
Repetitions in two-pattern strings

Franti�sek Fran�ek and Weilin Lu and W. F. Smyth

Algorithms Resear
h Group

Department of Computing & Software

M
Master University

Hamilton, Ontario

Canada L8S 4L7

e-mail:

Abstra
t. A re
ent paper shows that it
an be determined in O(n) time

whether or not a given string x of length n is a substring of an in�nite Stur-

mian string; further, if x is su
h a substring, that the repetitions in x
an be

omputed in �(n) time, generalizing a similar result for Fibona

i strings. In

her M.S
. thesis W. Lu extended these results to "two-pattern" strings formed

re
ursively from
on
atenations of strings p

i

q and p

j

q, where p and q are so-

alled "suitable patterns". Sturmian strings thus
onstitute the spe
ial
ase

when p = a, q = b, jj�ij = 1, while Fibona

i strings
onstitute the spe
ial

ase of Sturmian strings when i = 1. In this paper we signi�
antly relax the

onditions for "suitable patterns" while showing that the repetitions
an still be

determined in �(n) time, thus signi�
antly extending the
lass of strings whose

repetitions
an be
al
ulated in linear time. This result is a part of an ongoing

two-pronged resear
h e�ort to identify and des
ribe the
lass of strings whose

repetitions
an be determined in linear time and to show (or refute) that, in

general, repetitions in any string
an be listed in a list of a linear length using

a su

in
t notation of "runs" even though the list itself
annot be
al
ulated in

a linear time.

1 INTRODUCTION

It was shown in [IMS97℄ that repetitions in Fibona

i strings
an be
al
ulated in

linear time. This result was generalized to Sturmian strings, of whi
h Fibona

i

strings form a proper sub
lass, in [FKS00℄. In her M.S
. thesis [M
Master University,

2000℄ W. Lu generalized the result to so-
alled "two-pattern" strings, i.e. strings

re
ursively formed by blo
ks made of two "suitable patterns". Her
lass of two-

pattern strings properly extended the
lass of blo
k-
omplete Sturmian strings still

allowing for a linear
omputation of repetitions. In this work we signi�
antly relax the

onditions on "suitable patterns", thus properly enlarging the
lass of "two-pattern"

strings.

Given a string x = x[1::n℄ of length n, we show that O(n) time is required to de
ide

whether or not a given string x is a two-pattern string. Further, in the
ase that x is

32

Repetitions in two-pattern strings

indeed two-pattern, we show that all the repetitions in x
an be
omputed in �(n)

time.

As in [FKS00℄ we adopt an algorithmi
, rather than a mathemati
al, point of view:

we imagine always that the string x is unknown, and that our obje
tive is to design

eÆ
ient algorithms to pro
ess it, rather than study its mathemati
al properties.

We begin by de�ning "suitable patterns":

De�nition 1 A binary string q is said to be p-regular, p a binary string, if there

are binary strings u 6= " and v and integers l � 0, n;m > 1 so that q = (up

l

vp

n

)

m

u

and if l = 0, then v = ".

De�nition 2 An (ordered) pair of binary strings p; q is said to be a suitable pair

of patterns if

1. p is primitive, i.e. has no non-trivial borders,

2. p is neither a pre�x nor a suÆx of q,

3. q is neither a pre�x nor a suÆx of p,

4. q is not p-regular.

Note: this is a signi�
ant relaxation of
onditions as used in W. Lu's thesis where it

was required among other requirements that p is not a substring of q and that p and

q have no
ommon suÆx. As we shall see later, most of
ombinatorial diÆ
ulties we

had to over
ome in this paper stem from this relaxation.

De�nition 3 Amorphism is a mapping � : a! p

i

q; b! p

j

q; 0 � i < j; p and q a suitable pair of patterns.

We
all � an expansion and observe that we may extend it naturally to arbitrary

strings x = uv of fa; bg

+

by de�ning

�(uv) = �(u)�(v):

De�nition 4 Let � = f�

1

; �

2

; : : : �

n

g denote an expansion sequen
e, where the

hoi
es of p, q, i and j for distin
t expansions �

k

and �

k

0

are not required to be the

same. Suppose that x = �

n

� � ��

2

� �

1

(a): Then x is
alled a two-pattern string of

s
ope � if ea
h �

k

: a! p

i

q; b! p

j

q satis�es jpj; jqj � �.

In Se
tion 2 we show that two-pattern strings with s
ope �
an be re
ognized in

O(�

4

n) time; furthermore, that when x turns out in fa
t to be a two-pattern string

with s
ope �, the expansion sequen
e of x
an also be generated in O(�

4

n) time.

Then in Se
tion 3 we show how to
ompute all of the repetitions in a two-pattern

string with s
ope � in O(Kn) time where the
onstant K depends on �.

33

Pro
eedings of the Prague Stringology Club Workshop '2000

Re
all from [FKS00℄ that a Sturmian string is said to be blo
k-
omplete if and only

if it
an be generated by a sequen
e of expansions (De�nition 3) in whi
h

p = a; q = b; jj�ij = 1; and � = 1: (4)

Thus the restri
tions (4) identify the spe
ial
ase of blo
k-
omplete Sturmian strings.

Observe also that the use of the s
ope does not really restri
t the generality of the

problem, sin
e all of the possible two-pattern strings with s
ope � are in
luded in the

set of two-pattern strings with s
ope �+1.

We
on
lude this se
tion with an example. The two-pattern strings generated from

the sequen
e of expansions

�

1

: a! (a)

2

b; b! (a)

3

b (p

1

= a; q

1

= b; i = 2; j = 3)

�

2

: a! (ab)

2

bb; b! (ab)

3

bb (p

2

= ab; q

2

= bb; i = 2; j = 3)

�

3

: a! ab; b! (a)

3

b (p

3

= a; q

3

= b; i = 1; j = 3)

are as follows:

�

1

(a) : aab

�

2

� �

1

(a) : ababbbababbbabababbb

�

3

� �

2

� �

1

(a) : baaababaaabaaabaaababaaababaaabaaabaaababaaababaaab

abaaabaaabaaab

2 THE RECOGNITION ALGORITHM

We begin by outlining our approa
h to re
ognizing whether or not x is a two-pattern

string for a given s
ope �. At ea
h step we identify the elements of a 4-tuple (p; q; i; j),

if it exists, su
h that

� p and q is a suitable pair of patterns;

� jpj; jqj � �;

� for some string y, x is an expansion of y under the morphism � de�ned by the

4-tuple;

The 4-tuple then also de�nes an inverse morphism, or redu
tion,

�

�1

: p

i

q ! a;p

j

q ! b; (5)

su
h that �

�1

(x) = y. The re
ognition algorithm exe
utes simply by performing

su

essive redu
tions on x, while re
ording at ea
h step the
orresponding 4-tuple. If

at any step no 4-tuple
an be found within the given s
ope �, we
on
lude that x is

not a two-pattern string for that s
ope; while if a sequen
e of redu
tions to the letter

a
an be found, then x is in fa
t a two-pattern string of s
ope �. It is
onvenient to

introdu
e the idea of a 2-
over of x; that is, a pair of strings u; v su
h that x may be

onstru
ted by
on
atenating both of them, with ea
h string o

urring at least on
e.

A straightforward algorithm may then be outlined as shown in Figure 1. It utilizes

two simple algorithms, PRIMITIV(p) that returns true whenever the input string p

34

Repetitions in two-pattern strings

boolean RECOGNIZE

�

(x)

| Deal �rst with trivial
ases

if jxj = 1 then return true

if x = a

jxj

or b

jxj

then return false

for r 1 to min(�; jxj) do

p x[1::r℄ | a
andidate for p

if not PRIMITIV(p) then
ontinue forloop for next r

ompute the maximum k su
h that x[1::kr℄ = p

k

for s 1 to min(�; jxj) do

q x[kr+1::kr+s℄ | a
andidate for q

if not SUITABLE(p,q) then

ontinue forloop for next s

if for some 0 � i < j, fp

i

q;p

j

qg is a

2-
over of

x then

output (p; q; i; j) | whi
h de�nes �

return RECOGNIZE

�

�

�

�1

(x))

endif

enfdor

return false | as we did not �nd a suitable q

endfor

return false | as we did not �nd a suitable p

Figure 1: Re
ursive Re
ognition of a Two-Pattern String

is primitive (in O(jpj) steps), and SUITABLE(p,q) that returns true whenever p, q

is a suitable pair of patterns (in O(jpjjqj) steps). Their design is left to the interested

reader.

For n > 2�, Algorithm RECOGNIZE

�

onsiders in in
reasing order of length the

possible
hoi
es of p and q, jpj� �, jqj � �. The pro
essing depends
riti
ally on the

assumption that p is not a pre�x of q: this assumption permits an exa
t
ount to be

made of the number k of
onse
utive o

urren
es of p = x[1::r℄ at the beginning of

x. Thus for ea
h
hoi
e of r the starting position of the �rst o

urren
e of q is well

de�ned, and so the only possible instan
es of q are x[kr+1::kr+s℄, s = 1; 2; : : : ; �.

For ea
h of the at most �

2

possible
hoi
es of p and q, a simple left-to-right s
an of x

determines in O(jxj) time whether there exist integers 0 � i < j su
h that (p

i

q,p

j

q)

is a 2-
over of x. RECOGNIZE

�

is a re
ursive algorithm that redu
es the length of

x by a fa
tor of at least 2 at ea
h step, and thus over all re
ursive
alls, at most 2jxj

positions need to be s
anned. Based on this dis
ussion, and knowing that ea
h
all to

PRIMITIVE requires at most � steps and ea
h
all to SUITABLE at most �

2

steps,

we state formally the main result of this se
tion:

Theorem 1 For every �xed integer � � 1, Algorithm RECOGNIZE

�

determines in

O(�

4

n) time whether or not x is a two-pattern string of s
ope �, and, if so, outputs

its redu
tion sequen
e, also in O(�

4

n) time. 2

35

Pro
eedings of the Prague Stringology Club Workshop '2000

A more detailed investigation of RECOGNIZE reveals that in fa
t only one pair of

suitable patterns (if found) is ever tried (of
ourse, on ea
h level of redu
tion) due to

the lexi
ographi
 order of generating the
andidates for p and
andidates for q. It

is, in a sen
e, a minimal su
h pair, where the minimality is �rst determined by the

length of p and then by the length of q. This observation raises the question whether

RECOGNIZE in fa
t re
ognizes all strings de�ned in 4. Is it possible that there was

another suitable pair (with either a bigger p or the same p but bigger q) forming

a 2-
over of x and allowing the whole re
ursion to
omplete su

essfully, while the

re
ursion with the minimal pair did not �nish su

essfully? If it was possible, the

algorithm would either not re
ognize all two-pattern strings, or would have to in
lude

a ba
kra
king blowing its
omplexity to O(n log n), both rather undesirable. Lu
kily,

the following argument shows that it
annot happen.

So let x be a
on
atenation of p

i

1

1

q

1

and p

j

1

1

q

1

, and at the same time a
on
atenation

of p

i

2

2

q

2

and p

j

2

2

q

2

, p

1

; q

1

and p

2

; q

2

being suitable pairs of patterns, the former

"smaller" than the latter. If jp

1

j = jp

2

j, then
learly p

1

= p

2

. It follows that either

q

1

= q

2

or one of them is p

1

-regular, a
ontradi
tion. So we have to assume that

jp

1

j < jp

2

j. If ever a p

2

lo
ated to the left of a p

1

overlaps it, then we have a

ontradi
tion with the primitivness of p

2

. Thus ea
h right end of a p

2

is lo
ated

within a q

1

. Thus p

2

= p

k

1

1

q

1

� � �p

k

n

1

u for some n � 1, u is a pre�x of q

1

, and ea
h

k

1

� � �k

n

equals either i

1

or j

1

. If we ever had two adja
ent p

2

's, it would either violate

the primitivness of p

1

or imply that q

1

is p

1

-regular, both forbidden. Therefeore x =

(p

2

q

2

)

m

for some m, whi
h would redu
e x to a

m

, whi
h would fail the algorithm.

3 COMPUTING THE REPETITIONS

In this se
tion we des
ribe the algorithm REP

�

that, given a two-pattern string x

with a s
ope � and its redu
tion sequen
e,
omputes all the repetitions in x in time

�(K

�

jxj), where the
onstant K

�

depends only on �.

The main idea of the algorithm
an be des
ribed in the following way: if y is a

redu
tion of x, then all repetitions in x
an be derived through a formula from

repetitions in y and other linear
on�gurations in y. The repetitions in y and the

linear
on�gurations are themselves derived (in a re
ursive manner) from repetitions

and linear
on�gurations in its redu
tion. Sin
e the required
ontribution at ea
h

level of redu
tion (re
ursion) is linear, the whole algorithm �nishes the task in a

linear time.

First we re
all the Cro
hemore en
oding of a repetition [C81℄: for a given string x,

(s; l; e), e � 2, means that x[s+i℄ = x[s+jl+i℄ for any 0 � i < l, 0 � j < e. We

say that a repetition (s; l; e) in x
an be shifted r positions to the right (left) if

(s+r; l; e) (respe
tively, (s�r; l; e)) is a repetition in x. We say further that (s; l; e; r)

is a run in x if (s; l; e) is a repetition in x that
an be shifted at most r positions

to the right and 0 positions to the left. A repetition (s; l; e) (or run (s; l; e; r)) is

irredu
ible if x[i::i+l�1℄ is not a repetition.

Before we
an present REL

�

, we need to state and prove eight theorems Theorem 2-

Theorem 9 that are used to show that (i) the algorithm works
orre
tly (i.e.
al-

36

Repetitions in two-pattern strings

ulates all runs in x), and (ii) works in a linear time. The proofs of these theo-

rems are not very hard, though they are extremly tedious and lengthy, as they have

to
over many possibilities that must be dealt with individually. Thus we de
ided

to skip the proofs for this publi
ation, the interested reader
an �nd the full ver-

sion of this paper with all proofs at the web site of one of the authors, at URL

http://www.
as.m
master.
a/�franya

The following theorem shows that runs with "small" generators (i.e. smaller or equal

to a �xed �, whi
h for REL

�

will in fa
t be 3�)
an be
al
ulated in time that solely

depends on � only, and thus we shall have to
on
entrate on
al
ulating runs with

"large" (i.e. bigger than �) generators.

Theorem 2 There is an algorithm that for any � � 1 and any input binary string x

outputs all runs in x whose generator is of a size � � in

� (2

�+1

� 2)8�

2

jxj steps.

The following theorem summarizes how repetitions of "large" substrings of x relate

to repetitions and
ertain linear
on�gurations in y, the redu
tion of x.

Theorem 3 Let p; q be a suitable pair of patterns. Let x be a
on
atenation of

blo
ks p

i

q, p

j

q, 0 � i < j. Let y be a redu
tion of x determined by the inverse of the

morphism � : a! p

i

q, b! p

j

q. Let � be so that jpj; jqj � �. Then for every run in

x with a generator of a size > 3�, one of the following holds:

1. the run is an expansion (by �

�1

) of a run from y;

2. j = i+l and the run is a square uu derived from a
on�guration avbva in y in

the following way: uu = p

i

qwp

l

p

i

qwp

l

, whi
h is a substring of p

i

qwp

j

wp

j

,

whi
h is an expansion of a � � � b � � �a;

3. the run is a square uu derived from a
on�guration bvavb in y in the following

way: uu = p

i

qwp

i

qw, whi
h is a substring of p

j

qwp

i

qw, the expansion of

b � � �a � � � ;

4. the run is a square uu derived from a
on�guration bvav that is a suÆx of x

in the following way: uu = p

i

qwp

i

qw, whi
h is a substring of p

j

qwp

i

qw, the

expansion of b � � �a � � � ;

5. q = p

1

p

2

, p

1

is a pre�x of p, and p

2

is a suÆx of p and the run is a square

uu derived from
on�gurations aa, ab, ba, bb in y (uu = (p

2

p

r

p

1

)(p

2

p

r

p

1

),

whi
h is a substring of p

2

p

r

qp

r

p

1

, whi
h is a substring of p

r+1

qp

r+1

, whi
h is

a substring of p

i

qp

i

q if r < i, of p

i

qp

j

q if r < i, of p

j

qp

i

q if r < i, and of

p

j

qp

j

q if r < j).

6. q = p

1

p

2

, p

1

is a pre�x of p, and p

2

is a suÆx of p and the run is a square

uu derived from a
on�guration bvaavb in y (uu =

(p

2

p

i

q � � �p

i

p

1

)(p

2

p

i

q � � �p

i

p

1

), whi
h is a substring of

p

2

p

i

q � � �p

i

qp

i

q � � �p

j

, whi
h is a substring of p

j

q � � �p

i

qp

i

q � � �p

j

q).

37

Pro
eedings of the Prague Stringology Club Workshop '2000

7. p = q

1

q

2

, q

1

is a pre�x of q, q

2

is a suÆx of q, i or j is odd, and the

run is a square uu derived from
on�gurations aa, ab, ba, bb in y (uu =

(q

2

p

r

q

1

)(q

2

p

r

q

1

), whi
h is a substring of q

2

p

2r+1

q

1

, whi
h is a substring of

qp

2r+1

q, whi
h is a substring of p

i

qp

j

q if i = 2r+1, of p

i

qp

j

q if j = 2r+1, of

p

j

qp

i

q if i = 2r+1, of p

j

qp

j

q if j = 2r+1).

8. p = q

1

q

2

, q

1

is a pre�x of q, q

2

is a suÆx of q, j = 2i+1, and the run is a

square uu derived from a
on�guration avbva in y (uu = (q

2

p

r

q

1

)(q

2

p

r

q

1

),

whi
h is a substring of

q

2

p

i

q � � �p

i

q

1

)(q

2

p

i

q � � �p

i

q

1

), whi
h is a substring of

qp

i

q � � �p

2i+1

q � � �p

i

q).

Theorem 4 Let p; q be a suitable pair of patterns. Let x be a
on
atenation of

blo
ks p

i

q, p

j

q, 0 � i < j. Let y be a redu
tion of x determined by the inverse of

the morphism � : a ! p

i

q, b ! p

j

q. Let � be so that jpj; jqj � �. Then for every

on�guration aubua in x with juj > 3�, one of the following holds:

1. the
on�guration aubua
an be derived from aa, ab, or ba
on�gurations in y:

if q = p

1

bp

2

, ap

2

is a suÆx of p, p

1

a is a pre�x of p, then for any 0 � r < i,

aubua = ap

2

p

r

p

1

bp

2

p

r

p

1

a = ap

2

p

r

qp

r

p

1

a whi
h is a substring of p

r+1

qp

r+1

;

2. the
on�guration aubua
an be derived from a bb
on�guration in y: if q =

p

1

bp

2

, ap

2

is a suÆx of p, p

1

a is a pre�x of p, then for any 0 � r < j,

aubua = ap

2

p

r

p

1

bp

2

p

r

p

1

a = ap

2

p

r

qp

r

p

1

a, whi
h is a substring of p

r+1

qp

r+1

;

3. the
on�guration aubua
an be derived from aa or ba
on�gurations in y: if i is

odd, i � 1, p = q

1

bq

2

, aq

2

is a suÆx of q, q

1

a is a pre�x of q, then for r =

i�1

2

,

aubua = aq

2

p

r

q

1

bq

2

p

r

q

1

a = aq

2

p

2r+1

q

1

a = aq

2

p

i

q

1

a, whi
h is a substring of

qp

i

q;

4. the
on�guration aubua
an be derived from ab or bb
on�gurations in y: if j

is odd, p = q

1

bq

2

, aq

2

is a suÆx of q, q

1

a is a pre�x of q, then for r =

j�1

2

,

aubua = aq

2

p

r

q

1

bq

2

p

r

q

1

a = aq

2

p

2r+1

q

1

a = aq

2

p

j

q

1

a, whi
h is a substring of

qp

j

q;

5. the
on�guration aubua
an be derived from a buaaub
on�guration in y: if q =

p

1

bp

2

, ap

2

is a suÆx of p, p

1

a is a pre�x of p, then aubua = ap

2

p

i

q � � �p

i

p

1

bp

2

p

i

q � � �p

i

p

1

a =

ap

2

p

i

q � � �p

i

qp

i

q � � �p

i

p

1

a, whi
h is a substring of p

i+1

q � � �p

i

qp

i

q � � �p

i+1

, whi
h

is a substring of

p

j

q � � �p

i

qp

i

q � � �p

j

q;

6. the
on�guration aubua
an be derived from a �aubua
on�guration in y: if

j = 2i+1, p = q

1

bq

2

, aq

2

is a suÆx of q, q

1

a is a pre�x of q, then aubua =

aq

2

p

i

q � � �p

i

q

1

bq

2

p

i

q � � �p

i

q

1

a =

aq

2

p

i

q � � �p

2i+1

q � � �p

i

q

1

a = aq

2

p

i

q � � �p

j

q � � �p

i

q

1

a, whi
h is a substring of

qp

i

q � � �p

j

q � � �p

i

q.

Theorem 5 Let p; q be a suitable pair of patterns. Let x be a
on
atenation of

blo
ks p

i

q, p

j

q, 0 � i < j. Let y be a redu
tion of x determined by the inverse of

the morphism � : a ! p

i

q, b ! p

j

q. Let � be so that jpj; jqj � �. Then for every

on�guration buaub in x with juj > 3�, one of the following holds:

38

Repetitions in two-pattern strings

1. the
on�guration buaub
an be derived from aa, ab, or ba
on�gurations in y:

if q = p

1

ap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any 0 � r < i,

buaub = bp

2

p

r

p

1

ap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b whi
h is a substring of p

r+1

qp

r+1

;

2. the
on�guration buaub
an be derived from a bb
on�guration in y: if q =

p

1

ap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any 0 � r < j,

buaub = bp

2

p

r

p

1

ap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b, whi
h is a substring of p

r+1

qp

r+1

;

3. the
on�guration buaub
an be derived from aa or ba
on�gurations in y: if i is

odd, i � 1, p = q

1

aq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for r =

i�1

2

,

buaub = bq

2

p

r

q

1

aq

2

p

r

q

1

b = bq

2

p

2r+1

q

1

b = bq

2

p

i

q

1

b, whi
h is a substring of

qp

i

q;

4. the
on�guration buaub
an be derived from ab or bb
on�gurations in y: if j

is odd, p = q

1

aq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for r =

j�1

2

,

buaub = bq

2

p

r

q

1

aq

2

p

r

q

1

b = bq

2

p

2r+1

q

1

b = bq

2

p

j

q

1

b, whi
h is a substring of

qp

j

q;

5. the
on�guration buaub
an be derived from a buaaub
on�guration in y: if q =

p

1

ap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then buaub = bp

2

p

i

q � � �p

i

p

1

ap

2

p

i

q � � �p

i

p

1

b =

bp

2

p

i

q � � �p

i

qp

i

q � � �p

i

p

1

b, whi
h is a substring of p

i+1

q � � �p

i

qp

i

q � � �p

i+1

, whi
h

is a substring of

p

j

q � � �p

i

qp

i

q � � �p

j

q;

6. the
on�guration buaub
an be derived from a �aubua
on�guration in y: if

j = 2i+1, p = q

1

aq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then buaub =

bq

2

p

i

q � � �p

i

q

1

aq

2

p

i

q � � �p

i

q

1

b = bq

2

p

i

q � � �p

2i+1

q � � �p

i

q

1

b =

bq

2

p

i

q � � �p

j

q � � �p

i

q

1

b, whi
h is a substring of qp

i

q � � �p

j

q � � �p

i

q.

Theorem 6 Let p; q be a suitable pair of patterns. Let x be a
on
atenation of

blo
ks p

i

q, p

j

q, 0 � i < j. Let y be a redu
tion of x determined by the inverse of

the morphism � : a ! p

i

q, b ! p

j

q. Let � be so that jpj; jqj � �. Then for every

on�guration buaaub in x with juj > 3�, one of the following holds:

1. the
on�guration buaaub
an be derived from aa, ab, ba, or bb
on�gurations

in y: if q = p

1

aap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any

0 � r < i, buaaub = bp

2

p

r

p

1

aap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b whi
h is a substring of

p

r+1

qp

r+1

;

2. the
on�guration buaaub
an be derived from a bb
on�guration in y: if q =

p

1

aap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any 0 � r < j,

buaaub = bp

2

p

r

p

1

aap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b, whi
h is a substring of p

r+1

qp

r+1

;

3. the
on�guration buaaub
an be derived from aa or ba
on�gurations in y: if

i is even, i � 2, q = bq

1

b or q = b, p = a, then for r =

i�2

2

, buaaub =

b(p

r

)aa(p

r

)b = bp

2r+2

b = bp

i

b, whi
h is a substring of qp

i

q;

4. the
on�guration buaaub
an be derived from ab or bb
on�gurations in y: if

j is even, j � 2, q = bq

1

b or q = b, p = a, then for r =

j�2

2

, buaaub =

b(p

r

)aa(p

r

)b = bp

2r+2

b = bp

j

b, whi
h is a substring of qp

j

q;

39

Pro
eedings of the Prague Stringology Club Workshop '2000

5. the
on�guration buaaub
an be derived from aa or ba
on�gurations in y: if

i is odd, i � 1, p = q

1

aaq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for

r =

i�1

2

, buaaub = b(q

2

p

r

q

1

)aa(q

2

p

r

q

1

)b = bq

2

p

2r+1

q

1

b = bq

2

p

i

q

1

b, whi
h is

a substring of qp

i

q;

6. the
on�guration buaaub
an be derived from ab or bb
on�gurations in y: if

j is odd, p = q

1

aaq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for r =

j�1

2

, buaaub = b(q

2

p

r

q

1

)aa(q

2

p

r

q

1

)b = bq

2

p

2r+1

q

1

b = bq

2

p

j

q

1

b, whi
h is a

substring of qp

j

q;

7. the
on�guration buaaub
an be derived from a buaaub
on�guration in y:

if q = p

1

aap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then buaaub =

bp

2

p

i

q � � �p

i

p

1

aap

2

p

i

q � � �p

i

p

1

b =

bp

2

p

i

q � � �p

i

qp

i

q � � �p

i

p

1

b, whi
h is a substring of

p

i+1

q � � �p

i

qp

i

q � � �p

i+1

, whi
h is a substring of p

j

q � � �p

i

qp

i

q � � �p

j

q;

8. the
on�guration buaaub
an be derived from a �aubua
on�guration in y: if j =

2i+2, q = bq

1

b or q = b, p = a, then buaaub = b)p

i

q � � �p

i

)aa(p

i

q � � �p

i

)b =

bp

i

q � � �p

2i+2

q � � �p

i

b =

bp

i

q � � �p

j

q � � �p

i

b, whi
h is a substring of qp

i

q � � �p

j

q � � �p

i

q.

9. the
on�guration buaaub
an be derived from a �aubua
on�guration in y: if

j = 2i+1, p = q

1

aaq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then buaaub =

bq

2

p

i

q � � �p

i

q

1

aaq

2

p

i

q � � �p

i

q

1

b =

bq

2

p

i

q � � �p

2i+1

q � � �p

i

q

1

b = bq

2

p

i

q � � �p

j

q � � �p

i

q

1

b, whi
h is a substring of

qp

i

q � � �p

j

q � � �p

i

q.

Theorem 7 Let p; q be a suitable pair of patterns. Let x be a
on
atenation of blo
ks

p

i

q, p

j

q, 0 � i < j. Let y be a redu
tion of x determined by the inverse of the mor-

phism � : a! p

i

q, b! p

j

q. Let � be so that jpj; jqj � �. Then every
on�guration

buau that is a suÆx of x with juj > 3� is derived from a �avbv
on�guration that

is a suÆx of y: if q = q

1

bq

2

, p = aq

2

, j = i+1, buau = b(q

2

� � �q)a(q

2

� � �q) =

bq

2

� � �qp � � �q whi
h is a substring of qp

i

q � � �p

j

q � � �p

i

q.

Theorem 8 Let p; q be a suitable pair of patterns. Let x be a
on
atenation of blo
ks

p

i

q, p

j

q, 0 � i < j. Let y be a redu
tion of x determined by the inverse of the mor-

phism � : a! p

i

q, b! p

j

q. Let � be so that jpj; jqj � �. Then every
on�guration

aubu that is a suÆx of x with juj > 3� is derived from a �avbv
on�guration that

is a suÆx of y: if q = q

1

aq

2

, p = bq

2

, j = i+1, aubu = a(q

2

� � �q)b(q

2

� � �q) =

aq

2

� � �qp � � �q whi
h is a substring of qp

i

q � � �p

j

q � � �p

i

q.

The last missing pie
e before we
an des
ribe the repetition algorithm involves a

des
ription of how to "expand" runs from a redu
tion y to x using the inverse of the

morphism � : a! p

i

q; b! p

j

q. Of
ourse, we assume that p; q is a suitable pair of

patterns.

We shall keep tra
k of a position not in the usual way using index 1 to the size of

the string, but rather in the number of a's and b's that pre
ede the given position.

40

Repetitions in two-pattern strings

This is ne
essary, for the expansion is uneven in that a will be expanded to p

i

q while

b to p

j

q, hen
e they will have di�erent lengths. Thus a run for us is an ordered

4-tuple ((s

a

; s

b

); (l

a

; l

b

); e; (r

a

; r

b

)), where the pair (s

a

; s

b

) determines the position at

whi
h the generator of the run starts (s

a

being the number of a's and s

b

the number

of b's that pre
ede the position where the generator starts, hen
e the start is at the

position s

a

+s

b

+1), the pair (l

a

; l

b

) determines the length of the generator (i.e. the

length is l

a

+l

b

), e is the power of the run, and the pair (r

a

; r

b

) determines the number

of positions it
an be shifted to the right (i.e. we
an shift r

a

+r

b

positions to the

right).

p

a

denotes the number of a's in p, while p

b

denotes the number of b's in p. Similarly

q

a

and q

b

. GCS(p; q) denotes the greatest
ommon suÆx of p and q and GCS(p; q)

a

(or GCS(p; q)

b

) denotes the number of a's (or b's) in GCS(p; q). GCP (p; q) denotes

the greatest
ommon pre�x of p and q, and GCP (p; q)

a

(or GCP (p; q)

b

) denotes the

number of a's (or b's) in GCP (p; q).

Let ((s

0

a

; s

0

b

); (l

0

a

; l

0

b

); e

0

; (r

0

a

; r

0

b

)) be a run in y. Then LC =

y[s

0

a

+s

0

b

+l

0

a

+l

0

b

℄ is the last
hara
ter of the generator of the run, while RP =

s

0

a

+s

0

b

+e

0

(l

0

a

+l

0

b

)+r

0

a

+r

0

b

is the position of the last
hara
ter in the run in its right-

most shift, or, equivalently, the length of y the run
overs from its leftmost position

to its rightmost position.

Now expand y ba
k to x by the inverse of the morphism �. Sin
e every a is expanded

to p

i

q, after the expansion it
ontributes i(p

a

+q

a

) a's and i(p

b

+q

b

) b's, while ea
h b

after the expansion
ontributes j(p

a

+q

a

) a's and j(p

b

+q

b

) b's.

If the generator was not at the beginning of y, it
ould not be shifted left for only

one reason, namely that the
hara
ter just before the generator was di�erent from

the last
hara
ter of the generator. But on
e we expand these
hara
ters, they have a

ommon suÆx p

i

q, so we
an shift left by at least that mu
h. If the last
hara
ter of

the generator is a and the generator has size � 2, then there is still more possibility

for shifting left, namely the GCS(p; q). If the last
hara
ter of the generator is b and

there are at least 2
hara
ters to the left of the generator, then again there is still

more possibility for shifting left, GCS(p; q).

a

,

b

represent the extra left shift we gain after the expansion:

if (LC = a) then generator ends with 'a'

if (s

0

a

+s

0

b

= 0) then generator at the beginning of x

a

=

b

= 0

elseif (l

0

a

= 1&l

0

b

= 0) then generator
ontains just one letter - 'a'

a

= ip

a

+q

a

,

b

= ip

b

+q

b

else

a

= ip

a

+q

a

+GCS(p; q)

a

,

b

= ip

b

+q

b

+GCS(p; q)

b

else generator ends with 'b'

41

Pro
eedings of the Prague Stringology Club Workshop '2000

if (s

0

a

+s

0

b

= 0) then generator at the beginning of x

a

=

b

= 0

elseif (s

0

a

= 1&s

0

b

= 0) then there is only 'a' left of the generator

a

= ip

a

+q

a

,

b

= ip

b

+q

b

else

a

= ip

a

+q

a

+GCS(p; q)

a

,

b

= ip

b

+q

b

+GCS(p; q)

b

Thus, we move the generator to the left as far as it goes

s

a

= (s

0

a

i+s

0

b

j)p

a

+(s

0

a

+s

0

b

)q

a

�

a

, s

b

= (s

0

a

i+s

0

b

j)p

b

+(s

0

a

+s

0

b

)q

b

�

b

.

It is
lear, that

l

a

= (l

0

a

i+l

0

b

j)p

a

+(l

0

a

+l

0

b

)q

a

, s

b

= (l

0

a

i+l

0

b

j)p

b

+(l

0

a

+l

0

b

)q

b

.

Even if there was no possible right shift, the extra left shift we gained by the expansion

and the subsequent move of the generator to the left means that we gained at least

(

a

;

b

) shift to the right. If the original shift to the right stopped at the position

RC, then we gain an extra shift to the right de�ned by the GCP (p

j

q;p

i

q) whi
h is

p

i

+GCP (p; q).

k

a

, k

b

represent the extra right shift we gain after the expansion:

if (RC = jyj) then max. right shift ends at the end of y

k

a

= k

b

= 0

else max. right shift doesn't end at the end of y

k

a

= ip

a

+q

a

+GCP (p; q)

a

, k

b

= ip

b

+q

b

+GCP (p; q)

b

It may happen that the extra left shift and the extra right shift together with the

expanded original right shift are bigger than the size of the generator. In su
h a
ase,

we have to in
rement the exponent and de
rease the right shift a

ordingly.

Thus

r

a

= (r

0

a

i+r

0

b

j)p

a

+(r

0

a

+r

0

b

)q

a

+

a

+ k

a

,

r

b

= (r

0

a

i+r

0

b

j)p

b

+(r

0

a

+r

0

b

)q

b

+

b

+ k

b

.

if ((r

a

+r

b

) � (l

a

+l

b

)) then

r

a

= r

a

� l

a

, r

b

= r

b

� l

b

, e = e

0

+1

else

e

0

= e.

Now we are ready to des
ribe (in a very high-level language to foster
omprehension)

the repetition algorithm for two-pattern strings with s
ope �:

REP

�

(x; S L

aa

; L

ab

; L

ba

; L

bb

; L

aubua

; L

buaub

; L

buaaub

; L

aubu

; L

buau

; L

uu

), where x is the

input two-pattern string with s
ope � and S its redu
tion sequen
e, while the rest of

42

Repetitions in two-pattern strings

arguments are output results. L

aa

is the list of positions in x where aa
on�guration

o

urs, similarly for all others. L

uu

is the list of runs in x.

1. Set L

aa

� � �L

uu

to empty sets.

2. If jxj = 1, return. (the base
ase of re
ursion)

3. Remove (p; q; i; j) from S produ
ing S

0

. Redu
e x to y using the inverse of the

morphism � : a ! p

i

q; b ! p

j

q. Set L

0

aa

� � �L

0

uu

to empty sets. Re
ursively

all

REP

�

(y; S

0

; L

0

aa

; L

0

ab

; L

0

ba

; L

0

bb

; L

0

aubua

; L

0

buaub

; L

0

buaaub

; L

0

aubu

; L

0

buau

; L

0

uu

).

In instru
tions 4-12 all runs in x are
al
ulated.

4. Cal
ulate (using the algorithm from Theorem 2) all runs in x with generators

of size � 3� and add them to L

uu

.

5. Expand all runs from L

0

uu

into runs in x using the expansion formula (as de-

s
ribed above) and add them to L

uu

.

6. Derive new runs in x using
on�gurations in L

0

aubua

a

ording to Theorem 3.2

and add them to L

uu

.

7. Derive new runs in x using
on�gurations in L

0

buaub

a

ording to Theorem 3.3

and add them to L

uu

.

8. Derive new runs in x using
on�gurations in L

0

buau

a

ording to Theorem 3.4

and add them to L

uu

.

9. Derive new runs in x using
on�gurations in L

0

aa

, L

0

ab

, L

0

ba

, and L

0

bb

a

ording

to Theorem 3.5 and add them to L

uu

.

10. Derive new runs in x using
on�gurations in L

0

buaaub

a

ording to Theorem 3.6

and add them to L

uu

.

11. Derive new runs in x using
on�gurations in L

0

aa

, L

0

ab

, L

0

ba

, and L

0

bb

a

ording

to Theorem 3.7 and add them to L

uu

.

12. Derive new runs in x using
on�gurations in L

0

aubua

a

ording to Theorem 3.8

and add them to L

uu

.

In instru
tion 13 L

aa

, L

ab

, L

ba

, and L

bb

are
al
ulated.

13. Cal
ulate all o

urren
es of aa, ab, ba, and bb respe
tively and store them in

L

aa

, L

ab

, L

ba

, and L

bb

respe
tively.

In instru
tions 14-20 L

aubua

is
al
ulated.

14. Cal
ulate all o

urren
es of aubua in x where juj � 3� and store them in L

aubua

.

15. Derive new
on�gurations aubua in x from
on�gurations in L

0

aa

, L

0

ab

, and L

0

ba

a

ording to Theorem 4.1 and store them in L

aubua

.

43

Pro
eedings of the Prague Stringology Club Workshop '2000

16. Derive new
on�gurations aubua in x from
on�gurations in L

0

bb

a

ording to

Theorem 4.2 and store them in L

aubua

.

17. Derive new
on�gurations aubua in x from
on�gurations in L

0

aa

and L

0

ba

a
-

ording to Theorem 4.3 and store them in L

aubua

.

18. Derive new
on�gurations aubua in x from
on�gurations in L

0

ab

and L

0

bb

a
-

ording to Theorem 4.4 and store them in L

aubua

.

19. Derive new
on�gurations aubua in x from
on�gurations in L

0

buaaub

a

ording

to Theorem 4.5 and store them in L

aubua

.

20. Derive new
on�gurations aubua in x from
on�gurations in L

0

aubua

a

ording

to Theorem 4.6 and store them in L

aubua

.

In instru
tions 21-27 L

buaub

is
al
ulated.

21. Cal
ulate all o

urren
es of buaub in x where juj � 3� and store them in L

buaub

.

22. Derive new
on�gurations buaub in x from
on�gurations in L

0

aa

, L

0

ab

, and L

0

ba

a

ording to Theorem 5.1 and store them in L

buaub

.

23. Derive new
on�gurations buaub in x from
on�gurations in L

0

bb

a

ording to

Theorem 5.2 and store them in L

buaub

.

24. Derive new
on�gurations buaub in x from
on�gurations in L

0

aa

and L

0

ba

a
-

ording to Theorem 5.3 and store them in L

buaub

.

25. Derive new
on�gurations buaub in x from
on�gurations in L

0

ab

and L

0

bb

a
-

ording to Theorem 5.4 and store them in L

buaub

.

26. Derive new
on�gurations buaub in x from
on�gurations in L

0

buaaub

a

ording

to Theorem 5.5 and store them in L

buaub

.

27. Derive new
on�gurations buaub in x from
on�gurations in L

0

aubua

a

ording

to Theorem 5.6 and store them in L

buaub

.

In instru
tions 28-37 L

buaaub

is
al
ulated.

28. Cal
ulate all o

urren
es of
on�gurations buaaub in x with juj � 3� and store

them in L

buaaub

.

29. Derive new
on�gurations buaaub in x from
on�gurations in L

0

aa

, L

0

ab

, L

0

ba

,

and L

0

bb

a

ording to Theorem 6.1 and store them in L

buaaub

.

30. Derive new
on�gurations buaaub in x from
on�gurations in L

0

bb

a

ording to

Theorem 6.2 and store them in L

buaaub

.

31. Derive new
on�gurations buaaub in x from
on�gurations in L

0

aa

and L

0

ba

a

ording to Theorem 6.3 and store them in L

buaaub

.

32. Derive new
on�gurations buaaub in x from
on�gurations in L

0

ab

and L

0

bb

a

ording to Theorem 6.4 and store them in L

buaaub

.

44

Repetitions in two-pattern strings

33. Derive new
on�gurations buaaub in x from
on�gurations in L

0

aa

and L

0

ba

a

ording to Theorem 6.5 and store them in L

buaaub

.

34. Derive new
on�gurations buaaub in x from
on�gurations in L

0

ab

and L

0

bb

a

ording to Theorem 6.6 and store them in L

buaaub

.

35. Derive new
on�gurations buaaub in x from
on�gurations in L

0

buaaub

a

ording

to Theorem 6.7 and store them in L

buaaub

.

36. Derive new
on�gurations buaaub in x from
on�gurations in L

0

aubua

a

ording

to Theorem 6.8 and store them in L

buaaub

.

37. Derive new
on�gurations buaaub in x from
on�gurations in L

0

aubua

a

ording

to Theorem 6.9 and store them in L

buaaub

.

In instru
tions 38-39 L

buau

is
al
ulated.

38. Cal
ulate all o

urren
es in x of
on�gurations buau with juj � 3� and store

them in L

buau

.

39. Derive new
on�gurations buau in x from
on�gurations in L

0

aubu

a

ording to

Theorem 7 and store them in L

buau

.

In instru
tions 40-41 L

aubu

is
al
ulated.

40. Cal
ulate all o

urren
es in x of
on�gurations aubu with juj � 3� and store

them in L

aubu

.

41. Derive new
on�gurations aubu in x from
on�gurations in L

0

aubu

a

ording to

Theorem 8 and store them in L

aubu

.

42. Return.

Theorem 9 For any integer � � 1 there is an integer
onstant C

�

so that for any

two-pattern string x with a s
ope � � and its redu
tion sequen
e S given as input to

REP

�

, the algorithm REP

�

in � C

�

jxj steps
al
ulates all output arguments with

1. jL

aa

j, jL

ab

, jL

ba

j, jL

bb

j � jxj;

2. jL

aubua

j, jL

buaub

j, jL

buaaub

j � jxj � (6�+17)(�+1)jxj;

3. jL

aubu

j, jL

buau

j � (12�+4)jxj.

4. jL

uu

j � ((2

3�+1

� 2)144�

2

+ 8(6�+17)(�+1)+ 2(12�+4)+ 16)jxj.

Proof It is
lear that jL

aa

(x)j � jxj, jL

ab

(x)j � jxj, jL

ba

(x)j � jxj, and jL

bb

(x)j �

jxj.

L

aubua

is
omputed in instru
tions 14-20 of the algorithm. s denotes the number of p

i

q

blo
ks in x, while l the number of p

j

q blo
ks. Then jxj = s(ijpj+jqj) + l(jjpj+jqj),

while jyj = s+l.

45

Pro
eedings of the Prague Stringology Club Workshop '2000

As the indu
tion hypothesis assume that both jL

aubua

(z)j; jL

buaaub

(z)j � Ajzj for any

z of size smaller than x.

In instru
tion 14, it
an be easily seen that we
an
ompute at most (3�+2)jxj new

on�gurations.

In instru
tion 15, from ea
h element of ea
h list L

0

aa

, L

0

ab

, and L

0

ba

we
an derive at

most i new
on�gurations aubua, thus from ea
h list we
an derive at most ijyj =

is+il � jxj, thus in instru
tion 15 we
an derive at most 3jxj new
on�gurations.

In instru
tion 16, we
an derive at most 2jjyj = 2j(s+l) � 2jxj new
on�gurations.

In instru
tion 17, we
an derive at most 2jyj � 2jxj new
on�gurations.

In instru
tion 18, we
an derive at most 2jyj � 2jxj new
on�gurations.

In instru
tion 19, we
an derive at most jqjAjyj � jqjA

jxj

jqj+1

new
on�gurations.

In instru
tion 20, we
an derive at most jpjAjyj � jpjA

jxj

jpj+1

new
on�gurations.

Note, that the
onditions for deriving new
on�gurations aubua from elements of

L

0

buaaub

(Theorem 4.5) and from elements of L

0

aubua

(Theorem 4.6) are mutually

ex
lusive, so we either derive new
on�gurations in instru
tion 19 and nothing in

instru
tion 20 or vi
e versa.

First
onsider the
ase when instru
tion 19 derives the new
on�gurations while in-

stru
tion 20 does not. Thus jL

aubua

(x)j � (3�+11)jxj+ A

jqj

jqj+1

jxj. So jL

aubua

(x)j �

Ajxj provided Ajxj � (3�+11)jxj+A

jqj

jqj+1

jxj, or A � (3�+11)(jqj+1), whi
h is sat-

is�ed by any A � (3�+11)(�+1). For the
ase when instru
tion 20 derives the new

on�gurations while instru
tion 20 does not just repla
e jqj with jpj to obtain the

same result.

L

buaaub

is
omputed in instru
tions 28-37 of the algorithm.

In instru
tion 28, it
an be easily seen that we
an
ompute at most (6�+4)jxj new

on�gurations.

In instru
tion 29, from ea
h element of ea
h list L

0

aa

, L

0

ab

, L

0

ba

, and L

0

ba

we
an derive

at most i new
on�gurations aubua, thus from ea
h list we
an derive at most ijyj =

is+il � jxj, thus in instru
tion 29 we
an derive at most 4jxj new
on�gurations.

In instru
tion 30, we
an derive at most jjyj = j(s+l) � jxj new
on�gurations.

In instru
tion 31, we
an derive at most 2jyj � 2jxj new
on�gurations.

In instru
tion 32, we
an derive at most 2jyj � 2jxj new
on�gurations.

In instru
tion 33, we
an derive at most 2jyj � 2jxj new
on�gurations.

In instru
tion 34, we
an derive at most 2jyj � 2jxj new
on�gurations.

In instru
tion 35, we
an derive at most jqjAjyj � jqjA

jxj

jqj+1

new
on�gurations.

46

Repetitions in two-pattern strings

In instru
tion 36, we
an derive at most jqjAjyj � jqjA

jxj

jqj+1

new
on�gurations.

In instru
tion 37, we
an derive at most jpjAjyj � jpjA

jxj

jpj+1

new
on�gurations.

Note, that the
onditions for deriving new
on�gurations buaaub from elements of

L

0

buaaub

(Theorem 4.7) and from elements of L

0

aubua

(Theorem 4.8 and Theorem 4.9)

are mutually ex
lusive, so we only derive new
on�gurations in exa
tly one of the

instru
tions 35-37.

First
onsider the
ase when either instru
tion 35 or 36 derives the new
on�gura-

tions. Thus jL

buaaub

(x)j � (6�+17)jxj + A

jqj

jqj+1

jxj. So jL

buaaub

(x)j � Ajxj provided

Ajxj � (6�+17)jxj + A

jqj

jqj+1

jxj, or A � (6�+17)(jqj+1), whi
h is satis�ed by any

A � (6�+17)(�+1). For the
ase when instru
tion 37 derives the new
on�gurations

just repla
e jqj with jpj to obtain the same result.

L

aubu

is
omputed in instru
tions 40-41 of the algorithm. As the indu
tion hypothesis

assume that jL

aubua

(z)j � (12�+4)jzj for any z of size smaller than jxj.

In instru
tion 40, it
an be easily seen that we
an
ompute at most (6�+2)jxj new

on�gurations.

In instru
tion 41, we
an derive at most (12�+4)jyj � (6�+2)jxj new
on�gurations.

Hen
e jL

aubu

(x)j � 2(6�+2)jxj = (12�+4)jxj.

L

uu

is
omputed in instru
tions 4-12 of the algorithm. As the indu
tion hypthesis we

assume that jL

uu

(z)j � Bjzj for any z of size smaller that jxj.

In instru
tion 4, a

ording to Theorem 2, we
ompute at most (2

3�+1

�2)72�

2

jxj new

runs.

In instru
tion 5, we expand at most Bjyj �

B

2

jxj new runs.

In ea
h of instru
tions 6, 7 we derive at most (6�+17)(�+1)jyj �

(6�+17)(�+1)jxj new runs.

In instru
tion 8, we derive at most (12�+4)jyj � (12�+4)jxj new runs.

In instru
tion 9, we derive at most 4jjqjjyj � 4jxj new runs.

In instru
tion 10, we derive at most jqj(6�+17))(�+1)jyj � (6�+17)jxj new runs.

In instru
tion 11, we derive at most 4jpjjyj � 4jxj new runs.

In instru
tion 12, we derive at most jpj(6�+17)(�+1)jyj � (6�+17)jxj new runs.

Thus, jL

u;u

(x)j �

B

2

jxj+ (2

3�+1

� 2)72�

2

jxj+ 4(6�+17)(�+1)jxj+

(12�+4)jxj+ 8jxj, whi
h is true whenever B � (2

3�+1

� 2)144�

2

+

8(6�+17)(�+1)+ 2(12�+4)+ 16.

We have already established or it is easy to see that there is an integer
onstant D so

that all instru
tions in the algorithm require � Djxj steps, with the ex
eption of the

47

Pro
eedings of the Prague Stringology Club Workshop '2000

re
ursive
all. Thus, we are looking for a
onstant C

�

su
h that C

�

jxj � Djxj+C

�

jyj.

Sin
e jyj �

1

2

jxj, any C

�

� 2D will do. 2

Referen
es

[C81℄ Maxime Cro
hemore, An optimal algorithm for
omputing the rep-

etitions in a word, IPL 12-5 (1981) 244-250.

[FKS00℄ Franti�sek Fran�ek, Ay�se Karaman & W. F. Smyth, Repetitions in Stur-

mian strings, TCS 249-2 (2000) to appear.

[IMS97℄ C.S.Iliopoulos, Dennis Moore & W. F. Smyth, A
hara
terization of

the squares in a Fibona

i string, TCS 172 (1997) 281-291.

48

