Repetitions in two-pattern strings

Frantisek Franék and Weilin Lu and W. F. Smyth

Algorithms Research Group
Department of Computing & Software
McMaster University
Hamilton, Ontario
Canada L8S 4L7

e-mail:

Abstract. A recent paper shows that it can be determined in O(n) time
whether or not a given string « of length n is a substring of an infinite Stur-
mian string; further, if @ is such a substring, that the repetitions in & can be
computed in O(n) time, generalizing a similar result for Fibonacci strings. In
her M.Sc. thesis W. Lu extended these results to ”two-pattern” strings formed
recursively from concatenations of strings p’q and p’q, where p and q are so-
called ”suitable patterns”. Sturmian strings thus constitute the special case
when p = a, ¢ = b, |j—i| = 1, while Fibonacci strings constitute the special
case of Sturmian strings when ¢ = 1. In this paper we significantly relax the
conditions for ”suitable patterns” while showing that the repetitions can still be
determined in ©(n) time, thus significantly extending the class of strings whose
repetitions can be calculated in linear time. This result is a part of an ongoing
two-pronged research effort to identify and describe the class of strings whose
repetitions can be determined in linear time and to show (or refute) that, in
general, repetitions in any string can be listed in a list of a linear length using
a succinct notation of "runs” even though the list itself cannot be calculated in
a linear time.

1 INTRODUCTION

It was shown in [IMS97] that repetitions in Fibonacci strings can be calculated in
linear time. This result was generalized to Sturmian strings, of which Fibonacci
strings form a proper subclass, in [FKS00]. In her M.Sc. thesis [McMaster University,
2000] W. Lu generalized the result to so-called ”two-pattern” strings, i.e. strings
recursively formed by blocks made of two ”suitable patterns”. Her class of two-
pattern strings properly extended the class of block-complete Sturmian strings still
allowing for a linear computation of repetitions. In this work we significantly relax the
conditions on ”suitable patterns”, thus properly enlarging the class of ”two-pattern”
strings.

Given a string @ = x[1..n] of length n, we show that O(n) time is required to decide
whether or not a given string @ is a two-pattern string. Further, in the case that « is

32

Repetitions in two-pattern strings

indeed two-pattern, we show that all the repetitions in & can be computed in ©(n)
time.

As in [FKS00] we adopt an algorithmic, rather than a mathematical, point of view:
we imagine always that the string & is unknown, and that our objective is to design
efficient algorithms to process it, rather than study its mathematical properties.

We begin by defining ”suitable patterns”:

Definition 1 A binary string q is said to be p-regular, p a binary string, if there
are binary strings u # € and v and integers | > 0, n,m > 1 so that ¢ = (up'vp™)™u
and if [=0, then v = ¢.

Definition 2 An (ordered) pair of binary strings p, q is said to be a suitable pair
of patterns if

1. p is primitive, i.e. has no non-trivial borders,
2. p 18 neither a prefix nor a suffix of q,
3. q s neither a prefiz nor a suffix of p,

4. q 18 not p-reqular.

Note: this is a significant relaxation of conditions as used in W. Lu’s thesis where it
was required among other requirements that p is not a substring of g and that p and
g have no common suffix. As we shall see later, most of combinatorial difficulties we
had to overcome in this paper stem from this relaxation.

Definition 3 A morphism is a mappingo : a — p'q,b — p’q, 0 <i < j, p and q a suitable pc

We call 0 an expansion and observe that we may extend it naturally to arbitrary
strings = uw of {a,b}" by defining

o(uv) = o(u)o(v).

Definition 4 Let ¥ = {0y,09,...0,} denote an expansion sequence, where the
choices of p, q, i and j for distinct expansions o, and o are not required to be the
same. Suppose that x = o, ---09 - 01(a). Then x is called a two-pattern string of
scope \ if each oy, : a — p'q,b — p’q satisfies |pl, |q| < .

In Section 2 we show that two-pattern strings with scope A can be recognized in
O()*n) time; furthermore, that when @ turns out in fact to be a two-pattern string
with scope A, the expansion sequence of can also be generated in O(A*n) time.
Then in Section 3 we show how to compute all of the repetitions in a two-pattern
string with scope A in O(Kn) time where the constant K depends on .

33

Proceedings of the Prague Stringology Club Workshop 2000

Recall from [FKS00] that a Sturmian string is said to be block-complete if and only
if it can be generated by a sequence of expansions (Definition 3) in which

p=a, q=0>, |[j—i|]=1,and A = 1. (4)

Thus the restrictions (4) identify the special case of block-complete Sturmian strings.
Observe also that the use of the scope does not really restrict the generality of the
problem, since all of the possible two-pattern strings with scope A are included in the
set of two-pattern strings with scope A+1.

We conclude this section with an example. The two-pattern strings generated from
the sequence of expansions

op: a— (a)2b7 b_> (a)3b (pl :aaqlzbvi:27j:3)
oyt a— (ab)?bb, b — (ab)*bb (p, = ab,q, =bb,i =2,j = 3)
03 : a—>ab, b_>(a’)3b (p?;:aaq?):bai:laj:?))

are as follows:

o1(a) : aab

oy - 01(a) : ababbbababbbabababbb

03 - 09 - 01(a) 1 baaababaaabaaabaaababaaababaaabaaabaaababaaababaaab
abaaabaaabaaab

2 THE RECOGNITION ALGORITHM

We begin by outlining our approach to recognizing whether or not x is a two-pattern
string for a given scope A. At each step we identify the elements of a 4-tuple (p, q, 4, j),
if it exists, such that

e p and g is a suitable pair of patterns;

e p|,[g] <X

e for some string y, is an expansion of y under the morphism o defined by the
4-tuple;

The 4-tuple then also defines an inverse morphism, or reduction,

o' p'g—a,p'g—b, (5)
such that o~'(z) = y. The recognition algorithm executes simply by performing
successive reductions on «, while recording at each step the corresponding 4-tuple. If
at any step no 4-tuple can be found within the given scope A, we conclude that x is
not a two-pattern string for that scope; while if a sequence of reductions to the letter
a can be found, then « is in fact a two-pattern string of scope A. It is convenient to
introduce the idea of a 2-cover of x; that is, a pair of strings w, v such that & may be
constructed by concatenating both of them, with each string occurring at least once.
A straightforward algorithm may then be outlined as shown in Figure 1. It utilizes
two simple algorithms, PRIMITIV(p) that returns true whenever the input string p

34

Repetitions in two-pattern strings

boolean RECOGNIZE, (x)

— Deal first with trivial cases
if || = 1 then return true
if 2 = a/®! or b then return false

for r < 1 to min(\, |x|) do
p < x[l.r] — a candidate for p
if not PRIMITIV(p) then continue forloop for next r
compute the maximum % such that z[l..kr] = p*
for s < 1 to min(\, |z|) do
q < z[kr+1..kr+s] — a candidate for q
if not SUITABLE(p,q) then
continue forloop for next s
if for some 0<i<j, {p'q,p'q} is a
2-cover of
x then
output (p,q,i,j) — which defines o
return RECOGNIZE, (o '(z))
endif
enfdor
return false — as we did not find a suitable q
endfor
return false — as we did not find a suitable p

Figure 1: Recursive Recognition of a Two-Pattern String

is primitive (in O(|p|) steps), and SUITABLE(p,q) that returns true whenever p, q
is a suitable pair of patterns (in O(|p||q|) steps). Their design is left to the interested
reader.

For n > 2\, Algorithm RECOGNIZE, considers in increasing order of length the
possible choices of p and ¢, |p|< A, |g| < A. The processing depends critically on the
assumption that p is not a prefix of g: this assumption permits an exact count to be
made of the number k of consecutive occurrences of p = x[1..r] at the beginning of
. Thus for each choice of r the starting position of the first occurrence of q is well
defined, and so the only possible instances of q are ®[kr+1..kr+s], s =1,2,... A\
For each of the at most A2 possible choices of p and g, a simple left-to-right scan of x
determines in O(|z|) time whether there exist integers 0 < i < j such that (p’q,p’q)
is a 2-cover of x. RECOGNIZE, is a recursive algorithm that reduces the length of
x by a factor of at least 2 at each step, and thus over all recursive calls, at most 2|z|
positions need to be scanned. Based on this discussion, and knowing that each call to
PRIMITIVE requires at most A steps and each call to SUITABLE at most \? steps,
we state formally the main result of this section:

Theorem 1 For every fixed integer X > 1, Algorithm RECOGNIZE)\ determines in
O(*n) time whether or not x is a two-pattern string of scope X\, and, if so, outputs
its reduction sequence, also in O(*n) time. O

35

Proceedings of the Prague Stringology Club Workshop 2000

A more detailed investigation of RECOGNIZE reveals that in fact only one pair of
suitable patterns (if found) is ever tried (of course, on each level of reduction) due to
the lexicographic order of generating the candidates for p and candidates for q. It
is, in a sence, a minimal such pair, where the minimality is first determined by the
length of p and then by the length of q. This observation raises the question whether
RECOGNIZE in fact recognizes all strings defined in 4. Is it possible that there was
another suitable pair (with either a bigger p or the same p but bigger g) forming
a 2-cover of & and allowing the whole recursion to complete successfully, while the
recursion with the minimal pair did not finish successfully? If it was possible, the
algorithm would either not recognize all two-pattern strings, or would have to include
a backracking blowing its complexity to O(n log n), both rather undesirable. Luckily,
the following argument shows that it cannot happen.

So let & be a concatenation of p‘fq1 and p{lql, and at the same time a concatenation
of p2q, and p’q,, p,,q, and p,, q, being suitable pairs of patterns, the former
”smaller” than the latter. If |p,| = |p,|, then clearly p, = p,. It follows that either
g, = g, or one of them is p,-regular, a contradiction. So we have to assume that
Ip,| < |py|]- If ever a p, located to the left of a p, overlaps it, then we have a
contradiction with the primitivness of p,. Thus each right end of a p, is located
within a q,. Thus p, = p]flq1 -..pfru for some n > 1, u is a prefix of g, and each
ky - - -k, equals either i; or j;. If we ever had two adjacent p,’s, it would either violate
the primitivness of p, or imply that g, is p,-regular, both forbidden. Therefeore x =
(Pyqy)™ for some m, which would reduce & to @™, which would fail the algorithm.

3 COMPUTING THE REPETITIONS

In this section we describe the algorithm REP, that, given a two-pattern string
with a scope A and its reduction sequence, computes all the repetitions in & in time
O©(K,|x|), where the constant K, depends only on A.

The main idea of the algorithm can be described in the following way: if y is a
reduction of @, then all repetitions in & can be derived through a formula from
repetitions in y and other linear configurations in y. The repetitions in y and the
linear configurations are themselves derived (in a recursive manner) from repetitions
and linear configurations in its reduction. Since the required contribution at each
level of reduction (recursion) is linear, the whole algorithm finishes the task in a
linear time.

First we recall the Crochemore encoding of a repetition [C81]: for a given string «,
(s,l,e), e > 2, means that x[s+i] = x[s+jl+i] forany 0 < i <[, 0 < j <e. We
say that a repetition (s,[,e) in & can be shifted r positions to the right (left) if
(s+r,1,e) (respectively, (s—r,[,e)) is a repetition in . We say further that (s,[, e, r)
is a run in @ if (s,/,e) is a repetition in @ that can be shifted at most r positions
to the right and 0 positions to the left. A repetition (s,[,e) (or run (s,l,e,r)) is
irreducible if x[i..i+[—1] is not a repetition.

Before we can present REL), we need to state and prove eight theorems Theorem 2-
Theorem 9 that are used to show that (i) the algorithm works correctly (i.e. cal-

36

Repetitions in two-pattern strings

culates all runs in @), and (ii) works in a linear time. The proofs of these theo-
rems are not very hard, though they are extremly tedious and lengthy, as they have
to cover many possibilities that must be dealt with individually. Thus we decided
to skip the proofs for this publication, the interested reader can find the full ver-
sion of this paper with all proofs at the web site of one of the authors, at URL
http://www.cas.mcmaster.ca/~franya

The following theorem shows that runs with ”small” generators (i.e. smaller or equal
to a fixed x, which for REL, will in fact be 3X) can be calculated in time that solely
depends on k only, and thus we shall have to concentrate on calculating runs with
"large” (i.e. bigger than k) generators.

Theorem 2 There is an algorithm that for any k > 1 and any input binary string x

outputs all runs in x whose generator is of a size < K in
< (2% — 2)8k?| x| steps.

The following theorem summarizes how repetitions of ”large” substrings of x relate
to repetitions and certain linear configurations in y, the reduction of x.

Theorem 3 Let p,q be a suitable pair of patterns. Let x be a concatenation of
blocks p'q, p’q, 0 < i < j. Lety be a reduction of determined by the inverse of the
morphism « : a — p'q, b — p’q. Let \ be so that |p|,|q| < X\. Then for every run in
x with a generator of a size > 3\, one of the following holds:

1. the run is an expansion (by a=t) of a run from y;

2. 7 =i+l and the run is a square uu derived from a configuration avbva in y in
the following way: uu = p'qwp'p'qwp', which is a substring of p'quwp’wp’,
which is an expansion of a---b---a;

3. the run is a square wu derived from a configuration bvavb in y in the following
way: uwu = p'‘qwp'qw, which is a substring of p’qwp'qw, the expansion of
bevoq---;

4. the run is a square uwu derived from a configuration bvav that is a suffiz of x
in the following way: uu = p'qwp‘qw, which is a substring of p’quwp'qw, the
expansion of b---a---;

5. q = p,py, Py 1S a prefix of p, and p, is a suffix of p and the run is a square
uu derived from configurations aa, ab, ba, bb in y (uu = (p,p"P,) (PP P;),
which is a substring of P,P"qP Py, which is a substring of p" T qp™™t, which is
a substring of p'qp'q if r < i, of p'qp’q if r < i, of p'qp'q if r < i, and of
pap’q if r <j).

6. @ = p,py, P, S a prefix of p, and p, is a suffir of p and the run is a square
uu derived from a configuration bvaavb in y (uu =
(pop'q- - P'Py)(P2D'q - P'Py), which is a substring of |
p,p'q - p'ap'q---p’, which is a substring of p’q---p'qp'q---p’q).

37

Proceedings of the Prague Stringology Club Workshop 2000

7. D = q,95, q, is a prefix of q, q, s a suffiv of q, © or j is odd, and the
run is a square uww derived from configurations aa, ab, ba, bb in y (uu =

(920" a:)(a:2p"qy), which is a substring of qyp**'qy, which is a substring of
qp* Tlq, which is a substring of p'qp’q if i = 2r+1, of p'qp’q if j = 2r+1, of
p'gp'q if i = 2r+1, of pP’ap’q if j = 2r+1).

8. P = q,95, q, 1S a prefix of q, q, is a suffix of q, j = 2i+1, and the run is a
square uu derived from a configuration avbva in y (uu = (q,p"q,)(q,0"q,),
which is a substring of
q:p'q---P'q,)(q:,p'q - p'q,), which is a substring of
qp'q---p**t'q---p'q).

Theorem 4 Let p,q be a suitable pair of patterns. Let x be a concatenation of
blocks p'q, p'q, 0 < i < j. Let y be a reduction of determined by the inverse of
the morphism « : a — p'q, b — p’q. Let \ be so that |p|,|q| < \. Then for every
configuration aubua in x© with |u| > 3\, one of the following holds:

1. the configuration aubua can be derived from aa, ab, or ba configurations in y:
if @ = p,bp,y, apy is a suffiz of p, p,a is a prefix of p, then for any 0 < r < i,
aubua = ap,p"p,bp,p P,a = ap,p"qp"p,a which is a substring of p"Tlqp !;

2. the configuration aubua can be derived from a bb configuration in y: if ¢ =
pbpy, ap, is a suffiv of p, pya is a prefic of p, then for any 0 < r < 7,
aubua = ap,p" p,bp,p" P,a = ap,p"qp p,a, which is a substring of p"Tlqp t;

3. the configuration aubua can be derived from aa or ba configurations in y: if i is
odd, 1 > 1, p = q,bq,, aq, is a suffix of q, gq,a is a preﬁx of q, then forr = =1

2 7
aubua = aq,p"q,bq,p"q,a = aq,p* "'q,a = aq,p'q,a, which is a substring of
qp'q;

4. the configuration aubua can be derived from ab or bb configurations in y: if j
s odd, p = q,bq,, aq, is a suffix of q, gq,a is a prefix of q, then for r = %,
aubua = aq,p” q,bq,p"q,a = aq,p* *'q,a = aq,p’q,a, which is a substring of
qp’q;

5. the configuration aubua can be derived from a buaaub conﬁgumtz’on ny:ifq=
pleQ’ apQ ZS a suﬂia: Ofp, pia is a prefiz of p, then aubua = apQP q- p.plprpiq
ap,p'q---p'qp'q - - -p'p,a, which is a substring of p**'q - - - p'qp'q - - - p'*t, which
S a substrmg of
r’q---p'ap'q---p'q;

6. the configuration aubua can be derived from a -aubua configuration in y: if
j = 2@+1 p= qlbq2, aq2 s a suffix of q, q,a is a prefiz of q, then aubua =
agop'q---p qlqup q--p'qa= . .
aq,p'q---p**lq---p'qa = aq,p'q---p'q---p'q,a, which is a substring of
qpiq---pfq---p q.

Theorem 5 Let p,q be a suitable pair of patterns. Let x be a concatenation of
blocks p'q, p'q, 0 < i < j. Let y be a reduction of determined by the inverse of
the morphism « : a — p'q, b — p’q. Let \ be so that |p|,|q| < \. Then for every
configuration buaub in x with |u| > 3\, one of the following holds:

38

S p'pa =

Repetitions in two-pattern strings

1. the configuration buaub can be derived from aa, ab, or ba configurations in y:
if @ = pyap,y, bpy is a suffiz of p, p1b is a prefiz of p, then for any 0 < r < i,
buaub = bp,p"p,ap,p"p,b = bp,p"qp"p,b which is a substring of p" T qp t;

2. the configuration buaub can be derived from a bb configuration in y: if q =

Piap,, bp, is a suffix of p, p,b is a prefix of p, then for any 0 < r < j,
buaub = bp,p"p,ap,p"p1b = bp,p"qp"p,b, which is a substring of p"'qp"t';

3. the configuration buaub can be derived from aa or ba configurations in y: if i is

odd, i > 1, p = q,aq,, ba, is a suffiv of @, @,b is a prefiz of q, then forr = 3,

buaub = bq,p"q,aq,p"q,b = bq,p* T'q,b = bg,p'q,b, which is a substring of
qp'q;
4. the configuration buaub can be derived from ab or bb configurations in y: if j

1s odd, p = qyaq,, bq,y is a suffiz of q, q,b is a prefix of q, then for r = 121,

buaub = bq,p"q,aq,p"q,b = bq,p* 1q,b = bq,p’q.b, which is a substring of
ap’q;

5. the configuration buaub can be derived from a buaaub conﬁgumtzon my: ifq =
P1apy, pr is a suﬁix of p, p,b is a prefix of p, then buaub = bp2p q--p'pap,p'q-
bp,p'q---p'ap'q- - - p'p,b, which is a substring of p**'q - - - p'qp'q - - - p'*t, which
S a substrmg of
piq---pgpiq- - p'q;

6. the configuration buaub can be derived from a -aubua configuration in y: if
J = 2i+l, p = q,aq,, bq2 s a suffix of q, q,b is a prefix of q, then buaub =
bg>p'q - -P'q1aq,p'q - P'qib = bgp'q---p*t'q- - plaid =
bq,p'q - pfq -p qlb, which is a substring of qp'q---p’q- - p'q.

Theorem 6 Let p,q be a suitable pair of patterns. Let x be a concatenation of
blocks p'q, p’q, 0 < i < j. Let y be a reduction of © determined by the inverse of
the morphism « : a — p'q, b — p’q. Let \ be so that |p|,|q| < X\. Then for every
configuration buaaub in x with |u| > 3\, one of the following holds:

1. the configuration buaaub can be derived from aa, ab, ba, or bb configurations

mn y: if @ = pyaap,, bp, is a suffic of p, pyb is a prefix of p, then for any
0 <r <1, buaaub = bp,p"pyaap,p"p,b = bp,p"gp"p,b which is a substring of

pr+1qpr+1

2. the configuration buaaub can be derived from a bb configuration in y: if q =

paap,y, bpy, is a suffic of p, p,b is a prefix of p, then for any 0 < r < j,
buaaub = bp,p"p,aap,p” p,b = bp,p" qp"p,b, which is a substring of p"qpt;

3. the configuration buaaub can be derived from aa or ba conﬁgumtwns n y: if
i is even, 1 > 2, q = bg,b or ¢ = b, p = a, then for r = 5=, buaaub =
b(p")aa(p”)b = bp®"*2b = bp'b, which is a substring of qp'q;

4. the configuration buaaub can be derived from ab or bb conﬁgumtzons n y: if
j us even, j > 2, q = bg,b or q = b, p = a, thenforr—— buaaub =
b(p")aa(p”)b = bp®*2b = bp’b, which is a substring of qp’q;

39

: Pip1b

Proceedings of the Prague Stringology Club Workshop 2000

5. the configuration buaaub can be derived from aa or ba configurations in y: if
1 1s odd, 1 > 1, p = q,aaq,, bq, is a suffiz of q, q,b is a prefix of q, then for
r= %7 buaaub = b(gsp"q,)aa(q,p"q,)b = bg,p* ' q,b = bgyp'q,b, which is
a substring of gp'q;

6. the configuration buaaub can be derived from ab or bb configurations in y: if
j is odd, p = qiaaqy, bqy is a suffiz of q, q,b is a prefiz of q, then for r =
5, buaaub = b(gp"q;)aa(g,p"q,)b = bg,p” ' q,b = bg,p’qb, which is a
substring of qp’q;

7. the configuration buaaub can be derived from a buaaub configuration in y:
if @ = pyaap,, bp, is a suffiv of p, p,b is a prefiz of p, then buaaub =
bp,p'q - - - p'praap,p'q- - -p'pib =
bp,p'q---p'aqp'q- - - p'p,b, which is a substring of
p'tlq---pigp'q---p'*tt, which is a substring of p'q---p'aqp'q---P'q;

8. the configuration buaaub can be derived from a -aubuwa configuration in y: if
2i+2, ¢ = bq,b or ¢ = b, p = a, then buaaub = b)p'q---p')aa(p'q---p)
bplq . .p22+2q .. -plb =
bpiq---piq---p'b, which is a substring of qp'q---p’q---p'q.

j =
b=

9. the configuration buaaub can be derived from a -aubua configuration in y: if
Jj = 2i+1, p = q,aaq,, bq, is a suffiz of q, q,b is a prefix of q, then buaaub =
ba,p'q- - p'q,aaq,p'q---p'q,b =
bq,p'q---p**lq---piqb = bg,p'q---p'q---p'q.b, which is a substring of
ap'q---p’q---p'q.

Theorem 7 Let p, q be a suitable pair of patterns. Let x be a concatenation of blocks
p'q, pP'q, 0 <i < j. Let y be a reduction of © determined by the inverse of the mor-
phism o : a — p'q, b — p’q. Let \ be so that |p|,|q| < \. Then every configuration
buaw that is a suffiz of @ with |u| > 3\ is derived from a -avbv configuration that
is a suffiz of y: if ¢ = q,bgs, p = aq,, j = i+1, buau = b(g,---q)a(g,---q) =
bgq, - --qp---q which is a substring of gp'q---p’q---p'q.

Theorem 8 Let p, q be a suitable pair of patterns. Let x be a concatenation of blocks
p'q, p’q, 0 <i < j. Let y be a reduction of x determined by the inverse of the mor-
phism a : a — p'q, b — p’q. Let \ be so that |pl|,|q| < \. Then every configuration
aubu that is a suffiz of @ with |u| > 3\ is derived from a -avbv configuration that
is a suffiv of y: if ¢ = qiaqy, p = bqy, j = i+1, aubu = a(gy - q)b(gy - q) =
aq,:--qp---q which is a substring of gp'q---p’q---p'q.

The last missing piece before we can describe the repetition algorithm involves a
description of how to "expand” runs from a reduction y to x using the inverse of the
morphism a : a — p'q,b — p’q. Of course, we assume that p, g is a suitable pair of
patterns.

We shall keep track of a position not in the usual way using index 1 to the size of
the string, but rather in the number of a’s and b’s that precede the given position.

40

Repetitions in two-pattern strings

This is necessary, for the expansion is uneven in that a will be expanded to p’q while
b to p’q, hence they will have different lengths. Thus a run for us is an ordered
4-tuple ((Sa, 1), (Lo, lb), €, (T, 7s)), where the pair (s,,s,) determines the position at
which the generator of the run starts (s, being the number of a’s and s, the number
of b’s that precede the position where the generator starts, hence the start is at the
position s,+s,+1), the pair (I,,[;) determines the length of the generator (i.e. the
length is [,+1}), e is the power of the run, and the pair (r,,) determines the number
of positions it can be shifted to the right (i.e. we can shift r,+r, positions to the
right).

p, denotes the number of a’s in p, while p, denotes the number of 0’s in p. Similarly
q, and q,. GCS(p, q) denotes the greatest common suffix of p and g and GCS(p, q),
(or GCS(p, q)p) denotes the number of a’s (or b’s) in GC'S(p, q). GCP(p, q) denotes
the greatest common prefix of p and q, and GC'P(p, q), (or GC'P(p, q);) denotes the
number of a’s (or b’s) in GC'P(p, q).

Let ((8a,8"), ('ay'y), €, (r'ay7"y)) be a run in y. Then LC =
y[s' o+ s+l +1'y] is the last character of the generator of the run, while RP =
§' o+ y+e' (I'a+l'y)+r'o+1"y is the position of the last character in the run in its right-
most shift, or, equivalently, the length of y the run covers from its leftmost position
to its rightmost position.

Now expand y back to @ by the inverse of the morphism «. Since every a is expanded
to p'q, after the expansion it contributes i(p,+q,) a’s and i(p,+q,) b’s, while each b
after the expansion contributes j(p,+q,) a’s and j(p,+gq,) b’s.

If the generator was not at the beginning of y, it could not be shifted left for only
one reason, namely that the character just before the generator was different from
the last character of the generator. But once we expand these characters, they have a
common suffix p’q, so we can shift left by at least that much. If the last character of
the generator is @ and the generator has size > 2, then there is still more possibility
for shifting left, namely the GC'S(p, q). If the last character of the generator is b and
there are at least 2 characters to the left of the generator, then again there is still
more possibility for shifting left, GC'S(p, q).

Cq, Cp Tepresent the extra left shift we gain after the expansion:

if (LC = a) then generator ends with ’a’
if (s',+s', = 0) then generator at the beginning of x
c,=c¢c, =0

)

elseif (I'y, = 1&!', = 0) then generator contains just one letter - ’a
Ca = 1Py F+q,, ¢ = iPy+Q,

else
Co = 1P+, +GCS(P, @)a, b = 1Py +q,+GCS(p, @)y

else generator ends with b’

41

Proceedings of the Prague Stringology Club Workshop 2000

if (s',+s', =0) then generator at the beginning of x
c,=c¢, =0

elseif (s', = 1&s’, = 0) then there is only ’a’ left of the generator
Ca = 1P,y Co = 1Py +Q,,

else

Co = 1P, +q,+GCS(p,q)a, cb = ipy+q,+GCS(p, q)

Thus, we move the generator to the left as far as it goes

Sa = (8'ai+8"7)Pu+(5'a+5")0, — Cay 5 = (8'ai+5"0J) Py +(5'a+5"s) @y, — .

It is clear, that
la = (et 1) P+ (ot)0y 55 = (Uaitl's)) Pyt (I'at1's) @p-

Even if there was no possible right shift, the extra left shift we gained by the expansion
and the subsequent move of the generator to the left means that we gained at least
(¢q,cp) shift to the right. If the original shift to the right stopped at the position
RC, then we gain an extra shift to the right defined by the GCP(p’q, p‘q) which is
p'+GCP(p,q).

kg, ky represent the extra right shift we gain after the expansion:

if (RC = |y|) then max. right shift ends at the end of y
ko =k, =0

else mazx. right shift doesn’t end at the end of y
ko = 1p,+q,+GCP (P, q)a, ky = ipy+a,+GCP(p, q)s

It may happen that the extra left shift and the extra right shift together with the
expanded original right shift are bigger than the size of the generator. In such a case,
we have to increment the exponent and decrease the right shift accordingly.

Thus
ra = (r'ai+70)Po+ (M a+10)@, + o + Ko,
rp = (i +r"b7)Py+(r'at1's) @y + o + ki
if ((rg+ry) > (la+1p)) then

Ta="Tag—log, 7o =7y — lp, e = €'+1
else

e =e.

Now we are ready to describe (in a very high-level language to foster comprehension)
the repetition algorithm for two-pattern strings with scope A:

R(‘:P)\(m, S Laaa Laba Lbaa Lbb7 Laubuaa Lbuauba Lbuaauba Laubm Lbuaua Luu)a where @ is the
input two-pattern string with scope A and § its reduction sequence, while the rest of

42

Repetitions in two-pattern strings

arguments are output results. L,, is the list of positions in & where aa configuration
occurs, similarly for all others. L, is the list of runs in «.

10.

11.

12.

13.

14.

15.

. Set Lgg -+ - Ly, to empty sets.

If |&| = 1, return. (the base case of recursion)

. Remove (p, q,1i,j) from S producing &'. Reduce x to y using the inverse of the

morphism o : a — p'q,b — p’q. Set L'y, -+ L'y, to empty sets. Recursively
call
Rgp)\(ya Sla Llaa; L,aba lea; L,bb; L,aubua; L,buauba leuaaub; Llaubua L,buaua Lluu)

In instructions 4-12 all runs in & are calculated.

Calculate (using the algorithm from Theorem 2) all runs in @ with generators
of size < 3\ and add them to L,,.

Expand all runs from L', into runs in @ using the expansion formula (as de-
scribed above) and add them to Ly,.

Derive new runs in @ using configurations in L', according to Theorem 3.2
and add them to L,,.

Derive new runs in @ using configurations in L'y,q., according to Theorem 3.3
and add them to L,,.

Derive new runs in @ using configurations in L'y, according to Theorem 3.4
and add them to L,,.

. Derive new runs in @ using configurations in L' ,,, L', L'y, and L'y, according

to Theorem 3.5 and add them to L,,,.

Derive new runs in & using configurations in L'y, according to Theorem 3.6
and add them to L,,.

Derive new runs in @ using configurations in L',,, L'y, L'y,, and L'y, according
to Theorem 3.7 and add them to L,,,.

Derive new runs in @ using configurations in L'y, according to Theorem 3.8
and add them to L,,.

In instruction 18 Lo, Lay, Lp,, and Ly, are calculated.

Calculate all occurrences of aa, ab, ba, and bb respectively and store them in
Lo, Lap, Lpe, and Ly, respectively.

In instructions 14-20 Laypua %S calculated.
Calculate all occurrences of aubua in @ where |u| < 3X and store them in Lyypyq-

Derive new configurations aubua in @ from configurations in L',,, L' 4, and L'y,
according to Theorem 4.1 and store them in Lgypyq.

43

Proceedings of the Prague Stringology Club Workshop 2000

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Derive new configurations aubua in @ from configurations in L'y, according to
Theorem 4.2 and store them in L,upuq-

Derive new configurations aubua in x from configurations in L',, and L'}, ac-
cording to Theorem 4.3 and store them in Lgypyq-

Derive new configurations aubua in x from configurations in L'y, and L'y, ac-
cording to Theorem 4.4 and store them in Lgypyq-

Derive new configurations aubua in @ from configurations in L'p,4qu, according
to Theorem 4.5 and store them in Lgypuq-

Derive new configurations aubua in @ from configurations in L',,p.. according
to Theorem 4.6 and store them in L,y pyuq-

In instructions 21-27 Lyyau %S calculated.
Calculate all occurrences of buaub in where |u| < 3 and store them in Ly, qyup-

Derive new configurations buaub in @ from configurations in L',,, L4, and L'y,
according to Theorem 5.1 and store them in Lyyqup-

Derive new configurations buaub in x from configurations in L'y, according to
Theorem 5.2 and store them in Lyy,qu-

Derive new configurations buaub in & from configurations in L',, and L',, ac-
cording to Theorem 5.3 and store them in Ly, qup.

Derive new configurations buaub in @ from configurations in L', and L'y, ac-
cording to Theorem 5.4 and store them in Ly, qyp-

Derive new configurations buaub in & from configurations in L'y, 44 according
to Theorem 5.5 and store them in L, qup-

Derive new configurations buaub in @ from configurations in L',,p., according
to Theorem 5.6 and store them in L, qup-

In instructions 28-37 Lyyaaup 1S calculated.

Calculate all occurrences of configurations buaaub in & with |u| < 3\ and store
them in Lbuaaub-

Derive new configurations buaaub in @ from configurations in L'y,, L'y, L'y,
and L'y, according to Theorem 6.1 and store them in Ly,qqup-

Derive new configurations buaaub in & from configurations in L'y, according to
Theorem 6.2 and store them in Ly, uqup-

Derive new configurations buaaub in & from configurations in L'y, and L',
according to Theorem 6.3 and store them in Ly,qqup-

Derive new configurations buaaub in x from configurations in L'y, and L'y,
according to Theorem 6.4 and store them in Lyyuqup-

44

Repetitions in two-pattern strings

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Derive new configurations buaaub in & from configurations in L',, and L'y,
according to Theorem 6.5 and store them in Lyya0up-

Derive new configurations buaaub in @ from configurations in L'y, and L'y,
according to Theorem 6.6 and store them in Ly,q0up-

Derive new configurations buaaub in & from configurations in L'y, 4445 according
to Theorem 6.7 and store them in Ly,qqub-

Derive new configurations buaaub in @ from configurations in L', according
to Theorem 6.8 and store them in Lyy,.qub-

Derive new configurations buaaub in @ from configurations in I',,,, according
to Theorem 6.9 and store them in Lyyqqub-

In instructions 38-39 Ly,.. 1S calculated.

Calculate all occurrences in @ of configurations buau with |u| < 3X and store
them in Lyyay.

Derive new configurations buau in & from configurations in L',,;, according to
Theorem 7 and store them in Ly,

In instructions 40-41 Lauy, 1S calculated.

Calculate all occurrences in @ of configurations aubu with |u| < 3\ and store
them in Lgyup,.

Derive new configurations aubu in @ from configurations in L', according to
Theorem 8 and store them in Ly,

Return.

Theorem 9 For any integer X > 1 there is an integer constant C so that for any
two-pattern string & with a scope < X and its reduction sequence S given as input to
REP,, the algorithm REP, in < C\|x| steps calculates all output arguments with

1.
2.

3.

/.

|Laa|7 |Lab7 |Lba|7 |Lbb| < |m|’
|Laubua|; |Lbuaub|; |Lbuaaub| S |$| S (6)\—|—17)()\+1)|$|,
|Laubu|; |Lbuau| S (12)\+4)|$|

| L) < (231 = 2)1440%4 8(6A+17)(A+1)+ 2(12A+4)+ 16)|z|.

Proof It is clear that |L.(x)| < ||, [Lap(x)] < ||, |Lpa(®)| < ||, and |Ly(x)| <

|z].

Lubue is computed in instructions 14-20 of the algorithm. s denotes the number of p'q
blocks in @, while [the number of p’q blocks. Then |z| = s(i|p|+|q|) + 1(j|p|+]|q|),
while |y| = s+1.

45

Proceedings of the Prague Stringology Club Workshop 2000

As the induction hypothesis assume that both |Laupua(2)], | Louaaun(2)] < A|z]| for any
z of size smaller than .

In instruction 14, it can be easily seen that we can compute at most (3\+2)|x| new
configurations.

In instruction 15, from each element of each list L',,, L',, and L'y, we can derive at
most i new configurations aubua, thus from each list we can derive at most i|y| =
is—+il < ||, thus in instruction 15 we can derive at most 3|x| new configurations.

In instruction 16, we can derive at most 2j|y| = 2j(s+1) < 2|| new configurations.
In instruction 17, we can derive at most 2|y| < 2|x| new configurations.

In instruction 18, we can derive at most 2|y| < 2|x| new configurations.

|
1g|+1

||
Pl+1

In instruction 19, we can derive at most |g|A|y| < |g|A new configurations.

In instruction 20, we can derive at most |p|A|y| < |p|A new configurations.

Note, that the conditions for deriving new configurations aubua from elements of
L'yyaaus (Theorem 4.5) and from elements of L'yupue (Theorem 4.6) are mutually
exclusive, so we either derive new configurations in instruction 19 and nothing in
instruction 20 or vice versa.

First consider the case when instruction 19 derives the new configurations while in-

struction 20 does not. Thus |Laupua ()| < (3A+11)|x| + A|(J|I(|1J‘r1|m|. SO | Laupua ()| <

Alz| provided Ala| > (3\+11) 2| + A |2], or A > (3A+11)(|g|+1), which is sat-
isfied by any A > (3A+11)(A+1). For the case when instruction 20 derives the new
configurations while instruction 20 does not just replace |g| with |p| to obtain the

same result.

Lyyaauy 18 computed in instructions 28-37 of the algorithm.

In instruction 28, it can be easily seen that we can compute at most (6A+4)|z| new
configurations.

In instruction 29, from each element of each list L',,, L' 4, L'4q, and L'y, we can derive
at most ¢ new configurations aubua, thus from each list we can derive at most i|y| =
is+il < |2|, thus in instruction 29 we can derive at most 4|x| new configurations.

In instruction 30, we can derive at most j|y| = j(s+I) < |z| new configurations.
In instruction 31, we can derive at most 2|y| < 2|x| new configurations.
In instruction 32, we can derive at most 2|y| < 2|z| new configurations.
In instruction 33, we can derive at most 2|y| < 2|x| new configurations.

In instruction 34, we can derive at most 2|y| < 2|z| new configurations.

|
1g|+1

In instruction 35, we can derive at most |g|A|y| < |g|A new configurations.

46

Repetitions in two-pattern strings

|
1g|+1

||

IPl+1
Note, that the conditions for deriving new configurations buaaub from elements of
L'yyaaus (Theorem 4.7) and from elements of L',,pu, (Theorem 4.8 and Theorem 4.9)
are mutually exclusive, so we only derive new configurations in exactly one of the
instructions 35-37.

In instruction 36, we can derive at most |g|A|y| < |g|A new configurations.

In instruction 37, we can derive at most |p|A|y| < |p|A new configurations.

First consider the case when either instruction 35 or 36 derives the new configura-

tions. Thus |Lyuaeus()| < (6A+17)]] + Agrdz|@]. S0 |Lynaaus(2)| < Alz| provided

Alz| > (6A+17)|x| + A“ﬁllhﬂ, or A > (6A+17)(|g|+1), which is satisfied by any

A > (6A+17)(A+1). For the case when instruction 37 derives the new configurations
just replace |g| with |p| to obtain the same result.

Lgupy 18 computed in instructions 40-41 of the algorithm. As the induction hypothesis
assume that |Loupue(2)| < (12A4+4)|2] for any z of size smaller than |x|.

In instruction 40, it can be easily seen that we can compute at most (6A+2)|x| new
configurations.

In instruction 41, we can derive at most (12A+4)|y| < (6A+2)|x| new configurations.

Hence |Loupu ()| < 2(6A+2) |2 = (12X\+4)|z|.

Ly, is computed in instructions 4-12 of the algorithm. As the induction hypthesis we
assume that |L,,(2)| < B|z| for any z of size smaller that |z|.

In instruction 4, according to Theorem 2, we compute at most (2°**! —2)72)\?|z| new
runs.

In instruction 5, we expand at most Bly| < £|x| new runs.

In each of instructions 6, 7 we derive at most (6A+17)(A+1)]y| <
(6A+17)(A+1)|z| new runs.

In instruction 8, we derive at most (12A+4)|y| < (12A+4)|x| new runs.

In instruction 9, we derive at most 4j|q||ly| < 4|z| new runs.

In instruction 10, we derive at most |q|(6A+17))(A+1)|y| < (6A+17)|z| new runs.
In instruction 11, we derive at most 4|p||y| < 4|x| new runs.

In instruction 12, we derive at most |p|(6A+17)(A\+1)|y| < (6A+17)|x| new runs.
Thus, |Ly.(z)] < Zle|+ (22 — 2)7202 2|+ 4(6A+17)(A+1)|z|+

(12\+4)|x|+ 8|z|, which is true whenever B > (231 — 2)144)\2+
8(6A+17)(A+1)+ 2(12\+4)+ 16.

We have already established or it is easy to see that there is an integer constant D so
that all instructions in the algorithm require < D|x| steps, with the exception of the

47

Proceedings of the Prague Stringology Club Workshop 2000

recursive call. Thus, we are looking for a constant C' such that Cy|z| > D|x|+C\|y].
Since |y| < i|z|, any C\ > 2D will do. O

References

[C81] Maxime Crochemore, An optimal algorithm for computing the rep-
etitions in a word, IPL 12-5 (1981) 244-250.

[FKS00] Frantisek Franék, Ayse Karaman & W. F. Smyth, Repetitions in Stur-
mian strings, 7CS 2/9-2 (2000) to appear.

[IMS97] C.S.Iliopoulos, Dennis Moore & W. F. Smyth, A characterization of
the squares in a Fibonacci string, TC'S 172 (1997) 281-291.

48

