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1 Introduction

The motivation to the Closest Common Subsequence (CCS Problems) can be found
in the typing of a text on the keyboard. The following mistakes can be made in
typing some string: (1) Typing a different character, usually from the neighbour area
of the given character. (2) Inserting a single character into the source string. (3)
Omitting (skipping) any single source character. (4) Transposition of two elements.
It means, we have some words with mistakes. The problem is how to find the strings
they are very similar very closed to the exact strings. Very important role has here
the common subsequence of similar strings.

The common subsequence problem of two strings is to determine one of the sub-
sequences that can be obtained by deleting zero or more symbols from each of the
given strings. It is possible to demand some additional properties for the common
subsequence. Usually, it is the greatest length of the common subsequence, but we
can consider some different measures for the common subsequence.

The longest common subsequence problem (LCS Problem) of two strings is to deter-
mine the common subsequence with the maximal length. Algorithms for this problem
can be used in chemical and genetic applications and in many problems concerning
data and text processing [4, 8, 10]. Further applications include the string-to-string
correction problem [8] and determining the measure of differences between text files
[4]. The length of the longest common subsequence (LLCS Problem) can determine

! This research was partially supported by Slovak Grant Agency for Science VEGA, project No.
1/4375/97



Proceedings of the Prague Stringology Club Workshop 2000

the measure of differences (or similarities) of text files. The simulation method for
the approximate strings and sequence matching using the Levenstein metric can be
found in J. Holub [7] and the algorithm for the searching of the subsequences is in Z.
Troni¢ek and B. Melichar [11].

D. S. Hirschberg and L. L. Larmore [6] have discussed a generalization of LCS Prob-
lem, which is called Set-Set LCS Problem (SSLCS Problem). In this case both strings
are strings of subsets over an alphabet €. In the paper [6] is presented the O(m - n)-
time algorithm for the general SSLCS Problem.

In this paper we present algorithms for more general case of the Common Subsequence
Problem, it means Closest Common Subsequence Problem SSCCS Problem for two
strings of symbol sets with membership values of elements in the sets.

2 Basic Definitions

In this section, some basic definitions and results concerning to CCS Problem, SCCS
and SSCCS Problem are presented.

Let © be a finite alphabet, || = s, P(2) the set of all subsets of Q, |P(Q2)| = 2°.

Let A =ajasy...an,,a; € 2,1 <i<m be astring over an alphabet 2, where |A| = m
is the length of the string A.

The string C' € Q*,C = ¢;...¢, is a subsequence of the string A = a;...a,, if a
monotonous increasing sequence of natural numbers iy < --- < i, exists such that
cj = aj;, 1 < j < p. The string C'is a common subsequence of two strings A, B if C
is a subsequence of A and C'is a subsequence of B. |C| is the length of the common
subsequence. The classical problem to find the longest common subsequence is defined
and solved in Hirschberg [5]. In the classical problem, each element in the string is
in his position as full member, but sometimes we are not sure about it in texts. The
element should be in his position with 70%, it means, the element is in his position
with 0.7 membership value. Sometimes, we can suppose that in some position should
be one element of some set of elements with membership values.

Let pa(a;) € (0,1),1 < i < m, be some membership values of elements in the string
A. The pair (A, ua) is the string A with the membership function pa, m-string pA
for short. Val(uA) is a measure of A defined by the (1).

Val(ud) = B ua(a;) (1)

The string pC' = (C, uc) is a subsequence with the membership function pc, shortly
m-subsequence of the m-string pA if C' is a subsequence of the string A and 0 <
pe(er) < palag,), for 1 <t < p. The m-subsequence pC' is a closest m-subsequence if
Val(pC) = X5 pe(e;) = X5 palas;).

The string puC' is a common m-subsequence of two m-strings pA and puB if uC' is a
m-subsequence of pA and pC' is a m-subsequence of uB.

The string uC'is a closest common m-subsequence of the m-strings uA and pB if uC'
is a common m-subsequence with the maximal value Val(uC). It means, if uD is a
common m-subsequence of the strings pA and pB then Val(pD) < Val(uC).
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If uC is a closest common m-subsequence of the m-strings, pA and pB then uc(c;) =
min{a(ag,), up(by)}, for 1 <t <p.

The CCS Problem: Let A and 4B be m-strings. To find a closest common
subsequence of the m-strings uA and uB, CCS(uA, uB) for short.

The MCCS Problem is to find the measure of CCS m-string, MCCS for
short. It means, MCCS(uA, uB) = Val(CCS(uA, uB)). <

Algorithms for CCS and MCCS Problem Andrejkova [2].
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Figure 1. The closest common subsequence of two m-strings A and B.

Example 1. Q = {a,b,c}, A = abaabacab,m =9, us = (.9,.9,.6,.5,.2, .8, 4, .6,.5),
B = abedbeb,n =7, up = (.6, .6,.3,.4,.9,.5,.6). The string C' = abcb is a subsequence,
C' = abbcd is the longest common subsequence of the strings A and B, and uC”,
C” = abeb, pe» = (.6,.9, .4,.5) is the closest common subsequence of the m-strings
pA and pB,Val(pC”) = MCCS(pA, uB) = 2.4 as it is shown in Figure 1.

A string of sets B over an alphabet €2, set-string for short, is any finite sequence of
sets from P(2). Formally, B = B1Bs...B,,B; € P(2),1 <i < n, nis the number of
sets in B. The length of the symbol string described by Bis N = X, |B;|. A string of
symbols C' = ¢i¢y...¢p,¢; € Q1 < i < p, is a subsequence of symbols (subsequence,
for short) of the set-string B if there is a nondecreasing mapping F : {1,2,...,p} —
{1,2,...,n}, such that

1. if F(i) =k then ¢; € By, fori=1,2,...,p
2. if F(i) =k and F(j) =k and i # j then ¢; # ¢;.

Let A = A;...A,,B=B;...B,,1 < m < n, be two set-strings of sets over an
alphabet Q. The string of symbols C' is a common subsequence of symbols of A and
B is C a subsequence of symbols of A and C' is a subsequence of symbols of the
set-string B.

As similar as for strings, let define m-set as a set with membership function defined
on its elements.

Let pup,,i =1,2,...,n be the membership functions of the sets B;,7 = 1,2,...,n in
the string B. It means, uBB = uByuBs ... uB,. pB is the m-set-string B of m-sets
B;,i=1,2,...,n with the membership functions pp,, m-set-string p3 for short. The
weight of the m-set B € P(Q) with membership function upg is defined by

W(B) =Y us(@) (2)
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A string uC' is a m-subsequence of the m-set-string uB if (1) uC' is the subsequence
of symbols of the set-string B and (2) if ¢ = ¢;, ¢; € By then pe(c;) < pg,(c).

The m-string uC' is a common m-subsequence of the m-set-strings uA and pB if uC
is m-subsequence of uA and pC' is m-subsequence of uB.

The string uC'is a closest common m-subsequence of the m-set-strings u.A and pB if
pC' is a common subsequence with maximal value Val(uC). Note that pC' is not in
general unique.

The SSCCS Problem: Let yuA, uB3 be two m-set-strings. The Set-Set Closest
Common Subsequence problem of the m-set-strings puA and pB, (SSCCS(uA, uB3)

for short, consists of finding a closest common m-subsequence pyC with the maximal
value Val(uC').

The MSSCCS Problem consists of finding the measure of SSCCS m-set-
string, MSSCCS(uA, uBB) for short.

It means, MSSCCS(uA, uB) = Val(SSCCS(uA, uB)), <
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Figure 2. The closest common m-subsequence of two m-set-strings A and B.

Example 2. Let A = {a,d}{c,a,d}{e,b,a},m = 3, ps, = (.7,.3), 4, = (.6,.4,
B),pa, = (.6,.3,.8),B=1{d,e,c}{a,d,e}{b,d,c}{b,d},n=4. up, = (.4,.3,.5), up, =
(.7,.6,.8), up, = (.9,.5,.7), up, = (.5,.3). The membership values are described
according to the named order in the set. For example, 14, (a) = 0.7, 4, (d) = 0.3.
Then MSSCCS(pA, uB) = 2.4 as it is shown in the Figure 2.

3 ALGORITHM FOR MSSCCS Problem

The basic idea of the algorithm starts from the definition of M SSCCS Problem.

MSSCCS(uA, pB) = maz,c{Val(uC) : pC is the common m-subsequence
of uA and pB} (3)

In the following part of the paper we will use the m-set only and for a simpler
description we will omit the symbol y in the names of sets.

A flattening of a sequence of sets is defined as a concatenation, in order of the se-
quence, of strings formed by some permutation of individual elements of the sets
in the sequence. For example, a flattening of the m-set-string A in Example 2 is
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Ajn = dabaceba, jia,, = (.3,.7,.5,.4,.6,.6,.3,.8) and so is A = daacbbae, ji4,, =
(.3,.7,.4,.6,.5,.3,.8,.6).

If we have some flattening of both set-strings then it is possible to apply the MCC'S
algorithm, Andrejkovd [2]. It is necessary to compute MCC'S values of all pairs of
all flattenings both set-strings but it is too much time consuming.

If we have the flattening of one set-string and the second is a set-string then it is
possible to use the MSCCS algorithms. But it is necessary to compute MSCCS
value for all flattenig of one string. It is to much time consuming too. Both algorithms
have an exponential time complexity.

It is possible to use the following algorithm of polynomial time complexity. The
algorithm works in two steps:

1. to create the string of symbols for each of set-string; each set can be encoded
as the string of all permutations of its elements (the length of such string is
k* — 2.k + 4, k is the number of elements in set [9]); for example, the shortest
m-string of elements in the m-set-string A in example 2 is dadcabcabcbeabeab
and so is adacabcabcebaebae.

2. to apply the MCCRS algorithm, Andrejkova [1] for the two in the previous step
constructed m-strings (each element of the m-set can be used once at most);

The algorithm works in polynomial time: O(M? - N? - K), where M = ¥ |AY],
N = X7_,|B], and K is the number of elements in the closest common restricted
subsequence.

We formulate the following algorithm with the better time complexity according to
Hirshberg’s idea for SSLCS Problem [6]. The algorithm works with intersection,
unton and equivalence, difference of m-sets. It is possible to use many definitions of
them but the following [3, 12] are more obvious:

Let A, B be the m-sets with membership functions 4, g, and zcA explains a mem-
bership of the element z to the m-set A, 4(z) > 0, then

1. intersection “N,,” of two m-sets is defined:

ANy B =gep {x|ve AN 2B}, pian,, 5(x) = min{ua(z), pp(x)}
2. union "U,,” of two m-sets is defined:

AUy, B =ge5 {x|rcAV 2B}, 140, 8(x) = max{pa(z), pp(x)}

“__

3. equivalence “=,,” of two m-sets is defined:

A=,B&srcANreBANzcAN,, BANzcAU,, B
4. difference “—,,” of two m-sets is defined:
A —p B =qep {z|reA N B}, pa—p(z) = palz)

5. A is m-subset of B,A C,, B, if and only if VzeA is fulfilled ze¢B and 0 <
pa(r) < pp(z).
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3.1 Description of the simple algorithm A.

For convenience, we define Ay = By = 0.

We define Ent(i, j) to be the set of quintuples (k, Fy, Fy,, G, G,) such that:

(1) k is the measure of 7, a common m-subsequence of some flattening of A; ... A;
and some flattening of B; ... Bj, defined by (1).

2) free m-set Fy C,;, A; is the m-set of elements of A; which are not used by 7,

)

3) free m-set G§ C,, Bj, is the m-set of elements of B; not used by -,

4) m-set of used elements F,, C,, A; is the m-set of elements of A; used by v, and
)

(
(
(
(5) m-set of used elements G,, C,, B is the m-set of elements of B; used by 7.

Example 3.  (1.2,{(¢,0.5),(a,0.4)},{(0,0.5)},{(a,0.4)},{(d,0.6), (¢,0.8)}) is in
Ent(2,2) for m-set-strings in Example 2.

We refer to such quintuple as an entry. The measure of the CCS of the some flattening
of Ay ... A, and some flattening of B ... B, is then, by definition, the largest k such
that (k, Fy, Fy, Gy, Gy) € Ent(m,n) for some m-sets Fy, F,,G; and G,. Ent(0,0)
contains just one entry, namely (0,0,0,0,0), while Ent(i,j) can be computed dy-
namically from Ent(i — 1, j) and Ent(i,j — 1). The problem is that the cardinality
of Ent(i,j) could become very large, making such an algorithm exponential in the
worst case.

Let e = (k, Fy, F,,Gy,Gy) € Ent(i — 1,7) and F*, F, C,, F*° be the m-set with the
following property: zeF* < xeF, and pp, (x) < pps(x) = pa,(z). It means, the m-set
F* is the maximal m-set that has the same elements as the m-set F},, but membership
values of elements in F'* are the same as in the m-set A;.

Let S be any subset of A; N, Gy. We say that e vertically generates ¢’ € Ent(i, j)
iff

1. ¢ = (k+ W(S) — W(A; N Gu) + W(S"), A —m S, Fy. Gy —m S, Gly) for any
subset S” of A; N, G5, W(S") > W(A; Ny Gy), or

2. ¢ =(k+W(S), A —n S, Fu, Gy — S, G,) and for each subset S" of A; N, G*
is W(S") < W(A; Ny Gu).

The element ¢’ € Ent(i,j) and it is shown by the following: If « is common m-
subsequence with a measure £ = Val(«) of the flattening of A;...A;_; and some
flattening of B, ...B;, where Fy C,, A;,_y and G; C,, B, are free m-sets, and 3
is a m-sequence consisting of the elements of S C,, A; N Gy written in any order,
then af (having measure k + Val(S)) is common subsequence of a flattening of
Ay ... A; and a flattening of B, ... B;, with free m-sets A; — S and Gy — S. The used
elements from m-set GG, can be used with some better membership values and it is
evaluated by the comparison of the weights of the sets A; N,, G* and A; N, G,. If
W(A; Ny Gy) < W(A; Ny G¥) then there exists some better using of elements in A;.
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Similarly, if (k, Fy, F,,, Gy, G,) € Ent(i,j—1) and S C,,, FyN,, Bj and S’ is any subset
of Bj Ny, F*),W(S") > W(B; Ny, F,,), we say that (k, Fy, F\,, Gf,G,) horizontally
generates (k+ W (S) —W(B;Ny, Fy,) +W(S"), Ff = S, Fu, Bj —n S, Gy) € Ent(i, j)
or (k+W(S),Ff—nS, Fy, Bj—mS,G,) € Ent(i, j) according to the relation W (B;N,,
F)</>W(s).

Lemma 1 Ife € Ent(i,j) fori+j > 0 then e is generated by some element of either
Ent(i —1,7) or Ent(i,j —1).

Proof. e = (k, Fy, F,,, Gy, G,) € Ent(i,j), it means e = a3, ( is the part of elements
in A; Ny, B;. According to above construction, the part 3 is the prolongation of some
element ¢ € Ent(i — 1,7)or Ent(i,j — 1). In the part a should be elements with
higher membership values. O

The element e € Ent(i, j) is generated from elements in E(i — 1,7) or Ent(i,j — 1)
using of two sets: the free subset and the used subset of Bj, respectively A;. The
following algorithm is a dynamic programming algorithm in which the boundary
conditions are set and then the interval entries are determined:

Algorithm A.
for all i do Ent(i,0) := {(0, A;,0,0,0)}
for all j do Ent(0,7) := {(0,0,0, B;,0)}
for 1 :=1 tom do
for j:=1 to n do
Ent(i,j) := {all entries vertically generated from Ent(i —1,5)}
J {all entries horizontally generated from Ent(i,j — 1)}

max_k := the largest £ such that (k, Fy, F,,G;,G,) € Ent(m,n) for some
Fs, F,,G,Gy.

3.2 Description of a better algorithm

The above algorithm may be very time-consuming because of too many quintuples
is necessary to analyze. We will speed the algorithm by eliminating consideration of
many quintuples.

If (k,Fy, Fy,Gy,Gu), (K, F}, F,, G}, G,) € Ent(i,j), we say that (k, Fy, F,, Gy, Gy)

dominates (k' Fy, F,,G;,G,) (K, F}, F,,G;,G,) < (k, Fy, Fyy, Gy, Gy)) if the follow-
ing conditions hold:

!

cd=k—k >0,
2. (W(F;—Fy)<dand F, C,, F,) or (W(F, — F,) <d and F; C,, Fy),
3. (W

~Gy) <dand G, C,,, G,) or (W(G,

u

- G,) <dand G;c C Gf).
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The relation ”<” is a transitive, antisymmetric and reflexive relation. The elements
of Ent(i,j) can be ordered according to relation ” <", it means they are ordered in
some chains. The last element of the chain has maximal measure and that is very
important.

Lemma 2 Any element of Ent(i, j) which is not mazimal with respect to the relation
"7 can be discarded during execution of the algorithm without affecting the final value
of max_k.

Proof. It will be proved by downward induction on both indices 2 and j. The value
of mazx_k is obtained from Ent(m,n) in the last step and all other elements may be
discarded with no effect.

Suppose i +j < m +n and € € Ent(i,j),e is not maximal. Let e € Ent(i, )
is maximal. It means, ¢/ < e. It is necessary to prove that maximal element of
Ent(i+1,j) or Ent(i,j+ 1) which is generated by e’ can be generated by e too. And
the element €’ can be discarded.

Let e = (k, Ff, F, Gy, Gy), € = (k’,F},F;,G},G;) and €' vertically generates f'. f’
should have two forms for some m-set P C A; 1 N G'f

(2) f'= (K'+W(P)=W (A1 NG ) +W(Air1NnG*), A = P, P, G = P, G,
if W(Ai-i-l M, G;) < W(Ai—l—l Nm G’s), or

(b) ['= (K+W(P), Ais1=mP, PGy = P, G,,), if W(Aip 1N G,) > W (AN G).

Let S = PN Gy, and f is vertically generated by e. f should have two forms: (1)
f = (k + W(S) — W(Ai-i-l MNm Gu) + W(Ai-i-l MNm Gs), Ai-i—l —m S, S, Gf —m S, Gu) or
2)f = (k+W(S), Ais1—m S, S,Gf—m S, Gy). It is necessary to analyze four cases to
prove the Lemma (a)-(1), (a)-(2), (b)-(1), (b)-(2). We start with the first one, it means
(a)-(1), and W (Aiz1 N G,) < W(Aip1NmG®) and W (A1 N Gy) < W(Ai1 N G*).
Since ¢/ < e, d =k — K,

d>0, (W(F; - Fy) <dand F, C,, F,) or (W(F,

. — F.) <dand F; C,, Fy)), and
<dand G, C,, G,) or (W(G, —G,) <dand G;c Cm Gy)). Then

(W(G) - Gy)
WP —p S) = W(P —p PNy Gy) = W(P —n G) < W(F; —p Fy) < d and
W(P —p S) < W(P) = W(S). Let d = (W(P)—~W(S)) — (W(Aips N G*) —

W (A1 N G#)) — (W (Aip1 N Gu) — W(Aip N G,,) < d We prove that f/ < f, it
means [’ is not maximal or f = f’. According to definition of ”<” it is necessary to
check three conditions 1.-3.

1. 2=k + W(S) - W(Ai-i-l ﬂm Gu) + W(Ai-i-l ﬂm Gs) - (k, + W(P) - W(Ai—l—l ﬂm
G )+W (A1 NmG®)) = k=K —(W(P) =W (S))+W (A1 N G%) =W (Ai 1 Ny
G'*) + W(Aip1 N Gu) = W(Aips N Gy >d—d >0

2. W(P —m S) S d and Ai-l—l —m P Qm Ai-l—l —m S

3. W(Gs —m P —m (Ff —m 8)) =W(G} — Gy) < d and G, Gy, G

8
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The rest three cases can be proved by a very similar method. And the vertical case
is similar. O

Ife = (k,Fy, F,,Gy,Gy) € Ent(i, j), we define the horizontal child of e to be hor(e) =
k+ W(Ff n Bj+1) (Al m Gu) + W(AZ M Gs)? Ff - Bj+1; F., Bj+1 - Ff’ Gu) or
hor(e) = k + W (Ff N Bj1), Ff — Bjt1, Fy, Bjs1 — Fr,G,) and define the vertical
child of e to be ’067'( ) = k + W(Ai-i-l N Gf) - W(Bj_H N Gu) + W( j+1 NnG* ) j+1
Gf, F,, Gf — Bji4, Gu)or ver(e) =k+ W(Ai_H N Gf), Bji — Gf, E,, Gf B4, G )
We define MaxEnt(i,j) to be the set of maximal elements of Ent(i,j) under the
dominance relation ” <.

Lemma 3 Any entry horizontally generates at most one mazimal entry and vertically
generates at most one maximal entry.

Proof. Let e = (k, Fy, F\,, Gy, G,) € Ent(i,j). The only elements vertically gener-
ated by e which can be maximal are in the ver(e), since they dominates any others
vertically generated by e. Similarly, hor(e) dominates any entries horizontally gener-
ated by e. O

We say that (k, Fy, F,,G¢, Gy) strongly dominates (k', Fy, F,,, Gy, Gy) it k > k. If
S C Ent(i,j), defines Dom(S) C S to be the set obtained by deleting every element
of S which is strongly dominated by another element of S. We now inductively define
sets Chain(i,j) C Ent(i,j) by:

0},

0
) (Z)a Bja @)},
3. Chain(i,j) = Dom({ver(e)le € Chain(i—1,7)} U {hor(e)le € Chain(i,j—1)}).

1. Chain(i,0) = {(0, A;, 0,
2. Chain(0,7) = {(0,0

We refer to entries Chain(i, j) as weakly maximal. We observe the following lemma.
Theorem 1 MaxFEnt(i,j) C Chain(i, 7).

Proof. By induction. For i = 0 or j = 0 the two sets MaxEnt(i,j) and Chain(i, )
are identical. For i,j > 0, and e € MaxzEnt(i,j) must be vertical or horizontal child
of some maximal element, which is weakly maximal by induction. It means, e must

be weakly maximal, since it is maximal and thus cannot be deleted by operator Dom.
O

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following
algorithm:

Algorithm B.

{Using weakly maximal entries.}

for all i do Chain(i,0) := {(0, A;,0,0,0)};
for all j do Chain(0,j) := {(0,0,0, B;,0)};

9



Proceedings of the Prague Stringology Club Workshop 2000

for i:=1 to m do
for j:==1 to n do
begin
Chain(i,j) := 0;
for all (k, Fy, F,,Gy,G,) € Chain(i,j — 1) do begin
help := W (B, Ny, F*) — W(B; Ny, F);
if help < 0 then
insert (k + W (F N B;), Fy — B, F\,, Bj — Fy,G,) into Chain(i, j)
else insert (k+ W (F;N By) + help, Fy — B;, F,,, B; — Fy,Gy,) into Chain(i, j)
end;
for all (k, Fy, F,,Gy,Gy) € Chain(i — 1, j) do begin
help := W (A; Ny G°) — W(A; Ny Gy);
if help < 0 then
insert (k+W (A, NG),A;, — Gy, F,,Gy — A;,G,) into Chain(i, j)
else insert (k+ W (G;NA;)+ help, A; — Gy, F,, Gy — A;, Gy) into Chain(i, j)
end;
delete all nonweakly maximal elements from Chain(i, j)
end

max_k := the maximum value of k£ such that (k, Fy, F,, G, G,) € Chain(m,n)
for some Fy, F,,G¢ and G,.

The algorithm works in O(m-n-K-t)-time, where K is the maximal number of elements
in Chain(i,j) and t is the maximal time spent for computing the intersection of two
sets. The algorithm works in O(m - n - k)-space, where k is the maximal number of
elements in the m-sets A;, B;. In the next section we show the idea of some efficient
implementation of the algorithm.

3.3 Efficient implementation of algorithm B.

We show the structure of Chain(i, j) that will help obtain an efficient implementation
of algorithm B. We begin by defining a transitive reflexive relation < on Ent(i, j). We
say that (k, Fy, F,, Gy, Gy) < (K, Fy, F,, G}, G,) if Fy Cp F, G} Cp Gy, F, = F,
and G, =, G

!
u

Lemma 4 (a) Ife,e € Ent(i —1,7), and if e< €, then ver(e) <ver(e').
(b) Ife,e' € Ent(i,j — 1), and if e < €', then hor(e) < hor(e’).
(c) If e € Ent(i,j — 1) and €' € Ent(i — 1,7), then hor(e) <ver(e').
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Proof. (a) ver(e) = (k,Fy Ny Bj, Fy, Bj — Fy,G,) and ver(e') = (K',F' —,
Bj,F,,B; —n F;,G,). It follows from Fy C,, F; that F; — B; C,, F; — B; and
B; — F} Cyn Bj — Fy, i.e. ver(e) <ver(e').

(b) Similar to the proof of (a).

(c) Let e = (k, Fy, F,, Gy, Gy) and € = (K, F;, F,,G},@G,). Then hor(e) = (k, Fy —p,
Bj,F,, Bj —m Fy,G,,) and ver(¢') = (K, F; —n Bj, F,,, Bj — F};,G,,). 1t can be scen
that Fy C,,, A; since e € Ent(i,j — 1), and that G'f Cy Bj since €' € Ent(i — 1, 7).
And we have Fy — B; C,,, A; — G'f and G'f — A; C,, Bj — Fy, i.e. hor(e) qver(e).
O

Lemma 5 The relation < imposes a total ordering on Chain(i, j).

Proof. We need to prove that for any distinct f, f' € Chain(i, j), either f < f’ or
f"< f but not both. If f'<f and f< f’, then f and f’ would have the same free sets,
which implies they must be identical, else the one with the smaller value of k£ would
not be weakly maximal. Thus, we need only show that f and f’ are comparable. We
do this by induction on 7 and j.

Chain(0, j) contains just one entry, namely (0,0, (), B;,}), and hence is ordered. Sim-
ilarly, C'hain(i,0) contains only the entry (0, 4;, 0,0, 0).

Suppose, i,j > 0, and f, f' € Chain(i,j). Both f and f’ must be generated by
maximal entries e and €', respectively. We consider three cases. If f and f’ are the
vertical children of e and €', respectively, then by induction, e and ¢’ are comparable,
hence f and f' are comparable by above Lemma. If f and f’ are the horizontal
children of e and e’ the proof is similar. If f is the horizontal child of e and f’ is
vertical child of €/, then f and f’ are comparable by above Lemma too. O

Lemma 6 Chain(i,j) has the number of elements at most 1 + |A;| + |B;|, where
|A;|, |B;| are the numbers of elements in the m-sets A;, B;, for i = 1,...,m,j =
1,...,n.

Proof. The main idea of the proof is in the following: Each element from m-set
should be used once at most but with some different membership value.

If e € (k,Fy, F,,Gy,G,) € Ent(i, j), define signature of e to be |Fy| — |G|, which
must lie in the interval [—|B;|..|4;|]. Since Chain(i,j) is ordered under the relation
<, each entry must have different signature. O

It means, the algorithm works in O(m - n- L-t)-time, where L is the maximal number
of the numbers in {1+|A4;|+|B;l,i=1,...m,j =1,...n} and t = maz{|4;|,|B;|,i =
1,...m,j = 1,...n} is the maximal time spent for computing of the intersection of
two sets. The algorithm works in O(n - L - t)-space.

4 CONCLUDING REMARKS

Polynomial algorithms for the solutions of the SSCCS and MSSCCS Problem with
membership functions have been presented. The algorithms work in O(m-n-L-t)-time
and O(n - L - t)-space, where L = maz{l + |A;| + |Bj|,i=1,...m,j =1,...n} and
t = max{|Ai|,|Bj|,i=1,...m,j =1,...n} is the maximal time spent for computing
of the intersection of two sets.
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