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Abstra
t. Trie is a tree stru
ture to represent a set of strings. When the

strings have many 
ommon pre�xes, the number of nodes in the trie is mu
h

less than the total length of the strings. In this paper, we propose an algorithm

for 
onstru
ting the Compa
t Dire
ted A
y
li
 Word Graph for a trie, whi
h

runs in linear time and spa
e with respe
t to the number of nodes in the trie.
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1 Introdu
tion

Cro
hemore and V�erin displayed a relationship among suÆx tries, suÆx trees, Di-

re
ted A
y
li
 Word Graphs (DAWGs), and Compa
t Dire
ted A
y
li
 Word Graphs

(CDAWGs) [CV97℄. It states that a suÆx tree (DAWG, resp.) 
an be obtained by


ompa
ting (minimizing, resp.) the 
orresponding suÆx trie. Similarly, a CDAWG


an be obtained by either 
ompa
ting the 
orresponding DAWG or minimizing the


orresponding suÆx tree.

It is known that all of these indexing stru
tures, ex
ept suÆx tries, 
an be 
on-

stru
ted in linear time and spa
e: Weiner [Wei73℄, M
Creight [M
C76℄, and Ukko-

nen [Ukk95℄ for suÆx trees, and Blumer et al. [BBH

+

85℄ for DAWGs.

In [BBH

+

87℄ Blumer et al. gave an algorithm for 
onstru
ting a CDAWG by


ompa
ting the 
orresponding DAWG. Dire
t 
onstru
tion of a CDAWG from a

given string is also important, sin
e the hidden 
onstant of the spa
e 
omplexity

of CDAWGs is stri
tly smaller than those of suÆx trees and DAWGs [BBH

+

87℄.

A
tually, Cro
hemore and V�erin [CV97℄ gave the �rst algorithm that dire
tly 
on-

stru
ts CDAWGs, whi
h is based on M
Creight's algorithm for suÆx trees. Re
ently,

Inenaga et al. [IHS

+

01a℄ developed an on-line algorithm for the dire
t 
onstru
tion

of CDAWGs, whi
h is based on Ukkonen's algorithm.

Their algorithm 
an also 
onstru
t a CDAWG for a set S of strings in linear time

with respe
t to the total length ` of the strings in S. In this paper, we 
onsider the


ase that the set S is given in the form of a trie, as input. Sin
e the trie shares


ommon pre�xes of the strings in S, the number n of nodes of the trie is less than `.

We show a non-trivial extension of the algorithm that 
onstru
ts CDAWG for a trie

in O(n) time and spa
e.

Some related work 
an be seen in literature: Kosaraju [Kos89℄ introdu
ed the

suÆx tree for a reversed trie, and showed an algorithm to 
onstru
t it in O(n logn)
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time. Breslauer [Bre98℄ redu
ed it to O(n) time. On the other hand, our algorithm


onstru
ts a CDAWG for a (normal) trie. We remark that our algorithm 
an be easily

adopted to 
onstru
t suÆx trees and DAWGs instead of CDAWGs, with a slight

modi�
ation in the same way as in [IHS

+

01b℄. That means, all of these indexing

stru
tures for a trie 
an be 
onstru
ted in linear time with respe
t to the number of

nodes in the trie.

2 Preliminaries

The Compa
t Dire
ted A
y
li
 Word Graph (CDAWG) 
an be seen as either the


ompa
tion of the Dire
ted A
y
li
 Word Graph (DAWG), or the minimization of

the suÆx tree [BBH

+

87, CV97℄. In this se
tion, we re
all the properties of CDAWGs,


ompared with those of suÆx trees.

2.1 Notations

Let � be a �nite alphabet. An element of �

�

is 
alled a string. Strings x, y, and z are

said to be a pre�x, fa
tor, and suÆx of the string w = xyz, respe
tively. The sets of

pre�xes, fa
tors, and suÆxes of a string w are denoted by Pre�x(w), Fa
tor(w), and

SuÆx(w), respe
tively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. The ith symbol of a string w is denoted by w[i℄ for

1� i�jwj, and the fa
tor of a string w that begins at position i and ends at position

j is denoted by w[i :j℄ for 1� i�j�jwj. For 
onvenien
e, let w[i :j℄ = " for j<i.

Given a set S of strings, let kSk represent the total length of the strings in S, and

jSj the 
ardinality of S. The sets of pre�xes, fa
tors, and suÆxes of the strings in S

are denoted by Pre�x(S), Fa
tor(S), and SuÆx(S), respe
tively.

2.2 Compa
t Dire
ted A
y
li
 Word Graphs

Here we show the properties of CDAWGs. For 
omparison, we �rst re
all the proper-

ties of suÆx trees. The suÆx tree for a set S of strings is a rooted tree whose edges

are labeled with strings in Fa
tor(S) (see Fig. 1). We denote by STree(S) the suÆx

tree for S. We here assume that ea
h string w

i

in S=fw

1

; : : : ; w

k

g ends with a unique

endmarker $

i

=2�, where 1� i�k. Let S

0

=fw

1

$

1

; : : : ; w

k

$

k

g. On the above assump-

tion, every string in SuÆx(S

0

) is asso
iated with a leaf node in STree(S

0

). STree(S

0

)

has the following properties:

1. It has a root node, at most kSk�1 internal nodes, and kSk+jSj leaf nodes.

2. The root node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same

letter.

4. Any string in Fa
tor(S) is represented by a path starting at the root node.

5. Any string in SuÆx(S

0

) is represented by a path starting at the root node and

ending at a leaf node.
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Figure 1: STree(S) for S = fmammalg. Sin
e the last letter l plays the role of the endmarker, the

endmarker is omitted.

The 
ompa
t dire
ted a
y
li
 word graph (CDAWG) was �rst introdu
ed by

Blumer et al. [BBH

+

87℄. The CDAWG for a set S of strings is a dire
ted a
y
li
 graph

with edges labeled by strings in Fa
tor(S) (see Fig. 2). We denote by CDAWG(S) the

CDAWG for S. We similarly assume that ea
h string in S ends with a unique end-

marker. It is be
ause the algorithm for 
onstru
ting the CDAWG for a set of strings,

whi
h was given in [IHS

+

01a℄, requires the endmarkers. Remark that for any set S of

strings CDAWG(S

0

), whose edges labeled with $

i

are removed for any i (1� i � jSj),

is equal to the CDAWG of S. CDAWG(S

0

) has the following properties:

1. It has an initial node, at most kSk�1 internal nodes, and jSj �nal nodes.

2. The initial node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same

letter.

4. Any string in Fa
tor(S) is represented by a path starting at the initial node.

5. Any string in SuÆx(S

0

) is represented by a path starting at the initial node and

ending at a �nal node.

6. Suppose that a path spelling out �2�

�

ends at a node v. If a string � is always

pre
eded by 
2�

�

and �=
� in any string x2S

0

su
h that �2Fa
tor(x), the

path spelling out � also ends at node v.

m

m

a

a

l

a

m
m
a

l

l

l

Figure 2: CDAWG(S) for S = fmammalg. Sin
e the last letter l plays the role of the endmarker,

the endmarker is omitted.
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In Fig. 2, one 
an see that the path spelling out a ends at the same node as the

one spelling out ma, with regard to the property 6 written above. This is be
ause a

is always pre
eded by m in string mammal.

Hereafter, we denote by (u; �; v) an edge labeled with � whi
h starts at node u

and ends at node v, both in CDAWGs and suÆx trees.

2.3 Trie and Reversed Trie

Given a set S = fw

1

; : : : ; w

k

g su
h that w

i

=2 SuÆx(w

j

) for any 1 � i 6= j � k,


onsider the set S

00

= fw

1

$ : : : w

k

$g where $ denotes the 
ommon endmarker. Then

the reversed trie for S

00

is a tree in whi
h strings in SuÆx(S

00

) are merged as long and

many as possible [Bre98℄ (see Fig. 3). We asso
iate ea
h node in a reversed trie with

a unique number, as in Fig. 3. We write as Trie

R

(S

00

) the reversed trie for a set S

00

of strings. Every string in Pre�x(S

00

) is represented by a path beginning from a leaf

node. The number of nodes in Trie

R

(S

00

) is at most kS

00

k�jS

00

j+2. If the strings in

S

00

have long and many 
ommon suÆxes, the number of nodes in Trie

R

(S

00

) is by far

smaller than the upper bound kS

00

k�jS

00

j+2.

$
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Figure 3: Trie

R

(S

00

) for S

00

= faaab$; aa
$; aa$; ab
$; bab$; ba$g

On the other hand, for a set S

0

= fw

1

$

1

; : : : ; w

k

$

k

g where $

i

denotes the endmarker

for w

i

(1� i�k), the trie for a set S

0

of strings is a tree in whi
h strings in Pre�x(S

0

)

are merged as long and many as possible (see Fig. 4). We denote the trie for a set S

0

by Trie(S

0

). It is easy to see that the number of nodes in Trie(S

0

) is at most kS

0

k+1.

Thanks to the unique endmarkers, tries do not require the 
ondition that reversed

tries instead do. That is, even if a string x2S

0

belongs to Pre�x(y) for some string

y 2S

0

, the path spelling out x always ends at a leaf node in Trie(S

0

). For example,

although string aa is a pre�x of aaab in Fig. 4, the path spelling out aa$

3

ends at leaf

node 8.
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Figure 4: Trie(S

0

) for S

0

= faaab$

1

; aa
$

2

; aa$

3

; ab
$

4

; bab$

5

; ba$

6

g

Tries are used as inputs of our algorithm that will be introdu
ed in Se
tion 4.
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3 Algorithm to Constru
t the CDAWG for a Set

of Strings

This se
tion is devoted to re
alling the algorithm to 
onstru
t the CDAWG for a

set of strings, whi
h was proposed in [IHS

+

01a℄. By illustrating the 
onstru
tion of

CDAWG(abab
b
$) in Fig. 5, we roughly show how the algorithm builds a CDWAG.

More detailed des
ription of the algorithm 
an be seen in [IHS

+

01b℄. For simpli
ity,

we have put a single string to the input of the algorithm in Fig. 5.
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Figure 5: Constru
tion of CDAWG(w) for w = abab
b
$. The broken lines represent the suÆx

links, and the gray starred points represent the a
tive points.

3.1 SuÆx Links

As in literature [Wei73, M
C76, Ukk95℄ about the 
onstru
tion of suÆx trees, this

algorithm to 
onstru
t CDAWGs also utilizes suÆx links. By means of the suÆx

links, the time 
omplexity of these algorithms 
an be linear.

Let us assume that in a CDAWG the shortest path from the initial node to a node

v spells out � = 
�, where �; � 2 �

�

and 
 2 �. Then, node v has the suÆx link

that points to a node u su
h that the path spelling out � is the longest path from

the initial node to the node u. The algorithm determines the suÆx link of ea
h node

during the 
onstru
tion of a CDAWG. For example, at phase abab
 in Fig. 5, one 
an
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see that the suÆx link of node 1, at whi
h the path spelling out b ends, a

ordingly

points to the initial node the empty string " 
orresponds to. The suÆx link of the

initial node points to a spe
ial node, the bottom node, as in [Ukk95℄. It has an edge

labeled with � that represents an arbitrary letter in the alphabet � in this 
ase. With

this bottom node, we do not need to treat the initial node as an ex
eption during

the 
onstru
tion of a CDAWG. In Fig. 5, the bottom node, the initial node, and the

�nal node are expressed by B, I, and F , respe
tively. Until the 
onstru
tion of the

CDAWG of the whole input string is �nished, the suÆx link of the �nal node is left

unde�ned (see the 1st phase to 8th in Fig 5), sin
e the node to whi
h the suÆx link

of the �nal node points 
an 
hange during the 
onstru
tion. This implies that we


annot a
hieve a linear time algorithm if we update the suÆx link of the �nal node

at every phase. It 
an happen that a node r, whi
h was the latest 
reated in some

phase, does not have the suÆx link until another node is newly 
reated in the phase,

be
ause the new node is just the one to whi
h the suÆx link of r should point.

3.2 The A
tive Point

The gray starred point in Fig. 5 denotes the lo
ation from whi
h the algorithm starts

to update the 
urrent CDAWG at the next phase. This is 
alled a
tive point similarly

in [Ukk95℄. An a
tive point p is represented by the pair of a node v and a string

� su
h that p 
an be rea
hed from node v along the edge whose label begins with

�. In the running example, the a
tive point is represented by (2; ") at phase abab
b,

whereas it is represented by (2; 
) at phase abab
b
.

From now on, we sket
h how the a
tive point moves and stops in a phase. Suppose

that the algorithm has already �nished a phase 
 and now fa
es phase 

 with 
 2 �,

that is, a letter 
 follows 
 in the input string. Then there 
an be four 
ases, that is,

the a
tive point is now:

(1) on a node that has an outgoing edge whose label begins with letter 
;

(2) on a node that has no outgoing edge whose label begins with letter 
;

(3) on the middle of an edge and followed by letter 
 in the label of the edge;

(4) on the middle of an edge and not followed by letter 
 in the label of the edge.

In 
ase (1), the a
tive point advan
es by letter 
 along the edge and then stops over

there. This 
an be seen between phase ab and phase aba in Fig. 5. If it fa
es 
ase

(3) in the following phases, the a
tive point keeps on moving and stopping along the

edge, as seen in phase abab. In 
ase (2), a new edge labeled with 
 is 
reated and

then 
onne
ted from the node the a
tive point is now on to the �nal node. The

a
tive point then moves to another node via the suÆx link in order to 
he
k if there

is an outgoing edge whose label begins with letter 
. Finally, in 
ase (4), a new node

is 
reated where the a
tive point presents, splits the edge into two over there, and


reates a new edge labeled with 
 from the new node to the �nal node. Then the

algorithm has to look for the lo
ation where the a
tive point will move next.

We illustrate how the algorithm behaves after fa
ing 
ase (4). See phase abab and

phase abab
 in Fig. 5. Sin
e the a
tive point of phase abab 
an not move along the

edge any longer be
ause 
 dose not follow ab there, new node 1 is 
reated and then a

6



Constru
tion of the CDAWG for a Trie

new edge labeled with 
 is 
reated and 
onne
ted to the �nal node. After that, the

algorithm has to �nd the lo
ation where the a
tive point next moves. Sin
e node 1

does not have the suÆx link yet, the a
tive point moves ba
kwards to node I that

has the suÆx link. After arriving at node B via the suÆx link of node I, it resumes

moving along the path 
orresponding to ab, where ab is the part of the label of the

edge that the a
tive point moved ba
kwards. Remark that, although the one spelling

out ab from node I 
onsists of an edge, the path spelling out ab from node B 
onsists

of two edges. Anyway, the a
tive point �nally arrives in the middle of edge (I; bab; F )

while spelling out ab from the bottom node.

3.3 Edge Merging

(The above story still 
ontinues here.) Sin
e the a
tive point 
annot move with

spelling out 
 from the 
urrent lo
ation, it seems ne
essary to 
reate a new node

and a new edge labeled with 
 over there. However, the fa
t is that letter b is always

pre
eded by letter a in string abab
 and that node 1 whi
h 
orresponds to ab obviously

has an edge labeled with 
. That is why edge (I; bab; F ) is merged into node 1 with

label b, that is, it be
omes (I; b; 1). After that, the a
tive point again moves ba
kwards

to I and arrives at B via the suÆx link of I. It then stops just on node I spelling

out b. Creating a new edge (I; 
; F ), the a
tive point moves to node B via the suÆx

link and then moves and stops on node I while spelling out 
.

As seen above, thanks to the bottom node, we 
an obtain the following lemma

similarly in [Ukk95℄.

Lemma 1 For any string w and any i (1� i�jwj), CDAWG(w[1 : i�1℄) always has

the lo
ation on whi
h the a
tive point of phase w[1 : i℄ stops.

The above lemma holds in 
ase of a set of strings, as well.

3.4 Node Separation

The 
ompletely opposite thing to edge merging above mentioned, node separation 
an

also happen, as seen at phase abab
b in Fig. 5. Re
all that the a
tive point was on

node I at phase abab
. Then sin
e the letter b follows string abab
, the a
tive point

moves to node 1. Note that it has arrived at node 1 along the edge labeled by b whi
h

does not 
ompose the longest path from node I to node 1. Then node 1 is separated

into two, that is, a new node 2 is 
reated with the same outgoing edges as those of

node 1, and edge (I; b; 1) be
omes (I; b; 2). The reason of the above is that letter b

is not always pre
eded by letter a in string abab
b, though it was in string abab
. If

node 1 had in
oming edges 
omposing shorter paths between node I and 1 than the

path whi
h 
ontains the edge the a
tive point traveled, the last edges in all the paths

would be also redire
ted to node 2.

3.5 Update of Edges Entering to Final Node

Given a set S = fw

1

; : : : ; w

k

g, a label of any edge in CDAWG(S) is implemented with

a triple of integers (h; i; j) su
h that the label 
orresponds to w

h

[i :j℄, where 1�h �k.

Let us hereafter 
all i and j starting position and ending position, respe
tively. We
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make the ending position of every edge whi
h enters to the �nal node refer to the

integer e in the �nal node. By in
reasing e ea
h time the CDAWG is extended with

a new letter, we obtain the 
onstant time update of all the edges entering to the �nal

node.

As a result of the above dis
ussion, the following theorem holds.

Theorem 1 (Inenaga et al., [IHS

+

01a℄) For a �xed alphabet, the CDAWG for a

set S of strings 
an be dire
tly 
onstru
ted on-line, in linear time and spa
e with

respe
t to kSk+jSj.

4 Algorithm to Constru
t the CDAWG for a Trie

We are now ready to show our main algorithm that 
onstru
ts CDAWGs for tries.

First we note that the CDAWG for Trie(S) is the same as the CDAWG of S for any

set S of string, ex
ept only one thing. While the label of an edge in CDAWG(S) is

implemented by a triple of integers (h; i; j) representing the starting position i and

ending position j of the label in the h-th string in S, that in the CDAWG for Trie(S)

refers to a pair of nodes in Trie(S), between of whi
h there is the string 
orresponding

to the label.

The basi
 a
tion of the algorithm for Trie(S) is to update the CDAWG in
remen-

tally, syn
hronized with the depth-�rst traversal of Trie(S). The key idea to a
hieve

the linear time 
onstru
tion is as follows.

(1) Tra
e the advan
ed point q in the CDAWG so that the path from the root node

to q 
oin
ides with the path from the root node to node v, where v is the node


urrently visited in the trie.

(2) Create a new node in the CDAWG where the advan
ed point q is, before step-

ping into the �rst bran
h at ea
h bran
hing node in the trie.

We will explain the detail in the sequel. Suppose that, after having traveled nodes

with s
anning �2�

�

in Trie(S), the algorithm en
ounters a node v having k (� 2)

bran
hes in Trie(S). Moreover suppose that it then 
hooses an edge with whi
h a

path spelling out � and ending at a leaf node begins. After updating the CDAWG

with string ��, the algorithm has to update it with the other strings represented in

Trie(S). Noti
e that the 
urrent CDAWG already has the path representing � from

the initial node, whi
h 
orresponds to pre�xes of at least k strings in S. Thus the

algorithm has only to restart updating the CDAWG from the lo
ation to whi
h �


orresponds and to 
ontinue traversing Trie(S) from the node v. For that purpose,

we tra
e the advan
ed point q mentioned in (1) above.

Let us now 
larify the aim of (2). The aim is to make the advan
ed point q be an

expli
it node whenever the algorithm en
ounters a bran
hing node in Trie(S). That

is, the referen
e pair of q should then be
ome of the form (s; ") for some node s.

What is the matter if the advan
ed point q is not expli
it before stepping into the

�rst bran
h? Assume that the advan
ed point q was referred as (u; 
) with some node

u and string 
 6= " when the algorithm en
ountered the node v 
orresponding to � in

Trie(S). After �nishing updating the CDAWG with ��, the algorithm fo
uses ba
k
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on v and q=(u; 
). The matter is that the referen
e (u; 
) might not be 
anoni
al any

longer: the path spelling out 
 may 
ontain extra nodes. Namely, the path spelling

out 
 may have been split while the algorithm updated the CDAWG with string �.

A 
on
rete example is shown in Fig. 6.

a ab bc $1

$2

0 1 2 5 643
a

98b

a

b

b

c

I

F1

$1

a
b b

I

cc
c

$1

F1

3

2

1

a

b

a

b
a

$1

$1

c
a

b
a

$1

7

7

input trie

Figure 6: Trie(S) for S = fab
aab$

1

; ab
b$

2

g is shown left. When the algorithm fo
uses on node

3 in Trie(S), it needs to memorize the lo
ation in the CDAWG 
orresponding to ab
. Sin
e there

is no node but F

1

at the lo
ation, it is memorized by a referen
e pair (I; ab
). After having visited

node 7 in Trie(S), the algorithm updates the CDAWG from (I; ab
), and with node 3 in the trie.

However, sin
e the path spelling ab
 dose not 
onsist of an edge any more, the algorithm has to �nd

the nearest node from the lo
ation the path ends on, that is, node 2. We have to avoid this, be
ause

traversing the path spelling ab
 in the CDAWG just deserves traversing Trie(S) from node 0 to 3.

If the algorithm s
ans su
h extra nodes, its time 
omplexity 
an be
ome quadrati


with respe
t to the number of nodes in Trie(S). In order to avoid this matter, the

algorithm 
reates a new node s so that the a
tive point is guaranteed to be on an

expli
it node. However, the algorithm dose not merge any other edges be
ause at the

moment it is unknown how many edges should be merged into the new node s. Of


ourse, if 
=", there is no need to 
reate any new node.

The algorithm is des
ribed as follows.

main routine


urrent node := 0; /* the root node in the trie */

a
tive point := (I; "); /* the initial node in the CDAWG */

advan
ed point := (I; "); /* the initial node in the CDAWG */

traverse-and-update(
urrent node; a
tive point; advan
ed point);

pro
edure traverse-and-update(
urrent node; a
tive point; advan
ed point)

Let label set be the set of labels of the outgoing edges of 
urrent node;

if jlabel setj = 0 then return;

else if jlabel setj � 2 then 
reate-node(advan
ed point);

for ea
h 
 2 label set do

new a
tive point := update-CDAWG(
; a
tive point);

Let new advan
ed point be the lo
ation where a
tive point advan
es with 
;

Let v be the node to whi
h the edge labeled 
 points;

9
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traverse-and-update(v; new a
tive point; new advan
ed point);

The variable 
urrent node indi
ates the node that the algorithm 
urrently fo
uses on

in Trie(S). The variable advan
ed point is of the form of a referen
e pair (u; �), where

u is the parent node nearest to advan
ed point. As mentioned above, the string � is

a
tually implemented by a pair of nodes in Trie(S).

In the pro
edure traverse-and-update, the fun
tion update-CDAWG updates the

CDAWG with a letter 
. update-CDAWG is the same as the one for the 
onstru
tion of

the CDAWG for a set of strings [IHS

+

01a, IHS

+

01b℄, ex
epting that update-CDAWG


reates a new edge stemming from the node latest 
reated by fun
tion 
reate-node.

An example of the 
onstru
tion of the CDAWG for a trie is shown in Fig. 7.

Finally, we have the following theorem.

Theorem 2 The proposed algorithm 
onstru
ts the CDAWG for a trie in linear time

and spa
e with respe
t to the number of nodes in the trie.

Proof. We �rst explain that the modi�
ation of the fun
tion update-CDAWG and the

fun
tion 
reate-node itself do not a�e
t the linearity of the algorithm.

Suppose that an input trie has n nodes. It is 
lear that the number of nodes

visited by advan
ed point in the CDAWG is at most n. Hen
e it takes O(n) time

to 
al
ulate advan
ed point all through the 
onstru
tion. Furthermore suppose that

m nodes in Trie(S) are bran
hing. It is 
lear that m < n, be
ause any trie has at

least one leaf node. Therefore, fun
tion 
reate-node 
reates at most m nodes in the

CDAWG, and it implies that the time 
omplexity of 
reate-node is O(m). This implies

the modi�
ation, 
reating new edges due to the nodes made by fun
tion 
reate-node,

takes O(m) time as well.

We from now on verify the overall linearity of the proposed algorithm. The matter

we have to 
larify is the upper bound of the number of nodes a
tive point visits

throughout the 
onstru
tion. Assume that a node v in the trie has k bran
hes and

there is a path spelling � between the root and v. When 
urrent node arrives at

node v in the trie for the �rst time, fun
tion 
reate-node 
reates a new node u where

advan
ed point is in the CDAWG. Then a
tive point may traverse at most kj�j nodes

from p to the initial node via suÆx links until �nding the lo
ation it 
an stop on.

However, k � j�j. Therefore, for a trie with n nodes, the number of nodes a
tive point

visits throughout the 
onstru
tion is O(j�jn). Thus, if � is a �xed alphabet, the

proposed algorithm 
onstru
ts the CDAWG for a trie in O(n) time and spa
e. 2

5 Con
lusion

We gave an algorithm for 
onstru
ting the CDAWG for a trie in linear time and

spa
e with respe
t to the number of nodes in the trie. The truth is, with a slight

modi�
ation, the proposed algorithm 
an be adopted to 
onstru
t the suÆx tree and

the DAWG for a trie. When input strings are given in the form of a trie, the pro-

posed algorithm 
onstru
ts the CDAWG for the strings faster than the one presented

in [IHS

+

01a℄ dire
tly does from a set of the strings, espe
ially when the strings have

many 
ommon pre�xes. As the spa
e 
omplexity of CDAWGs is bounded stri
tly

10
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tion of the CDAWG for a Trie
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Figure 7: Constru
tion of the CDAWG for Trie(S), where S = fab
$

1

; abab$

2

g. The gray starred

point represents a
tive point, and the bla
k dotted point represents advan
ed point. For simpli
ity,

the bottom node is omitted. As node 2 in the trie is bran
hing, a new node 1 is 
reated in the

CDAWG when 
urrent node arrives at node 2 for the �rst time. After 
urrent node visits node 4,

the algorithm updates the CDAWG with 
urrent node = 2 and advan
ed point = 1.
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lower than that of suÆx trees, the algorithm presented in this paper also allows to

save memory spa
e.
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