
On Proedures for Multiple-string Math with

Respet to Two Sets

1

Weiler A. Finamore, Rafael D. de Azevedo

& Marelo da Silva Pinho

Center for Teleommuniations Studies (CETUC)

Catholi University of Rio de Janeiro

Marqus de S. Viente, 225

22453-900, RIO DE JANEIRO, RJ

Brazil

e-mail: weiler�etu.pu-rio.br

Abstrat. String math proedures with respet to two sets are investigated.

The proedures traditionally used for data ompression are based on single-

string math with respet to a single set [LZ78, W84℄. Some reent work broad-

ened this view by presenting proedures for multiple-string math with respet

to a single set [FPC98, PFP99℄ with improved performane as ompared to

the single-math versions. In this work an algorithm based on double-math

with respet to two sets is stated. We do onjeture that multiple-string math

proedures with respet to two sets an ahieve even better performane. A pre-

liminary analysis orroborating this onjeture with some evidene is reported

in this work.

Key words: Multiple-string math, Lempel-Ziv algorithm, Data ompression.

1 Introdution

The proedure proposed by Lempel and Ziv in 1978 [LZ78℄ for lossless data ompres-

sion is a rather simple and elegant string-math based algorithm. Its low omplexity

and implementation simpliity has turned it into a very popular algorithm whih is

used for instane in the ompress program of UNIX operational system.

By seleting diferent ombinations of the basi parameters of this algorithm many

variations an be established. In the result published in [FPC98℄ a version that

searhes for double-string mathes instead of the usual single-math is stated |

an improved performane was obtained. Extension to multiple string-math was

proposed in [PFP99℄. Similar results were reported by Hartman and Rodeh in [HR85℄.

In this work the two most popular Lempel-Ziv variations, LZ78 and LZW [LZ78,

W84℄, has been ast in the framework of string-math with respet to two sets. We

also propose two new variations (designated lg-LZ and dt-LZ), whih are inspired

and disussed in this new framework. Although the ultimate goal of �nding new

1

This work was supported by grant CNPq-502235/91-8(NV) and AEB/PR-004/97.

29

Proeedings of the Prague Stringology Club Workshop '99

algorithms with improved is a motivation behind the algorithms proposed, the ime-

diate objetive is to expand the ways of looking at the string mathes algorithms and

hopefully to �nd better proedures.

This work is organized as follows: in Setion 3, we present the idea of string math

with respet to two sets and establish a motivation by disussing two well-known

algorithms in the framework of mathing with respet to two sets. A new algorithm

(lg-LZ) whih is a simple variation of the Lempel-Ziv algorithm is also proposed in this

setion. In Setion 4 a version of double-math/double-tree algorithm is introdued.

Results obtained by omputer simulation are presented in Setion 5. Our onlusion

is then summarized in Setion 5.

2 Notations

We establish the following notation for use in this work.

1. x

j

i

= x

i

x

i+1

: : : x

j

, j > i denotes a �nite sequene of symbols x

k

, i � k � j,

that take their values in a given set A = fa

0

; a

1

; �; a

jAj�1

g of ardinality jAj. If

j = i, this is the single symbol string x

i

and if i > j we will assume that x

j

i

is

the empty string.

2. j�j denotes the length, if � is a sequene, or the ardinality, if � is a set.

3. � denotes the null-length string, i.e. j�j = 0.

4. s

i

Æ s

j

denotes the onatenation of the strings s

i

and s

j

. (the result of the

onatenation will also be indiated by s

i

s

j

or s

i

,s

j

)

5. When s

1

; s

2

; � � � ; s

k

2 A

�

are strings of symbols of lengths js

1

j; js

2

j; � � � ; js

k

j re-

spetively, the notation s

k

1

represents the string of length js

1

j+ js

2

j+ � � �+ js

k

j

formed by the onatenation of strings s

1

Æ s

2

Æ � � � Æ s

k

.

6. The onatenation of the string ` 2 L = f`

0

; � � � ; `

jLj�1

g and the set M =

fm

0

; � � � ;m

jMj�1

g is the set

` ÆM =

jMj�1

[

i=0

f` Æm

i

g

7. Let L = f`

0

; � � � ; `

jLj�1

g andM = fm

0

; � � � ;m

jMj�1

g. We de�ne the onatena-

tion of these two sets by

L ÆM =

jLj�1

[

i=0

f`

i

ÆMg

8. dxe denotes the smallest integer greater than or equal to number x.

9. �[zjL℄, for jLj > 0, is the longest string `

i

2 L = f`

0

; � � � ; `

jLj�1

g whih is a

pre�x of z.

30

On Proedures for Multiple-string Math with Respet to Two Sets

10. X [sjL℄ is the unique integer index i that identify the member `

i

2 L suh that

`

i

= s.

11. z � y, when z = x

i

x

i+1

� � �x

j

and y = x

i

x

i+1

� � �x

k

is a pre�x of z, represents

the string x

k+1

� � �x

j

.

12. F [z℄ is the length 1 pre�x of z, if jzj > 0 else it is the empty string.

13. S[z℄ is the length jzj � 1 pre�x of z.

14. �

k

[J ℄, k � logJ (base 2 logarithm) is the trivial k-bit binary representation of

the integer J .

3 The Idea of String Math Algorithm with Re-

spet to Two Sets

To establish the framework and the rationale behind our disussion, the well-known

string-math proedure proposed by Ziv and Lempel [LZ78℄ for data ompression

will be presented, in the ontext of string math with respet to two sets. We will

undistinguishably refer to this as a double-tree string math ontext sine the sets we

will be dealing with are tree-strutured.

3.1 Lempel-Ziv Algorithm (LZ78)

Let us onsider that z

0

= x

N�1

0

is the sequene of N symbols generated by the

information soure whih is to be enoded (eah soure symbol x

i

belongs to the

soure alphabet A, of dyadi ardinallity for simpliity). Generally speaking the

Lempel-Ziv algorithm (LZ78) [LZ78℄ an be envisioned as divided in three tasks: The

�rst task, (parsing), whih yields the unique parsing

x

N�1

0

= (`

0

Æm

0

); (`

1

Æm

1

); � � � ; (`

t

Æm

t

)

of the soure sequene in t+ 1 phrases. The next task, (map to integers), assign eah

phrase s

i

= (`

i

Æm

i

) to a unique pair of integers (J

i

; K

i

) whih are then, in the task

that follows (integer ode), replaed (or enoded) by a binary representation aording

to some rule to enode integer numbers into binary.

Spei�ally, the algorithm LZ78 [LZ78℄ an be stated using the double-tree frame-

work by initially setting L

0

= f�; x

0

g, M

0

= A and s

0

= (`

0

Æm

0

) = (� Æ x

0

) = x

0

.

At a general step i, the sets L

i�1

and M

i�1

are known, the soure string has been

parsed in i phrases s

0

; � � � ; s

i�1

and there is a remaining unparsed string whih will

be denoted by z

i

. The algorithm is desribed next.

31

Proeedings of the Prague Stringology Club Workshop '99

Algorithm LZ78

i = 0

z

0

= x

N�1

0

L

0

= f�g, M

0

= A

s

0

= `

0

Æm

0

with `

0

= � and m

0

= x

0

.

1 � i � t

1. Update unparsed string:

z

i

= z

i�1

� (`

i�1

Æm

i�1

)

2. Find longest math s

i

with respet to D

i

= L

i�1

ÆM

i�1

:

s

i

= �[z

i

jD

i

℄ = `

i

Æm

i

,

with `

i

= �[z

i

jL

i�1

℄, and m

i

= �[(z

i

� `

i

)jM

i�1

℄.

3. (J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

4. Update L-tree:

L

i

= L

i�1

[f`

i

Æ F [m

i

℄g

M

i

= A

5. (B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

The eÆieny of a string math algorithm is losely related to the number t+1 of

phrases parsed o� from the soure string and to the rate of growth of the sets L and

M. In the present ase, LZ78, t+1 phrases are generated and the N soure symbols

will be represented by L binary symbols,

L =

t

X

i=0

(jB

i

j+ jC

i

j) = (t+ 1) log

2

jAj+

t

X

i=0

jB

i

j;

rendering a � = L=N ompression rate. If the soure symbols are drawn from an

stationary soure, the ompression rate provedly [LZ78℄ onverges to the entropy of

the soure. The interplay between these two parameters is quite envolved [S97℄ and is

not our main onern. It is worth mentioning that Integer Codes more eÆient than

the one used to produe the binary blok (B

i

; C

i

) ould be used. An improvement in

the above ode, for instane, an be introdued simply by notiing that the phrase s

i

whih is parsed o� at the i-th step, atually belongs to a set D

i

(alled ditionary or

odebook)

D

i

= L

i�1

ÆM

i�1

with some elements (or odewords) on it, whih are not able to be seleted as a math

to s

i

| the enumeration reserved for these are therefore a waste of bits. This is of

little onern to us at this point and the Integer Code as it is will be used with the

other algorithm versions disussed in the entire work.

The important point to be stressed in relation to the LZ78 is that no matter

the value of i, the assoiated tree M

i

is kept �xed, equal to A. Whether there are

proedures whih performs more eÆiently, by allowing M

i

, the seond ditionary

tree, to grow rather than be �xed, is a onjeture naturally raised. This issue is

examined on the next setion. A variation of the LZ78 whih onstruts the ditionary

D

i

in a sligthly di�erent manner and whih, for this reason, has a slightly better

performane will be presented. Example I ilustrates the workings of LZ78.

32

On Proedures for Multiple-string Math with Respet to Two Sets

Example I

Let the sample string to be ompressed be

Sample0 = x

33

0

= aaabadababaaadabaabadadababaaaba

The quaternary soure alphabet is A = fa,b,,dg. The sequene fL

i

: i = 0; 14g

of sets obtained with the LZ78 proedure, the orresponding phrases and binary

odewords obtained are next presented.

Step i = 0

z

0

= aaabadababaaadabaabadadababaaaba

L

0

= f�g, M

0

= A

`

0

= �, m

0

= a

s

0

= `

0

Æm

0

= a, W

0

= 00

Step i = 1

s

0

; z

1

= a,aabadababaaadabaabadadababaaaba

L

1

= fag

`

0

= a, m

0

=

s

1

= `

1

Æm

1

= a Æ , W

1

= 1 10

Keep going like this will take us to

s

13

0

z

14

=a,a,ab,ad,aba,b,aa,,ada,ba,a,bad,adab,abaa,aba

L

14

= f a, a, ab, ad, aba, b, aa, , ada, ba, a, bad, adab,

abaa g

s

14

= aba �; W

14

= 0101 �

3.2 A Less Greedy LZ78

We observe, in the plain LZ78 disussed on Setion 3.1, that the set L

i

is inreasead

by one element at eah step i, i.e., jL

i

j = jL

i�1

j + 1. The ditionary D

i

is built

by transforming the tree orresponding to L

i�1

into a omplete tree having only

terminal nodes and nodes with exatly jAj branhes stemming from them. This

greedy expansion of the set L

i�1

seems to be one reason for the degraded performane

of the LZ78 algorithm, as ompared to other variations, suh as LZW for instane.

The variation introdued in this setion (lg-LZ, in short), allows for a less-greedy

expansion in order to get the ditionary D

i

. The longest string math is not found

this time (lg-LZ), with respet to the ditionary D

i

= L

i�1

ÆM

i�1

but, instead, with

respet to the ditionary

D

i

= L

i�1

[fs

i

Æ Ag:

The ditionary D

i

is now built by expanding the L

i�1

tree by appending to the node

orresponding to the path just seleted as a longest math, the tree orresponding to

the alphabet A. The algorithm is stated next.

33

Proeedings of the Prague Stringology Club Workshop '99

Algorithm lg-LZ

i = 0

z

0

= x

N�1

0

L

0

= A, M

0

= A

s

0

= x

0

J

0

= X [s

0

jA℄, B

0

= �

dlog jAje

[J

0

℄

1 � i � t

1. Update unparsed string

z

i

= z

i�1

� s

i�1

2. Find longest math s

i

with respet to D

i

= L

i�1

[fs

i�1

ÆM

i�1

g

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄)

4. B

i

= �

dlog jD

i

je

[J

i

℄

5. Updating tree

`

new

= s

i�1

Æ F [s

i

℄

if j`

new

j = js

i

j and s

i

=2 L

i�1

then `

new

= s

i

L

i

= L

i�1

[f`

new

g

M

i

= A

Also here we have s

i

= `

i

Æm

i

with, possibly,m

i

= �. The performanes displayed

on Table 2, obtained by omputer simulation show instanes where the lg-LZ performs

better when ompared to its ounterpart LZW. The example presented next ilustrate

the workings of the lg-LZ.

Example II

Let x

33

0

= aaabadababaaadabaabadadababaaaba. A = fa; b; ; dg. The pars-

ing that the proedure lg-LZ yields is

a, a, a, b, a, d, ab, aba, aa, da, ba, , aba, da, dab, abaa, aba

The ompressed representation of x

33

0

is a binary string with 72 bits | ompression

rate of 0:257

3.3 Lempel-Ziv-Welh Algorithm

The Lempel-Ziv-Welh proedure, popularly alled LZW, is known to have a perfor-

mane on the average 10% better then the plain LZ78 version. One aspet that makes

the LZW di�erent from LZ78 is that it works with a rule that build the ditionary

D

i

by appending only one node to the orresponding tree L

i�1

.

The following would be the desription of the LZW algorithm.

34

On Proedures for Multiple-string Math with Respet to Two Sets

Algorithm LZW

i = 0

z

0

= x

N�1

0

L

0

= A,

M

0

= f�g and

s

0

= x

0

. `

0

= x

0

1 � i � t

1. z

i

= z

i�1

� s

i�1

2. Find longest math with respet to D

i

= L

i�1

[`

i�1

ÆM

i�1

`

i

= �[z

i

jL

i�1

℄,

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄

4. L

i

= D

i

M

i

= fF [z

i

� s

i

℄g

5. B

i

=�

dlog jD

i

je

[J

i

℄

Example III

Consider again Sample0 = x

33

0

= aaabadababaaadabaabadadababaaaba with

A = fa; b; ; dg. This sequene is parsed into 20 phrases as follows

a, a, , a, b, a, d, ab, aba, a, ad, aba, a, ba, da, da,

ba, ba, aa, ba

and its ompressed representation is a binary string with 81 bits | a ompression

rate of 0:289

4 Desription of Double-tree Algorithms

In the previous setion two known agorithms (LZ78 and LZW) and a simple variation

of the former (lg-LZ) were stated within the framework of a double-tree string math.

Eah one of the algorithms produe a sequene of trees fL

i

g

i=0;t

and orresponding

sequene of ditionaries fD

i

g

i=0;t

with a string math done with respet to eah

ditionary. The basi di�erene among the three algorithms relies in the manner

in whih the tree L

i�1

is onatenated with the orresponding M

i�1

, to build the

ditionary D

i

. Table 1 summarizes this aspet.

LZ78: jD

i

j = jL

i�1

ÆM

i�1

j

� jL

i�1

jjM

i�1

j

lg-LZ: jD

i

j = jL

i�1

[f`

i

Æ Agj

= jL

i�1

j+ jAj

LZW: jD

i

j = jL

i�1

[`

i�1

ÆM

i�1

j

= jL

i�1

j+ 1

Table 1: Length of the ditionaries

35

Proeedings of the Prague Stringology Club Workshop '99

A point whih is ommon to the three algorithms so far disussed is that they all

onatenate the set L

i�1

with a depth one tree in order to build their ditionaries.

It is quite natural at this point to ask whether there are proedures whih performs

more eÆiently when the seond ditionary tree is allowed to have depth greater

than one. A double-tree string math algorithm, with a seond tree having a more

general struture is stated in this setion. Allowing a more general struture for the

seond tree M

i�1

, enlarge the number of algorithm variations that an be stated.

The searh for string mathes are now searhes for double-mathes | this imply that

more general ways to searh are possible and that the longest-math is not neessarily

a onatenation of a string `

i

(whih is the longest math with respet to the tree

L

i�1

) with the string m

i

(whih is the longest math with respet to the tree M

i�1

).

Now, in order to optimize the number t + 1 of parses, the best strategy is to searh

for a onatenation (`

i

Æm

i

) whih among all double-mathes, have the largest size

j`

i

j+jm

i

j. We have implemented one version of a double-math/double-tree proedure

and analysed their performane by omputer simulations. The algorithm, whih will

be, abreviatedly, referred to as dt-LZ, is presented next.

Algorithm dt-LZ

i = 0 (Initialization step)

� z

0

= x

N�1

0

� L

0

=M

0

= A

� m

0

= �[z

0

jM

0

℄,

� K

0

= X [m

0

jM

0

℄;

� C

0

= �

dlog jM

0

je

[K

0

℄

� z

1

= z

0

�m

0

;

� M

0

=M

0

[fm

0

Æ F [z

1

℄g

1 � i � t (Generi step)

1. Segmentation:

(a) `

i

= �[z

i

jL

i�1

℄,

z

temp

= z

i

� `

i

,

m

i

= �[z

temp

jM

i�1

℄,

� = j`

i

j+ jm

i

j,

u = `

i

.

(b) i. u = S[u℄

z

temp

= z

i

� u

v = �[z

temp

jM

i�1

℄.

ii. If (juj+ jvj � �): (`

i

;m

i

) = (u;v), � = j`

i

j+ jm

i

j.

iii. If juj > 0 return to step (i).

() z

i

= (z

i

� `

i

)�m

i

2. Update Ditionaries:

L

i

= L

i�1

[f`

i

Æ F [m

i

℄g

M

i

=M

i�1

[fm

i

Æ F [z

i

℄g

3. Map to Integer

(J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

36

On Proedures for Multiple-string Math with Respet to Two Sets

4. Integer Code:

(B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

Example IV

Let x

33

0

= aaabadababaaadabaabadadababaaaba. A = fa; b; ; dg. The pars-

ing for the proedure dt-LZ yields is

(-,a), (a,), (a,b), (a,d), (a,ba), (b,aa), (,a), (d,a), (ba,a),

(ba,da), (da,bab), (a,aa),(b,a).

where we show the double-mathes displayed in parenthesis.

5 Some Computer Simulation Results

The algorithms disussed have been implemented as omputer programs whih were

used to ompress some sample sequenes. Although the performane of all these

algorithms are optimum in the sense that their ompression rate asymptotially on-

verges to the entropy of the information soure or to the Lempel-Ziv omplexity of

the individual sequene, they perform quite di�erently when �nite sequenes and the

rate of onvergene to the asymptoti optimum are onsidered. Table 2 displays some

of the simulation results exhibiting the performane of the algorithms. We have not

Sequene LZW lg-LZ dt-LZ

(size) (size) (size) (size)

Sample0 .289 .257 .311

(280) (81) (72) (87)

Sample1 .089 .099 .097

(576) (51) (57) (56)

Sample2 .077 .086 .103

(544) (42) (47) (56)

Sample3 .357 .371 .335

(672) (240) (249) (225)

Sample4 .258 .113 .320

(256) (66) (29) (82)

Table 2: Compression rate of algorithms LZW, lg-LZ and dt-LZ (all sequene sizes,

in parenthesis, are in bits)

presented results for the LZ78 algorithm. As the other versions this algorithm is

asymptotially optimum but has an inferior perfomane as ompared to the LZW.

As it an be notied from the results presented in Table 2 the behavior of the algo-

rithms are sequene dependent. For some sequenes the LZW an ahieve a better

result than the lg-LZ | this gain is basially due to the penalty paid by the lg-LZ

for expanding the �rst tree with A nodes to build the ditionary, instead of the one

node expansion done by the LZW. This gain in performane tend to disappear as

the sequene length grows larger. Examining the line on Table 2 orresponding to

Sample4 one an see that the performane of lg-LZ an onverge onsiderably fast

37

Proeedings of the Prague Stringology Club Workshop '99

to the optimum, as ompared to LZW, for ertain types of sequenes. These are

sequenes onstruted to bene�t the performane of lg-LZ (no suh onstrution an

be done, we onjeture, to bene�t LZW).

Conlusion

We have proposed algorithms whih are based on the idea of string mathes with

respet to two sets or, equivalently, string math with respet to two trees. Many

implementations variations of these algorithms are possible | a double-string math

with respet to two trees version (alled dt-LZ) was implemented.

In our preliminary investigation we exam the behavior of these algorithms and

analyse its performane by omputer simulation. Also we stated the well known

LZ78 algorithm [LZ78℄ in the framework of string math with respet to two trees, as

well as the LZW [W84℄. A simple modi�ation of the LZ78 was also proposed (this

was alled lg-LZ).

It is our expetation that higher ompression an be ahieved with double-string

math with respet to two trees proedures. This is based on the argument that

the use of two trees allows the onstrution of onatenated trees with more general

strutures, leaving more room for optimizing the searh. It is also based on results we

have obtained with multiple-string mathes algorithms [PFP99℄ | whih ahieve a

better ompression than single-mathes ones. These multiple-string math algorithms

are based on the double-tree idea yet the two trees involved in the proess are kept

equal.

The results presented in this work do not single out a de�nite better double-

math/double-tree algorithm | if one an be found | but bring to our attention

that there are many variations. Our investigations will be further pursued by exam-

ining other double-math/double-tree implementations. An extension of the multiple-

math desribed in [PFP99℄ will also be sought.

Referenes

[LZ78℄ Ziv, J., Lempel, A., \Compression of individual sequenes via variable-rate

oding," IEEE Trans. Inform. Theory, vol. IT-24, pp.530-536, Sep. 1978.

[W84℄ Welh, T. A., \A tehnique for high-performane data ompression," Com-

puter, vol. 17, pp.8-19, Jun. 1984.

[FPC98℄ Finamore, W. A., Pinho, M. S., Craizer, M., \A multi-string math al-

gorithm for lossless data ompression," Abstrats of Invited Letures and

Short Communiations, 7

th

International Colloquium on Numerial Anal-

ysis and Computer Sienes with Appliations, p.39, Plovdiv, Bulgaria,

Aug. 1998.

[PFP99℄ Pinho, M. S., Finamore, W. A., Pearlman, W. A., \Fast multi-math

Lempel-Ziv," Pro. of IEEE Data Compression Conferene, Snowbird, UT,

April 1999.

38

On Proedures for Multiple-string Math with Respet to Two Sets

[HR85℄ Hartman, A., Rodeh, M., \Optimal Parsing of Strings," Combinatorial

Algorithms on Words, Springer-Verlag, A. Apostolio & Z. Galil, editors,

pp. 155-167, 1985.

[S97℄ Savari, S. A., \Redundany of Lempel-Ziv inremental parsing rule," IEEE

Trans. Inform. Theory, vol. IT-43, pp.9-21, Jan. 1997.

39

