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Abstra
t. A 
entroid of a tree T is a node v whi
h minimizes over all nodes the

largest 
onne
ted 
omponent of T indu
ed by removing v from T . A 
entroid

tree U of another tree T is de�ned on the same set of nodes of T : the root v

of U is a 
entroid of T and the subtrees of v (in U) are the 
entroid trees of

the 
onne
ted 
omponents of T � v. We des
ribe some interesting properties of

the 
entroid and of the 
entroid tree. Our linear algorithm to �nd a 
entroid

of a tree improves on the previously known algorithms either in terms of spa
e

requirement or in terms of time requirement. From the algorithm for �nding a


entroid it is easy to obtain an O(n log n) time algorithm to 
onstru
t a 
entroid

tree of a given tree with n nodes. However, we do not know whether this is

the best that one 
an a
hieve. By exploiting the properties of the 
entroid

tree, we devise an eÆ
ient algorithm for the longest 
ommon substring problem

(LCS). Given two strings S (the text) of length n and P (the pattern) of length

m, the LCS problem is to �nd the longest substring that appears in both the

text and the pattern. Our algorithm requires O(n logn) time and O(n) spa
e

to prepro
ess the text. After prepro
essing of the text, the algorithm takes

O(m log n) time using O(m) extra spa
e to �nd the solution. The algorithm

may be used in the DNA appli
ations in whi
h the text is very large and �xed

and is to be sear
hed with many di�erent patterns (n� m).

Key words: balan
ed trees, 
entroid of trees, string pattern mat
hing, the

longest 
ommon substring problem

1 Introdu
tion

Let T be an arbitrary tree and let V denote the set of nodes in T . Let v 2 V and

let T

1

; T

2

; � � � ; T

d

be the 
onne
ted 
omponents of T indu
ed by removing v from T

(denoted by T � v). Let jT j denote the number of nodes in T . De�ne

N(v) = max

1�i�d

fjT

i

jg:
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A 
entroid of the tree T [Har69℄ is a node v




whi
h minimizes N(v) over all nodes v,

i.e.,v




satis�es

N(v




) = min

v2V

fN(v)g:

It 
an be shown that every tree has either one 
entroid or two. This fa
t has been

extensively applied (see, for examples, [Gol71℄, [KH79℄, [FJ80℄, [MTZC81℄, [Sla82℄).

Goldman [Gol71℄ and Megiddo et al. [MTZC81℄ proposed linear algorithms for �nding

the 
entroid of a tree. All algorithms known to us that make use of a 
entroid �nding

algorithm 
all either Goldman's algorithm or Megiddo's algorithm as a subroutine.

Goldman's algorithm requires a 
opy of the original tree T as an auxiliary tree on

whi
h it works. Therefore, O(n) extra spa
e is needed. While Megiddo's algorithm

does not need any extra spa
e, it has to visit ea
h node at least on
e. In this paper,

we present an algorithm, whi
h might be viewed as a 
ombination of Goldman's

algorithm and Megiddo's algorithm. Our algorithm improves on the mentioned two

algorithms either in terms of spa
e or in terms of time. Spe
i�
ally, our algorithm

does not need an extra 
opy of the original tree; at the same time, it does not need

more time than Goldman's algorithm. Our algorithm visits ea
h node of the tree at

most on
e; at the same time, it does not need more spa
e than Megiddo's algorithm.

Of 
ourse, one 
annot improve the 
omplexity order of the two mentioned algorithms

sin
e both are asymptoti
ally optimal in terms of spa
e and time.

The notion of the 
entroid of a tree inspired the notion of the 
entroid tree.

A 
entroid tree U of another tree T has the same set of nodes as T . U 's root v

is a 
entroid of T and v's 
hildren (in U) are the 
entroid trees of the 
onne
ted


omponents of T � v. A ni
e property of the 
entroid tree is that its height is logn.

It is easy to obtain an O(n logn) time algorithm to 
onstru
t a 
entroid tree from the

algorithm for �nding a 
entroid of a tree. However, it is unknown whether this is the

best time 
omplexity that one 
an a
hieve.

By exploiting the properties of the 
entroid tree, we are able to give an eÆ
ient

algorithm for the longest 
ommon substring (LCS) problem. Given two strings S (the

text) of length n and P (the pattern) of length m, the LCS problem is to �nd the

longest substring that appears in both the text and the pattern. An eÆ
ient solution

to the problem 
an be useful for homology sear
hing in nu
leotide/protein sequen
e

databases [Wat89℄, in the editing distan
e problem, in the multiple pattern sear
hing

problem, et
. Our algorithm requires O(n logn) time and O(n) spa
e to prepro
ess

the text. After the prepro
essing, a query 
an be answered in O(m logn) time. The

algorithm is probabilisti
 and there is a small 
han
e of error. That is, it may 
laim

that a substring of the pattern is identi
al to a substring of the text while they are not

really identi
al. This is 
alled a \false mat
h". However, the probability of a false

mat
h 
an be made arbitrarily (inverse-polynomially) small within the above time

bounds. Our algorithm has obvious advantages over the previously known algorithms

and is parti
ularly useful for the DNA appli
ations in whi
h the text is very large

and �xed (n � m) and in whi
h one wishes to sear
h the text with many di�erent

patterns (For example, the DNA sequen
e of a human being may have up to 3� 10

9

nu
leotides and a typi
al pattern sequen
e may have a few hundreds to thousands

nu
leotides).

The rest of the paper is organized as follows. In Se
tion 2 we present our algorithm

for �nding a 
entroid of a tree. We address the problem of 
onstru
ting a 
entroid

tree in Se
tion 3. In Se
tion 4 we devise an algorithm for the LCS problem applying
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the results presented in Se
tions 2 and 3. We then 
on
lude the paper by dis
ussing

some open problems in Se
tion 5.

2 Finding 
entroid

Lemma 2.1 ([Har69℄) Every tree has either one 
entroid or two. In the later 
ase,

the two 
entroids are 
onne
ted by an edge.

If i and j are two neighboring nodes of the tree T , then by removing the edge (i; j)

two 
onne
ted 
omponents C(i; j) and C(j; i) are indu
ed: C(i; j) is the 
omponent

whi
h 
ontains node i and C(j; i) is the 
omponent whi
h 
ontains node j (Note that

C is de�ned on ordered pairs of neighboring nodes). Let u be a node of T and let

x

1

; � � � ; x

d

be all neighbors of u. Then C(x

1

; u); � � � ; C(x

d

; u) are all the 
onne
ted


omponents of T � u. In the following we sometimes simply use C(i; j) to refer to

jC(i; j)j (i.e., the number of nodes in C(i; j)) when no ambiguity would likely o

ur.

The following lemma is 
ru
ial for our algorithm to �nd a 
entroid of a tree


orre
tly.

Lemma 2.2 A node v is a 
entroid of the tree T if and only if

N(v) � n=2:

Proof We �rst prove the ne
essary 
ondition of the lemma. Let v be a 
entroid of

the tree T . Suppose N(v) > n=2. Let x

1

; � � � ; x

d

be all neighboring nodes of v. Then

by the de�nition of a 
entroid, there must exist a neighboring node, say x

i

0

, of v su
h

that C(x

i

0

; v) > n=2. Let y

1

; � � � ; y

k�1

; y

k

= v be all neighboring nodes of x

i

0

. Then,

N(x

i

0

) = maxfC(y

1

; x

i

0

); C(y

2

; x

i

0

); � � � ; C(y

k�1

; x

i

0

); C(v; x

i

0

)g (13)

We then have

N(x

i

0

) = C(v; x

i

0

) if C(v; x

i

0

) � C(y

j

; x

i

0

)(j = 1; : : : ; k � 1)

N(x

i

0

) < C(x

i

0

; v) otherwise :

(14)

Sin
e C(x

i

0

; v) > n=2, C(v; x

i

0

) < n=2. It then follows that

N(x

i

0

) < C(x

i

0

; v) = N(v):

So by the de�nition of a 
entroid of a tree, v 
annot be a 
entroid of the tree T . This


ontradi
ts the assumption that v is a 
entroid of the tree T and therefore establishes

the ne
essary 
ondition of the lemma.

We now turn to prove the suÆ
ient 
ondition of the lemma. Suppose v is a node

of the tree T satisfying N(v) � n=2. Let u be a 
entroid of T . If u = v, the suÆ
ient


ondition is proved. We thus 
onsider the 
ase in whi
h u 6= v. Let x

1

; � � � ; x

d

be

all neighboring nodes of u. v must be in one of the 
onne
ted 
omponents of T � u,

say C(x

i

0

; u). Let y

1

; � � � ; y

k

= v be all neighboring nodes of v. Let y

j

0

6= v be

the neighboring node of v on the path from x

i

0

to v. From N(v) � n=2, we know

that C(y

j

0

; v) � n=2, and then C(v; y

j

0

) � n=2. Be
ause C(v; y

j

0

) is a subtree of

the 
omponent C(x

i

0

; u), we know that C(x

i

0

; u) � n=2. Thus, N(u) � n=2. Thus,

63



Pro
eedings of the Prague Stringology Club Workshop '99

N(u) � N(v). Therefore, sin
e u is a 
entroid of T , v must also be a 
entroid of T

and N(u) = N(v). This 
ompletes the proof of the suÆ
ient 
ondition of the lemma.

2

Lemma 2.2 says a node v is a 
entroid of T if no 
onne
ted 
omponent indu
ed by

removing v from T 
ontains more than n=2 nodes.

We now des
ribe the algorithm. Without loss of generality, we let the tree T be

rooted at an arbitrary node r. We denote by K(i) the number of nodes in the subtree

rooted at i. Then it is easy to see the following:

1. K(i) = 1 if i is a leaf, and

2. K(i) =

P


: 
hild of i

K(
) + 1 if i is not a leaf.

The algorithm 
omputes K(i)s by pro
eeding from the leaves of the tree towards the

root. One may start from any leaf. But by rule, one is only allowed to use rules (1)

and (2) to 
ompute K(i)s (This is 
alled the bottom-up manner).

The algorithm

Compute the K(i)s in the above de�ned bottom-up manner until a node v is rea
hed

su
h that K(v) � n=2. Node v is a 
entroid of T . If K(v) = n=2, v's father is another


entroid of T .

The 
ost

We assume that the representation of the tree allows us to a

ess ea
h leaf of the tree

in 
onstant time and any node 
an be rea
hed from any of it's 
hildren in 
onstant

time. We note that it is easy to build a linked representation of the tree that will

have these desired properties in linear time and spa
e. Then in the worst 
ase, the

algorithm needs to visit ea
h node of the tree just on
e. The worst 
ase o

urs only

when the sole 
entroid of the tree is also the root of the tree.

We 
ould use, for instan
e, the most 
ommon left-
hild, right-brother representa-

tion of a tree. In this representation, ea
h node x of the tree 
ontains three pointers:

1. parent[x℄ points to the parent of node x, 2. left-
hild[x℄ points to the leftmost


hild of x, and 3. right-brother[x℄ points to the brother of x immediately to the right.

Under this representation, the algorithm will enter ea
h node x at most twi
e: 1.

either from its father or from its left-brother, and 2. (when x is a nonterminal node)

from one of its 
hildren. So if the left-
hild, right-brother representation of a tree is

used, the algorithm needs at most 2n� f node visits where f denotes the number of

leaves of the tree. Note that this implementation of the algorithm does not make use

of the assumption that at any point one 
an a

ess the leaves of the tree in 
onstant

time. This is why this implementation may visit some nodes of the tree more than

on
e (but at most twi
e). If we augment the left-
hild, right-brother representation

of a tree with an array of pointers ea
h pointing to a leaf node of the tree, the above

algorithms only needs to visit ea
h node of the tree at most on
e.

Megiddo's algorithm needs �rst to traverse the tree to 
ompute some fun
tion

whose de�nition is similar to that of K(i) for ea
h node i, then looks for the 
entroid
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along a \right" path of the tree. That is, it need at least 2n � f steps if the left-


hild, right-brother representation of the tree is used. While the idea of Goldman's

algorithm is similar to that of ours, Goldman's algorithm requires an extra 
opy of

the tree to work on. It deletes in some way the nodes of the extra tree until there is

only one node left; this remaining node is then a 
entroid of the tree (see [KH79℄ for

another version of Goldman's algorithm).

The 
orre
tness of the algorithm

If v is the �rst node we en
ountered in the 
ourse of 
omputing the k(i)'s in the

bottom-up manner su
h that k(v) � n=2, then N(v) � n=2. The 
orre
tness of the

algorithm then follows from Lemma 2.2.

3 Centroid trees

De�nition 3.1 (
entroid tree) A 
entroid tree U of another tree T is de�ned on

the same set of nodes of T : the root v of U is a 
entroid of T , and the subtrees of v

(in U) are the 
entroid trees of the 
onne
ted 
omponents of T � v and v (in U) is


onne
ted to the roots of these (sub-)
entroid trees.

We sometimes use U(T ) to denote a 
entroid tree of another tree T . Note that

U(T ) 6= T in general but U(U(T )) = U(T ). So di�erent trees may have the same


entroid tree. Lemma 3.2 shows a ni
e property of the 
entroid tree, whi
h motivated

our work of sear
hing for eÆ
ient methods for 
onstru
ting 
entroid trees.

Lemma 3.2 For any tree T with n nodes, the height of its 
entroid tree U is O(logn).

Proof Ea
h node ex
ept the leaves in U has at least two 
hildren; by Lemma 2.2 the

number of nodes in any bran
h at any node v in U is no more than half the number

of nodes in the subtree rooted at v in T . So the height of U 
annot ex
eed the height

of a 
omplete binary tree with the same number of nodes, whi
h is blog

2

n
. 2

A straightforward approa
h to the 
onstru
tion of a 
entroid tree is to repeatedly


all the 
entroid �nding algorithm dis
ussed in the previous se
tion. This approa
h

requires O(n logn) time. There are many ways to speed up this approa
h. However,

it is not 
lear whether it is possible to asymptoti
ally improve the time 
omplexity

of this naive approa
h. Let's 
all this simple approa
h Algorithm Naive.

The following simple observations may help us to gain more insight into the 
en-

troid tree 
onstru
tion problem.

Lemma 3.3 Let u be any node of the tree T . If the sizes of all 
onne
ted 
omponents

of T�u are less than or equal to n=2, then u is a 
entroid of T . Otherwise, the 
entroid

of T must be in the maximal 
omponent of T � u.

Proof The 
orre
tness follows from Lemma 2.2. 2
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Lemma 3.4 If a 
entroid v of the tree T is in a subtree S of T , then v must lie on

the path s; � � � ; u or lie on the path s; � � � ; u; u

0

where s denotes the root of S, u is a


entroid of S and u

0

is a 
hild of u (with respe
t to the root s). In the latter 
ase,

both u and u

0

are the 
entroids of T .

Proof Let v be a 
entroid of T . Suppose that v is not on the path s; � � � ; u. Then

there are two 
ases to 
onsider.

In the �rst 
ase, v's father f (v 6= f) is on a path f

0

; � � � ; f; v su
h that f

0

is on

the path s; � � � ; u (it is possible that f = f

0

). Sin
e v is a 
entroid of T , jC(f; v)j �

n=2. Thus C(v; f) (the subtree rooted at v) 
ontains at least n=2 nodes. Then the


onne
ted 
omponent of S that 
onsists of C(v; f) and the path s; � � � ; f 
ontains at

least n=2 + 1 nodes. Therefore, by Lemma 2.2, u 
annot be a 
entroid of the subtree

S, whi
h leads to a 
ontradi
tion.

In the se
ond 
ase, v is a des
endant of u

0

and v 6= u

0

where u

0

is a 
hild of u (it is

possible that u'=u). Sin
e v is a 
entroid of T , C(v; u

0

) (the subtree rooted at v) has

at least n=2 nodes. We need to 
onsider two sub
ases: a. C(v; u

0

) has exa
tly n=2

nodes. Then by Lemma 2.2, u

0

is another 
entroid of T . It is easy to see that u = u

0

.

Otherwise, the subtree rooted at u

0


ontains at least n=2+1 nodes and therefore, u is

not a 
entroid of the subtree S, whi
h is a 
ontradi
tion. b. C(v; u

0

) has more than

n=2 nodes. This means a bran
h of u that 
ontains u

0

has more than n=2 + 1 nodes.

Thus, u 
annot be a 
entroid of the subtree S, whi
h is also a 
ontradi
tion.

This 
ompletes the proof of Lemma 3.4. 2

Lemma 3.5 Let s

1

and s

2

be any two neighboring nodes of the tree T with jC(s

1

; s

2

)j

= n

1

, jC(s

2

; s

1

)j = n

2

and n

2

> n

1

. Let u be a 
entroid of C(s

2

; s

1

) and let n

3

denote

the number of nodes of the subtree rooted at u of T . If the K(i)s of all nodes i of

T are known, we need at most min(n=2 � n

1

; n=2 � n

3

) steps ea
h of whi
h takes


onstant time to �nd a 
entroid of the entire tree T .

Proof Let v be a 
entroid of the tree T . By Lemma 3.4, v must lie on the path

s

2

; � � � ; u. We 
an 
he
k the nodes on the path one by one until we �nally rea
h a


entroid of T . The 
onne
ted 
omponent of T � v that 
ontains s

2

has at most n=2

nodes; so if we pro
eed from s

2

towards u we need at most n=2� n

1

steps before we

rea
h a 
entroid of T . The 
onne
ted 
omponent of T �v that 
ontains u has at most

n=2 nodes; so if we pro
eed from u towards s

2

we need at most n=2 � n

3

steps. In

either of these two dire
tions, ea
h step takes 
onstant time be
ause the K(i)s of all

nodes i of T are known. 2

We have modi�ed Algorithm Naive by making use of Lemmas 3.3, 3.4 and 3.5.

The resulting algorithm is 
alled Algorithm Heuristi
. We have applied Algorithm

Heuristi
 to several random trees. The preliminary experimental results showed that

Algorithm Heuristi
 
onstru
ted a 
entroid tree for a given random tree in time

proportional to the number of nodes in the tree on the average. However, at we are

unable to prove this behavior of Algorithm Heuristi
 rigorously.
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4 Appli
ation to string pro
essing

In this se
tion we make use of the properties of the 
entroid tree to solve the longest


ommon substring (LCS) problem. The problem is, given a string S (the text) of n


hara
ters and a string P (the pattern) of m 
hara
ters over some �nite alphabet �,

to �nd the longest substring whi
h o

urs in both of the two strings. An eÆ
ient

solution to the problem 
an be useful for homology sear
hing in nu
leotide/protein

sequen
e databases [Wat89℄, in the editing distan
e problem, in the multiple pattern

sear
hing problem [Per93℄, et
. We are parti
ularly interested in the 
ase of the

problem in whi
h the text is given in advan
e and is �xed, and many queries with

di�erent patterns will be made later.

Three algorithms for the LCS problem are previously known (named algorithms

P1, P2, and P3 respe
tively) [Per93℄. It is also possible to solve the problem by


onstru
ting a suÆx tree for the 
on
atenation of the two strings and then marking

ea
h node of the suÆx tree that has leaves from both of the two strings in its subtree.

Let's name this algorithm Cat. In the following we will propose a new algorithm

for the problem. Table 1 shows the time and spa
e bounds of the previously known

algorithms 
ompared with this new algorithm (named Algorithm New).

Table 1: Comparison of the LCS algorithms

Algorithm Prepro
essing Sear
hing time

spa
e time worst 
ase average

P1 m j�j m j�j+m

2

n

P2 j�j j�j+m mn n logn

P3 m + j�j 2m+ j�j mn (1 +

m

j�j

)n

Cat m+ n

New n n logn m logn

A weakness of Algorithm P1 is that it requires large amounts of spa
e and pre-

pro
essing time for large alphabets and/or patterns. Algorithm P2 requires that the

size of the pattern be no more than the size of a word of the ma
hine on whi
h the

algorithm is exe
uted. When the size of the underlying alphabet is quite small, e.g.,

j�j = 4 in the 
ase of DNA appli
ations, the average-
ase performan
e of Algorithm

P3 deteriorates to its worst-
ase performan
e. While Algorithm Cat runs in O(n+m)

time, it is not proper for appli
ations in whi
h the text is very large and �xed and

one wishes to sear
h the text with many di�erent shorter patterns (n � m). This

is be
ause although the text is �xed and stati
 for many queries, for ea
h new query

(new pattern) Algorithm Cat has to rebuild a suÆx tree for the text and the pattern

whi
h takes as mu
h as O(n +m) time. For example, a DNA sequen
e of a human

being may have up to 3 � 10

9

nu
leotides and a typi
al pattern sequen
e may have

a few hundreds to thousands nu
leotides. In su
h 
ases, m + n � m logn, the time

needed by our new algorithm to answer a query.

The new algorithm �nds the longest pre�x of ea
h of the suÆxes of the pattern P

in the text S. Note that P has m suÆxes and therefore there are at most m longest

pre�xes (of the suÆxes) that appear in T . The algorithm then simply 
hoose the
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longest one from these pre�xes found as an answer to the LCS problem. It requires

O(n logn) time and O(n) spa
e to prepro
ess the text. After the prepro
essing, a

query 
an be answered in O(m logn) time. An advantage of this approa
h is that in


ases where the text is large (e.g., n > m logn) and stati
 for many queries, we only

have to prepro
ess the text on
e; after the text has been prepro
essed, a query 
an

be answered qui
kly. It is a probabilisti
 algorithm and there is a small 
han
e of

error. That is, the algorithm may 
laim that a substring of the pattern is equal to a

substring of the text while they are not equal at all (This is 
alled a \false mat
h").

However, as will be seen later, the probability of a false mat
h 
an be made arbitrarily

(inverse-polynomially) small.

The general stru
ture of the algorithm is as follows:

� Prepro
essing stage

{ 
onstru
t a suÆx tree T for the text S

{ 
onstru
t a 
entroid tree U for the suÆx tree T

� Sear
hing stage

{ sear
h the 
entroid tree U for lo
ations of the longest pre�x of ea
h of the

suÆxes of the pattern P in the text T

Now, we des
ribe the algorithm in detail. Sin
e algorithms for building suÆx trees

in linear time and spa
e are known in the literature [Wei73, M
C76, Ukk95℄ and we

have already presented an algorithm for building the 
entroid tree (in Se
tion 3), we

will 
on
entrate on the sear
hing stage of the algorithm.

Let the text be S = S[1℄ � � �S[n℄ and let the pattern be P = P [1℄ � � �P [m℄. We

use a suÆx tree to represent the text. Assuming that the suÆx tree T of the text S

and a 
entroid tree U of T are already available, our sear
h algorithm sear
hes the

trees for the o

urren
es of the pattern in the text.

Let w be the end node of the path that the pattern P determines in T . If P is

not a substring of S, then we de�ne the end node w to be the node that 
orresponds

to the longest pre�x of P that is a substring of S. Our goal is to �nd w.

We maintain the following variables:

� v, the 
urrent node in U ; v is a 
entroid of some 
onne
ted 
omponent C of T .

� u, the topmost node of C (in T ); the substring 
orresponding to u is the longest

substring of S found so far that is a pre�x of P .

� i, an index to P su
h that P [1℄; � � � ; P [i℄ determines the path from the root to

u.

� j, the length of the substring determined by the path from u to v.

� k, a pointer to S that 
orresponds to the end position of the substring deter-

mined by the path from the root to v.

Furthermore, let x be any node of T . We denote by x:length the length of the

substring determined by the path from the root to node x and denote by x:end an
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index to S that 
orresponds to the end position of this substring in S. Note that by

assumption, x:length and x:end are already stored in ea
h node x on 
onstru
tion of

the suÆx tree.

Given u and v 
omputing j and k is easy:

j := v:length� u:length;

k := v:end:

(15)

Initially, u := the root of T ; v := the root of U ; i := 0; and j and k are 
omputed

by (15).

In order to �nd w eÆ
iently we need to �nd a way to de
ide qui
kly whi
h of

the 
onne
ted 
omponents indu
ed by removing v from T 
ontains w. There are

two possibilities: w is in the 
omponent that is \above" v or w is in one of the


omponents that are \below" v. We noti
e that w is a des
endant of v if and only

if S[k � j + 1℄ � � �S[k℄ = P [i + 1℄ � � �P [i + j℄. If w is in the 
omponent \above" v,

we assign the 
entroid of that 
omponent to v and u is un
hanged; if we know whi
h

of the 
omponents \below" v 
ontains w, we assign the root of that 
omponent to

u and assign the 
entroid of that 
omponent to v. The above ideas are pre
isely

presented in pro
edure sear
h in Figure 1. pro
edure sear
h �nds and stores w

in its variable v and stores the index to P referring to the end position of the longest

pre�x of P that is equal to a substring of S in its variable i when exe
uted with u

being initialized to be the root of T , v being initialized to be the root of U and i

being initialized to be 0.

The question that is 
ru
ial to implement pro
edure sear
h eÆ
iently is: Given

a substring S[k℄ � � �S[k + j℄ of S and a substring P [i℄ � � �P [i + j℄ of P , how 
an we

answer qui
kly whether they are equal or not? There is a probabilisti
 method [Nao91,

KR87℄ whi
h, after prepro
essing the strings S and P in linear time and spa
e, 
an

test whether a substring of S is equal to a substring of P in 
onstant time. There is a

probability of error (a false mat
h) in any test. But the probability of a false mat
h


an be made arbitrarily (inverse polynomially) small.

The method needs a prime q whi
h is 
hosen at random from a set of primes

smaller than M (to be stated soon). It is this prime q that may lead to a false mat
h.

By Theorem 3 of [KR87℄ the probability of a false mat
h is less than �(n)/�(M)

where �(n) denotes the number of primes smaller than n. By Lemma 2 of [KR87℄

u

lnu

� �(u) � 1:25506

u

lnu

. Thus, for example, if we 
hoose M to be n

3

logn, the

probability of a false mat
h is (asymptoti
ally) 1/n

2

logn.

We now look at the 
omplexity of pro
edure sear
h. Note that at ea
h step v

is assigned to one of its 
hildren (in U). By Lemma 3.2 the height of U is O(logn).

So pro
edure sear
h requires O(logn) steps. From the above dis
ussion, ea
h step

takes 
onstant time. So pro
edure sear
h needs O(logn) time to �nd the longest

pre�x of P that appears in S.

To solve the whole LCS problem, for every suÆx P

i

= P [i℄ � � �P [m℄ (i = 1; � � � ; m)

we �nd the longest pre�x of P

i

that appears in S with pro
edure sear
h. From

among all these (lo
ally) longest pre�xes found, we 
hoose the (globally) longest one

as an answer to the LCS problem. All this takes O(m logn) time.

To summarize, our algorithm for the LCS problem 
onsists of:

� Prepro
essing the text
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pro
edure sear
h(node: u, v; integer: i);

integer: j, k;

begin

j := v:length� u:length;

k := v:end;

if S[k � j + 1℄ : : : S[k℄ = P [i+ 1℄ : : : P [i+ j℄ then /* j may be 0 */

if i+ j = m then i := m; stop

/* P is equal to the substring of S 
orresponding to node v */

else

if there exists a 
hild 
 of v in T 
orresponding to the symbol

P [i+ j + 1℄ then

if the substring S[k + 1℄ : : : S[k + l℄ of S 
orresponding to the edge

(v; 
) is equal to a substring of P starting at P [i+ j + 1℄ then

u := 
;

v := v's 
hild in U 
orresponding to the subtree rooted at 
 in T ;

i := i+ j + l;

sear
h(u; v; i)

else

/* Let L denote the maximal x in [1; l℄ su
h that

S[k + 1℄ : : : S[k + x℄ = P [i+ j + 1℄ : : : P [i+ j + x℄ */

�nd L with binary sear
h supported with the substring equality

testing te
hnique;

i := i+ j + L; stop

/* P [1℄:::P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring is the 
on
atenation of the

substring 
orresponding to node v and S[k + 1℄ : : : S[k + L℄ */

end

else

i := i + j; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring 
orresponds to node v */

end

end

else

if there exists a 
hild of u in T 
orresponding to P [i+ 1℄ then

v := v's 
hild in U 
orresponding to the 
omponent \above" v;

sear
h(u; v; i)

else

v := u; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring 
orresponds to node v */

end

end

Figure 1: Sear
h for end node of path determined by pattern.
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{ 
onstru
t a suÆx tree T for the text S in O(n) time and spa
e.

{ 
onstru
t a 
entroid tree U for the suÆx tree T in O(n logn) time and

using O(n) spa
e.

{ pro
ess the text S in order to be able to 
he
k qui
kly the substring equal-

ity. This takes O(n) time and spa
e.

� Sear
hing for the pattern

{ pro
ess the pattern P in order to be able to 
he
k qui
kly the substring

equality. This takes O(m) time and spa
e.

{ sear
h the 
entroid tree U for lo
ations of the longest pre�xes of all the

suÆxes of the pattern P in the text S in O(m logn) time and O(1) spa
e.

That is, the prepro
essing takes O(n logn) time and O(n) spa
e and the sear
hing

takes O(m logn) time and O(m) extra spa
e.

To make this algorithm error free, we 
an add a step that 
he
ks whether a 
laimed

mat
h is true or false. If the 
laimed longest mat
h is false, we dis
ard it and 
he
k the

se
ond longest mat
h, and so on, until we rea
h a true mat
h. Sin
e the probability

of a false mat
h 
an be made arbitrarily (inverse-polynomially) small without asymp-

toti
ally in
reasing the time and spa
e requirements of the algorithm, the 
han
e of

using this 
he
king step 
an be made arbitrarily inverse-polynomially small as well.

5 Open questions

It is of 
onsiderable interest to either establish that there exists a non-linear lower

bound on the run time of all algorithms whi
h 
onstru
t a 
entroid tree for any given

tree, or to exhibit an algorithm whose run time is O(n).

It is also interesting, at least from a pra
ti
al point of view, to �nd 
entroid tree


onstru
tion algorithms that run in linear time on the average and require linear spa
e

even if their worst-
ase behavior 
ould be mu
h worse. Are there any deterministi


algorithms to do the sear
h (as dis
ussed in Se
tion 4) using the same order of time

as the probabilisti
 one does?
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