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1 Introdu
tion

The motivation to the Closest Common Subsequen
e (CCS Problems) 
an be found

in the typing of a text on the keyboard. The following mistakes 
an be made in

typing some string: (1) Typing a di�erent 
hara
ter, usually from the neighbour area

of the given 
hara
ter. (2) Inserting a single 
hara
ter into the sour
e string. (3)

Omitting (skipping) any single sour
e 
hara
ter. (4) Transposition of two elements.

It means, we have some words with mistakes. The problem is how to �nd the strings

they are very similar very 
losed to the exa
t strings. Very important role has here

the 
ommon subsequen
e of similar strings.

The 
ommon subsequen
e problem of two strings is to determine one of the sub-

sequen
es that 
an be obtained by deleting zero or more symbols from ea
h of the

given strings. It is possible to demand some additional properties for the 
ommon

subsequen
e. Usually, it is the greatest length of the 
ommon subsequen
e, but we


an 
onsider some di�erent measures for the 
ommon subsequen
e.

The longest 
ommon subsequen
e problem (LCS Problem) of two strings is to deter-

mine the 
ommon subsequen
e with the maximal length. Algorithms for this problem


an be used in 
hemi
al and geneti
 appli
ations and in many problems 
on
erning

data and text pro
essing [4, 8, 10℄. Further appli
ations in
lude the string-to-string


orre
tion problem [8℄ and determining the measure of di�eren
es between text �les

[4℄. The length of the longest 
ommon subsequen
e (LLCS Problem) 
an determine
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the measure of di�eren
es (or similarities) of text �les. The simulation method for

the approximate strings and sequen
e mat
hing using the Levenstein metri
 
an be

found in J. Holub [7℄ and the algorithm for the sear
hing of the subsequen
es is in Z.

Tron���
ek and B. Meli
har [11℄.

D. S. Hirs
hberg and L. L. Larmore [6℄ have dis
ussed a generalization of LCS Prob-

lem, whi
h is 
alled Set-Set LCS Problem (SSLCS Problem). In this 
ase both strings

are strings of subsets over an alphabet 
. In the paper [6℄ is presented the O(m � n)-

time algorithm for the general SSLCS Problem.

In this paper we present algorithms for more general 
ase of the Common Subsequen
e

Problem, it means Closest Common Subsequen
e Problem SSCCS Problem for two

strings of symbol sets with membership values of elements in the sets.

2 Basi
 De�nitions

In this se
tion, some basi
 de�nitions and results 
on
erning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let 
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of 
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2 
; 1 � i � m be a string over an alphabet 
, where jAj = m

is the length of the string A.

The string C 2 


�

; C = 


1

: : : 


p

is a subsequen
e of the string A = a

1

: : : a

m

, if a

monotonous in
reasing sequen
e of natural numbers i

1

< � � � < i

p

exists su
h that




j

= a

i

j

; 1 � j � p. The string C is a 
ommon subsequen
e of two strings A;B if C

is a subsequen
e of A and C is a subsequen
e of B. jCj is the length of the 
ommon

subsequen
e. The 
lassi
al problem to �nd the longest 
ommon subsequen
e is de�ned

and solved in Hirs
hberg [5℄. In the 
lassi
al problem, ea
h element in the string is

in his position as full member, but sometimes we are not sure about it in texts. The

element should be in his position with 70%, it means, the element is in his position

with 0:7 membership value. Sometimes, we 
an suppose that in some position should

be one element of some set of elements with membership values.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some membership values of elements in the string

A. The pair (A; �

A

) is the string A with the membership fun
tion �

A

, m-string �A

for short. V al(�A) is a measure of �A de�ned by the (1).

V al(�A) = �

m

i=1

�

A

(a

i

) (1)

The string �C = (C; �

C

) is a subsequen
e with the membership fun
tion �

C

, shortly

m-subsequen
e of the m-string �A if C is a subsequen
e of the string A and 0 <

�

C

(


t

) � �

A

(a

i

t

), for 1 � t � p. The m-subsequen
e �C is a 
losest m-subsequen
e if

V al(�C) = �

p

j=1

�

C

(


j

) = �

p

j=1

�

A

(a

i

j

).

The string �C is a 
ommon m-subsequen
e of two m-strings �A and �B if �C is a

m-subsequen
e of �A and �C is a m-subsequen
e of �B.

The string �C is a 
losest 
ommon m-subsequen
e of the m-strings �A and �B if �C

is a 
ommon m-subsequen
e with the maximal value V al(�C). It means, if �D is a


ommon m-subsequen
e of the strings �A and �B then V al(�D) � V al(�C).
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If �C is a 
losest 
ommon m-subsequen
e of the m-strings, �A and �B then �

C

(


t

) =

minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let �A and �B be m-strings. To �nd a 
losest 
ommon

subsequen
e of the m-strings �A and �B, CCS(�A; �B) for short.

The MCCS Problem is to �nd the measure of CCS m-string, MCCS for

short. It means, MCCS(�A; �B) = V al(CCS(�A; �B)). �

Algorithms for CCS and MCCS Problem Andrejkov�a [2℄.

m m m m m m m m m

m m m m m m m

a

b

a a

b

a 
 a

b

a

b




d b
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B=

Figure 1. The 
losest 
ommon subsequen
e of two m-strings A and B.
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Example 1. 
 = fa; b; 
g; A = abaaba
ab;m = 9; �

A

= (:9; :9; :6; :5; :2; :8; :4; :6; :5),

B = ab
db
b; n = 7; �

B

= (:6; :6; :3; :4; :9; :5; :6). The stringC = ab
b is a subsequen
e,

C

0

= abb
b is the longest 
ommon subsequen
e of the strings A and B, and �C",

C" = ab
b; �

C"

= (:6; :9; :4; :5) is the 
losest 
ommon subsequen
e of the m-strings

�A and �B; V al(�C") = MCCS(�A; �B) = 2:4 as it is shown in Figure 1.

A string of sets B over an alphabet 
, set-string for short, is any �nite sequen
e of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of

sets in B. The length of the symbol string des
ribed by B is N = �

n

i=1

jB

i

j. A string of

symbols C = 


1




2

: : : 


p

; 


i

2 
; 1 � i � p, is a subsequen
e of symbols (subsequen
e,

for short) of the set-string B if there is a nonde
reasing mapping F : f1; 2; : : : ; pg !

f1; 2; : : : ; ng, su
h that

1. if F (i) = k then 


i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then 


i

6= 


j

.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over an

alphabet 
. The string of symbols C is a 
ommon subsequen
e of symbols of A and

B is C a subsequen
e of symbols of A and C is a subsequen
e of symbols of the

set-string B.

As similar as for strings, let de�ne m-set as a set with membership fun
tion de�ned

on its elements.

Let �

B

i

; i = 1; 2; : : : ; n be the membership fun
tions of the sets B

i

; i = 1; 2; : : : ; n in

the string B. It means, �B = �B

1

�B

2

: : : �B

n

. �B is the m-set-string B of m-sets

B

i

; i = 1; 2; : : : ; n with the membership fun
tions �

B

i

, m-set-string �B for short. The

weight of the m-set B 2 P(
) with membership fun
tion �

B

is de�ned by

W (B) =

X

x2B

�

B

(x) (2)

3



Pro
eedings of the Prague Stringology Club Workshop '2000

A string �C is a m-subsequen
e of the m-set-string �B if (1) �C is the subsequen
e

of symbols of the set-string B and (2) if 
 = 


i

; 


i

2 B

k

then �

C

(


i

) � �

B

k

(
).

The m-string �C is a 
ommon m-subsequen
e of the m-set-strings �A and �B if �C

is m-subsequen
e of �A and �C is m-subsequen
e of �B.

The string �C is a 
losest 
ommon m-subsequen
e of the m-set-strings �A and �B if

�C is a 
ommon subsequen
e with maximal value V al(�C). Note that �C is not in

general unique.

The SSCCS Problem: Let �A; �B be two m-set-strings. The Set-Set Closest

Common Subsequen
e problem of the m-set-strings �A and �B, (SSCCS(�A; �B)

for short, 
onsists of �nding a 
losest 
ommon m-subsequen
e �C with the maximal

value V al(�C).

The MSSCCS Problem 
onsists of �nding the measure of SSCCS m-set-

string, MSSCCS(�A; �B) for short.

It means, MSSCCS(�A; �B) = V al(SSCCS(�A; �B)), �

m m m m m m m m

m m m m m m m m m m m

a

d


 a

b

e

b

a

d

e 
 a

d

e

b d




b d
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Figure 2. The 
losest 
ommon m-subsequen
e of two m-set-strings A and B.
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Example 2. Let A = fa; dgf
; a; dgfe; b; ag; m = 3, �

A

1

= (:7; :3); �

A

2

= (:6; :4;

:5); �

A

3

= (:6; :3; :8);B = fd; e; 
gfa; d; egfb; d; 
gfb; dg; n = 4: �

B

1

= (:4; :3; :5); �

B

2

=

(:7; :6; :8); �

B

3

= (:9; :5; :7); �

B

4

= (:5; :3). The membership values are des
ribed

a

ording to the named order in the set. For example, �

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS(�A; �B) = 2:4 as it is shown in the Figure 2.

3 ALGORITHM FOR MSSCCS Problem

The basi
 idea of the algorithm starts from the de�nition of MSSCCS Problem.

MSSCCS(�A; �B) = max

�C

fV al(�C) : �C is the 
ommon m-subsequen
e

of �A and �Bg (3)

In the following part of the paper we will use the m-set only and for a simpler

des
ription we will omit the symbol � in the names of sets.

A 
attening of a sequen
e of sets is de�ned as a 
on
atenation, in order of the se-

quen
e, of strings formed by some permutation of individual elements of the sets

in the sequen
e. For example, a 
attening of the m-set-string A in Example 2 is

4
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A

fl1

= daba
eba; �

A

fl1

= (:3; :7; :5; :4; :6; :6; :3; :8) and so is A

fl2

= daa
bbae; �

A

fl2

=

(:3; :7; :4; :6; :5; :3; :8; :6).

If we have some 
attening of both set-strings then it is possible to apply the MCCS

algorithm, Andrejkov�a [2℄. It is ne
essary to 
ompute MCCS values of all pairs of

all 
attenings both set-strings but it is too mu
h time 
onsuming.

If we have the 
attening of one set-string and the se
ond is a set-string then it is

possible to use the MSCCS algorithms. But it is ne
essary to 
ompute MSCCS

value for all 
attenig of one string. It is to mu
h time 
onsuming too. Both algorithms

have an exponential time 
omplexity.

It is possible to use the following algorithm of polynomial time 
omplexity. The

algorithm works in two steps:

1. to 
reate the string of symbols for ea
h of set-string; ea
h set 
an be en
oded

as the string of all permutations of its elements (the length of su
h string is

k

2

� 2 � k + 4, k is the number of elements in set [9℄); for example, the shortest

m-string of elements in the m-set-string A in example 2 is dad
ab
ab
beabeab

and so is ada
ab
ab
ebaebae.

2. to apply the MCCRS algorithm, Andrejkov�a [1℄ for the two in the previous step


onstru
ted m-strings (ea
h element of the m-set 
an be used on
e at most);

The algorithm works in polynomial time: O(M

2

� N

2

� K), where M = �

m

i=1

jA

i

j,

N = �

n

j=1

jB

j

j, and K is the number of elements in the 
losest 
ommon restri
ted

subsequen
e.

We formulate the following algorithm with the better time 
omplexity a

ording to

Hirshberg's idea for SSLCS Problem [6℄. The algorithm works with interse
tion,

union and equivalen
e, di�eren
e of m-sets. It is possible to use many de�nitions of

them but the following [3, 12℄ are more obvious:

Let A;B be the m-sets with membership fun
tions �

A

; �

B

, and x"A explains a mem-

bership of the element x to the m-set A; �

A

(x) > 0, then

1. interse
tion \\

m

" of two m-sets is de�ned:

A \

m

B =

def

fxjx"A ^ x"Bg; �

A\

m

B

(x) = minf�

A

(x); �

B

(x)g

2. union "[

m

" of two m-sets is de�ned:

A [

m

B =

def

fxjx"A _ x"Bg; �

A[

m

B

(x) = maxf�

A

(x); �

B

(x)g

3. equivalen
e \=

m

" of two m-sets is de�ned:

A =

m

B , x"A ^ x"B ^ x"A \

m

B ^ x"A [

m

B

4. di�eren
e \�

m

" of two m-sets is de�ned:

A�

m

B =

def

fxjx"A ^ x 6 "Bg; �

A�B

(x) = �

A

(x)

5. A is m-subset of B;A �

m

B; if and only if 8x"A is ful�lled x"B and 0 <

�

A

(x) � �

B

(x).
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3.1 Des
ription of the simple algorithm A.

For 
onvenien
e, we de�ne A

0

= B

0

= ;.

We de�ne Ent(i; j) to be the set of quintuples (k; F

f

; F

u

; G

f

; G

u

) su
h that:

(1) k is the measure of 
, a 
ommon m-subsequen
e of some 
attening of A

1

: : : A

i

and some 
attening of B

1

: : : B

j

, de�ned by (1).

(2) free m-set F

f

�

m

A

i

is the m-set of elements of A

i

whi
h are not used by 
,

(3) free m-set G

f

�

m

B

j

, is the m-set of elements of B

j

not used by 
,

(4) m-set of used elements F

u

�

m

A

i

is the m-set of elements of A

i

used by 
, and

(5) m-set of used elements G

u

�

m

B

j

is the m-set of elements of B

j

used by 
.

Example 3. (1:2; f(
; 0:5); (a; 0:4)g; f(b; 0:5)g; f(a; 0:4)g; f(d; 0:6); (e; 0:8)g) is in

Ent(2; 2) for m-set-strings in Example 2.

We refer to su
h quintuple as an entry. The measure of the CCS of the some 
attening

of A

1

: : : A

m

and some 
attening of B

1

: : : B

n

is then, by de�nition, the largest k su
h

that (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(m;n) for some m-sets F

f

; F

u

; G

f

and G

u

. Ent(0; 0)


ontains just one entry, namely (0; ;; ;; ;; ;), while Ent(i; j) 
an be 
omputed dy-

nami
ally from Ent(i � 1; j) and Ent(i; j � 1). The problem is that the 
ardinality

of Ent(i; j) 
ould be
ome very large, making su
h an algorithm exponential in the

worst 
ase.

Let e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i � 1; j) and F

s

; F

u

�

m

F

s

be the m-set with the

following property: x"F

s

, x"F

u

and �

F

u

(x) � �

F

s

(x) = �

A

i

(x). It means, the m-set

F

s

is the maximal m-set that has the same elements as the m-set F

u

, but membership

values of elements in F

s

are the same as in the m-set A

i

.

Let S be any subset of A

i

\

m

G

f

. We say that e verti
ally generates e

0

2 Ent(i; j)

i�

1. e

0

= (k +W (S) � W (A

i

\

m

G

u

) +W (S

0

); A

i

�

m

S; F

u

; G

f

�

m

S;G

u

) for any

subset S

0

of A

i

\

m

G

s

;W (S

0

) > W (A

i

\

m

G

u

), or

2. e

0

= (k +W (S); A

i

�

m

S; F

u

; G

f

�

m

S;G

u

) and for ea
h subset S

0

of A

i

\

m

G

s

is W (S

0

) � W (A

i

\

m

G

u

).

The element e

0

2 Ent(i; j) and it is shown by the following: If � is 
ommon m-

subsequen
e with a measure k = V al(�) of the 
attening of A

1

: : : A

i�1

and some


attening of B

1

: : : B

j

, where F

f

�

m

A

i�1

and G

f

�

m

B

j

are free m-sets, and �

is a m-sequen
e 
onsisting of the elements of S �

m

A

i

\ G

f

written in any order,

then �� (having measure k + V al(S)) is 
ommon subsequen
e of a 
attening of

A

1

: : : A

i

and a 
attening of B

1

: : : B

j

, with free m-sets A

i

� S and G

f

�S. The used

elements from m-set G

u


an be used with some better membership values and it is

evaluated by the 
omparison of the weights of the sets A

i

\

m

G

s

and A

i

\

m

G

u

. If

W (A

i

\

m

G

u

) < W (A

i

\

m

G

s

) then there exists some better using of elements in A

i

.
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Similarly, if (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j�1) and S �

m

F

f

\

m

B

j

and S

0

is any subset

of B

j

\

m

F

s

);W (S

0

) > W (B

j

\

m

F

u

), we say that (k; F

f

; F

u

; G

f

; G

u

) horizontally

generates (k+W (S)�W (B

j

\

m

F

u

)+W (S

0

); F

f

�

m

S; F

u

; B

j

�

m

S;G

u

) 2 Ent(i; j)

or (k+W (S); F

f

�

m

S; F

u

; B

j

�

m

S;G

u

) 2 Ent(i; j) a

ording to the relationW (B

j

\

m

F

u

) < = � W (S

0

).

Lemma 1 If e 2 Ent(i; j) for i+ j � 0 then e is generated by some element of either

Ent(i� 1; j) or Ent(i; j � 1).

Proof. e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), it means e = ��, � is the part of elements

in A

i

\

m

B

j

. A

ording to above 
onstru
tion, the part � is the prolongation of some

element e

0

2 Ent(i � 1; j) or Ent(i; j � 1). In the part � should be elements with

higher membership values. 2

The element e 2 Ent(i; j) is generated from elements in E(i � 1; j) or Ent(i; j � 1)

using of two sets: the free subset and the used subset of B

j

, respe
tively A

i

. The

following algorithm is a dynami
 programming algorithm in whi
h the boundary


onditions are set and then the interval entries are determined:

Algorithm A.

for all i do Ent(i; 0) := f(0; A

i

; ;; ;; ;)g

for all j do Ent(0; j) := f(0; ;; ;; B

j

; ;)g

for i := 1 to m do

for j := 1 to n do

Ent(i; j) := fall entries verti
ally generated from Ent(i� 1; j)g

S

fall entries horizontally generated from Ent(i; j � 1)g

max k := the largest k su
h that (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(m;n) for some

F

f

; F

u

; G

f

; G

u

.

3.2 Des
ription of a better algorithm

The above algorithm may be very time-
onsuming be
ause of too many quintuples

is ne
essary to analyze. We will speed the algorithm by eliminating 
onsideration of

many quintuples.

If (k; F

f

; F

u

; G

f

; G

u

); (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) 2 Ent(i; j), we say that (k; F

f

; F

u

; G

f

; G

u

)

dominates (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) ((k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) � (k; F

f

; F

u

; G

f

; G

u

)) if the follow-

ing 
onditions hold:

1. d = k � k

0

� 0,

2.

�

W (F

0

f

� F

f

) � d and F

0

u

�

m

F

u

�

or

�

W (F

0

u

� F

u

) � d and F

0

f

�

m

F

f

�

,

3.

�

W (G

0

f

�G

f

) � d and G

0

u

�

m

G

u

�

or

�

W (G

0

u

�G

u

) � d and G

0

f

�

m

G

f

�

.
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The relation "�" is a transitive, antisymmetri
 and re
exive relation. The elements

of Ent(i; j) 
an be ordered a

ording to relation "�", it means they are ordered in

some 
hains. The last element of the 
hain has maximal measure and that is very

important.

Lemma 2 Any element of Ent(i; j) whi
h is not maximal with respe
t to the relation

"�" 
an be dis
arded during exe
ution of the algorithm without a�e
ting the �nal value

of max k.

Proof. It will be proved by downward indu
tion on both indi
es i and j. The value

of max k is obtained from Ent(m;n) in the last step and all other elements may be

dis
arded with no e�e
t.

Suppose i + j < m + n and e

0

2 Ent(i; j); e

0

is not maximal. Let e 2 Ent(i; j)

is maximal. It means, e

0

� e. It is ne
essary to prove that maximal element of

Ent(i+1; j) or Ent(i; j+1) whi
h is generated by e

0


an be generated by e too. And

the element e

0


an be dis
arded.

Let e = (k; F

f

; F

u

; G

f

; G

u

); e

0

= (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) and e

0

verti
ally generates f

0

. f

0

should have two forms for some m-set P � A

i+1

\G

0

f

(a) f

0

= (k

0

+W (P )�W (A

i+1

\

m

G

0

u

)+W (A

i+1

\

m

G

0

s

); A

i+1

�

m

P; P;G

0

f

�

m

P;G

0

u

),

if W (A

i+1

\

m

G

0

u

) < W (A

i+1

\

m

G

0

s

), or

(b) f

0

= (k

0

+W (P ); A

i+1

�

m

P; P;G

0

f

�

m

P;G

0

u

), ifW (A

i+1

\

m

G

0

u

) � W (A

i+1

\

m

G

0

s

).

Let S = P \ G

f

, and f is verti
ally generated by e. f should have two forms: (1)

f = (k +W (S) �W (A

i+1

\

m

G

u

) +W (A

i+1

\

m

G

s

); A

i+1

�

m

S; S;G

f

�

m

S;G

u

) or

(2)f = (k+W (S); A

i+1

�

m

S; S;G

f

�

m

S;G

u

). It is ne
essary to analyze four 
ases to

prove the Lemma (a)-(1), (a)-(2), (b)-(1), (b)-(2). We start with the �rst one, it means

(a)-(1), andW (A

i+1

\

m

G

0

u

) < W (A

i+1

\

m

G

0

s

) andW (A

i+1

\

m

G

u

) < W (A

i+1

\

m

G

s

).

Sin
e e

0

� e; d = k � k

0

,

d � 0,

��

W (F

0

f

� F

f

) � d and F

0

u

�

m

F

u

�

or

�

W (F

0

u

� F

u

) � d and F

0

f

�

m

F

f

��

, and

��

W (G

0

f

�G

f

) � d and G

0

u

�

m

G

u

�

or

�

W (G

0

u

�G

u

) � d and G

0

f

�

m

G

f

��

. Then

W (P �

m

S) = W (P �

m

P \

m

G

f

) = W (P �

m

G

f

) � W (F

0

f

�

m

F

f

) � d and

W (P �

m

S) � W (P ) � W (S). Let d

0

= (W (P ) � W (S)) � (W (A

i+1

\

m

G

s

) �

W (A

i+1

\

m

G

0

s

))� (W (A

i+1

\

m

G

u

)�W (A

i+1

\

m

G

0

u

) � d We prove that f

0

� f , it

means f

0

is not maximal or f = f

0

. A

ording to de�nition of "�" it is ne
essary to


he
k three 
onditions 1.-3.

1. z = k+W (S)�W (A

i+1

\

m

G

u

) +W (A

i+1

\

m

G

s

)� (k

0

+W (P )�W (A

i+1

\

m

G

0

u

)+W (A

i+1

\

m

G

0

s

)) = k�k

0

�(W (P )�W (S))+W (A

i+1

\

m

G

s

)�W (A

i+1

\

m

G

0

s

) +W (A

i+1

\

m

G

u

)�W (A

i+1

\

m

G

0

u

� d� d

0

� 0

2. W (P �

m

S) � d and A

i+1

�

m

P �

m

A

i+1

�

m

S

3. W (G

0

f

�

m

P �

m

(F

f

�

m

S)) = W (G

0

f

�

m

G

f

) � d and G

0

u

�

m

G

u

.
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The rest three 
ases 
an be proved by a very similar method. And the verti
al 
ase

is similar. 2

If e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), we de�ne the horizontal 
hild of e to be hor(e) =

k +W (F

f

\B

j+1

)�W (A

i

\

m

G

u

) +W (A

i

\

m

G

s

); F

f

� B

j+1

; F

u

; B

j+1

� F

f

; G

u

) or

hor(e) = k + W (F

f

\ B

j+1

); F

f

� B

j+1

; F

u

; B

j+1

� F

f

; G

u

) and de�ne the verti
al


hild of e to be ver(e) = k+W (A

i+1

\G

f

)�W (B

j+1

\G

u

) +W (B

j+1

\G

s

); B

j+1

�

G

f

; F

u

; G

f

�B

j+1

; G

u

)or ver(e) = k +W (A

i+1

\G

f

); B

j+1

�G

f

; F

u

; G

f

�B

j+1

; G

u

).

We de�ne MaxEnt(i; j) to be the set of maximal elements of Ent(i; j) under the

dominan
e relation "�".

Lemma 3 Any entry horizontally generates at most one maximal entry and verti
ally

generates at most one maximal entry.

Proof. Let e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j). The only elements verti
ally gener-

ated by e whi
h 
an be maximal are in the ver(e), sin
e they dominates any others

verti
ally generated by e. Similarly, hor(e) dominates any entries horizontally gener-

ated by e. 2

We say that (k; F

f

; F

u

; G

f

; G

u

) strongly dominates (k

0

; F

f

; F

u

; G

f

; G

u

) if k > k

0

. If

S � Ent(i; j), de�nes Dom(S) � S to be the set obtained by deleting every element

of S whi
h is strongly dominated by another element of S. We now indu
tively de�ne

sets Chain(i; j) � Ent(i; j) by:

1. Chain(i; 0) = f(0; A

i

; ;; ;; ;)g;

2. Chain(0; j) = f(0; ;; ;; B

j

; ;)g;

3. Chain(i; j) = Dom(fver(e)je 2 Chain(i�1; j)g [ fhor(e)je 2 Chain(i; j�1)g):

We refer to entries Chain(i; j) asweakly maximal. We observe the following lemma.

Theorem 1 MaxEnt(i; j) � Chain(i; j):

Proof. By indu
tion. For i = 0 or j = 0 the two sets MaxEnt(i; j) and Chain(i; j)

are identi
al. For i; j > 0, and e 2MaxEnt(i; j) must be verti
al or horizontal 
hild

of some maximal element, whi
h is weakly maximal by indu
tion. It means, e must

be weakly maximal, sin
e it is maximal and thus 
annot be deleted by operator Dom.

2

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following

algorithm:

Algorithm B.

fUsing weakly maximal entries.g

for all i do Chain(i; 0) := f(0; A

i

; ;; ;; ;)g;

for all j do Chain(0; j) := f(0; ;; ;; B

j

; ;)g;

9
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for i:=1 to m do

for j:=1 to n do

begin

Chain(i; j) := ;;

for all (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(i; j � 1) do begin

help :=W (B

j

\

m

F

s

)�W (B

j

\

m

F

u

);

if help � 0 then

insert (k +W (F \B

j

); F

f

� B

j

; F

u

; B

j

� F

f

; G

u

) into Chain(i; j)

else insert (k+W (F

f

\B

j

)+help; F

f

�B

j

; F

u

; B

j

�F

f

; G

u

) into Chain(i; j)

end;

for all (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(i� 1; j) do begin

help :=W (A

i

\

m

G

s

)�W (A

i

\

m

G

u

);

if help � 0 then

insert (k +W (A

i

\G); A

i

�G

f

; F

u

; G

f

� A

i

; G

u

) into Chain(i; j)

else insert (k+W (G

f

\A

i

)+help; A

i

�G

f

; F

u

; G

f

�A

i

; G

u

) into Chain(i; j)

end;

delete all nonweakly maximal elements from Chain(i; j)

end

max k := the maximum value of k su
h that (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(m;n)

for some F

f

; F

u

; G

f

and G

u

.

The algorithmworks inO(m�n�K�t)-time, whereK is the maximal number of elements

in Chain(i; j) and t is the maximal time spent for 
omputing the interse
tion of two

sets. The algorithm works in O(m � n � k)-spa
e, where k is the maximal number of

elements in the m-sets A

i

; B

j

. In the next se
tion we show the idea of some eÆ
ient

implementation of the algorithm.

3.3 EÆ
ient implementation of algorithm B.

We show the stru
ture of Chain(i; j) that will help obtain an eÆ
ient implementation

of algorithm B. We begin by de�ning a transitive re
exive relation / on Ent(i; j). We

say that (k; F

f

; F

u

; G

f

; G

u

) / (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) if F

f

�

m

F

0

f

; G

0

f

�

m

G

f

; F

u

=

m

F

0

u

and G

u

=

m

G

0

u

.

Lemma 4 (a) If e; e

0

2 Ent(i� 1; j), and if e / e

0

, then ver(e) / ver(e

0

).

(b) If e; e

0

2 Ent(i; j � 1), and if e / e

0

, then hor(e) / hor(e

0

).

(
) If e 2 Ent(i; j � 1) and e

0

2 Ent(i� 1; j), then hor(e) / ver(e

0

).
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Proof. (a) ver(e) = (k; F

f

\

m

B

j

; F

u

; B

j

�

m

F

f

; G

u

) and ver(e

0

) = (k

0

; F

0

�

m

B

j

; F

0

u

; B

j

�

m

F

0

f

; G

0

u

): It follows from F

f

�

m

F

0

f

that F

f

� B

j

�

m

F

0

f

� B

j

and

B

j

� F

0

f

�

m

B

j

� F

f

, i.e. ver(e) / ver(e

0

):

(b) Similar to the proof of (a).

(
) Let e = (k; F

f

; F

u

; G

f

; G

u

) and e

0

= (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

). Then hor(e) = (k; F

f

�

m

B

j

; F

u

; B

j

�

m

F

f

; G

u

) and ver(e

0

) = (k

0

; F

0

f

�

m

B

j

; F

0

u

; B

j

�

m

F

0

f

; G

0

u

). It 
an be seen

that F

f

�

m

A

i

sin
e e 2 Ent(i; j � 1), and that G

0

f

�

m

B

j

sin
e e

0

2 Ent(i � 1; j).

And we have F

f

� B

j

�

m

A

i

� G

0

f

and G

0

f

� A

i

�

m

B

j

� F

f

, i.e. hor(e) / ver(e

0

):

2

Lemma 5 The relation / imposes a total ordering on Chain(i; j).

Proof. We need to prove that for any distin
t f; f

0

2 Chain(i; j), either f / f

0

or

f

0

/ f but not both. If f

0

/ f and f / f

0

, then f and f

0

would have the same free sets,

whi
h implies they must be identi
al, else the one with the smaller value of k would

not be weakly maximal. Thus, we need only show that f and f

0

are 
omparable. We

do this by indu
tion on i and j.

Chain(0; j) 
ontains just one entry, namely (0; ;; ;; B

j

; ;), and hen
e is ordered. Sim-

ilarly, Chain(i; 0) 
ontains only the entry (0; A

i

; ;; ;; ;).

Suppose, i; j > 0, and f; f

0

2 Chain(i; j). Both f and f

0

must be generated by

maximal entries e and e

0

, respe
tively. We 
onsider three 
ases. If f and f

0

are the

verti
al 
hildren of e and e

0

, respe
tively, then by indu
tion, e and e

0

are 
omparable,

hen
e f and f

0

are 
omparable by above Lemma. If f and f

0

are the horizontal


hildren of e and e

0

the proof is similar. If f is the horizontal 
hild of e and f

0

is

verti
al 
hild of e

0

, then f and f

0

are 
omparable by above Lemma too. 2

Lemma 6 Chain(i; j) has the number of elements at most 1 + jA

i

j + jB

j

j, where

jA

i

j; jB

j

j are the numbers of elements in the m-sets A

i

; B

j

, for i = 1; : : : ; m; j =

1; : : : ; n.

Proof. The main idea of the proof is in the following: Ea
h element from m-set

should be used on
e at most but with some di�erent membership value.

If e 2 (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), de�ne signature of e to be jF

f

j � jG

f

j, whi
h

must lie in the interval [�jB

j

j::jA

i

j℄. Sin
e Chain(i; j) is ordered under the relation

/, ea
h entry must have di�erent signature. 2

It means, the algorithm works in O(m �n �L � t)-time, where L is the maximal number

of the numbers in f1+jA

i

j+jB

j

j; i = 1; : : :m; j = 1; : : : ng and t = maxfjA

i

j; jB

j

j; i =

1; : : :m; j = 1; : : : ng is the maximal time spent for 
omputing of the interse
tion of

two sets. The algorithm works in O(n � L � t)-spa
e.

4 CONCLUDING REMARKS

Polynomial algorithms for the solutions of the SSCCS and MSSCCS Problem with

membership fun
tions have been presented. The algorithms work in O(m�n�L�t)-time

and O(n � L � t)-spa
e, where L = maxf1 + jA

i

j + jB

j

j; i = 1; : : :m; j = 1; : : : ng and

t = maxfjA

i

j; jB

j

j; i = 1; : : :m; j = 1; : : : ng is the maximal time spent for 
omputing

of the interse
tion of two sets.
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