
The Set-Set Closest Common Subsequen
e

Problem

1

Gabriela Andrejkov�a

Department of Computer S
ien
e, Fa
ulty of S
ien
e, P. J.

�

Saf�arik University,

Jesenn�a 5, 041 54 Ko�si
e, Slovakia

e-mail: andrejk�kosi
e.upjs.sk

Abstra
t. EÆ
ient algorithm is presented that solves a general
ase of the

Common Subsequen
e Problem, in whi
h both input strings
ontain sets of

symbols with membership values in the sets. The problem arises from a sear
h-

ing of the sets of most similar strings.

Key words: Subsequen
e,
ommon subsequen
e, measure of the string, dy-

nami
 programming, design and analysis of algorithms.

1 Introdu
tion

The motivation to the Closest Common Subsequen
e (CCS Problems)
an be found

in the typing of a text on the keyboard. The following mistakes
an be made in

typing some string: (1) Typing a di�erent
hara
ter, usually from the neighbour area

of the given
hara
ter. (2) Inserting a single
hara
ter into the sour
e string. (3)

Omitting (skipping) any single sour
e
hara
ter. (4) Transposition of two elements.

It means, we have some words with mistakes. The problem is how to �nd the strings

they are very similar very
losed to the exa
t strings. Very important role has here

the
ommon subsequen
e of similar strings.

The
ommon subsequen
e problem of two strings is to determine one of the sub-

sequen
es that
an be obtained by deleting zero or more symbols from ea
h of the

given strings. It is possible to demand some additional properties for the
ommon

subsequen
e. Usually, it is the greatest length of the
ommon subsequen
e, but we

an
onsider some di�erent measures for the
ommon subsequen
e.

The longest
ommon subsequen
e problem (LCS Problem) of two strings is to deter-

mine the
ommon subsequen
e with the maximal length. Algorithms for this problem

an be used in
hemi
al and geneti
 appli
ations and in many problems
on
erning

data and text pro
essing [4, 8, 10℄. Further appli
ations in
lude the string-to-string

orre
tion problem [8℄ and determining the measure of di�eren
es between text �les

[4℄. The length of the longest
ommon subsequen
e (LLCS Problem)
an determine

1

This resear
h was partially supported by Slovak Grant Agen
y for S
ien
e VEGA, proje
t No.

1/4375/97

1

Pro
eedings of the Prague Stringology Club Workshop '2000

the measure of di�eren
es (or similarities) of text �les. The simulation method for

the approximate strings and sequen
e mat
hing using the Levenstein metri

an be

found in J. Holub [7℄ and the algorithm for the sear
hing of the subsequen
es is in Z.

Tron���
ek and B. Meli
har [11℄.

D. S. Hirs
hberg and L. L. Larmore [6℄ have dis
ussed a generalization of LCS Prob-

lem, whi
h is
alled Set-Set LCS Problem (SSLCS Problem). In this
ase both strings

are strings of subsets over an alphabet
. In the paper [6℄ is presented the O(m � n)-

time algorithm for the general SSLCS Problem.

In this paper we present algorithms for more general
ase of the Common Subsequen
e

Problem, it means Closest Common Subsequen
e Problem SSCCS Problem for two

strings of symbol sets with membership values of elements in the sets.

2 Basi
 De�nitions

In this se
tion, some basi
 de�nitions and results
on
erning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2
; 1 � i � m be a string over an alphabet
, where jAj = m

is the length of the string A.

The string C 2

�

; C =

1

: : :

p

is a subsequen
e of the string A = a

1

: : : a

m

, if a

monotonous in
reasing sequen
e of natural numbers i

1

< � � � < i

p

exists su
h that

j

= a

i

j

; 1 � j � p. The string C is a
ommon subsequen
e of two strings A;B if C

is a subsequen
e of A and C is a subsequen
e of B. jCj is the length of the
ommon

subsequen
e. The
lassi
al problem to �nd the longest
ommon subsequen
e is de�ned

and solved in Hirs
hberg [5℄. In the
lassi
al problem, ea
h element in the string is

in his position as full member, but sometimes we are not sure about it in texts. The

element should be in his position with 70%, it means, the element is in his position

with 0:7 membership value. Sometimes, we
an suppose that in some position should

be one element of some set of elements with membership values.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some membership values of elements in the string

A. The pair (A; �

A

) is the string A with the membership fun
tion �

A

, m-string �A

for short. V al(�A) is a measure of �A de�ned by the (1).

V al(�A) = �

m

i=1

�

A

(a

i

) (1)

The string �C = (C; �

C

) is a subsequen
e with the membership fun
tion �

C

, shortly

m-subsequen
e of the m-string �A if C is a subsequen
e of the string A and 0 <

�

C

(

t

) � �

A

(a

i

t

), for 1 � t � p. The m-subsequen
e �C is a
losest m-subsequen
e if

V al(�C) = �

p

j=1

�

C

(

j

) = �

p

j=1

�

A

(a

i

j

).

The string �C is a
ommon m-subsequen
e of two m-strings �A and �B if �C is a

m-subsequen
e of �A and �C is a m-subsequen
e of �B.

The string �C is a
losest
ommon m-subsequen
e of the m-strings �A and �B if �C

is a
ommon m-subsequen
e with the maximal value V al(�C). It means, if �D is a

ommon m-subsequen
e of the strings �A and �B then V al(�D) � V al(�C).

2

The Set-Set Closest Common Subsequen
e Problem

If �C is a
losest
ommon m-subsequen
e of the m-strings, �A and �B then �

C

(

t

) =

minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let �A and �B be m-strings. To �nd a
losest
ommon

subsequen
e of the m-strings �A and �B, CCS(�A; �B) for short.

The MCCS Problem is to �nd the measure of CCS m-string, MCCS for

short. It means, MCCS(�A; �B) = V al(CCS(�A; �B)). �

Algorithms for CCS and MCCS Problem Andrejkov�a [2℄.

m m m m m m m m m

m m m m m m m

a

b

a a

b

a
 a

b

a

b

d b

b

A=

B=

Figure 1. The
losest
ommon subsequen
e of two m-strings A and B.

0.9 0.9 0.6 0.5 0.2 0.8 0.4 0.6 0.5

0.6 0.6 0.3 0.4 0.9 0.5 0.6

"

"

"

"

�

�

P

P

P

P

P

P

Example 1.
 = fa; b;
g; A = abaaba
ab;m = 9; �

A

= (:9; :9; :6; :5; :2; :8; :4; :6; :5),

B = ab
db
b; n = 7; �

B

= (:6; :6; :3; :4; :9; :5; :6). The stringC = ab
b is a subsequen
e,

C

0

= abb
b is the longest
ommon subsequen
e of the strings A and B, and �C",

C" = ab
b; �

C"

= (:6; :9; :4; :5) is the
losest
ommon subsequen
e of the m-strings

�A and �B; V al(�C") = MCCS(�A; �B) = 2:4 as it is shown in Figure 1.

A string of sets B over an alphabet
, set-string for short, is any �nite sequen
e of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of

sets in B. The length of the symbol string des
ribed by B is N = �

n

i=1

jB

i

j. A string of

symbols C =

1

2

: : :

p

;

i

2
; 1 � i � p, is a subsequen
e of symbols (subsequen
e,

for short) of the set-string B if there is a nonde
reasing mapping F : f1; 2; : : : ; pg !

f1; 2; : : : ; ng, su
h that

1. if F (i) = k then

i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then

i

6=

j

.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over an

alphabet
. The string of symbols C is a
ommon subsequen
e of symbols of A and

B is C a subsequen
e of symbols of A and C is a subsequen
e of symbols of the

set-string B.

As similar as for strings, let de�ne m-set as a set with membership fun
tion de�ned

on its elements.

Let �

B

i

; i = 1; 2; : : : ; n be the membership fun
tions of the sets B

i

; i = 1; 2; : : : ; n in

the string B. It means, �B = �B

1

�B

2

: : : �B

n

. �B is the m-set-string B of m-sets

B

i

; i = 1; 2; : : : ; n with the membership fun
tions �

B

i

, m-set-string �B for short. The

weight of the m-set B 2 P(
) with membership fun
tion �

B

is de�ned by

W (B) =

X

x2B

�

B

(x) (2)

3

Pro
eedings of the Prague Stringology Club Workshop '2000

A string �C is a m-subsequen
e of the m-set-string �B if (1) �C is the subsequen
e

of symbols of the set-string B and (2) if
 =

i

;

i

2 B

k

then �

C

(

i

) � �

B

k

(
).

The m-string �C is a
ommon m-subsequen
e of the m-set-strings �A and �B if �C

is m-subsequen
e of �A and �C is m-subsequen
e of �B.

The string �C is a
losest
ommon m-subsequen
e of the m-set-strings �A and �B if

�C is a
ommon subsequen
e with maximal value V al(�C). Note that �C is not in

general unique.

The SSCCS Problem: Let �A; �B be two m-set-strings. The Set-Set Closest

Common Subsequen
e problem of the m-set-strings �A and �B, (SSCCS(�A; �B)

for short,
onsists of �nding a
losest
ommon m-subsequen
e �C with the maximal

value V al(�C).

The MSSCCS Problem
onsists of �nding the measure of SSCCS m-set-

string, MSSCCS(�A; �B) for short.

It means, MSSCCS(�A; �B) = V al(SSCCS(�A; �B)), �

m m m m m m m m

m m m m m m m m m m m

a

d

 a

b

e

b

a

d

e
 a

d

e

b d

b d

A=

B=

Figure 2. The
losest
ommon m-subsequen
e of two m-set-strings A and B.

f gf g

f g

f g

f gf gf g

0.4

0.7 0.3 0.6 0.4 0.5 0.6 0.3 0.8

0.3 0.5 0.7 0.6 0.8 0.9 0.5 0.7 0.5 0.3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Example 2. Let A = fa; dgf
; a; dgfe; b; ag; m = 3, �

A

1

= (:7; :3); �

A

2

= (:6; :4;

:5); �

A

3

= (:6; :3; :8);B = fd; e;
gfa; d; egfb; d;
gfb; dg; n = 4: �

B

1

= (:4; :3; :5); �

B

2

=

(:7; :6; :8); �

B

3

= (:9; :5; :7); �

B

4

= (:5; :3). The membership values are des
ribed

a

ording to the named order in the set. For example, �

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS(�A; �B) = 2:4 as it is shown in the Figure 2.

3 ALGORITHM FOR MSSCCS Problem

The basi
 idea of the algorithm starts from the de�nition of MSSCCS Problem.

MSSCCS(�A; �B) = max

�C

fV al(�C) : �C is the
ommon m-subsequen
e

of �A and �Bg (3)

In the following part of the paper we will use the m-set only and for a simpler

des
ription we will omit the symbol � in the names of sets.

A
attening of a sequen
e of sets is de�ned as a
on
atenation, in order of the se-

quen
e, of strings formed by some permutation of individual elements of the sets

in the sequen
e. For example, a
attening of the m-set-string A in Example 2 is

4

The Set-Set Closest Common Subsequen
e Problem

A

fl1

= daba
eba; �

A

fl1

= (:3; :7; :5; :4; :6; :6; :3; :8) and so is A

fl2

= daa
bbae; �

A

fl2

=

(:3; :7; :4; :6; :5; :3; :8; :6).

If we have some
attening of both set-strings then it is possible to apply the MCCS

algorithm, Andrejkov�a [2℄. It is ne
essary to
ompute MCCS values of all pairs of

all
attenings both set-strings but it is too mu
h time
onsuming.

If we have the
attening of one set-string and the se
ond is a set-string then it is

possible to use the MSCCS algorithms. But it is ne
essary to
ompute MSCCS

value for all
attenig of one string. It is to mu
h time
onsuming too. Both algorithms

have an exponential time
omplexity.

It is possible to use the following algorithm of polynomial time
omplexity. The

algorithm works in two steps:

1. to
reate the string of symbols for ea
h of set-string; ea
h set
an be en
oded

as the string of all permutations of its elements (the length of su
h string is

k

2

� 2 � k + 4, k is the number of elements in set [9℄); for example, the shortest

m-string of elements in the m-set-string A in example 2 is dad
ab
ab
beabeab

and so is ada
ab
ab
ebaebae.

2. to apply the MCCRS algorithm, Andrejkov�a [1℄ for the two in the previous step

onstru
ted m-strings (ea
h element of the m-set
an be used on
e at most);

The algorithm works in polynomial time: O(M

2

� N

2

� K), where M = �

m

i=1

jA

i

j,

N = �

n

j=1

jB

j

j, and K is the number of elements in the
losest
ommon restri
ted

subsequen
e.

We formulate the following algorithm with the better time
omplexity a

ording to

Hirshberg's idea for SSLCS Problem [6℄. The algorithm works with interse
tion,

union and equivalen
e, di�eren
e of m-sets. It is possible to use many de�nitions of

them but the following [3, 12℄ are more obvious:

Let A;B be the m-sets with membership fun
tions �

A

; �

B

, and x"A explains a mem-

bership of the element x to the m-set A; �

A

(x) > 0, then

1. interse
tion \\

m

" of two m-sets is de�ned:

A \

m

B =

def

fxjx"A ^ x"Bg; �

A\

m

B

(x) = minf�

A

(x); �

B

(x)g

2. union "[

m

" of two m-sets is de�ned:

A [

m

B =

def

fxjx"A _ x"Bg; �

A[

m

B

(x) = maxf�

A

(x); �

B

(x)g

3. equivalen
e \=

m

" of two m-sets is de�ned:

A =

m

B , x"A ^ x"B ^ x"A \

m

B ^ x"A [

m

B

4. di�eren
e \�

m

" of two m-sets is de�ned:

A�

m

B =

def

fxjx"A ^ x 6 "Bg; �

A�B

(x) = �

A

(x)

5. A is m-subset of B;A �

m

B; if and only if 8x"A is ful�lled x"B and 0 <

�

A

(x) � �

B

(x).

5

Pro
eedings of the Prague Stringology Club Workshop '2000

3.1 Des
ription of the simple algorithm A.

For
onvenien
e, we de�ne A

0

= B

0

= ;.

We de�ne Ent(i; j) to be the set of quintuples (k; F

f

; F

u

; G

f

; G

u

) su
h that:

(1) k is the measure of
, a
ommon m-subsequen
e of some
attening of A

1

: : : A

i

and some
attening of B

1

: : : B

j

, de�ned by (1).

(2) free m-set F

f

�

m

A

i

is the m-set of elements of A

i

whi
h are not used by
,

(3) free m-set G

f

�

m

B

j

, is the m-set of elements of B

j

not used by
,

(4) m-set of used elements F

u

�

m

A

i

is the m-set of elements of A

i

used by
, and

(5) m-set of used elements G

u

�

m

B

j

is the m-set of elements of B

j

used by
.

Example 3. (1:2; f(
; 0:5); (a; 0:4)g; f(b; 0:5)g; f(a; 0:4)g; f(d; 0:6); (e; 0:8)g) is in

Ent(2; 2) for m-set-strings in Example 2.

We refer to su
h quintuple as an entry. The measure of the CCS of the some
attening

of A

1

: : : A

m

and some
attening of B

1

: : : B

n

is then, by de�nition, the largest k su
h

that (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(m;n) for some m-sets F

f

; F

u

; G

f

and G

u

. Ent(0; 0)

ontains just one entry, namely (0; ;; ;; ;; ;), while Ent(i; j)
an be
omputed dy-

nami
ally from Ent(i � 1; j) and Ent(i; j � 1). The problem is that the
ardinality

of Ent(i; j)
ould be
ome very large, making su
h an algorithm exponential in the

worst
ase.

Let e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i � 1; j) and F

s

; F

u

�

m

F

s

be the m-set with the

following property: x"F

s

, x"F

u

and �

F

u

(x) � �

F

s

(x) = �

A

i

(x). It means, the m-set

F

s

is the maximal m-set that has the same elements as the m-set F

u

, but membership

values of elements in F

s

are the same as in the m-set A

i

.

Let S be any subset of A

i

\

m

G

f

. We say that e verti
ally generates e

0

2 Ent(i; j)

i�

1. e

0

= (k +W (S) � W (A

i

\

m

G

u

) +W (S

0

); A

i

�

m

S; F

u

; G

f

�

m

S;G

u

) for any

subset S

0

of A

i

\

m

G

s

;W (S

0

) > W (A

i

\

m

G

u

), or

2. e

0

= (k +W (S); A

i

�

m

S; F

u

; G

f

�

m

S;G

u

) and for ea
h subset S

0

of A

i

\

m

G

s

is W (S

0

) � W (A

i

\

m

G

u

).

The element e

0

2 Ent(i; j) and it is shown by the following: If � is
ommon m-

subsequen
e with a measure k = V al(�) of the
attening of A

1

: : : A

i�1

and some

attening of B

1

: : : B

j

, where F

f

�

m

A

i�1

and G

f

�

m

B

j

are free m-sets, and �

is a m-sequen
e
onsisting of the elements of S �

m

A

i

\ G

f

written in any order,

then �� (having measure k + V al(S)) is
ommon subsequen
e of a
attening of

A

1

: : : A

i

and a
attening of B

1

: : : B

j

, with free m-sets A

i

� S and G

f

�S. The used

elements from m-set G

u

an be used with some better membership values and it is

evaluated by the
omparison of the weights of the sets A

i

\

m

G

s

and A

i

\

m

G

u

. If

W (A

i

\

m

G

u

) < W (A

i

\

m

G

s

) then there exists some better using of elements in A

i

.

6

The Set-Set Closest Common Subsequen
e Problem

Similarly, if (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j�1) and S �

m

F

f

\

m

B

j

and S

0

is any subset

of B

j

\

m

F

s

);W (S

0

) > W (B

j

\

m

F

u

), we say that (k; F

f

; F

u

; G

f

; G

u

) horizontally

generates (k+W (S)�W (B

j

\

m

F

u

)+W (S

0

); F

f

�

m

S; F

u

; B

j

�

m

S;G

u

) 2 Ent(i; j)

or (k+W (S); F

f

�

m

S; F

u

; B

j

�

m

S;G

u

) 2 Ent(i; j) a

ording to the relationW (B

j

\

m

F

u

) < = � W (S

0

).

Lemma 1 If e 2 Ent(i; j) for i+ j � 0 then e is generated by some element of either

Ent(i� 1; j) or Ent(i; j � 1).

Proof. e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), it means e = ��, � is the part of elements

in A

i

\

m

B

j

. A

ording to above
onstru
tion, the part � is the prolongation of some

element e

0

2 Ent(i � 1; j) or Ent(i; j � 1). In the part � should be elements with

higher membership values. 2

The element e 2 Ent(i; j) is generated from elements in E(i � 1; j) or Ent(i; j � 1)

using of two sets: the free subset and the used subset of B

j

, respe
tively A

i

. The

following algorithm is a dynami
 programming algorithm in whi
h the boundary

onditions are set and then the interval entries are determined:

Algorithm A.

for all i do Ent(i; 0) := f(0; A

i

; ;; ;; ;)g

for all j do Ent(0; j) := f(0; ;; ;; B

j

; ;)g

for i := 1 to m do

for j := 1 to n do

Ent(i; j) := fall entries verti
ally generated from Ent(i� 1; j)g

S

fall entries horizontally generated from Ent(i; j � 1)g

max k := the largest k su
h that (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(m;n) for some

F

f

; F

u

; G

f

; G

u

.

3.2 Des
ription of a better algorithm

The above algorithm may be very time-
onsuming be
ause of too many quintuples

is ne
essary to analyze. We will speed the algorithm by eliminating
onsideration of

many quintuples.

If (k; F

f

; F

u

; G

f

; G

u

); (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) 2 Ent(i; j), we say that (k; F

f

; F

u

; G

f

; G

u

)

dominates (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) ((k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) � (k; F

f

; F

u

; G

f

; G

u

)) if the follow-

ing
onditions hold:

1. d = k � k

0

� 0,

2.

�

W (F

0

f

� F

f

) � d and F

0

u

�

m

F

u

�

or

�

W (F

0

u

� F

u

) � d and F

0

f

�

m

F

f

�

,

3.

�

W (G

0

f

�G

f

) � d and G

0

u

�

m

G

u

�

or

�

W (G

0

u

�G

u

) � d and G

0

f

�

m

G

f

�

.

7

Pro
eedings of the Prague Stringology Club Workshop '2000

The relation "�" is a transitive, antisymmetri
 and re
exive relation. The elements

of Ent(i; j)
an be ordered a

ording to relation "�", it means they are ordered in

some
hains. The last element of the
hain has maximal measure and that is very

important.

Lemma 2 Any element of Ent(i; j) whi
h is not maximal with respe
t to the relation

"�"
an be dis
arded during exe
ution of the algorithm without a�e
ting the �nal value

of max k.

Proof. It will be proved by downward indu
tion on both indi
es i and j. The value

of max k is obtained from Ent(m;n) in the last step and all other elements may be

dis
arded with no e�e
t.

Suppose i + j < m + n and e

0

2 Ent(i; j); e

0

is not maximal. Let e 2 Ent(i; j)

is maximal. It means, e

0

� e. It is ne
essary to prove that maximal element of

Ent(i+1; j) or Ent(i; j+1) whi
h is generated by e

0

an be generated by e too. And

the element e

0

an be dis
arded.

Let e = (k; F

f

; F

u

; G

f

; G

u

); e

0

= (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) and e

0

verti
ally generates f

0

. f

0

should have two forms for some m-set P � A

i+1

\G

0

f

(a) f

0

= (k

0

+W (P)�W (A

i+1

\

m

G

0

u

)+W (A

i+1

\

m

G

0

s

); A

i+1

�

m

P; P;G

0

f

�

m

P;G

0

u

),

if W (A

i+1

\

m

G

0

u

) < W (A

i+1

\

m

G

0

s

), or

(b) f

0

= (k

0

+W (P); A

i+1

�

m

P; P;G

0

f

�

m

P;G

0

u

), ifW (A

i+1

\

m

G

0

u

) � W (A

i+1

\

m

G

0

s

).

Let S = P \ G

f

, and f is verti
ally generated by e. f should have two forms: (1)

f = (k +W (S) �W (A

i+1

\

m

G

u

) +W (A

i+1

\

m

G

s

); A

i+1

�

m

S; S;G

f

�

m

S;G

u

) or

(2)f = (k+W (S); A

i+1

�

m

S; S;G

f

�

m

S;G

u

). It is ne
essary to analyze four
ases to

prove the Lemma (a)-(1), (a)-(2), (b)-(1), (b)-(2). We start with the �rst one, it means

(a)-(1), andW (A

i+1

\

m

G

0

u

) < W (A

i+1

\

m

G

0

s

) andW (A

i+1

\

m

G

u

) < W (A

i+1

\

m

G

s

).

Sin
e e

0

� e; d = k � k

0

,

d � 0,

��

W (F

0

f

� F

f

) � d and F

0

u

�

m

F

u

�

or

�

W (F

0

u

� F

u

) � d and F

0

f

�

m

F

f

��

, and

��

W (G

0

f

�G

f

) � d and G

0

u

�

m

G

u

�

or

�

W (G

0

u

�G

u

) � d and G

0

f

�

m

G

f

��

. Then

W (P �

m

S) = W (P �

m

P \

m

G

f

) = W (P �

m

G

f

) � W (F

0

f

�

m

F

f

) � d and

W (P �

m

S) � W (P) � W (S). Let d

0

= (W (P) � W (S)) � (W (A

i+1

\

m

G

s

) �

W (A

i+1

\

m

G

0

s

))� (W (A

i+1

\

m

G

u

)�W (A

i+1

\

m

G

0

u

) � d We prove that f

0

� f , it

means f

0

is not maximal or f = f

0

. A

ording to de�nition of "�" it is ne
essary to

he
k three
onditions 1.-3.

1. z = k+W (S)�W (A

i+1

\

m

G

u

) +W (A

i+1

\

m

G

s

)� (k

0

+W (P)�W (A

i+1

\

m

G

0

u

)+W (A

i+1

\

m

G

0

s

)) = k�k

0

�(W (P)�W (S))+W (A

i+1

\

m

G

s

)�W (A

i+1

\

m

G

0

s

) +W (A

i+1

\

m

G

u

)�W (A

i+1

\

m

G

0

u

� d� d

0

� 0

2. W (P �

m

S) � d and A

i+1

�

m

P �

m

A

i+1

�

m

S

3. W (G

0

f

�

m

P �

m

(F

f

�

m

S)) = W (G

0

f

�

m

G

f

) � d and G

0

u

�

m

G

u

.

8

The Set-Set Closest Common Subsequen
e Problem

The rest three
ases
an be proved by a very similar method. And the verti
al
ase

is similar. 2

If e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), we de�ne the horizontal
hild of e to be hor(e) =

k +W (F

f

\B

j+1

)�W (A

i

\

m

G

u

) +W (A

i

\

m

G

s

); F

f

� B

j+1

; F

u

; B

j+1

� F

f

; G

u

) or

hor(e) = k + W (F

f

\ B

j+1

); F

f

� B

j+1

; F

u

; B

j+1

� F

f

; G

u

) and de�ne the verti
al

hild of e to be ver(e) = k+W (A

i+1

\G

f

)�W (B

j+1

\G

u

) +W (B

j+1

\G

s

); B

j+1

�

G

f

; F

u

; G

f

�B

j+1

; G

u

)or ver(e) = k +W (A

i+1

\G

f

); B

j+1

�G

f

; F

u

; G

f

�B

j+1

; G

u

).

We de�ne MaxEnt(i; j) to be the set of maximal elements of Ent(i; j) under the

dominan
e relation "�".

Lemma 3 Any entry horizontally generates at most one maximal entry and verti
ally

generates at most one maximal entry.

Proof. Let e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j). The only elements verti
ally gener-

ated by e whi
h
an be maximal are in the ver(e), sin
e they dominates any others

verti
ally generated by e. Similarly, hor(e) dominates any entries horizontally gener-

ated by e. 2

We say that (k; F

f

; F

u

; G

f

; G

u

) strongly dominates (k

0

; F

f

; F

u

; G

f

; G

u

) if k > k

0

. If

S � Ent(i; j), de�nes Dom(S) � S to be the set obtained by deleting every element

of S whi
h is strongly dominated by another element of S. We now indu
tively de�ne

sets Chain(i; j) � Ent(i; j) by:

1. Chain(i; 0) = f(0; A

i

; ;; ;; ;)g;

2. Chain(0; j) = f(0; ;; ;; B

j

; ;)g;

3. Chain(i; j) = Dom(fver(e)je 2 Chain(i�1; j)g [fhor(e)je 2 Chain(i; j�1)g):

We refer to entries Chain(i; j) asweakly maximal. We observe the following lemma.

Theorem 1 MaxEnt(i; j) � Chain(i; j):

Proof. By indu
tion. For i = 0 or j = 0 the two sets MaxEnt(i; j) and Chain(i; j)

are identi
al. For i; j > 0, and e 2MaxEnt(i; j) must be verti
al or horizontal
hild

of some maximal element, whi
h is weakly maximal by indu
tion. It means, e must

be weakly maximal, sin
e it is maximal and thus
annot be deleted by operator Dom.

2

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following

algorithm:

Algorithm B.

fUsing weakly maximal entries.g

for all i do Chain(i; 0) := f(0; A

i

; ;; ;; ;)g;

for all j do Chain(0; j) := f(0; ;; ;; B

j

; ;)g;

9

Pro
eedings of the Prague Stringology Club Workshop '2000

for i:=1 to m do

for j:=1 to n do

begin

Chain(i; j) := ;;

for all (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(i; j � 1) do begin

help :=W (B

j

\

m

F

s

)�W (B

j

\

m

F

u

);

if help � 0 then

insert (k +W (F \B

j

); F

f

� B

j

; F

u

; B

j

� F

f

; G

u

) into Chain(i; j)

else insert (k+W (F

f

\B

j

)+help; F

f

�B

j

; F

u

; B

j

�F

f

; G

u

) into Chain(i; j)

end;

for all (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(i� 1; j) do begin

help :=W (A

i

\

m

G

s

)�W (A

i

\

m

G

u

);

if help � 0 then

insert (k +W (A

i

\G); A

i

�G

f

; F

u

; G

f

� A

i

; G

u

) into Chain(i; j)

else insert (k+W (G

f

\A

i

)+help; A

i

�G

f

; F

u

; G

f

�A

i

; G

u

) into Chain(i; j)

end;

delete all nonweakly maximal elements from Chain(i; j)

end

max k := the maximum value of k su
h that (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(m;n)

for some F

f

; F

u

; G

f

and G

u

.

The algorithmworks inO(m�n�K�t)-time, whereK is the maximal number of elements

in Chain(i; j) and t is the maximal time spent for
omputing the interse
tion of two

sets. The algorithm works in O(m � n � k)-spa
e, where k is the maximal number of

elements in the m-sets A

i

; B

j

. In the next se
tion we show the idea of some eÆ
ient

implementation of the algorithm.

3.3 EÆ
ient implementation of algorithm B.

We show the stru
ture of Chain(i; j) that will help obtain an eÆ
ient implementation

of algorithm B. We begin by de�ning a transitive re
exive relation / on Ent(i; j). We

say that (k; F

f

; F

u

; G

f

; G

u

) / (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) if F

f

�

m

F

0

f

; G

0

f

�

m

G

f

; F

u

=

m

F

0

u

and G

u

=

m

G

0

u

.

Lemma 4 (a) If e; e

0

2 Ent(i� 1; j), and if e / e

0

, then ver(e) / ver(e

0

).

(b) If e; e

0

2 Ent(i; j � 1), and if e / e

0

, then hor(e) / hor(e

0

).

(
) If e 2 Ent(i; j � 1) and e

0

2 Ent(i� 1; j), then hor(e) / ver(e

0

).

10

The Set-Set Closest Common Subsequen
e Problem

Proof. (a) ver(e) = (k; F

f

\

m

B

j

; F

u

; B

j

�

m

F

f

; G

u

) and ver(e

0

) = (k

0

; F

0

�

m

B

j

; F

0

u

; B

j

�

m

F

0

f

; G

0

u

): It follows from F

f

�

m

F

0

f

that F

f

� B

j

�

m

F

0

f

� B

j

and

B

j

� F

0

f

�

m

B

j

� F

f

, i.e. ver(e) / ver(e

0

):

(b) Similar to the proof of (a).

(
) Let e = (k; F

f

; F

u

; G

f

; G

u

) and e

0

= (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

). Then hor(e) = (k; F

f

�

m

B

j

; F

u

; B

j

�

m

F

f

; G

u

) and ver(e

0

) = (k

0

; F

0

f

�

m

B

j

; F

0

u

; B

j

�

m

F

0

f

; G

0

u

). It
an be seen

that F

f

�

m

A

i

sin
e e 2 Ent(i; j � 1), and that G

0

f

�

m

B

j

sin
e e

0

2 Ent(i � 1; j).

And we have F

f

� B

j

�

m

A

i

� G

0

f

and G

0

f

� A

i

�

m

B

j

� F

f

, i.e. hor(e) / ver(e

0

):

2

Lemma 5 The relation / imposes a total ordering on Chain(i; j).

Proof. We need to prove that for any distin
t f; f

0

2 Chain(i; j), either f / f

0

or

f

0

/ f but not both. If f

0

/ f and f / f

0

, then f and f

0

would have the same free sets,

whi
h implies they must be identi
al, else the one with the smaller value of k would

not be weakly maximal. Thus, we need only show that f and f

0

are
omparable. We

do this by indu
tion on i and j.

Chain(0; j)
ontains just one entry, namely (0; ;; ;; B

j

; ;), and hen
e is ordered. Sim-

ilarly, Chain(i; 0)
ontains only the entry (0; A

i

; ;; ;; ;).

Suppose, i; j > 0, and f; f

0

2 Chain(i; j). Both f and f

0

must be generated by

maximal entries e and e

0

, respe
tively. We
onsider three
ases. If f and f

0

are the

verti
al
hildren of e and e

0

, respe
tively, then by indu
tion, e and e

0

are
omparable,

hen
e f and f

0

are
omparable by above Lemma. If f and f

0

are the horizontal

hildren of e and e

0

the proof is similar. If f is the horizontal
hild of e and f

0

is

verti
al
hild of e

0

, then f and f

0

are
omparable by above Lemma too. 2

Lemma 6 Chain(i; j) has the number of elements at most 1 + jA

i

j + jB

j

j, where

jA

i

j; jB

j

j are the numbers of elements in the m-sets A

i

; B

j

, for i = 1; : : : ; m; j =

1; : : : ; n.

Proof. The main idea of the proof is in the following: Ea
h element from m-set

should be used on
e at most but with some di�erent membership value.

If e 2 (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), de�ne signature of e to be jF

f

j � jG

f

j, whi
h

must lie in the interval [�jB

j

j::jA

i

j℄. Sin
e Chain(i; j) is ordered under the relation

/, ea
h entry must have di�erent signature. 2

It means, the algorithm works in O(m �n �L � t)-time, where L is the maximal number

of the numbers in f1+jA

i

j+jB

j

j; i = 1; : : :m; j = 1; : : : ng and t = maxfjA

i

j; jB

j

j; i =

1; : : :m; j = 1; : : : ng is the maximal time spent for
omputing of the interse
tion of

two sets. The algorithm works in O(n � L � t)-spa
e.

4 CONCLUDING REMARKS

Polynomial algorithms for the solutions of the SSCCS and MSSCCS Problem with

membership fun
tions have been presented. The algorithms work in O(m�n�L�t)-time

and O(n � L � t)-spa
e, where L = maxf1 + jA

i

j + jB

j

j; i = 1; : : :m; j = 1; : : : ng and

t = maxfjA

i

j; jB

j

j; i = 1; : : :m; j = 1; : : : ng is the maximal time spent for
omputing

of the interse
tion of two sets.

11

Pro
eedings of the Prague Stringology Club Workshop '2000

Referen
es

[1℄ Andrejkov�a, G.: The longest restri
ted
ommon subsequen
e problem. Pro
eedings

of the Prague Stringology Club Workshop'98, Prague, 1998, p. 14-25.

[2℄ Andrejkov�a, G.: The Set Closest Common Subsequen
e Problem, Pro
eedings of

4-th International Conferen
e on Applied Informati
s '99, Eger-Noszvaj, (1999),

p. 8.

[3℄ Gottwald, S.: Fuzzy Sets and Fuzzy Logi
, Vieweg, Wiesbaden, (1993), p. 216.

[4℄ He
kel, P.: A te
hnique for isolating di�eren
es between �les. Comm. ACM 21, 4

(Apr. 1978), p. 264{268.

[5℄ Hirs
hberg, D. S.: Algorithms for longest
ommon subsequen
e problem. Journal

ACM 24, 4 (O
t 1977), p. 664{675.

[6℄ Hirs
hberg, D. S., Larmore, L. L.: Set-Set LCS Problem. Algorithmi
a 4 (1989),

p. 503{510.

[7℄ Holub, J.: Dynami
 Programming for Redu
ed NFAs for Approximate String and

Sequen
e Mat
hing. Pro
eedings of the Prague Stringology Club Workshop'98,

Prague, 1998, p. 73-82.

[8℄ Lowran
e, R., Wagner, R. A.: An extension of the string-to-string
orre
tion

problems. Journal ACM 22, 2 (Apr. 1975), p. 177{183.

[9℄ Mohanty, S. P.: Shortest string
ontaining all permutations. Dis
rete Mathemati
s

31, 1980, p. 91{95.

[10℄ Needleman, S. B., Wuns
h, Ch. D.: A general method appli
able to the sear
h

for similarities in the amino a
id sequen
e of two proteins. Journal Mol. Biol. 48,

1970, p. 443{453.

[11℄ Tron���
ek, Z., Meli
har, B.: Dire
ted A
y
li
 Subsequen
e Graph. Pro
eedings of

the Prague Stringology Club Workshop'98, Prague, 1998, p. 107-118.

[12℄ Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1,

1978, p. 3-28.

12

