
Repetitions in two-pattern strings

Franti�sek Fran�ek and Weilin Lu and W. F. Smyth

Algorithms Researh Group

Department of Computing & Software

MMaster University

Hamilton, Ontario

Canada L8S 4L7

e-mail:

Abstrat. A reent paper shows that it an be determined in O(n) time

whether or not a given string x of length n is a substring of an in�nite Stur-

mian string; further, if x is suh a substring, that the repetitions in x an be

omputed in �(n) time, generalizing a similar result for Fibonai strings. In

her M.S. thesis W. Lu extended these results to "two-pattern" strings formed

reursively from onatenations of strings p

i

q and p

j

q, where p and q are so-

alled "suitable patterns". Sturmian strings thus onstitute the speial ase

when p = a, q = b, jj�ij = 1, while Fibonai strings onstitute the speial

ase of Sturmian strings when i = 1. In this paper we signi�antly relax the

onditions for "suitable patterns" while showing that the repetitions an still be

determined in �(n) time, thus signi�antly extending the lass of strings whose

repetitions an be alulated in linear time. This result is a part of an ongoing

two-pronged researh e�ort to identify and desribe the lass of strings whose

repetitions an be determined in linear time and to show (or refute) that, in

general, repetitions in any string an be listed in a list of a linear length using

a suint notation of "runs" even though the list itself annot be alulated in

a linear time.

1 INTRODUCTION

It was shown in [IMS97℄ that repetitions in Fibonai strings an be alulated in

linear time. This result was generalized to Sturmian strings, of whih Fibonai

strings form a proper sublass, in [FKS00℄. In her M.S. thesis [MMaster University,

2000℄ W. Lu generalized the result to so-alled "two-pattern" strings, i.e. strings

reursively formed by bloks made of two "suitable patterns". Her lass of two-

pattern strings properly extended the lass of blok-omplete Sturmian strings still

allowing for a linear omputation of repetitions. In this work we signi�antly relax the

onditions on "suitable patterns", thus properly enlarging the lass of "two-pattern"

strings.

Given a string x = x[1::n℄ of length n, we show that O(n) time is required to deide

whether or not a given string x is a two-pattern string. Further, in the ase that x is

32

Repetitions in two-pattern strings

indeed two-pattern, we show that all the repetitions in x an be omputed in �(n)

time.

As in [FKS00℄ we adopt an algorithmi, rather than a mathematial, point of view:

we imagine always that the string x is unknown, and that our objetive is to design

eÆient algorithms to proess it, rather than study its mathematial properties.

We begin by de�ning "suitable patterns":

De�nition 1 A binary string q is said to be p-regular, p a binary string, if there

are binary strings u 6= " and v and integers l � 0, n;m > 1 so that q = (up

l

vp

n

)

m

u

and if l = 0, then v = ".

De�nition 2 An (ordered) pair of binary strings p; q is said to be a suitable pair

of patterns if

1. p is primitive, i.e. has no non-trivial borders,

2. p is neither a pre�x nor a suÆx of q,

3. q is neither a pre�x nor a suÆx of p,

4. q is not p-regular.

Note: this is a signi�ant relaxation of onditions as used in W. Lu's thesis where it

was required among other requirements that p is not a substring of q and that p and

q have no ommon suÆx. As we shall see later, most of ombinatorial diÆulties we

had to overome in this paper stem from this relaxation.

De�nition 3 Amorphism is a mapping � : a! p

i

q; b! p

j

q; 0 � i < j; p and q a suitable pair of patterns.

We all � an expansion and observe that we may extend it naturally to arbitrary

strings x = uv of fa; bg

+

by de�ning

�(uv) = �(u)�(v):

De�nition 4 Let � = f�

1

; �

2

; : : : �

n

g denote an expansion sequene, where the

hoies of p, q, i and j for distint expansions �

k

and �

k

0

are not required to be the

same. Suppose that x = �

n

� � ��

2

� �

1

(a): Then x is alled a two-pattern string of

sope � if eah �

k

: a! p

i

q; b! p

j

q satis�es jpj; jqj � �.

In Setion 2 we show that two-pattern strings with sope � an be reognized in

O(�

4

n) time; furthermore, that when x turns out in fat to be a two-pattern string

with sope �, the expansion sequene of x an also be generated in O(�

4

n) time.

Then in Setion 3 we show how to ompute all of the repetitions in a two-pattern

string with sope � in O(Kn) time where the onstant K depends on �.

33

Proeedings of the Prague Stringology Club Workshop '2000

Reall from [FKS00℄ that a Sturmian string is said to be blok-omplete if and only

if it an be generated by a sequene of expansions (De�nition 3) in whih

p = a; q = b; jj�ij = 1; and � = 1: (4)

Thus the restritions (4) identify the speial ase of blok-omplete Sturmian strings.

Observe also that the use of the sope does not really restrit the generality of the

problem, sine all of the possible two-pattern strings with sope � are inluded in the

set of two-pattern strings with sope �+1.

We onlude this setion with an example. The two-pattern strings generated from

the sequene of expansions

�

1

: a! (a)

2

b; b! (a)

3

b (p

1

= a; q

1

= b; i = 2; j = 3)

�

2

: a! (ab)

2

bb; b! (ab)

3

bb (p

2

= ab; q

2

= bb; i = 2; j = 3)

�

3

: a! ab; b! (a)

3

b (p

3

= a; q

3

= b; i = 1; j = 3)

are as follows:

�

1

(a) : aab

�

2

� �

1

(a) : ababbbababbbabababbb

�

3

� �

2

� �

1

(a) : baaababaaabaaabaaababaaababaaabaaabaaababaaababaaab

abaaabaaabaaab

2 THE RECOGNITION ALGORITHM

We begin by outlining our approah to reognizing whether or not x is a two-pattern

string for a given sope �. At eah step we identify the elements of a 4-tuple (p; q; i; j),

if it exists, suh that

� p and q is a suitable pair of patterns;

� jpj; jqj � �;

� for some string y, x is an expansion of y under the morphism � de�ned by the

4-tuple;

The 4-tuple then also de�nes an inverse morphism, or redution,

�

�1

: p

i

q ! a;p

j

q ! b; (5)

suh that �

�1

(x) = y. The reognition algorithm exeutes simply by performing

suessive redutions on x, while reording at eah step the orresponding 4-tuple. If

at any step no 4-tuple an be found within the given sope �, we onlude that x is

not a two-pattern string for that sope; while if a sequene of redutions to the letter

a an be found, then x is in fat a two-pattern string of sope �. It is onvenient to

introdue the idea of a 2-over of x; that is, a pair of strings u; v suh that x may be

onstruted by onatenating both of them, with eah string ourring at least one.

A straightforward algorithm may then be outlined as shown in Figure 1. It utilizes

two simple algorithms, PRIMITIV(p) that returns true whenever the input string p

34

Repetitions in two-pattern strings

boolean RECOGNIZE

�

(x)

| Deal �rst with trivial ases

if jxj = 1 then return true

if x = a

jxj

or b

jxj

then return false

for r 1 to min(�; jxj) do

p x[1::r℄ | a andidate for p

if not PRIMITIV(p) then ontinue forloop for next r

ompute the maximum k suh that x[1::kr℄ = p

k

for s 1 to min(�; jxj) do

q x[kr+1::kr+s℄ | a andidate for q

if not SUITABLE(p,q) then

ontinue forloop for next s

if for some 0 � i < j, fp

i

q;p

j

qg is a

2-over of

x then

output (p; q; i; j) | whih de�nes �

return RECOGNIZE

�

�

�

�1

(x))

endif

enfdor

return false | as we did not �nd a suitable q

endfor

return false | as we did not �nd a suitable p

Figure 1: Reursive Reognition of a Two-Pattern String

is primitive (in O(jpj) steps), and SUITABLE(p,q) that returns true whenever p, q

is a suitable pair of patterns (in O(jpjjqj) steps). Their design is left to the interested

reader.

For n > 2�, Algorithm RECOGNIZE

�

onsiders in inreasing order of length the

possible hoies of p and q, jpj� �, jqj � �. The proessing depends ritially on the

assumption that p is not a pre�x of q: this assumption permits an exat ount to be

made of the number k of onseutive ourrenes of p = x[1::r℄ at the beginning of

x. Thus for eah hoie of r the starting position of the �rst ourrene of q is well

de�ned, and so the only possible instanes of q are x[kr+1::kr+s℄, s = 1; 2; : : : ; �.

For eah of the at most �

2

possible hoies of p and q, a simple left-to-right san of x

determines in O(jxj) time whether there exist integers 0 � i < j suh that (p

i

q,p

j

q)

is a 2-over of x. RECOGNIZE

�

is a reursive algorithm that redues the length of

x by a fator of at least 2 at eah step, and thus over all reursive alls, at most 2jxj

positions need to be sanned. Based on this disussion, and knowing that eah all to

PRIMITIVE requires at most � steps and eah all to SUITABLE at most �

2

steps,

we state formally the main result of this setion:

Theorem 1 For every �xed integer � � 1, Algorithm RECOGNIZE

�

determines in

O(�

4

n) time whether or not x is a two-pattern string of sope �, and, if so, outputs

its redution sequene, also in O(�

4

n) time. 2

35

Proeedings of the Prague Stringology Club Workshop '2000

A more detailed investigation of RECOGNIZE reveals that in fat only one pair of

suitable patterns (if found) is ever tried (of ourse, on eah level of redution) due to

the lexiographi order of generating the andidates for p and andidates for q. It

is, in a sene, a minimal suh pair, where the minimality is �rst determined by the

length of p and then by the length of q. This observation raises the question whether

RECOGNIZE in fat reognizes all strings de�ned in 4. Is it possible that there was

another suitable pair (with either a bigger p or the same p but bigger q) forming

a 2-over of x and allowing the whole reursion to omplete suessfully, while the

reursion with the minimal pair did not �nish suessfully? If it was possible, the

algorithm would either not reognize all two-pattern strings, or would have to inlude

a bakraking blowing its omplexity to O(n log n), both rather undesirable. Lukily,

the following argument shows that it annot happen.

So let x be a onatenation of p

i

1

1

q

1

and p

j

1

1

q

1

, and at the same time a onatenation

of p

i

2

2

q

2

and p

j

2

2

q

2

, p

1

; q

1

and p

2

; q

2

being suitable pairs of patterns, the former

"smaller" than the latter. If jp

1

j = jp

2

j, then learly p

1

= p

2

. It follows that either

q

1

= q

2

or one of them is p

1

-regular, a ontradition. So we have to assume that

jp

1

j < jp

2

j. If ever a p

2

loated to the left of a p

1

overlaps it, then we have a

ontradition with the primitivness of p

2

. Thus eah right end of a p

2

is loated

within a q

1

. Thus p

2

= p

k

1

1

q

1

� � �p

k

n

1

u for some n � 1, u is a pre�x of q

1

, and eah

k

1

� � �k

n

equals either i

1

or j

1

. If we ever had two adjaent p

2

's, it would either violate

the primitivness of p

1

or imply that q

1

is p

1

-regular, both forbidden. Therefeore x =

(p

2

q

2

)

m

for some m, whih would redue x to a

m

, whih would fail the algorithm.

3 COMPUTING THE REPETITIONS

In this setion we desribe the algorithm REP

�

that, given a two-pattern string x

with a sope � and its redution sequene, omputes all the repetitions in x in time

�(K

�

jxj), where the onstant K

�

depends only on �.

The main idea of the algorithm an be desribed in the following way: if y is a

redution of x, then all repetitions in x an be derived through a formula from

repetitions in y and other linear on�gurations in y. The repetitions in y and the

linear on�gurations are themselves derived (in a reursive manner) from repetitions

and linear on�gurations in its redution. Sine the required ontribution at eah

level of redution (reursion) is linear, the whole algorithm �nishes the task in a

linear time.

First we reall the Crohemore enoding of a repetition [C81℄: for a given string x,

(s; l; e), e � 2, means that x[s+i℄ = x[s+jl+i℄ for any 0 � i < l, 0 � j < e. We

say that a repetition (s; l; e) in x an be shifted r positions to the right (left) if

(s+r; l; e) (respetively, (s�r; l; e)) is a repetition in x. We say further that (s; l; e; r)

is a run in x if (s; l; e) is a repetition in x that an be shifted at most r positions

to the right and 0 positions to the left. A repetition (s; l; e) (or run (s; l; e; r)) is

irreduible if x[i::i+l�1℄ is not a repetition.

Before we an present REL

�

, we need to state and prove eight theorems Theorem 2-

Theorem 9 that are used to show that (i) the algorithm works orretly (i.e. al-

36

Repetitions in two-pattern strings

ulates all runs in x), and (ii) works in a linear time. The proofs of these theo-

rems are not very hard, though they are extremly tedious and lengthy, as they have

to over many possibilities that must be dealt with individually. Thus we deided

to skip the proofs for this publiation, the interested reader an �nd the full ver-

sion of this paper with all proofs at the web site of one of the authors, at URL

http://www.as.mmaster.a/�franya

The following theorem shows that runs with "small" generators (i.e. smaller or equal

to a �xed �, whih for REL

�

will in fat be 3�) an be alulated in time that solely

depends on � only, and thus we shall have to onentrate on alulating runs with

"large" (i.e. bigger than �) generators.

Theorem 2 There is an algorithm that for any � � 1 and any input binary string x

outputs all runs in x whose generator is of a size � � in

� (2

�+1

� 2)8�

2

jxj steps.

The following theorem summarizes how repetitions of "large" substrings of x relate

to repetitions and ertain linear on�gurations in y, the redution of x.

Theorem 3 Let p; q be a suitable pair of patterns. Let x be a onatenation of

bloks p

i

q, p

j

q, 0 � i < j. Let y be a redution of x determined by the inverse of the

morphism � : a! p

i

q, b! p

j

q. Let � be so that jpj; jqj � �. Then for every run in

x with a generator of a size > 3�, one of the following holds:

1. the run is an expansion (by �

�1

) of a run from y;

2. j = i+l and the run is a square uu derived from a on�guration avbva in y in

the following way: uu = p

i

qwp

l

p

i

qwp

l

, whih is a substring of p

i

qwp

j

wp

j

,

whih is an expansion of a � � � b � � �a;

3. the run is a square uu derived from a on�guration bvavb in y in the following

way: uu = p

i

qwp

i

qw, whih is a substring of p

j

qwp

i

qw, the expansion of

b � � �a � � � ;

4. the run is a square uu derived from a on�guration bvav that is a suÆx of x

in the following way: uu = p

i

qwp

i

qw, whih is a substring of p

j

qwp

i

qw, the

expansion of b � � �a � � � ;

5. q = p

1

p

2

, p

1

is a pre�x of p, and p

2

is a suÆx of p and the run is a square

uu derived from on�gurations aa, ab, ba, bb in y (uu = (p

2

p

r

p

1

)(p

2

p

r

p

1

),

whih is a substring of p

2

p

r

qp

r

p

1

, whih is a substring of p

r+1

qp

r+1

, whih is

a substring of p

i

qp

i

q if r < i, of p

i

qp

j

q if r < i, of p

j

qp

i

q if r < i, and of

p

j

qp

j

q if r < j).

6. q = p

1

p

2

, p

1

is a pre�x of p, and p

2

is a suÆx of p and the run is a square

uu derived from a on�guration bvaavb in y (uu =

(p

2

p

i

q � � �p

i

p

1

)(p

2

p

i

q � � �p

i

p

1

), whih is a substring of

p

2

p

i

q � � �p

i

qp

i

q � � �p

j

, whih is a substring of p

j

q � � �p

i

qp

i

q � � �p

j

q).

37

Proeedings of the Prague Stringology Club Workshop '2000

7. p = q

1

q

2

, q

1

is a pre�x of q, q

2

is a suÆx of q, i or j is odd, and the

run is a square uu derived from on�gurations aa, ab, ba, bb in y (uu =

(q

2

p

r

q

1

)(q

2

p

r

q

1

), whih is a substring of q

2

p

2r+1

q

1

, whih is a substring of

qp

2r+1

q, whih is a substring of p

i

qp

j

q if i = 2r+1, of p

i

qp

j

q if j = 2r+1, of

p

j

qp

i

q if i = 2r+1, of p

j

qp

j

q if j = 2r+1).

8. p = q

1

q

2

, q

1

is a pre�x of q, q

2

is a suÆx of q, j = 2i+1, and the run is a

square uu derived from a on�guration avbva in y (uu = (q

2

p

r

q

1

)(q

2

p

r

q

1

),

whih is a substring of

q

2

p

i

q � � �p

i

q

1

)(q

2

p

i

q � � �p

i

q

1

), whih is a substring of

qp

i

q � � �p

2i+1

q � � �p

i

q).

Theorem 4 Let p; q be a suitable pair of patterns. Let x be a onatenation of

bloks p

i

q, p

j

q, 0 � i < j. Let y be a redution of x determined by the inverse of

the morphism � : a ! p

i

q, b ! p

j

q. Let � be so that jpj; jqj � �. Then for every

on�guration aubua in x with juj > 3�, one of the following holds:

1. the on�guration aubua an be derived from aa, ab, or ba on�gurations in y:

if q = p

1

bp

2

, ap

2

is a suÆx of p, p

1

a is a pre�x of p, then for any 0 � r < i,

aubua = ap

2

p

r

p

1

bp

2

p

r

p

1

a = ap

2

p

r

qp

r

p

1

a whih is a substring of p

r+1

qp

r+1

;

2. the on�guration aubua an be derived from a bb on�guration in y: if q =

p

1

bp

2

, ap

2

is a suÆx of p, p

1

a is a pre�x of p, then for any 0 � r < j,

aubua = ap

2

p

r

p

1

bp

2

p

r

p

1

a = ap

2

p

r

qp

r

p

1

a, whih is a substring of p

r+1

qp

r+1

;

3. the on�guration aubua an be derived from aa or ba on�gurations in y: if i is

odd, i � 1, p = q

1

bq

2

, aq

2

is a suÆx of q, q

1

a is a pre�x of q, then for r =

i�1

2

,

aubua = aq

2

p

r

q

1

bq

2

p

r

q

1

a = aq

2

p

2r+1

q

1

a = aq

2

p

i

q

1

a, whih is a substring of

qp

i

q;

4. the on�guration aubua an be derived from ab or bb on�gurations in y: if j

is odd, p = q

1

bq

2

, aq

2

is a suÆx of q, q

1

a is a pre�x of q, then for r =

j�1

2

,

aubua = aq

2

p

r

q

1

bq

2

p

r

q

1

a = aq

2

p

2r+1

q

1

a = aq

2

p

j

q

1

a, whih is a substring of

qp

j

q;

5. the on�guration aubua an be derived from a buaaub on�guration in y: if q =

p

1

bp

2

, ap

2

is a suÆx of p, p

1

a is a pre�x of p, then aubua = ap

2

p

i

q � � �p

i

p

1

bp

2

p

i

q � � �p

i

p

1

a =

ap

2

p

i

q � � �p

i

qp

i

q � � �p

i

p

1

a, whih is a substring of p

i+1

q � � �p

i

qp

i

q � � �p

i+1

, whih

is a substring of

p

j

q � � �p

i

qp

i

q � � �p

j

q;

6. the on�guration aubua an be derived from a �aubua on�guration in y: if

j = 2i+1, p = q

1

bq

2

, aq

2

is a suÆx of q, q

1

a is a pre�x of q, then aubua =

aq

2

p

i

q � � �p

i

q

1

bq

2

p

i

q � � �p

i

q

1

a =

aq

2

p

i

q � � �p

2i+1

q � � �p

i

q

1

a = aq

2

p

i

q � � �p

j

q � � �p

i

q

1

a, whih is a substring of

qp

i

q � � �p

j

q � � �p

i

q.

Theorem 5 Let p; q be a suitable pair of patterns. Let x be a onatenation of

bloks p

i

q, p

j

q, 0 � i < j. Let y be a redution of x determined by the inverse of

the morphism � : a ! p

i

q, b ! p

j

q. Let � be so that jpj; jqj � �. Then for every

on�guration buaub in x with juj > 3�, one of the following holds:

38

Repetitions in two-pattern strings

1. the on�guration buaub an be derived from aa, ab, or ba on�gurations in y:

if q = p

1

ap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any 0 � r < i,

buaub = bp

2

p

r

p

1

ap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b whih is a substring of p

r+1

qp

r+1

;

2. the on�guration buaub an be derived from a bb on�guration in y: if q =

p

1

ap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any 0 � r < j,

buaub = bp

2

p

r

p

1

ap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b, whih is a substring of p

r+1

qp

r+1

;

3. the on�guration buaub an be derived from aa or ba on�gurations in y: if i is

odd, i � 1, p = q

1

aq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for r =

i�1

2

,

buaub = bq

2

p

r

q

1

aq

2

p

r

q

1

b = bq

2

p

2r+1

q

1

b = bq

2

p

i

q

1

b, whih is a substring of

qp

i

q;

4. the on�guration buaub an be derived from ab or bb on�gurations in y: if j

is odd, p = q

1

aq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for r =

j�1

2

,

buaub = bq

2

p

r

q

1

aq

2

p

r

q

1

b = bq

2

p

2r+1

q

1

b = bq

2

p

j

q

1

b, whih is a substring of

qp

j

q;

5. the on�guration buaub an be derived from a buaaub on�guration in y: if q =

p

1

ap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then buaub = bp

2

p

i

q � � �p

i

p

1

ap

2

p

i

q � � �p

i

p

1

b =

bp

2

p

i

q � � �p

i

qp

i

q � � �p

i

p

1

b, whih is a substring of p

i+1

q � � �p

i

qp

i

q � � �p

i+1

, whih

is a substring of

p

j

q � � �p

i

qp

i

q � � �p

j

q;

6. the on�guration buaub an be derived from a �aubua on�guration in y: if

j = 2i+1, p = q

1

aq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then buaub =

bq

2

p

i

q � � �p

i

q

1

aq

2

p

i

q � � �p

i

q

1

b = bq

2

p

i

q � � �p

2i+1

q � � �p

i

q

1

b =

bq

2

p

i

q � � �p

j

q � � �p

i

q

1

b, whih is a substring of qp

i

q � � �p

j

q � � �p

i

q.

Theorem 6 Let p; q be a suitable pair of patterns. Let x be a onatenation of

bloks p

i

q, p

j

q, 0 � i < j. Let y be a redution of x determined by the inverse of

the morphism � : a ! p

i

q, b ! p

j

q. Let � be so that jpj; jqj � �. Then for every

on�guration buaaub in x with juj > 3�, one of the following holds:

1. the on�guration buaaub an be derived from aa, ab, ba, or bb on�gurations

in y: if q = p

1

aap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any

0 � r < i, buaaub = bp

2

p

r

p

1

aap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b whih is a substring of

p

r+1

qp

r+1

;

2. the on�guration buaaub an be derived from a bb on�guration in y: if q =

p

1

aap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then for any 0 � r < j,

buaaub = bp

2

p

r

p

1

aap

2

p

r

p

1

b = bp

2

p

r

qp

r

p

1

b, whih is a substring of p

r+1

qp

r+1

;

3. the on�guration buaaub an be derived from aa or ba on�gurations in y: if

i is even, i � 2, q = bq

1

b or q = b, p = a, then for r =

i�2

2

, buaaub =

b(p

r

)aa(p

r

)b = bp

2r+2

b = bp

i

b, whih is a substring of qp

i

q;

4. the on�guration buaaub an be derived from ab or bb on�gurations in y: if

j is even, j � 2, q = bq

1

b or q = b, p = a, then for r =

j�2

2

, buaaub =

b(p

r

)aa(p

r

)b = bp

2r+2

b = bp

j

b, whih is a substring of qp

j

q;

39

Proeedings of the Prague Stringology Club Workshop '2000

5. the on�guration buaaub an be derived from aa or ba on�gurations in y: if

i is odd, i � 1, p = q

1

aaq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for

r =

i�1

2

, buaaub = b(q

2

p

r

q

1

)aa(q

2

p

r

q

1

)b = bq

2

p

2r+1

q

1

b = bq

2

p

i

q

1

b, whih is

a substring of qp

i

q;

6. the on�guration buaaub an be derived from ab or bb on�gurations in y: if

j is odd, p = q

1

aaq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then for r =

j�1

2

, buaaub = b(q

2

p

r

q

1

)aa(q

2

p

r

q

1

)b = bq

2

p

2r+1

q

1

b = bq

2

p

j

q

1

b, whih is a

substring of qp

j

q;

7. the on�guration buaaub an be derived from a buaaub on�guration in y:

if q = p

1

aap

2

, bp

2

is a suÆx of p, p

1

b is a pre�x of p, then buaaub =

bp

2

p

i

q � � �p

i

p

1

aap

2

p

i

q � � �p

i

p

1

b =

bp

2

p

i

q � � �p

i

qp

i

q � � �p

i

p

1

b, whih is a substring of

p

i+1

q � � �p

i

qp

i

q � � �p

i+1

, whih is a substring of p

j

q � � �p

i

qp

i

q � � �p

j

q;

8. the on�guration buaaub an be derived from a �aubua on�guration in y: if j =

2i+2, q = bq

1

b or q = b, p = a, then buaaub = b)p

i

q � � �p

i

)aa(p

i

q � � �p

i

)b =

bp

i

q � � �p

2i+2

q � � �p

i

b =

bp

i

q � � �p

j

q � � �p

i

b, whih is a substring of qp

i

q � � �p

j

q � � �p

i

q.

9. the on�guration buaaub an be derived from a �aubua on�guration in y: if

j = 2i+1, p = q

1

aaq

2

, bq

2

is a suÆx of q, q

1

b is a pre�x of q, then buaaub =

bq

2

p

i

q � � �p

i

q

1

aaq

2

p

i

q � � �p

i

q

1

b =

bq

2

p

i

q � � �p

2i+1

q � � �p

i

q

1

b = bq

2

p

i

q � � �p

j

q � � �p

i

q

1

b, whih is a substring of

qp

i

q � � �p

j

q � � �p

i

q.

Theorem 7 Let p; q be a suitable pair of patterns. Let x be a onatenation of bloks

p

i

q, p

j

q, 0 � i < j. Let y be a redution of x determined by the inverse of the mor-

phism � : a! p

i

q, b! p

j

q. Let � be so that jpj; jqj � �. Then every on�guration

buau that is a suÆx of x with juj > 3� is derived from a �avbv on�guration that

is a suÆx of y: if q = q

1

bq

2

, p = aq

2

, j = i+1, buau = b(q

2

� � �q)a(q

2

� � �q) =

bq

2

� � �qp � � �q whih is a substring of qp

i

q � � �p

j

q � � �p

i

q.

Theorem 8 Let p; q be a suitable pair of patterns. Let x be a onatenation of bloks

p

i

q, p

j

q, 0 � i < j. Let y be a redution of x determined by the inverse of the mor-

phism � : a! p

i

q, b! p

j

q. Let � be so that jpj; jqj � �. Then every on�guration

aubu that is a suÆx of x with juj > 3� is derived from a �avbv on�guration that

is a suÆx of y: if q = q

1

aq

2

, p = bq

2

, j = i+1, aubu = a(q

2

� � �q)b(q

2

� � �q) =

aq

2

� � �qp � � �q whih is a substring of qp

i

q � � �p

j

q � � �p

i

q.

The last missing piee before we an desribe the repetition algorithm involves a

desription of how to "expand" runs from a redution y to x using the inverse of the

morphism � : a! p

i

q; b! p

j

q. Of ourse, we assume that p; q is a suitable pair of

patterns.

We shall keep trak of a position not in the usual way using index 1 to the size of

the string, but rather in the number of a's and b's that preede the given position.

40

Repetitions in two-pattern strings

This is neessary, for the expansion is uneven in that a will be expanded to p

i

q while

b to p

j

q, hene they will have di�erent lengths. Thus a run for us is an ordered

4-tuple ((s

a

; s

b

); (l

a

; l

b

); e; (r

a

; r

b

)), where the pair (s

a

; s

b

) determines the position at

whih the generator of the run starts (s

a

being the number of a's and s

b

the number

of b's that preede the position where the generator starts, hene the start is at the

position s

a

+s

b

+1), the pair (l

a

; l

b

) determines the length of the generator (i.e. the

length is l

a

+l

b

), e is the power of the run, and the pair (r

a

; r

b

) determines the number

of positions it an be shifted to the right (i.e. we an shift r

a

+r

b

positions to the

right).

p

a

denotes the number of a's in p, while p

b

denotes the number of b's in p. Similarly

q

a

and q

b

. GCS(p; q) denotes the greatest ommon suÆx of p and q and GCS(p; q)

a

(or GCS(p; q)

b

) denotes the number of a's (or b's) in GCS(p; q). GCP (p; q) denotes

the greatest ommon pre�x of p and q, and GCP (p; q)

a

(or GCP (p; q)

b

) denotes the

number of a's (or b's) in GCP (p; q).

Let ((s

0

a

; s

0

b

); (l

0

a

; l

0

b

); e

0

; (r

0

a

; r

0

b

)) be a run in y. Then LC =

y[s

0

a

+s

0

b

+l

0

a

+l

0

b

℄ is the last harater of the generator of the run, while RP =

s

0

a

+s

0

b

+e

0

(l

0

a

+l

0

b

)+r

0

a

+r

0

b

is the position of the last harater in the run in its right-

most shift, or, equivalently, the length of y the run overs from its leftmost position

to its rightmost position.

Now expand y bak to x by the inverse of the morphism �. Sine every a is expanded

to p

i

q, after the expansion it ontributes i(p

a

+q

a

) a's and i(p

b

+q

b

) b's, while eah b

after the expansion ontributes j(p

a

+q

a

) a's and j(p

b

+q

b

) b's.

If the generator was not at the beginning of y, it ould not be shifted left for only

one reason, namely that the harater just before the generator was di�erent from

the last harater of the generator. But one we expand these haraters, they have a

ommon suÆx p

i

q, so we an shift left by at least that muh. If the last harater of

the generator is a and the generator has size � 2, then there is still more possibility

for shifting left, namely the GCS(p; q). If the last harater of the generator is b and

there are at least 2 haraters to the left of the generator, then again there is still

more possibility for shifting left, GCS(p; q).

a

,

b

represent the extra left shift we gain after the expansion:

if (LC = a) then generator ends with 'a'

if (s

0

a

+s

0

b

= 0) then generator at the beginning of x

a

=

b

= 0

elseif (l

0

a

= 1&l

0

b

= 0) then generator ontains just one letter - 'a'

a

= ip

a

+q

a

,

b

= ip

b

+q

b

else

a

= ip

a

+q

a

+GCS(p; q)

a

,

b

= ip

b

+q

b

+GCS(p; q)

b

else generator ends with 'b'

41

Proeedings of the Prague Stringology Club Workshop '2000

if (s

0

a

+s

0

b

= 0) then generator at the beginning of x

a

=

b

= 0

elseif (s

0

a

= 1&s

0

b

= 0) then there is only 'a' left of the generator

a

= ip

a

+q

a

,

b

= ip

b

+q

b

else

a

= ip

a

+q

a

+GCS(p; q)

a

,

b

= ip

b

+q

b

+GCS(p; q)

b

Thus, we move the generator to the left as far as it goes

s

a

= (s

0

a

i+s

0

b

j)p

a

+(s

0

a

+s

0

b

)q

a

�

a

, s

b

= (s

0

a

i+s

0

b

j)p

b

+(s

0

a

+s

0

b

)q

b

�

b

.

It is lear, that

l

a

= (l

0

a

i+l

0

b

j)p

a

+(l

0

a

+l

0

b

)q

a

, s

b

= (l

0

a

i+l

0

b

j)p

b

+(l

0

a

+l

0

b

)q

b

.

Even if there was no possible right shift, the extra left shift we gained by the expansion

and the subsequent move of the generator to the left means that we gained at least

(

a

;

b

) shift to the right. If the original shift to the right stopped at the position

RC, then we gain an extra shift to the right de�ned by the GCP (p

j

q;p

i

q) whih is

p

i

+GCP (p; q).

k

a

, k

b

represent the extra right shift we gain after the expansion:

if (RC = jyj) then max. right shift ends at the end of y

k

a

= k

b

= 0

else max. right shift doesn't end at the end of y

k

a

= ip

a

+q

a

+GCP (p; q)

a

, k

b

= ip

b

+q

b

+GCP (p; q)

b

It may happen that the extra left shift and the extra right shift together with the

expanded original right shift are bigger than the size of the generator. In suh a ase,

we have to inrement the exponent and derease the right shift aordingly.

Thus

r

a

= (r

0

a

i+r

0

b

j)p

a

+(r

0

a

+r

0

b

)q

a

+

a

+ k

a

,

r

b

= (r

0

a

i+r

0

b

j)p

b

+(r

0

a

+r

0

b

)q

b

+

b

+ k

b

.

if ((r

a

+r

b

) � (l

a

+l

b

)) then

r

a

= r

a

� l

a

, r

b

= r

b

� l

b

, e = e

0

+1

else

e

0

= e.

Now we are ready to desribe (in a very high-level language to foster omprehension)

the repetition algorithm for two-pattern strings with sope �:

REP

�

(x; S L

aa

; L

ab

; L

ba

; L

bb

; L

aubua

; L

buaub

; L

buaaub

; L

aubu

; L

buau

; L

uu

), where x is the

input two-pattern string with sope � and S its redution sequene, while the rest of

42

Repetitions in two-pattern strings

arguments are output results. L

aa

is the list of positions in x where aa on�guration

ours, similarly for all others. L

uu

is the list of runs in x.

1. Set L

aa

� � �L

uu

to empty sets.

2. If jxj = 1, return. (the base ase of reursion)

3. Remove (p; q; i; j) from S produing S

0

. Redue x to y using the inverse of the

morphism � : a ! p

i

q; b ! p

j

q. Set L

0

aa

� � �L

0

uu

to empty sets. Reursively

all

REP

�

(y; S

0

; L

0

aa

; L

0

ab

; L

0

ba

; L

0

bb

; L

0

aubua

; L

0

buaub

; L

0

buaaub

; L

0

aubu

; L

0

buau

; L

0

uu

).

In instrutions 4-12 all runs in x are alulated.

4. Calulate (using the algorithm from Theorem 2) all runs in x with generators

of size � 3� and add them to L

uu

.

5. Expand all runs from L

0

uu

into runs in x using the expansion formula (as de-

sribed above) and add them to L

uu

.

6. Derive new runs in x using on�gurations in L

0

aubua

aording to Theorem 3.2

and add them to L

uu

.

7. Derive new runs in x using on�gurations in L

0

buaub

aording to Theorem 3.3

and add them to L

uu

.

8. Derive new runs in x using on�gurations in L

0

buau

aording to Theorem 3.4

and add them to L

uu

.

9. Derive new runs in x using on�gurations in L

0

aa

, L

0

ab

, L

0

ba

, and L

0

bb

aording

to Theorem 3.5 and add them to L

uu

.

10. Derive new runs in x using on�gurations in L

0

buaaub

aording to Theorem 3.6

and add them to L

uu

.

11. Derive new runs in x using on�gurations in L

0

aa

, L

0

ab

, L

0

ba

, and L

0

bb

aording

to Theorem 3.7 and add them to L

uu

.

12. Derive new runs in x using on�gurations in L

0

aubua

aording to Theorem 3.8

and add them to L

uu

.

In instrution 13 L

aa

, L

ab

, L

ba

, and L

bb

are alulated.

13. Calulate all ourrenes of aa, ab, ba, and bb respetively and store them in

L

aa

, L

ab

, L

ba

, and L

bb

respetively.

In instrutions 14-20 L

aubua

is alulated.

14. Calulate all ourrenes of aubua in x where juj � 3� and store them in L

aubua

.

15. Derive new on�gurations aubua in x from on�gurations in L

0

aa

, L

0

ab

, and L

0

ba

aording to Theorem 4.1 and store them in L

aubua

.

43

Proeedings of the Prague Stringology Club Workshop '2000

16. Derive new on�gurations aubua in x from on�gurations in L

0

bb

aording to

Theorem 4.2 and store them in L

aubua

.

17. Derive new on�gurations aubua in x from on�gurations in L

0

aa

and L

0

ba

a-

ording to Theorem 4.3 and store them in L

aubua

.

18. Derive new on�gurations aubua in x from on�gurations in L

0

ab

and L

0

bb

a-

ording to Theorem 4.4 and store them in L

aubua

.

19. Derive new on�gurations aubua in x from on�gurations in L

0

buaaub

aording

to Theorem 4.5 and store them in L

aubua

.

20. Derive new on�gurations aubua in x from on�gurations in L

0

aubua

aording

to Theorem 4.6 and store them in L

aubua

.

In instrutions 21-27 L

buaub

is alulated.

21. Calulate all ourrenes of buaub in x where juj � 3� and store them in L

buaub

.

22. Derive new on�gurations buaub in x from on�gurations in L

0

aa

, L

0

ab

, and L

0

ba

aording to Theorem 5.1 and store them in L

buaub

.

23. Derive new on�gurations buaub in x from on�gurations in L

0

bb

aording to

Theorem 5.2 and store them in L

buaub

.

24. Derive new on�gurations buaub in x from on�gurations in L

0

aa

and L

0

ba

a-

ording to Theorem 5.3 and store them in L

buaub

.

25. Derive new on�gurations buaub in x from on�gurations in L

0

ab

and L

0

bb

a-

ording to Theorem 5.4 and store them in L

buaub

.

26. Derive new on�gurations buaub in x from on�gurations in L

0

buaaub

aording

to Theorem 5.5 and store them in L

buaub

.

27. Derive new on�gurations buaub in x from on�gurations in L

0

aubua

aording

to Theorem 5.6 and store them in L

buaub

.

In instrutions 28-37 L

buaaub

is alulated.

28. Calulate all ourrenes of on�gurations buaaub in x with juj � 3� and store

them in L

buaaub

.

29. Derive new on�gurations buaaub in x from on�gurations in L

0

aa

, L

0

ab

, L

0

ba

,

and L

0

bb

aording to Theorem 6.1 and store them in L

buaaub

.

30. Derive new on�gurations buaaub in x from on�gurations in L

0

bb

aording to

Theorem 6.2 and store them in L

buaaub

.

31. Derive new on�gurations buaaub in x from on�gurations in L

0

aa

and L

0

ba

aording to Theorem 6.3 and store them in L

buaaub

.

32. Derive new on�gurations buaaub in x from on�gurations in L

0

ab

and L

0

bb

aording to Theorem 6.4 and store them in L

buaaub

.

44

Repetitions in two-pattern strings

33. Derive new on�gurations buaaub in x from on�gurations in L

0

aa

and L

0

ba

aording to Theorem 6.5 and store them in L

buaaub

.

34. Derive new on�gurations buaaub in x from on�gurations in L

0

ab

and L

0

bb

aording to Theorem 6.6 and store them in L

buaaub

.

35. Derive new on�gurations buaaub in x from on�gurations in L

0

buaaub

aording

to Theorem 6.7 and store them in L

buaaub

.

36. Derive new on�gurations buaaub in x from on�gurations in L

0

aubua

aording

to Theorem 6.8 and store them in L

buaaub

.

37. Derive new on�gurations buaaub in x from on�gurations in L

0

aubua

aording

to Theorem 6.9 and store them in L

buaaub

.

In instrutions 38-39 L

buau

is alulated.

38. Calulate all ourrenes in x of on�gurations buau with juj � 3� and store

them in L

buau

.

39. Derive new on�gurations buau in x from on�gurations in L

0

aubu

aording to

Theorem 7 and store them in L

buau

.

In instrutions 40-41 L

aubu

is alulated.

40. Calulate all ourrenes in x of on�gurations aubu with juj � 3� and store

them in L

aubu

.

41. Derive new on�gurations aubu in x from on�gurations in L

0

aubu

aording to

Theorem 8 and store them in L

aubu

.

42. Return.

Theorem 9 For any integer � � 1 there is an integer onstant C

�

so that for any

two-pattern string x with a sope � � and its redution sequene S given as input to

REP

�

, the algorithm REP

�

in � C

�

jxj steps alulates all output arguments with

1. jL

aa

j, jL

ab

, jL

ba

j, jL

bb

j � jxj;

2. jL

aubua

j, jL

buaub

j, jL

buaaub

j � jxj � (6�+17)(�+1)jxj;

3. jL

aubu

j, jL

buau

j � (12�+4)jxj.

4. jL

uu

j � ((2

3�+1

� 2)144�

2

+ 8(6�+17)(�+1)+ 2(12�+4)+ 16)jxj.

Proof It is lear that jL

aa

(x)j � jxj, jL

ab

(x)j � jxj, jL

ba

(x)j � jxj, and jL

bb

(x)j �

jxj.

L

aubua

is omputed in instrutions 14-20 of the algorithm. s denotes the number of p

i

q

bloks in x, while l the number of p

j

q bloks. Then jxj = s(ijpj+jqj) + l(jjpj+jqj),

while jyj = s+l.

45

Proeedings of the Prague Stringology Club Workshop '2000

As the indution hypothesis assume that both jL

aubua

(z)j; jL

buaaub

(z)j � Ajzj for any

z of size smaller than x.

In instrution 14, it an be easily seen that we an ompute at most (3�+2)jxj new

on�gurations.

In instrution 15, from eah element of eah list L

0

aa

, L

0

ab

, and L

0

ba

we an derive at

most i new on�gurations aubua, thus from eah list we an derive at most ijyj =

is+il � jxj, thus in instrution 15 we an derive at most 3jxj new on�gurations.

In instrution 16, we an derive at most 2jjyj = 2j(s+l) � 2jxj new on�gurations.

In instrution 17, we an derive at most 2jyj � 2jxj new on�gurations.

In instrution 18, we an derive at most 2jyj � 2jxj new on�gurations.

In instrution 19, we an derive at most jqjAjyj � jqjA

jxj

jqj+1

new on�gurations.

In instrution 20, we an derive at most jpjAjyj � jpjA

jxj

jpj+1

new on�gurations.

Note, that the onditions for deriving new on�gurations aubua from elements of

L

0

buaaub

(Theorem 4.5) and from elements of L

0

aubua

(Theorem 4.6) are mutually

exlusive, so we either derive new on�gurations in instrution 19 and nothing in

instrution 20 or vie versa.

First onsider the ase when instrution 19 derives the new on�gurations while in-

strution 20 does not. Thus jL

aubua

(x)j � (3�+11)jxj+ A

jqj

jqj+1

jxj. So jL

aubua

(x)j �

Ajxj provided Ajxj � (3�+11)jxj+A

jqj

jqj+1

jxj, or A � (3�+11)(jqj+1), whih is sat-

is�ed by any A � (3�+11)(�+1). For the ase when instrution 20 derives the new

on�gurations while instrution 20 does not just replae jqj with jpj to obtain the

same result.

L

buaaub

is omputed in instrutions 28-37 of the algorithm.

In instrution 28, it an be easily seen that we an ompute at most (6�+4)jxj new

on�gurations.

In instrution 29, from eah element of eah list L

0

aa

, L

0

ab

, L

0

ba

, and L

0

ba

we an derive

at most i new on�gurations aubua, thus from eah list we an derive at most ijyj =

is+il � jxj, thus in instrution 29 we an derive at most 4jxj new on�gurations.

In instrution 30, we an derive at most jjyj = j(s+l) � jxj new on�gurations.

In instrution 31, we an derive at most 2jyj � 2jxj new on�gurations.

In instrution 32, we an derive at most 2jyj � 2jxj new on�gurations.

In instrution 33, we an derive at most 2jyj � 2jxj new on�gurations.

In instrution 34, we an derive at most 2jyj � 2jxj new on�gurations.

In instrution 35, we an derive at most jqjAjyj � jqjA

jxj

jqj+1

new on�gurations.

46

Repetitions in two-pattern strings

In instrution 36, we an derive at most jqjAjyj � jqjA

jxj

jqj+1

new on�gurations.

In instrution 37, we an derive at most jpjAjyj � jpjA

jxj

jpj+1

new on�gurations.

Note, that the onditions for deriving new on�gurations buaaub from elements of

L

0

buaaub

(Theorem 4.7) and from elements of L

0

aubua

(Theorem 4.8 and Theorem 4.9)

are mutually exlusive, so we only derive new on�gurations in exatly one of the

instrutions 35-37.

First onsider the ase when either instrution 35 or 36 derives the new on�gura-

tions. Thus jL

buaaub

(x)j � (6�+17)jxj + A

jqj

jqj+1

jxj. So jL

buaaub

(x)j � Ajxj provided

Ajxj � (6�+17)jxj + A

jqj

jqj+1

jxj, or A � (6�+17)(jqj+1), whih is satis�ed by any

A � (6�+17)(�+1). For the ase when instrution 37 derives the new on�gurations

just replae jqj with jpj to obtain the same result.

L

aubu

is omputed in instrutions 40-41 of the algorithm. As the indution hypothesis

assume that jL

aubua

(z)j � (12�+4)jzj for any z of size smaller than jxj.

In instrution 40, it an be easily seen that we an ompute at most (6�+2)jxj new

on�gurations.

In instrution 41, we an derive at most (12�+4)jyj � (6�+2)jxj new on�gurations.

Hene jL

aubu

(x)j � 2(6�+2)jxj = (12�+4)jxj.

L

uu

is omputed in instrutions 4-12 of the algorithm. As the indution hypthesis we

assume that jL

uu

(z)j � Bjzj for any z of size smaller that jxj.

In instrution 4, aording to Theorem 2, we ompute at most (2

3�+1

�2)72�

2

jxj new

runs.

In instrution 5, we expand at most Bjyj �

B

2

jxj new runs.

In eah of instrutions 6, 7 we derive at most (6�+17)(�+1)jyj �

(6�+17)(�+1)jxj new runs.

In instrution 8, we derive at most (12�+4)jyj � (12�+4)jxj new runs.

In instrution 9, we derive at most 4jjqjjyj � 4jxj new runs.

In instrution 10, we derive at most jqj(6�+17))(�+1)jyj � (6�+17)jxj new runs.

In instrution 11, we derive at most 4jpjjyj � 4jxj new runs.

In instrution 12, we derive at most jpj(6�+17)(�+1)jyj � (6�+17)jxj new runs.

Thus, jL

u;u

(x)j �

B

2

jxj+ (2

3�+1

� 2)72�

2

jxj+ 4(6�+17)(�+1)jxj+

(12�+4)jxj+ 8jxj, whih is true whenever B � (2

3�+1

� 2)144�

2

+

8(6�+17)(�+1)+ 2(12�+4)+ 16.

We have already established or it is easy to see that there is an integer onstant D so

that all instrutions in the algorithm require � Djxj steps, with the exeption of the

47

Proeedings of the Prague Stringology Club Workshop '2000

reursive all. Thus, we are looking for a onstant C

�

suh that C

�

jxj � Djxj+C

�

jyj.

Sine jyj �

1

2

jxj, any C

�

� 2D will do. 2

Referenes

[C81℄ Maxime Crohemore, An optimal algorithm for omputing the rep-

etitions in a word, IPL 12-5 (1981) 244-250.

[FKS00℄ Franti�sek Fran�ek, Ay�se Karaman & W. F. Smyth, Repetitions in Stur-

mian strings, TCS 249-2 (2000) to appear.

[IMS97℄ C.S.Iliopoulos, Dennis Moore & W. F. Smyth, A haraterization of

the squares in a Fibonai string, TCS 172 (1997) 281-291.

48

