nlogn)

1

Proceedings of the Prague Stringology Conference '01

time. Breslauer [Bre98| reduced it to O(n) time. On the other hand, our algorithm
constructs a CDAWG for a (normal) trie. We remark that our algorithm can be easily
adopted to construct suffix trees and DAWGs instead of CDAWGs, with a slight
modification in the same way as in [IHST01b]. That means, all of these indexing
structures for a trie can be constructed in linear time with respect to the number of
nodes in the trie.

2 Preliminaries

The Compact Directed Acyclic Word Graph (CDAWG) can be seen as either the
compaction of the Directed Acyclic Word Graph (DAWG), or the minimization of
the suffix tree [BBH*87, CV97]. In this section, we recall the properties of CDAWGs,
compared with those of suffix trees.

2.1 Notations

Let 3 be a finite alphabet. An element of ¥* is called a string. Strings x, y, and z are
said to be a prefix, factor, and suffiz of the string w = xyz, respectively. The sets of
prefixes, factors, and suffixes of a string w are denoted by Prefiz(w), Factor(w), and
Suffiz(w), respectively. The length of a string w is denoted by |w|. The empty string
is denoted by ¢, that is, |¢| = 0. The ith symbol of a string w is denoted by w]i] for
1<i<|w|, and the factor of a string w that begins at position 7 and ends at position
j is denoted by wli:j] for 1<i<j<|w|. For convenience, let w[i:j] = ¢ for j <i.

Given a set S of strings, let ||S|| represent the total length of the strings in .S, and
|S| the cardinality of S. The sets of prefixes, factors, and suffixes of the strings in S
are denoted by Prefiz(S), Factor(S), and Suffiz(S), respectively.

2.2 Compact Directed Acyclic Word Graphs

Here we show the properties of CDAWGs. For comparison, we first recall the proper-
ties of suffix trees. The suffix tree for a set S of strings is a rooted tree whose edges
are labeled with strings in Factor(S) (see Fig. 1). We denote by STree(S) the suffix
tree for S. We here assume that each string w; in S={w, ..., w;} ends with a unique
endmarker $; ¢ X, where 1 <i<k. Let S"={un$,...,w;8;}. On the above assump-
tion, every string in Suffiz(S’) is associated with a leaf node in STree(S’). STree(S’)
has the following properties:

1. It has a root node, at most ||S||—1 internal nodes, and ||S||+]S| leaf nodes.
2. The root node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same
letter.

4. Any string in Factor(S) is represented by a path starting at the root node.

5. Any string in Suffiz(S’) is represented by a path starting at the root node and
ending at a leaf node.

Construction of the CDAWG for a Trie

Figure 1: STree(S) for S = {mammal}. Since the last letter [plays the role of the endmarker, the

endmarker is omitted.

The compact directed acyclic word graph (CDAWG) was first introduced by
Blumer et al. [BBH*87]. The CDAWG for a set S of strings is a directed acyclic graph
with edges labeled by strings in Factor(S) (see Fig. 2). We denote by CDAWG(S) the
CDAWG for S. We similarly assume that each string in S ends with a unique end-
marker. Tt is because the algorithm for constructing the CDAWG for a set of strings,
which was given in [THS*01a], requires the endmarkers. Remark that for any set S of
strings CDAWG(S'), whose edges labeled with $; are removed for any i (1<i < |S]),
is equal to the CDAWG of S. CDAWG(S') has the following properties:

1. Tt has an initial node, at most ||S||—1 internal nodes, and |S| final nodes.
2. The initial node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same
letter.

4. Any string in Factor(S) is represented by a path starting at the initial node.

5. Any string in Suffiz(S’) is represented by a path starting at the initial node and
ending at a final node.

6. Suppose that a path spelling out € ¥* ends at a node v. If a string [is always
preceded by v€X* and a=+f in any string x € S’ such that 3 € Factor(x), the
path spelling out 3 also ends at node v.

Figure 2: CDAWG(S) for S = {mammal}. Since the last letter [plays the role of the endmarker,

the endmarker is omitted.

Proceedings of the Prague Stringology Conference 01

In Fig. 2, one can see that the path spelling out a ends at the same node as the
one spelling out ma, with regard to the property 6 written above. This is because a
is always preceded by m in string mammal.

Hereafter, we denote by (u,«,v) an edge labeled with a which starts at node u
and ends at node v, both in CDAWGs and suffix trees.

2.3 Trie and Reversed Trie

Given a set S = {ws,...,w;} such that w; ¢ Suffiz(w;) for any 1 < i # j < k,
consider the set S” = {w$... w;$} where $ denotes the common endmarker. Then
the reversed trie for S” is a tree in which strings in Suffiz(S") are merged as long and
many as possible [Bre98] (see Fig. 3). We associate each node in a reversed trie with
a unique number, as in Fig. 3. We write as Trie®(S") the reversed trie for a set S”
of strings. Every string in Prefiz(S") is represented by a path beginning from a leaf
node. The number of nodes in Trie®(S") is at most ||S”]|—|S”|+2. If the strings in
S" have long and many common suffixes, the number of nodes in Trie®(S") is by far
smaller than the upper bound ||S”||—|S"|+2.

Figure 3: Trief(S") for S" = {aaab$, aac$, aa$, abc$, bab$, ba$}

On the other hand, for a set S = {w1$1, ..., w;$;} where $; denotes the endmarker
for w; (1<i<k), the trie for a set S’ of strings is a tree in which strings in Prefiz(S’)
are merged as long and many as possible (see Fig. 4). We denote the trie for a set S’
by Trie(S"). It is easy to see that the number of nodes in Trie(S’) is at most ||S’|| + 1.
Thanks to the unique endmarkers, tries do not require the condition that reversed
tries instead do. That is, even if a string = € S” belongs to Prefiz(y) for some string
y € S', the path spelling out x always ends at a leaf node in Trie(S’). For example,
although string aa is a prefix of aaab in Fig. 4, the path spelling out aa$; ends at leaf
node 8.

Figure 4: Trie(S") for S’ = {aaab$:, aac$2,aas, abcy, babs, bas}

Tries are used as inputs of our algorithm that will be introduced in Section 4.

4

Construction of the CDAWG for a Trie

3 Algorithm to Construct the CDAWG for a Set
of Strings

This section is devoted to recalling the algorithm to construct the CDAWG for a
set of strings, which was proposed in [THST01a]. By illustrating the construction of
CDAWG(ababebc$) in Fig. 5, we roughly show how the algorithm builds a CDWAG.
More detailed description of the algorithm can be seen in [THST01b]. For simplicity,
we have put a single string to the input of the algorithm in Fig. 5.

Figure 5: Construction of CDAWG(w) for w = ababcbe$. The broken lines represent the suffix

links, and the gray starred points represent the active points.

3.1 Suffix Links

As in literature [Wei73, McC76, Ukk95] about the construction of suffix trees, this
algorithm to construct CDAWGs also utilizes suffiz links. By means of the suffix
links, the time complexity of these algorithms can be linear.

Let us assume that in a CDAWG the shortest path from the initial node to a node
v spells out o = ¢, where o, € ¥* and ¢ € ¥. Then, node v has the suffix link
that points to a node u such that the path spelling out § is the longest path from
the initial node to the node u. The algorithm determines the suffix link of each node
during the construction of a CDAWG. For example, at phase ababc in Fig. 5, one can

5

Proceedings of the Prague Stringology Conference 01

see that the suffix link of node 1, at which the path spelling out b ends, accordingly
points to the initial node the empty string ¢ corresponds to. The suffix link of the
initial node points to a special node, the bottom node, as in [Ukk95]. It has an edge
labeled with ¥ that represents an arbitrary letter in the alphabet ¥ in this case. With
this bottom node, we do not need to treat the initial node as an exception during
the construction of a CDAWG. In Fig. 5, the bottom node, the initial node, and the
final node are expressed by B, I, and F', respectively. Until the construction of the
CDAWG of the whole input string is finished, the suffix link of the final node is left
undefined (see the 1st phase to 8th in Fig 5), since the node to which the suffix link
of the final node points can change during the construction. This implies that we
cannot achieve a linear time algorithm if we update the suffix link of the final node
at every phase. It can happen that a node r, which was the latest created in some
phase, does not have the suffix link until another node is newly created in the phase,
because the new node is just the one to which the suffix link of r should point.

3.2 The Active Point

The gray starred point in Fig. 5 denotes the location from which the algorithm starts
to update the current CDAWG at the next phase. This is called active point similarly
in [Ukk95]. An active point p is represented by the pair of a node v and a string
a such that p can be reached from node v along the edge whose label begins with
«. In the running example, the active point is represented by (2,) at phase ababeb,
whereas it is represented by (2, ¢) at phase ababcbhc.

From now on, we sketch how the active point moves and stops in a phase. Suppose
that the algorithm has already finished a phase v and now faces phase yc with ¢ € X,
that is, a letter ¢ follows « in the input string. Then there can be four cases, that is,
the active point is now:

1) on a node that has an outgoing edge whose label begins with letter c;

2) on a node that has no outgoing edge whose label begins with letter ¢;

3) on the middle of an edge and followed by letter ¢ in the label of the edge;

(
(
(
(4

)
)
)
) on the middle of an edge and not followed by letter ¢ in the label of the edge.

In case (1), the active point advances by letter ¢ along the edge and then stops over
there. This can be seen between phase ab and phase aba in Fig. 5. If it faces case
(3) in the following phases, the active point keeps on moving and stopping along the
edge, as seen in phase abab. In case (2), a new edge labeled with ¢ is created and
then connected from the node the active point is now on to the final node. The
active point then moves to another node via the suffix link in order to check if there
is an outgoing edge whose label begins with letter ¢. Finally, in case (4), a new node
is created where the active point presents, splits the edge into two over there, and
creates a new edge labeled with ¢ from the new node to the final node. Then the
algorithm has to look for the location where the active point will move next.

We illustrate how the algorithm behaves after facing case (4). See phase abab and
phase ababc in Fig. 5. Since the active point of phase abab can not move along the
edge any longer because ¢ dose not follow ab there, new node 1 is created and then a

Construction of the CDAWG for a Trie

new edge labeled with c is created and connected to the final node. After that, the
algorithm has to find the location where the active point next moves. Since node 1
does not have the suffix link yet, the active point moves backwards to node I that
has the suffix link. After arriving at node B via the suffix link of node I, it resumes
moving along the path corresponding to ab, where ab is the part of the label of the
edge that the active point moved backwards. Remark that, although the one spelling
out ab from node I consists of an edge, the path spelling out ab from node B consists
of two edges. Anyway, the active point finally arrives in the middle of edge (I, bab, F)
while spelling out ab from the bottom node.

3.3 Edge Merging

(The above story still continues here.) Since the active point cannot move with
spelling out ¢ from the current location, it seems necessary to create a new node
and a new edge labeled with ¢ over there. However, the fact is that letter b is always
preceded by letter a in string ababc and that node 1 which corresponds to ab obviously
has an edge labeled with ¢. That is why edge (I, bab, F') is merged into node 1 with
label b, that is, it becomes (I, b, 1). After that, the active point again moves backwards
to I and arrives at B via the suffix link of 7. It then stops just on node I spelling
out b. Creating a new edge (I, ¢, F'), the active point moves to node B via the suffix
link and then moves and stops on node I while spelling out c.

As seen above, thanks to the bottom node, we can obtain the following lemma
similarly in [Ukk95].

Lemma 1 For any string w and any i (1<i<|w|), CDAWG(w[1:i—1]) always has
the location on which the active point of phase w[l:i] stops.

The above lemma holds in case of a set of strings, as well.

3.4 Node Separation

The completely opposite thing to edge merging above mentioned, node separation can
also happen, as seen at phase ababch in Fig. 5. Recall that the active point was on
node I at phase ababc. Then since the letter b follows string ababe, the active point
moves to node 1. Note that it has arrived at node 1 along the edge labeled by b which
does not compose the longest path from node I to node 1. Then node 1 is separated
into two, that is, a new node 2 is created with the same outgoing edges as those of
node 1, and edge (I,b,1) becomes (I,b,2). The reason of the above is that letter b
is not always preceded by letter a in string ababcbh, though it was in string ababe. If
node 1 had incoming edges composing shorter paths between node I and 1 than the
path which contains the edge the active point traveled, the last edges in all the paths
would be also redirected to node 2.

3.5 Update of Edges Entering to Final Node

Given a set S = {wy,...,w}, alabel of any edge in CDAWG(S) is implemented with
a triple of integers (h, i, j) such that the label corresponds to wy|i: j], where 1 <h <k.
Let us hereafter call 7+ and j starting position and ending position, respectively. We

7

Proceedings of the Prague Stringology Conference 01

make the ending position of every edge which enters to the final node refer to the
integer e in the final node. By increasing e each time the CDAWG is extended with
a new letter, we obtain the constant time update of all the edges entering to the final
node.

As a result of the above discussion, the following theorem holds.

Theorem 1 (Inenaga et al., [THS101a]) For a fized alphabet, the CDAWG for a
set S of strings can be directly constructed on-line, in linear time and space with
respect to ||S]|+1S|.

4 Algorithm to Construct the CDAWG for a Trie

We are now ready to show our main algorithm that constructs CDAWGs for tries.
First we note that the CDAWG for Trie(S) is the same as the CDAWG of S for any
set S of string, except only one thing. While the label of an edge in CDAWG(S) is
implemented by a triple of integers (h,1,j) representing the starting position i and
ending position j of the label in the h-th string in S, that in the CDAWG for Trie(S)
refers to a pair of nodes in Trie(S), between of which there is the string corresponding
to the label.

The basic action of the algorithm for Trie(S) is to update the CDAWG incremen-
tally, synchronized with the depth-first traversal of Trie(S). The key idea to achieve
the linear time construction is as follows.

(1) Trace the advanced point g in the CDAWG so that the path from the root node
to ¢ coincides with the path from the root node to node v, where v is the node
currently visited in the trie.

(2) Create a new node in the CDAWG where the advanced point ¢ is, before step-
ping into the first branch at each branching node in the trie.

We will explain the detail in the sequel. Suppose that, after having traveled nodes
with scanning o€ ¥* in Trie(S), the algorithm encounters a node v having k& (> 2)
branches in Trie(S). Moreover suppose that it then chooses an edge with which a
path spelling out # and ending at a leaf node begins. After updating the CDAWG
with string o, the algorithm has to update it with the other strings represented in
Trie(S). Notice that the current CDAWG already has the path representing « from
the initial node, which corresponds to prefixes of at least k strings in S. Thus the
algorithm has only to restart updating the CDAWG from the location to which «
corresponds and to continue traversing Trie(S) from the node v. For that purpose,
we trace the advanced point ¢ mentioned in (1) above.

Let us now clarify the aim of (2). The aim is to make the advanced point ¢ be an
explicit node whenever the algorithm encounters a branching node in Trie(S). That
is, the reference pair of ¢ should then become of the form (s,e) for some node s.
What is the matter if the advanced point ¢ is not explicit before stepping into the
first branch? Assume that the advanced point g was referred as (u,) with some node

u and string v # € when the algorithm encountered the node v corresponding to « in
Trie(S). After finishing updating the CDAWG with a3, the algorithm focuses back

8

Construction of the CDAWG for a Trie

on v and ¢=(u,). The matter is that the reference (u,y) might not be canonical any
longer: the path spelling out v may contain extra nodes. Namely, the path spelling
out v may have been split while the algorithm updated the CDAWG with string /.
A concrete example is shown in Fig. 6.

input trie

oS
oS
)

Figure 6: Trie(S) for S = {abcaab$;,abcb$2} is shown left. When the algorithm focuses on node
3 in Trie(S), it needs to memorize the location in the CDAWG corresponding to abe. Since there
is no node but Fj at the location, it is memorized by a reference pair (I, abc). After having visited
node 7 in Trie(S), the algorithm updates the CDAWG from (I, abc), and with node 3 in the trie.
However, since the path spelling abc dose not consist of an edge any more, the algorithm has to find
the nearest node from the location the path ends on, that is, node 2. We have to avoid this, because
traversing the path spelling abc in the CDAWG just deserves traversing Trie(S) from node 0 to 3.

If the algorithm scans such extra nodes, its time complexity can become quadratic
with respect to the number of nodes in Trie(S). In order to avoid this matter, the
algorithm creates a new node s so that the active point is guaranteed to be on an
explicit node. However, the algorithm dose not merge any other edges because at the
moment it is unknown how many edges should be merged into the new node s. Of
course, if y=g¢, there is no need to create any new node.

The algorithm is described as follows.

main routine
current-node := 0; /* the root node in the trie */
active_point :== (I,¢); /* the initial node in the CDAWG */
advanced_point := (I1,e); /* the initial node in the CDAWG */

traverse-and-update(current_node, active_point, advanced_point);

procedure traverse-and-update(current-node, active_point, advanced_point)

Let label_set be the set of labels of the outgoing edges of current_node;

if |label_set| = 0 then return;

else if |label_set| > 2 then create-node(advanced_point);

for each c € label_set do
new_active_point := update-CDAWG(c, active_point);
Let new_advanced_point be the location where active_point advances with c;
Let v be the node to which the edge labeled ¢ points;

Proceedings of the Prague Stringology Conference 01

traverse-and-update(v, new_active_point, new_advanced_point);

The variable current_node indicates the node that the algorithm currently focuses on
in Trie(S). The variable advanced_point is of the form of a reference pair (u,), where
u is the parent node nearest to advanced_point. As mentioned above, the string 5 is
actually implemented by a pair of nodes in Trie(S).

In the procedure traverse-and-update, the function update-CDAWG updates the
CDAWG with a letter c. update-CDAWG is the same as the one for the construction of
the CDAWG for a set of strings [THST01a, THST01b], excepting that update-CDAWG
creates a new edge stemming from the node latest created by function create-node.

An example of the construction of the CDAWG for a trie is shown in Fig. 7.

Finally, we have the following theorem.

Theorem 2 The proposed algorithm constructs the CDAWG for a trie in linear time
and space with respect to the number of nodes in the trie.

Proof. We first explain that the modification of the function update-CDAWG and the
function create-node itself do not affect the linearity of the algorithm.

Suppose that an input trie has n nodes. It is clear that the number of nodes
visited by advanced_point in the CDAWG is at most n. Hence it takes O(n) time
to calculate advanced_point all through the construction. Furthermore suppose that
m nodes in Trie(S) are branching. It is clear that m < n, because any trie has at
least one leaf node. Therefore, function create-node creates at most m nodes in the
CDAWG, and it implies that the time complexity of create-node is O(m). This implies
the modification, creating new edges due to the nodes made by function create-node,
takes O(m) time as well.

We from now on verify the overall linearity of the proposed algorithm. The matter
we have to clarify is the upper bound of the number of nodes active_point visits
throughout the construction. Assume that a node v in the trie has k£ branches and
there is a path spelling a between the root and v. When current_node arrives at
node v in the trie for the first time, function create-node creates a new node u where
advanced_point is in the CDAWG. Then active_point may traverse at most k|« nodes
from p to the initial node via suffix links until finding the location it can stop on.
However, k < |X|. Therefore, for a trie with n nodes, the number of nodes active_point
visits throughout the construction is O(|X|n). Thus, if ¥ is a fixed alphabet, the
proposed algorithm constructs the CDAWG for a trie in O(n) time and space. O

5 Conclusion

We gave an algorithm for constructing the CDAWG for a trie in linear time and
space with respect to the number of nodes in the trie. The truth is, with a slight
modification, the proposed algorithm can be adopted to construct the suffix tree and
the DAWG for a trie. When input strings are given in the form of a trie, the pro-
posed algorithm constructs the CDAWG for the strings faster than the one presented
in [THST01a] directly does from a set of the strings, especially when the strings have
many common prefixes. As the space complexity of CDAWGs is bounded strictly

10

Construction of the CDAWG for a Trie

input trie :

current_node

[0

Q

Figure 7: Construction of the CDAWG for Trie(S), where S = {abc$1,abab$}. The gray starred
point represents active_point, and the black dotted point represents advanced_point. For simplicity,
the bottom node is omitted. As node 2 in the trie is branching, a new node 1 is created in the
CDAWG when current_node arrives at node 2 for the first time. After current_node visits node 4,
the algorithm updates the CDAWG with current_node = 2 and advanced_point = 1.

11

Proceedings of the Prague Stringology Conference 01

lower than that of suffix trees, the algorithm presented in this paper also allows to
save memory space.

References

[BBH*85]

[BBH*87]

[Bre9s]

[CV97]

[IHS*01a]

[THS*01b)]

[Kos89]

[McCT76]

[Ukk95]

[Wei73]

Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht,
M. T. Chen, and Joel Seiferas. The smallest automaton recognizing the
subwords of a text. Theoretical Computer Science, 40:31-55, 1985.

Anselm Blumer, Janet Blumer, David Haussler, Ross McConnell, and An-
drzej Ehrenfeucht. Complete inverted files for efficient text retrieval and
analysis. Journal of the ACM, 34(3):578-595, 1987. Preliminary version
in: STOC’84.

Dany Breslauer. The suffix tree of a tree and minimizing sequential trans-
ducers. Theoretical Computer Science, 191:131-144, 1998.

Maxime Crochemore and Renaud Vérin. On compact directed acyclic
word graphs. In J. Mycielski, G. Rozenberg, and A. Salomaa, editors,
Structures in Logic and Computer Science, volume 1261 of Lecture Notes
in Computer Science, pages 192-211. Springer-Verlag, 1997.

Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki
Takeda, Setsuo Arikawa, Giancarlo Mauri, and Giulio Pavesi. On-line con-
struction of compact directed acyclic word graphs (to appear). In Proc.
12th Annual Symposium on Combinatorial Pattern Matching, July 2001.

Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki
Takeda, and Setsuo Arikawa. On-line construction of compact directed
acyclic word graphs. Technical Report DOI-TR-CS-183, Department of
Informatics, Kyushu University, January 2001. (To appear).

S. Rao Kosaraju. Fast pattern matching in trees. In Proc. 30th IEEE
Symp. on Foundations of Computer Science, pages 178-183, 1989.

Edward M. McCreight. A space-economical suffix tree construction algo-
rithm. Journal of the ACM, 23(2):262-272, April 1976.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249-260, 1995.

Peter Weiner. Linear pattern matching algorithms. In Proc. 1/th Annual
Symposium on Switching and Automata Theory, pages 1-11, October 1973.

12

