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Abstra
t. In this paper we present experimental results for string mat
hing

algorithms whi
h have a 
ompetitive theoreti
al worst 
ase run time 
omplexity.

Of these algorithms a few are already famous for their speed in pra
ti
e, su
h

as the Boyer-Moore and its derivatives. We 
hose to evaluate the algorithms by


ounting the number of 
omparisons made and by timing how long they took

to 
omplete a given sear
h. Using the experimental results we were able to

introdu
e a new string mat
hing algorithm and 
ompared it with the existing

algorithms by experimentation. These experimental results 
learly show that

the new algorithm is more eÆ
ient than the existing algorithms for our 
ho-

sen data sets. Using the 
hosen data sets over 1,500,000 separate tests were


ondu
ted to determine the most eÆ
ient algorithm.

Key words: string mat
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1 Introdu
tion

Many promising data stru
tures and algorithms dis
overed by the theoreti
al 
ommu-

nity are never implemented or tested at all. Moreover, theoreti
al analysis (asymp-

toti
 worst-
ase running time) will show only how algorithms are likely to perform in

pra
ti
e, but they are not suÆ
iently a

urate to predi
t a
tual performan
e. In this

paper we show that by 
onsiderable experimentation and �ne-tuning of the algorithms

we 
an get the most out of a theoreti
al idea.

The string mat
hing problem [CR94℄ has attra
ted a lot of interest throughout the

history of 
omputer s
ien
e, and is 
ru
ial to the 
omputing industry. String mat
hing

is �nding an o

urren
e of a pattern string in a larger string of text. This problem

arises in many 
omputer pa
kages in the form of spell 
he
kers, sear
h engines on the

internet, �nd utilities on various ma
hines, mat
hing of DNA strands and so on.

Se
tion 2 des
ribes string mat
hing algorithms whi
h are known to be fast. Se
-

tion 3 gives experimental results for these algorithms. From the �ndings of the exper-

imental results dis
ussed in Se
tion 3, we identify two fast algorithms to produ
e a

new algorithm. The new algorithm is des
ribed in Se
tion 4. In Se
tion 5 we 
ompare

the new algorithm with the existing algorithms.
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2 The String Mat
hing Algorithms

String mat
hing algorithms work as follows. First the pattern of length m, P [1::m℄,

is aligned with the extreme left of the text of length n, T [1::n℄. Then the pattern


hara
ters are 
ompared with the text 
hara
ters. The algorithms 
an vary in the

order in whi
h the 
omparisons are made. After a mismat
h is found the pattern

is shifted to the right and the distan
e the pattern 
an be shifted is determined

by the algorithm that is being used. It is this shifting pro
edure and the speed at

whi
h a mismat
h is found whi
h is the main di�eren
e between the string mat
hing

algorithms.

In the Naive or Brute For
e (BF) algorithm, the pattern is aligned with the

extreme left of the text 
hara
ters and 
orresponding pairs of 
hara
ters are 
ompared

from left to right. This pro
ess 
ontinues until either the pattern is exhausted or a

mismat
h is found. Then the pattern is shifted one pla
e to the right and the pattern


hara
ters are again 
ompared with the 
orresponding text 
hara
ters from left to

right until either the text is exhausted or a full mat
h is obtained. This algorithm 
an

be very slow. Consider the worst 
ase when both pattern and text are all a's followed

by a b. The total number of 
omparisons in the worst 
ase is O(nm). However, this

worst 
ase example is not one that o

urs often in natural language text.

An improved version of the BF algorithm, the Not So Naive (NSN) algorithm

[HA93℄, 
hanges the order of the 
omparisons. Suppose the pattern is aligned with the

text 
hara
ters, �rst the se
ond pattern 
hara
ter is 
ompared with the 
orresponding

text 
hara
ter followed by 
omparisons of the rest of the pattern with 
orresponding

text 
hara
ters, and then the last 
hara
ters to be 
ompared are the �rst 
hara
ter

of the pattern and the text 
hara
ter it is aligned with. A shift of two is made if a

mismat
h is made with the se
ond 
hara
ter of the pattern and the �rst two 
hara
ters

of the pattern are the same, or if the se
ond 
hara
ter of the pattern mat
hes the

text but a mismat
h o

urs and the �rst two 
hara
ters are not equal.

The number of 
omparisons 
an be redu
ed by moving the pattern to the right

by more than one position when a mismat
h is found. This is the idea behind the

Knuth-Morris-Pratt (KMP) algorithm [KMP77℄. The KMP algorithm starts and


ompares the 
hara
ters from left to right the same as the BF algorithm. When a

mismat
h o

urs the KMP algorithm moves the pattern to the right by maintaining

the longest overlap of a pre�x of the pattern with a suÆx of the part of the text

that has mat
hed the pattern so far. After a shift, the pattern 
hara
ter 
ompared

against the mismat
hed text 
hara
ter has to be di�erent from the 
hara
ter that

mismat
hed. The KMP algorithm takes at most 2n 
hara
ter 
omparisons. The

KMP algorithm does O(m+ n) operations in the worst 
ase.

The Colussi (COL) [CO91℄ algorithm is an improvement of the KMP algorithm.

The number of 
hara
ter 
omparisons is 1.5n in the worst 
ase. The set of pattern

positions is divided into two disjoint subsets due to the 
ombinatorial properties

of their positions. First the 
omparisons are performed from left to right for the


hara
ters at positions in the �rst set. If there is no mismat
h, the 
hara
ters at

positions in the se
ond set are 
ompared from right to left. This strategy redu
es the

number of 
omparisons.

Galil and Gian
arlo (GG) [GG92℄ improved the COL algorithm by redu
ing the

number of 
hara
ter 
omparisons in the worst 
ase to

4

3

n. In these algorithms the
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prepro
essing takes O(m) time.

The Boyer-Moore (BM) algorithm [BM77℄ di�ers in one main feature from the

algorithms already dis
ussed. Instead of the 
hara
ters being 
ompared from left to

right, in the BM algorithm the 
hara
ters are 
ompared from right to left starting with

the rightmost 
hara
ter of the pattern. In a 
ase of mismat
h it uses two fun
tions, last

o

urren
e fun
tion and good suÆx fun
tion and shifts the pattern by the maximum

number of positions 
omputed by these fun
tions. The good suÆx fun
tion returns

the number of positions for moving the pattern to the right by the least amount, so

as to align the already mat
hed 
hara
ters with any other substring in the pattern

that are identi
al. The number of positions returned by the last o

uren
e fun
tion

determines the rightmost o

urren
e of the mismat
hed text 
hara
ter in the pattern.

If the text 
hara
ter does not appear in the pattern then the last o

uren
e fun
tion

returns m. The worst 
ase running time of the BM algorithm is O(mn).

The Turbo Boyer-Moore (TBM) algorithm [CC94℄ and the Apostoli
o-Gian
arlo

(AG) algorithm [AG86℄ are ameliorations of the BM algorithm. When a partial mat
h

is made between the pattern and the text these algorithms remember the 
hara
ters

that mat
hed and do not 
ompare them again with the text. The TBM algorithm

and the Apostoli
o-Gian
arlo algorithm perform in the worst 
ase at most 2n and

1.5n 
hara
ter 
omparisons respe
tively [CL97b℄.

The Horspool (HOR) algorithm [HO80℄ is a simpli�
ation of the BM algorithm. It

does not use the good suÆx fun
tion, but uses a modi�ed version of the last o

urren
e

fun
tion. The modi�ed last o

urren
e fun
tion determines the right most o

urren
e

of the (k +m)th text 
hara
ter, T [k +m℄ in the pattern, if a mismat
h o

urs when

a pattern is aligned with T [k::k + m℄. This algorithm 
hanges the order in whi
h


hara
ters of the pattern are 
ompared with the text. It 
ompares the rightmost


hara
ter in the pattern �rst then 
ompares the leftmost 
hara
ter, then all the other


hara
ters in as
ending order from the se
ond position to the m� 1th position.

The Raita (RAI) algorithm [RA92℄ again 
hanges the order in whi
h 
hara
ters of

the pattern are 
ompared with the text. The pro
ess used to 
ompare the rightmost


hara
ter of the pattern, then the leftmost 
hara
ter, then the middle 
hara
ter and

then the rest of the 
hara
ters from the se
ond to the (m � 1)th position. If at any

time during the pro
edure a mismat
h o

urs then it performs the shift as in the

HOR algorithm.

The Qui
ksear
h (QS) algorithm [SU90℄ is similar to the HOR algorithm and the

RAI algorithm. It does not use the good suÆx fun
tion to 
ompute the shifts. It

uses a modi�ed version of the last o

urren
e fun
tion. Assume that a pattern is

aligned with the text 
hara
ters T [k::k+m℄. After a mismat
h the length of the shift

is at least one. So, the 
hara
ter at the next position in the text after the alignment

(T [k+m+1℄) is ne
essarily involved in the next attempt. The last o

urren
e fun
tion

determines the right most o

urren
e of T [k+m+ 1℄ in the pattern. If T [k+m+ 1℄

is not in the pattern the pattern 
an be shifted by m+1 positions. The 
omparisons

between text and pattern 
hara
ters during ea
h attempt 
an be done in any order.

The Maximal Shift (MS) algorithm [SU90℄ is another variant of the QS algorithm.

The algorithm is designed in su
h a way that the pattern 
hara
ters are 
ompared in

the order whi
h will give the maximum shift if a mismat
h o

urs.

The Smith (SMI) algorithm [SM91℄ uses HOR and Qui
k Sear
h last o

urren
e

fun
tions. When a mismat
h o

urs, it takes the maximum values between these
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fun
tions.

The Zhu and Takaoka (ZT) algorithm [ZT87℄ is another variant of the BM algo-

rithm. The 
omparisons are done in the same way as BM (i.e. from right to left)

and it uses the good suÆx fun
tion. If a mismat
h o

urs at T [i℄, the last o

urren
e

fun
tion determines the right most o

urren
e of T [i � 1::i℄ in the pattern. If the

substring is in the pattern, the pattern and text are aligned at these two 
hara
ters

for the next attempt. The shift is m, if the two 
hara
ter substring is not in the

pattern.

Sear
hing 
an be done in O(n) time using a minimal Deterministi
 Finite Automa-

ton (DFA) [SI93℄. This algorithm uses O(�m) spa
e and O(� + m) pre-pro
essing

time, where � is the size of the alphabet. The Simon (SIM) algorithm [SI93℄ redu
es

the pre-pro
essing time and the spa
e to O(m).

The pre-pro
essing is needed for the algorithm to 
al
ulate the relevant shifts upon

a mismat
h/mat
h ex
ept for the BF algorithm whi
h has no pre-pro
essing. The

pre-pro
essing 
ost of the algorithms does not e�e
t the eÆ
ien
y of the algorithms

as they are relatively very small and all are approximately the same.

3 Experimental Results of the Existing

Algorithms

Monitoring the number of 
omparisons performed by ea
h algorithm was 
hosen as a

way to 
ompare the algorithms. All the algorithms were 
oded in C and their C 
ode

are taken from [CL97a℄ and animations of the algorithms 
an be found at [CL98℄.

This 
olle
tion of string mat
hing algorithms were easy to implement as fun
tions

into our main 
ontrol program. The algorithms were 
oded as their authors had

devised them in their papers. The main 
ontrol program read in the text and pattern

and had one of the algorithms to be tested inserted into it for the sear
hing pro
ess.

The main 
ontrol program was the same for ea
h algorithm and so did not a�e
t the

performan
e of the algorithms. Ea
h algorithm had an integer 
ounter inserted into

it, to 
ount the number of 
omparisons made between the pattern and the text. The


ounter was in
remented by one ea
h time a 
omparison was made.

A random text of 200,000 words from the UNIX English di
tionary was used for

the �rst set of experiments. The random text was 
onstru
ted so as to simulate an

a
tual English text. All the letters in the UNIX di
tionary were made lower 
ase

to in
rease the probability of a mat
h. In English text roughly only every 1 in 10

words begin with a 
apital letter. We de
ided to number ea
h of the words in UNIX

di
tionary from 1 to 25,000. Then we used a pseudo random number generator to pi
k

words from the UNIX di
tionary and pla
e them in the random text. Separating ea
h

word by a spa
e 
hara
ter. Pun
tuation was also removed as we were 
on
erned with

�nding words and the pun
tuation would not e�e
t the results obtained. The reason

for using a large text (200,000 words) was to ensure that as many of the 25,000 words

in the UNIX English di
tionary o

urred somewhere in the random text generated.

For ea
h pattern in the di
tionary, we sear
hed the text (of 200,000 words) for the

�rst o

urren
e of the pattern.

The text was sear
hed for ea
h word in the UNIX di
tionary and the results are

given in Table 1. The �rst 
olumn in Table 1 is the length of the pattern. The se
ond
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olumn is the number of words of that length in the UNIX English di
tionary. For

example, for a pattern length of 7, 4042 test 
ases were 
arried out and the average

number of 
hara
ter 
omparisons made by the KMP algorithm was 197,000 (to the

nearest 1000). The average was 
al
ulated by taking the total number of 
omparisons

performed to �nd all 4042 
ases and dividing this number by 4042. These 
olumns

are arranged in des
ending order of the average of the total number of 
omparisons

of the algorithms. An interesting observation is that for (almost) ea
h row the values

are in des
ending order ex
ept for the last two 
olumns.

p. len num. BF KMP DFA SIM NSN COL GG BM AG HOR RAI TBM MS QS ZT SMI

2 133 7 7 7 7 6 6 6 3 3 3 3 3 2 2 3 2

3 765 38 38 37 37 37 37 37 13 13 13 13 13 11 10 13 10

4 2178 82 82 80 80 80 79 79 23 23 23 23 22 19 19 22 18

5 3146 151 150 145 145 145 145 145 34 34 34 34 34 30 30 32 28

6 3852 186 185 179 179 179 178 178 36 36 36 36 36 33 32 33 30

7 4042 198 197 191 191 191 190 190 34 34 34 34 34 32 31 30 28

8 3607 205 204 197 197 197 196 196 32 32 31 32 31 30 29 27 26

9 3088 212 211 204 204 204 203 203 30 30 30 30 30 29 28 25 24

10 1971 220 219 212 212 212 210 210 29 29 29 29 29 28 27 24 23

11 1120 209 207 201 201 200 198 198 26 26 26 26 25 25 24 21 21

12 593 218 217 210 210 209 207 207 25 25 25 25 25 24 24 21 20

13 279 224 222 215 215 213 212 212 24 24 24 24 24 23 23 19 19

14 116 228 227 220 220 219 217 217 23 23 23 23 23 23 23 19 19

15 44 151 150 144 144 143 142 142 15 15 15 15 14 14 14 11 12

16 17 227 225 217 217 215 214 214 20 21 21 21 20 20 20 18 16

17 7 233 231 222 222 221 218 218 20 20 20 20 19 19 20 15 16

18 4 236 234 225 225 223 221 221 19 20 20 20 19 19 20 14 16

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 1 132 131 122 122 121 119 119 10 10 10 10 10 10 10 7 8

21 2 311 309 295 295 290 288 288 24 24 25 25 23 23 24 15 18

22 1 491 486 455 455 451 445 445 33 33 33 33 33 31 34 22 27

total 24966 180 179 174 174 173 172 172 31 31 30 30 30 28 28 27 25

Table 1: Results of sear
hing a text of 200,000 words for ea
h word in the UNIX di
tionary.

The algorithm with the largest number of 
omparisons is the BF algorithm. This

is be
ause the algorithm shifts the pattern by one pla
e to the right when a mismat
h

o

urs, no matter how mu
h of a partial/full mat
h has been made. This algorithm

has a quadrati
 worst 
ase time 
omplexity. But the KMP algorithm whi
h has a lin-

ear worst 
ase time 
omplexity, does roughly the same number of 
omparisons as the

BF algorithm. The reason for this is that in a natural language a multiple o

urren
e

of a substring in a word is not 
ommon. For the same reason, the KMP variants,

COL and GG algorithms have only a small improvement over the KMP algorithm.

Other linear time algorithms, DFA and SIM, also have roughly the same number of


omparisons as the BF algorithm. We will see below that the other quadrati
 worst


ase time 
omplexity algorithms perform mu
h better than these linear worst 
ase

time algorithms. This is a good example showing that asymptoti
 worst-
ase running

time analysis 
an be indi
ative of how algorithms are likely to perform in pra
ti
e,

but they are not suÆ
iently a

urate to predi
t a
tual performan
e.

The BM algorithm uses the good suÆx fun
tion to 
al
ulate the shift whi
h de-

pends on a reo

urren
e of a substring in a word. But, it also uses the last o

urren
e

fun
tion. It is this last o

urren
e fun
tion that redu
es the number of 
omparisons

signi�
antly. In pra
ti
e, on an English text, the BM algorithm is three or more times

faster than the KMP algorithm [SG82℄. >From Table 1 one 
an see that the KMP

algorithm is takes six times more 
omparisons than the BM algorithm on average.

The other algorithms, TBM, AG, HOR, RAI, QS, MS, SMI and ZT, are variants of

the BM algorithm. The number of 
omparisons for these algorithms is roughly the

same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of 
omparisons for

pattern lengths less than or equal to twelve and greater than twelve respe
tively.
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4 The New Algorithm - the BR algorithm

>From the �ndings of the experimental results dis
ussed in se
tion 3, it is 
lear that

the SMI and ZT algorithms have the lowest number of 
omparisons among the others.

We 
ombined the 
al
ulations of a valid shift in SMI and ZT algorithms to produ
e

a more eÆ
ient algorithm. If a mismat
h o

urs when the pattern P [1::m℄ is aligned

with the text T [k + 1::k +m℄, the shift is 
al
ulated by the rightmost o

urren
e of

the substring T [k+m+1::k+m+2℄ in the pattern. If the substring is in the pattern

then the pattern and text are aligned at this substring for the next attempt. This


an be done shifting the pattern as shown in the table below. Let � be a wild
ard


hara
ter that is any 
hara
ter in the ASCII set. Note that if T [k+m+1::k+m+2℄

is not in the pattern, the pattern is shifted by m+ 2 positions. The total number of


omparisons in the worst 
ase is O(nm).

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� P [1℄ m+ 1

P [i℄ P [i+ 1℄ m� i+ 1, 1 � i � m� 1

P [m℄ � 1

Otherwise m+ 2

For example, the following shifts would be asso
iated with the pattern, onion.

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� o 6

o n 5

n i 4

i o 3

o n 2

n � 1

Otherwise 7

After a mismat
h the 
al
ulation of a shift in our BR algorithm takes O(1) time.

Note that for the substrings ni and n* have a value of 4 and 1 respe
tively. This

ambiguity 
an be solved by the higher shift value being overwritten with the lower

value. We will explain this later in this se
tion. For a given pattern P [1::m℄ the

prepro
essing is done as follows, and it takes O(�

2

) time.

There are 128 
hara
ters in the ASCII set and (128)2 = 16384 distin
t pairs. We

de�ne an array Shift Array (SA) of length 16384 and initialise it to m + 2. Using a

hash fun
tion we insert the values for ea
h pair and the hash fun
tion we use is:

T [m+k+1℄� 127+T [m+k+2℄ where for P [m+k+1℄ and P [m+k+2℄ we use

their ASCII values. This gives ea
h pair of 
hara
ter a distin
t value in SA and we

insert into the SA the shift for the pair. If the same pair o

urs more than on
e then

the lower shift value overwrites the higher value. So for example for the pair [i℄[o℄ we

would insert the value 3 at the [105� 127℄ + 111 = 13446th position in SA.

[wild
ard℄[o℄ = 6 all array positions that satisfy x[0℄mod127 = 111mod127 = 6

[o℄[n℄ = 5 position 111� 127 + 110 = 14207

[n℄[i℄ = 4 position 110� 127 + 105 = 14075

[i℄[o℄ = 3 position 105� 127 + 111 = 13446

[o℄[n℄ = 2 position 111� 127 + 110 = 14207

[n℄[wild
ard℄ = 1 position 110� 127 + 0::127 = 13970::14097

The order of performing the steps is important in ensuring the 
orre
t values

appear in the array. Note that the higher values have been over written by the lower

21



Pro
eedings of the Prague Stringology Club Workshop '99

values.

In the RAI algorithm the �rst and last 
hara
ters of the pattern are made variables.

This 
uts down the number of array look ups performed during a sear
h. We adapted

this idea to our algorithm and 
ompared the least frequent pattern 
hara
ter with

its 
orresponding text 
hara
ter. We then repeated the pro
ess for the se
ond least

frequent 
hara
ter and then the rest of the 
hara
ters in order from right to left.

The UNIX di
tionary used in the tests was used to see how many times ea
h letter

o

urred in the di
tionary. The frequen
y of ea
h letter is given in the following 
hart.

letter frequen
y ranking letter frequen
y ranking letter frequen
y ranking

a 16395 25 j 432 3 s 10167 19

b 4110 10 k 1923 6 t 12789 22


 8209 17 l 10013 18 u 6476 16

d 5763 14 m 5822 15 v 1890 5

e 20083 26 n 12062 20 w 1950 7

f 2660 8 o 12696 21 x 616 4

g 4125 11 p 5514 13 y 3618 9

h 5179 12 q 377 1 z 429 2

i 13963 24 r 13409 23

Note that we 
hoose the 
hara
ters in the pattern that have the lowest ranking.

If the 
hara
ter is not in the pattern then it has a ranking of 0 and is 
hosen as the

least frequent 
hara
ter.

We now give an example of our BR algorithm in a
tion to �nd the pattern onion.

The SA array for the pattern onion were used to 
al
ulate the shift after a mismat
h.

P [2℄ is the least frequent and P [5℄ is the next least frequent 
hara
ter.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([n℄[t℄) = 110 � 127 + 116 = SA[14086℄ = 1

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([t℄[℄) = 116 � 127 + 32 = SA[14764℄ = 7.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([s℄[t℄) = 115 � 127 + 116 = SA[14721℄ = 7

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([℄[o℄) = 32 � 127 + 111 = SA[4175℄ = 6.

w e w a n t t o t e s t w i t h o n i o n

= = = = =

5 1 4 3 2

o n i o n

So the word onion is found in 9 
omparisons in a text of length 26. On the above

full mat
h the order in whi
h the 
omparisons are 
ondu
ted is shown on the third

row.
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5 Experimental Results and Comparisons with the

BR Algorithm

We sele
t the best nine algorithms from the results in Table 1 and the KMP algorithm,

and 
ompare with our BR algorithm. Experiments were 
arried out for di�erent

random texts as des
ribed in Se
tion 3. The texts were 
onstru
ted by randomly


hoosing words from the UNIX English di
tionary. There were 2 di�erent texts of

10,000 words, a text of 50,000 words and a text of 100,000 words. The results are

des
ribed in Tables 3-6 (see appendix) respe
tively. Tables 3-6 (whi
h 
an be found

in the appendix at the ba
k of this paper) show the average number of 
omparisons

required for a sear
h for the given pattern length. They are based on taking the total

number of 
omparisons for the sear
h for all the patterns of a length and dividing the

number by the number of patterns of that size to give the average. So for example,

in Table 3 the BM algorithm takes 12,000 
omparisons (to the nearest thousand) on

average if the pattern length is 7. From these tables one 
an observe that the relative

order of their performan
e is the same as in Table 1. The main observation is that

the BR algorithm performs better than the other algorithms for all pattern lengths

and for all texts used in the experiments.

p. len. num. KMP AG BM HOR RAI TBM MS QS ZT SMI

2 133 199.98 93.96 93.96 94.00 93.96 93.89 35.94 32.92 93.96 31.48

3 765 366.02 64.09 64.18 64.20 64.19 63.70 28.78 28.21 60.03 24.93

4 2178 449.02 50.97 51.11 50.86 50.90 50.77 28.25 25.77 43.19 19.73

5 3146 540.11 44.91 45.02 44.58 44.46 44.72 28.33 26.47 33.91 18.13

6 3852 626.30 42.58 42.42 41.83 41.68 41.91 30.02 27.32 27.71 16.42

7 4042 719.01 42.07 41.38 40.92 41.00 40.72 31.49 28.83 24.94 16.08

8 3607 807.61 40.76 40.58 40.28 40.35 39.95 32.27 30.10 21.67 15.49

9 3088 896.18 41.85 41.52 40.92 40.84 40.69 34.75 32.19 19.29 15.45

10 1971 982.63 42.38 42.19 41.69 41.79 41.16 36.62 34.37 17.75 15.64

11 1120 1067.87 44.91 44.14 43.67 43.79 42.97 38.57 37.18 17.06 16.32

12 593 1164.14 45.36 45.28 44.58 44.68 44.20 40.06 39.28 16.14 17.34

13 279 1245.53 48.85 47.88 47.22 47.32 46.36 42.26 41.61 12.65 17.54

14 116 1322.70 46.46 46.74 46.46 46.60 45.16 42.62 42.26 11.32 17.03

15 44 1426.02 50.78 51.20 51.51 51.59 49.23 44.73 45.29 8.72 19.00

16 17 1527.28 48.99 49.34 50.44 50.60 47.37 46.60 49.06 24.80 20.02

17 7 1598.50 45.09 45.29 44.51 44.58 43.42 40.22 45.01 6.72 16.95

18 4 1700.81 50.34 50.58 53.96 54.06 48.54 50.12 53.59 6.09 22.21

19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 1 1948.74 58.37 58.37 58.12 58.07 58.37 52.25 63.51 3.01 29.43

21 2 1947.96 58.13 57.38 63.98 63.99 56.32 57.59 57.50 2.22 21.84

22 1 2129.14 50.97 50.97 49.87 49.89 50.97 45.07 55.43 1.04 25.09

total 24992 737.56 43.54 43.29 42.83 42.82 42.65 32.00 29.72 26.09 16.66

Table 2: The average di�eren
e between ea
h of the existing algorithms and our BR algorithm as a per
entage.

Table 2 summarises the results of Tables 3-6. The entries in Table 2 are in per-


entage form and des
ribe how many fewer 
omparisons our BR algorithm uses, when


ompared with the existing algorithms. The �gures are an average of the four di�er-

ent texts used. To 
al
ulate the di�eren
e as a per
entage between our BR algorithm

and the existing algorithms we used the following formula. The average number of


omparisons was taken from the relevant 
ell in Tables 3-6 and divided by the value

for that pattern length for our BR algorithm. This value was then dedu
ted by 1

and multiplied by 100 to give the per
entage di�eren
e between the two algorithms.

An interesting observation of the existing algorithms when 
ompared with the BR

algorithm, is that for ea
h individual text the per
entages were within 1% for ea
h

spe
i�
 algorithm. Ea
h value in Table 2 is 
al
ulated by taking the di�eren
e as a

per
entage between ea
h algorithm and our BR algorithm for ea
h pattern length,

adding them together and dividing by 4. For example, for a pattern length of 4 the

BM algorithm takes on average 51.11% more 
omparisons than our BR algorithm.

The result of a full sear
h for the di
tionary over all four texts is given in the last
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row of Table 2. From this we 
an see that the BM algorithm took on average 43.54%

more 
omparisons than our BR algorithm (see 5th 
olumn, last row) for a 
omplete

sear
h for all the words in the di
tionary.

Further to 
ounting the number of 
omparisons we time the algorithms. The

saving in the number of 
omparisons may be paid for by extra overhead due to

a

essing the pre
omputed shift table. We timed the sear
h of the medium text of

50,000 words for all o

urren
es of the words in the UNIX di
tionary. We used a 486-

DX66 with 8 megabytes of RAM and a 100 megabyte hard drive running SUSE 5.2.

In Table 7, the total number of 
omparisons for the sear
h are given along with the

time taken by ea
h algorithm for the sear
h, in
luding any prepro
essing performed

by the algorithm. The number of 
omparisons are redu
ed by a fa
tor of 1000. i.e.

for BF 10911786 means 10911786000 
omparisons.

medium1 book1 book2 papers

number time % dif BR num. 
omp. time se
. % dif. BR time % dif. BR time % dif. BR

BF 10911786 1315m 13s 528.54

KMP 10433340 1341m 25s 541.06

DFA 10433340 892m 59s 326.75

SIM 10433340 1688m 18 706.83

NSN 10482487 777m 52s 271.74

BM 2002822 371m 51s 77.71 3602739 674m 79.73 663s 69.57 264s 58.08

AG 2005310 972m 10s 364.60

HOR 1985219 244m 41s 16.93 3580863 442m 17.87 446s 14.07 249s 49.10

RAI 1998657 238m 27s 13.95 3601251 431m 14.93 434s 11.00 173s 3.59

MS 1815486 318m 49s 52.36

QS 1785730 245m 58s 17.55 3189368 444m 18.40 452s 15.60 180s 7.78

ZT 1761716 420m 55s 101.15

TBM 1683516 1166m 4s 457.26

SMI 1621591 280m 41s 34.14 2930285 513m 36.80 514s 31.46 207s 23.95

BR 1489839 209m 15s n/a 2682916 375m n/a 391s n/a 167s n/a

Table 7: Timing for a 
omplete sear
h for the di
tionary in the given texts.

>From this table we 
an see that the algorithms that take a high number of


omparisons are quite slow as well. The lower the number of 
omparisons the better

the time. Although putting the algorithms in order of how many 
omparisons they

take from highest to lowest starting at the BM we get the list: BM, RAI, AG, HOR,

MS, QS, ZT, TBM, SMI and the BR. If we do the same for the timings we get ZT,

BM, MS, SMI, QS, RAI and the BR. The reason for the di�eren
e in the lists is due

to overheads in traversing the data stru
tures whi
h are present in the algorithms

for the 
al
ulation of the 
orre
t shift value. Also the pre-pro
essing of some of the

algorithms are expensive. So we 
an not assume that be
ause an algorithm takes a

fewer number of 
omparisons that it will be more eÆ
ient than another.

We 
an also save time by performing the 
omparisons as in the RAI algorithm.

This is done by making the least and se
ond least likely 
hara
ters variables instead

having to look them up in the pattern array. Although 
ounting the 
omparisons is

a good estimate of whi
h algorithm is the best to use we have to a
tual time the

algorithms to �nd the best algorithm for the task of string mat
hing.

We repeated the tests for the medium text for the book1 text for the 5 algorithms

with the best times and our BR algorithm. From Table 7 we 
an see that our BR

algorithm is still the qui
kest and the other algorithms are still over 14% more time

than our algorithm. So our �ndings for a random text hold for this real English

text. We then 
onsidered two other texts, book2 and the six papers 
on
atenated

together from the Calgary 
orpus [CAL℄. We sear
hed for 500 random words from the

UNIX di
tionary again for the best 5 algorithms and our BR algorithm. The results

do
umented in Table 7 show that algorithm is the fastest algorithm for these tests.

The main reason for the speed of our BR algorithm is the improved maximum shift
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of m+ 2 and the sear
hing on the least likely to o

ur 
hara
ters.

Con
lusions

The experimental results show that the BR algorithm is more eÆ
ient than the exist-

ing algorithms in pra
ti
e for our 
hosen data sets. Over our 4 random texts and 3 real

texts where the BR algorithm is 
ompared to the existing algorithms, our algorithm

is 
omfortably more eÆ
ient over ea
h text. With the addition of pun
tuation and


apital letters it does not a�e
t the BR algorithm. If the pattern to be sear
hed for

began with a 
apital letter then this would make the 
apital letter the least frequent


hara
ter and so it would be sear
hed for �rst. We would expe
t the probability of

a mismat
h to rise and so the algorithm would speed up 
onsiderably. So in the real

world we would expe
t our savings to remain and make our BR algorithm 
ompetitive

with the existing algorithms. It is also possible to apply some of our �nding to what

makes a fast algorithm to the existing algorithms. This may make them faster but

we were 
on
erned with the original algorithms that were devised by their authors.
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Appendix

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 20 7 7 7 7 7 6 6 7 5 4

4 2178 41 11 11 11 11 11 10 10 11 9 7

5 3146 60 14 14 13 13 13 12 12 12 11 9

6 3852 67 13 13 13 13 13 12 12 12 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 7

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 70 8 8 8 8 8 8 8 6 7 5

13 279 72 8 8 8 8 8 8 8 6 6 5

14 116 69 7 7 7 7 7 7 7 5 6 5

15 44 72 7 7 7 7 7 7 7 5 6 5

16 17 70 6 6 6 6 6 6 6 5 5 4

17 7 75 7 7 7 7 6 6 6 5 5 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 89 7 7 7 7 7 7 7 4 5 4

21 2 88 7 7 7 7 7 6 7 4 5 4

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 64 11 11 11 11 11 10 10 10 9 7

Table 3: Averages for random TEXT A of 10,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 21 7 7 7 7 7 6 6 7 6 4

4 2178 42 12 12 12 12 12 10 10 11 9 8

5 3146 59 13 13 13 13 13 12 12 12 11 9

6 3852 66 13 13 13 13 13 12 12 11 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 8

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 7

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 71 8 8 8 8 8 8 8 6 7 6

13 279 71 8 8 8 8 8 8 7 6 6 5

14 116 70 7 7 7 7 7 7 7 6 6 5

15 44 64 6 6 6 6 6 6 6 5 5 4

16 17 74 7 7 7 7 7 7 7 5 5 5

17 7 64 6 6 6 6 6 5 6 4 4 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 72 5 5 6 6 5 5 5 4 4 3

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 63 11 11 11 11 11 10 10 10 9 8

Table 4: Averages for random TEXT B of 10,000 words
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p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 9 6 6 6 6 6 4 4 6 4 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 77 21 21 21 21 21 18 18 20 17 13

5 3146 133 30 30 30 30 30 27 26 28 25 20

6 3852 159 31 31 31 31 31 29 28 28 26 21

7 4042 170 29 29 29 29 29 27 27 26 24 20

8 3607 176 27 27 27 27 27 26 25 24 22 19

9 3088 181 26 26 26 26 26 25 24 22 21 18

10 1971 185 24 24 24 24 24 23 23 20 20 17

11 1120 184 23 23 23 23 23 22 22 18 18 15

12 593 186 21 21 21 21 21 21 20 17 17 14

13 279 183 20 20 20 20 20 19 19 15 16 13

14 116 194 20 20 20 20 20 19 19 15 16 13

15 44 164 16 16 16 16 16 16 16 12 13 10

16 17 217 20 20 20 20 20 20 20 17 16 13

17 7 172 15 15 15 15 14 14 15 11 12 10

18 4 147 12 12 13 13 12 12 13 9 10 8

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 221 17 17 18 18 17 17 17 11 13 10

22 1 397 27 27 27 27 27 26 28 18 22 17

total 24966 155 27 27 26 26 26 24 24 23 22 18

Table 5: Averages for random text of 50,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 13 7 7 7 7 7 5 5 7 5 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 80 22 22 22 22 22 19 18 21 17 15

5 3146 149 34 34 34 34 34 30 29 31 28 23

6 3852 182 36 36 36 36 36 33 32 33 29 25

7 4042 193 33 33 33 33 33 31 30 29 27 24

8 3607 201 31 31 31 31 31 29 29 27 26 22

9 3088 198 28 28 28 28 28 27 26 24 23 20

10 1971 198 26 26 26 26 26 25 25 22 21 18

11 1120 199 25 25 25 24 24 24 23 20 20 17

12 593 217 25 25 25 25 25 24 24 20 20 17

13 279 207 23 23 23 23 22 22 22 18 18 15

14 116 180 20 19 19 19 19 18 18 14 15 13

15 44 218 22 22 22 22 21 21 21 17 17 14

16 17 162 15 15 15 15 15 15 15 12 12 10

17 7 220 20 20 20 20 19 19 19 14 15 13

18 4 208 17 17 17 17 17 17 18 12 14 11

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 157 12 12 12 12 12 12 13 8 10 8

21 2 89 7 7 7 7 7 7 7 11 5 4

22 1 315 21 21 21 21 21 20 22 14 18 14

total 24966 173 30 30 30 30 29 27 27 26 24 21

Table 6: Averages for random text of 100,000 words
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