A Fast String Matching Algorithm and
Experimental Results

T. Berry and S. Ravindran

Department of Computer Science
Liverpool John Moores University
Liverpool L3 3AF
United Kingdom

e-mail: {T.BERRY,S.RAVINDRAN}@livjm.ac.uk

Abstract. In this paper we present experimental results for string matching
algorithms which have a competitive theoretical worst case run time complexity.
Of these algorithms a few are already famous for their speed in practice, such
as the Boyer-Moore and its derivatives. We chose to evaluate the algorithms by
counting the number of comparisons made and by timing how long they took
to complete a given search. Using the experimental results we were able to
introduce a new string matching algorithm and compared it with the existing
algorithms by experimentation. These experimental results clearly show that
the new algorithm is more efficient than the existing algorithms for our cho-
sen data sets. Using the chosen data sets over 1,500,000 separate tests were
conducted to determine the most efficient algorithm.

Key words: string matching, pattern matching, algorithms on words.

1 Introduction

Many promising data structures and algorithms discovered by the theoretical commu-
nity are never implemented or tested at all. Moreover, theoretical analysis (asymp-
totic worst-case running time) will show only how algorithms are likely to perform in
practice, but they are not sufficiently accurate to predict actual performance. In this
paper we show that by considerable experimentation and fine-tuning of the algorithms
we can get the most out of a theoretical idea.

The string matching problem [CR94| has attracted a lot of interest throughout the
history of computer science, and is crucial to the computing industry. String matching
is finding an occurrence of a pattern string in a larger string of text. This problem
arises in many computer packages in the form of spell checkers, search engines on the
internet, find utilities on various machines, matching of DNA strands and so on.

Section 2 describes string matching algorithms which are known to be fast. Sec-
tion 3 gives experimental results for these algorithms. From the findings of the exper-
imental results discussed in Section 3, we identify two fast algorithms to produce a
new algorithm. The new algorithm is described in Section 4. In Section 5 we compare
the new algorithm with the existing algorithms.

A Fast String Matching Algorithm and Experimental Results

2 The String Matching Algorithms

String matching algorithms work as follows. First the pattern of length m, P[1..m],
is aligned with the extreme left of the text of length n, T'[1..n]. Then the pattern
characters are compared with the text characters. The algorithms can vary in the
order in which the comparisons are made. After a mismatch is found the pattern
is shifted to the right and the distance the pattern can be shifted is determined
by the algorithm that is being used. It is this shifting procedure and the speed at
which a mismatch is found which is the main difference between the string matching
algorithms.

In the Naive or Brute Force (BF) algorithm, the pattern is aligned with the
extreme left of the text characters and corresponding pairs of characters are compared
from left to right. This process continues until either the pattern is exhausted or a
mismatch is found. Then the pattern is shifted one place to the right and the pattern
characters are again compared with the corresponding text characters from left to
right until either the text is exhausted or a full match is obtained. This algorithm can
be very slow. Consider the worst case when both pattern and text are all a’s followed
by a b. The total number of comparisons in the worst case is O(nm). However, this
worst case example is not one that occurs often in natural language text.

An improved version of the BF algorithm, the Not So Naive (NSN) algorithm
[HA93], changes the order of the comparisons. Suppose the pattern is aligned with the
text characters, first the second pattern character is compared with the corresponding
text character followed by comparisons of the rest of the pattern with corresponding
text characters, and then the last characters to be compared are the first character
of the pattern and the text character it is aligned with. A shift of two is made if a
mismatch is made with the second character of the pattern and the first two characters
of the pattern are the same, or if the second character of the pattern matches the
text but a mismatch occurs and the first two characters are not equal.

The number of comparisons can be reduced by moving the pattern to the right
by more than one position when a mismatch is found. This is the idea behind the
Knuth-Morris-Pratt (KMP) algorithm [KMP77]. The KMP algorithm starts and
compares the characters from left to right the same as the BF algorithm. When a
mismatch occurs the KMP algorithm moves the pattern to the right by maintaining
the longest overlap of a prefix of the pattern with a suffix of the part of the text
that has matched the pattern so far. After a shift, the pattern character compared
against the mismatched text character has to be different from the character that
mismatched. The KMP algorithm takes at most 2n character comparisons. The
KMP algorithm does O(m + n) operations in the worst case.

The Colussi (COL) [CO91] algorithm is an improvement of the KMP algorithm.
The number of character comparisons is 1.5n in the worst case. The set of pattern
positions is divided into two disjoint subsets due to the combinatorial properties
of their positions. First the comparisons are performed from left to right for the
characters at positions in the first set. If there is no mismatch, the characters at
positions in the second set are compared from right to left. This strategy reduces the
number of comparisons.

Galil and Giancarlo (GG) [GG92] improved the COL algorithm by reducing the
number of character comparisons in the worst case to %n. In these algorithms the

Proceedings of the Prague Stringology Club Workshop 99

preprocessing takes O(m) time.

The Boyer-Moore (BM) algorithm [BM77] differs in one main feature from the
algorithms already discussed. Instead of the characters being compared from left to
right, in the BM algorithm the characters are compared from right to left starting with
the rightmost character of the pattern. In a case of mismatch it uses two functions, last
occurrence function and good suffix function and shifts the pattern by the maximum
number of positions computed by these functions. The good suffix function returns
the number of positions for moving the pattern to the right by the least amount, so
as to align the already matched characters with any other substring in the pattern
that are identical. The number of positions returned by the last occurence function
determines the rightmost occurrence of the mismatched text character in the pattern.
If the text character does not appear in the pattern then the last occurence function
returns m. The worst case running time of the BM algorithm is O(mn).

The Turbo Boyer-Moore (TBM) algorithm [CC94] and the Apostolico-Giancarlo
(AG) algorithm [AG86] are ameliorations of the BM algorithm. When a partial match
is made between the pattern and the text these algorithms remember the characters
that matched and do not compare them again with the text. The TBM algorithm
and the Apostolico-Giancarlo algorithm perform in the worst case at most 2n and
1.5n character comparisons respectively [CL97h].

The Horspool (HOR) algorithm [HOS80] is a simplification of the BM algorithm. It
does not use the good suffix function, but uses a modified version of the last occurrence
function. The modified last occurrence function determines the right most occurrence
of the (k + m)th text character, T'[k 4+ m] in the pattern, if a mismatch occurs when
a pattern is aligned with T[k..k + m]. This algorithm changes the order in which
characters of the pattern are compared with the text. It compares the rightmost
character in the pattern first then compares the leftmost character, then all the other
characters in ascending order from the second position to the m — 1th position.

The Raita (RAI) algorithm [RA92] again changes the order in which characters of
the pattern are compared with the text. The process used to compare the rightmost
character of the pattern, then the leftmost character, then the middle character and
then the rest of the characters from the second to the (m — 1)th position. If at any
time during the procedure a mismatch occurs then it performs the shift as in the
HOR algorithm.

The Quicksearch (QS) algorithm [SU90] is similar to the HOR algorithm and the
RAT algorithm. It does not use the good suffix function to compute the shifts. It
uses a modified version of the last occurrence function. Assume that a pattern is
aligned with the text characters T'[k..k +m]. After a mismatch the length of the shift
is at least one. So, the character at the next position in the text after the alignment
(T'[k+m+1]) is necessarily involved in the next attempt. The last occurrence function
determines the right most occurrence of T'[k + m + 1] in the pattern. If T[k +m + 1]
is not in the pattern the pattern can be shifted by m + 1 positions. The comparisons
between text and pattern characters during each attempt can be done in any order.

The Maximal Shift (MS) algorithm [SU90] is another variant of the QS algorithm.
The algorithm is designed in such a way that the pattern characters are compared in
the order which will give the maximum shift if a mismatch occurs.

The Smith (SMI) algorithm [SM91] uses HOR and Quick Search last occurrence
functions. When a mismatch occurs, it takes the maximum values between these

A Fast String Matching Algorithm and Experimental Results

functions.

The Zhu and Takaoka (ZT) algorithm [ZT87] is another variant of the BM algo-
rithm. The comparisons are done in the same way as BM (i.e. from right to left)
and it uses the good suffix function. If a mismatch occurs at T'[i], the last occurrence
function determines the right most occurrence of T[i — 1..i] in the pattern. If the
substring is in the pattern, the pattern and text are aligned at these two characters
for the next attempt. The shift is m, if the two character substring is not in the
pattern.

Searching can be done in O(n) time using a minimal Deterministic Finite Automa-
ton (DFA) [SI93]. This algorithm uses O(om) space and O(o + m) pre-processing
time, where o is the size of the alphabet. The Simon (SIM) algorithm [SI93] reduces
the pre-processing time and the space to O(m).

The pre-processing is needed for the algorithm to calculate the relevant shifts upon
a mismatch/match except for the BF algorithm which has no pre-processing. The
pre-processing cost of the algorithms does not effect the efficiency of the algorithms
as they are relatively very small and all are approximately the same.

3 Experimental Results of the Existing
Algorithms

Monitoring the number of comparisons performed by each algorithm was chosen as a
way to compare the algorithms. All the algorithms were coded in C and their C code
are taken from [CL97a] and animations of the algorithms can be found at [CL98].
This collection of string matching algorithms were easy to implement as functions
into our main control program. The algorithms were coded as their authors had
devised them in their papers. The main control program read in the text and pattern
and had one of the algorithms to be tested inserted into it for the searching process.
The main control program was the same for each algorithm and so did not affect the
performance of the algorithms. Each algorithm had an integer counter inserted into
it, to count the number of comparisons made between the pattern and the text. The
counter was incremented by one each time a comparison was made.

A random text of 200,000 words from the UNIX English dictionary was used for
the first set of experiments. The random text was constructed so as to simulate an
actual English text. All the letters in the UNIX dictionary were made lower case
to increase the probability of a match. In English text roughly only every 1 in 10
words begin with a capital letter. We decided to number each of the words in UNIX
dictionary from 1 to 25,000. Then we used a pseudo random number generator to pick
words from the UNIX dictionary and place them in the random text. Separating each
word by a space character. Punctuation was also removed as we were concerned with
finding words and the punctuation would not effect the results obtained. The reason
for using a large text (200,000 words) was to ensure that as many of the 25,000 words
in the UNIX English dictionary occurred somewhere in the random text generated.
For each pattern in the dictionary, we searched the text (of 200,000 words) for the
first occurrence of the pattern.

The text was searched for each word in the UNIX dictionary and the results are
given in Table 1. The first column in Table 1 is the length of the pattern. The second

Proceedings of the Prague Stringology Club Workshop 99

column is the number of words of that length in the UNIX English dictionary. For
example, for a pattern length of 7, 4042 test cases were carried out and the average
number of character comparisons made by the KMP algorithm was 197,000 (to the
nearest 1000). The average was calculated by taking the total number of comparisons
performed to find all 4042 cases and dividing this number by 4042. These columns
are arranged in descending order of the average of the total number of comparisons
of the algorithms. An interesting observation is that for (almost) each row the values
are in descending order except for the last two columns.

p. len [num BF [KMP [DFA [SIM [NSN |COL |GG |BM |AG [HOR |RAI [TBM |MS [QS [ZT [SMI
2 133 7 7 7 7 6 6 6 3 3 3 3 3 2 2 3 2
3 765 38 |38 37 37 37 37 37 13 13 |13 13 13 11 |10 [13 |10
4 2178 [82 82 80 80 80 79 79 23 23 [23 23 22 19 |19 [22 |18
5 3146 151 [150 145 145 (145 145 145 |34 34 |34 34 134 30 [30 |32 [28
6 3852 |186 |[185 179 [179 179 |178 178 |36 36 |36 36 136 33 [32 |33 [30
7 4042 [198 [197 191 191 (191 190 190 |34 34 |34 34 34 32 [31 |30 [28
8 3607 [205 [204 197 [197 197 [196 196 |32 32 |31 32 31 30 29 [27 |26
9 3088 212 211 204 |204 [204 |203 203 |30 30 |30 30 130 29 |28 25 |24
10 1971 |220 |219 212 212 (212 |210 210 |29 29 [29 29 29 28 |27 [24 |23
11 1120 209 [207 201 201 [200 (198 198 |26 26 [26 26 25 25 [24 21 21
12 593 218 [217 210 210 [209 [|207 207 |25 25 [25 25 25 24 24 21 |20
13 279 224 (222 215 215 (213 |212 212 |24 24 [24 24 24 23 |23 |19 |19
14 116 228 [227 220 [220 [219 217 217 |23 23 [23 23 23 23 |23 |19 [19
15 44 151 150 144 [144 143 [142 142 |15 15 |15 15 14 14 14 [11 12
16 17 227 [225 217 217 (215 |214 214 |20 21 21 21 20 20 |20 |18 |16
17 7 233 [231 222 222 [221 218 218 |20 20 [20 20 19 19 [20 [15 |16
18 4 236 [234 225 [225 [223 221 221 |19 20 [20 20 19 19 [20 [14 [i6
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 132 |131 122 122 (121 119 119 |10 10 |10 10 10 10 |10 |7 8
21 2 311 [309 295 295 [290 288 288 [24 24 |25 25 23 23 [24 |15 |18
22 1 491 (486 455 |455 [451 445 445 |33 33 |33 33 33 31 34 [22 |27
total [24966 [180 (179 174 [174 173 [172 172 |31 31 |30 30 130 28 |28 27 |25

Table 1: Results of searching a text of 200,000 words for each word in the UNIX dictionary.

The algorithm with the largest number of comparisons is the BF algorithm. This
is because the algorithm shifts the pattern by one place to the right when a mismatch
occurs, no matter how much of a partial /full match has been made. This algorithm
has a quadratic worst case time complexity. But the KMP algorithm which has a lin-
ear worst case time complexity, does roughly the same number of comparisons as the
BF algorithm. The reason for this is that in a natural language a multiple occurrence
of a substring in a word is not common. For the same reason, the KMP variants,
COL and GG algorithms have only a small improvement over the KMP algorithm.
Other linear time algorithms, DFA and SIM, also have roughly the same number of
comparisons as the BF algorithm. We will see below that the other quadratic worst
case time complexity algorithms perform much better than these linear worst case
time algorithms. This is a good example showing that asymptotic worst-case running
time analysis can be indicative of how algorithms are likely to perform in practice,
but they are not sufficiently accurate to predict actual performance.

The BM algorithm uses the good suffix function to calculate the shift which de-
pends on a reoccurrence of a substring in a word. But, it also uses the last occurrence
function. It is this last occurrence function that reduces the number of comparisons
significantly. In practice, on an English text, the BM algorithm is three or more times
faster than the KMP algorithm [SG82]. ;From Table 1 one can see that the KMP
algorithm is takes six times more comparisons than the BM algorithm on average.
The other algorithms, TBM, AG, HOR, RAI, QS, MS, SMI and ZT, are variants of
the BM algorithm. The number of comparisons for these algorithms is roughly the
same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of comparisons for
pattern lengths less than or equal to twelve and greater than twelve respectively.

A Fast String Matching Algorithm and Experimental Results

4 The New Algorithm - the BR algorithm

JFrom the findings of the experimental results discussed in section 3, it is clear that
the SMI and ZT algorithms have the lowest number of comparisons among the others.
We combined the calculations of a valid shift in SMI and ZT algorithms to produce
a more efficient algorithm. If a mismatch occurs when the pattern P[1..m] is aligned
with the text T[k + 1..k + m], the shift is calculated by the rightmost occurrence of
the substring T'[k +m+ 1..k +m+ 2] in the pattern. If the substring is in the pattern
then the pattern and text are aligned at this substring for the next attempt. This
can be done shifting the pattern as shown in the table below. Let % be a wildcard
character that is any character in the ASCII set. Note that if T[k +m+1..k +m + 2]
is not in the pattern, the pattern is shifted by m + 2 positions. The total number of
comparisons in the worst case is O(nm).

Tk+m+1] | Tlk+m+2] | Shift
* P[1] m+1
PJi] Pli+1] m—i+1,1<i<m-—1
P[m)] * 1
Otherwise m+ 2

For example, the following shifts would be associated with the pattern, onion.

Tk+m+1] | Tlk+m+2] | Shift

* 0 6

0 n 5

n [4

9 0 3

] n 2

n * 1
Otherwise 7

After a mismatch the calculation of a shift in our BR algorithm takes O(1) time.
Note that for the substrings ni and n* have a value of 4 and 1 respectively. This
ambiguity can be solved by the higher shift value being overwritten with the lower
value. We will explain this later in this section. For a given pattern P[l..m] the
preprocessing is done as follows, and it takes O(o?) time.

There are 128 characters in the ASCII set and (128)2 = 16384 distinct pairs. We
define an array Shift Array (SA) of length 16384 and initialise it to m + 2. Using a
hash function we insert the values for each pair and the hash function we use is:

Tim+k+1] x 127+ T[m+ k + 2] where for P[m + k + 1] and P[m + k + 2] we use
their ASCII values. This gives each pair of character a distinct value in SA and we
insert into the SA the shift for the pair. If the same pair occurs more than once then
the lower shift value overwrites the higher value. So for example for the pair [i][o] we
would insert the value 3 at the [105 x 127] + 111 = 13446th position in SA.

[wildcard][o] = 6 all array positions that satisfy z[0]mod127 = 111mod127 = 6
[0][n] = 5 position 111 x 127 + 110 = 14207
[n][i] = 4 position 110 x 127 + 105 = 14075
[i][o] = 3 position 105 x 127 4+ 111 = 13446
[
[

~

o][n] = 2 position 111 x 127 + 110 = 14207
n][wildcard] = 1 position 110 x 127 + 0..127 = 13970..14097

The order of performing the steps is important in ensuring the correct values
appear in the array. Note that the higher values have been over written by the lower

Proceedings of the Prague Stringology Club Workshop 99

values.

In the RAT algorithm the first and last characters of the pattern are made variables.
This cuts down the number of array look ups performed during a search. We adapted
this idea to our algorithm and compared the least frequent pattern character with
its corresponding text character. We then repeated the process for the second least
frequent character and then the rest of the characters in order from right to left.

The UNIX dictionary used in the tests was used to see how many times each letter
occurred in the dictionary. The frequency of each letter is given in the following chart.

letter | frequency | ranking | letter | frequency | ranking | letter | frequency | ranking

a 16395 25 j 432 3 S 10167 19
b 4110 10 k 1923 6 t 12789 22
c 8209 17 1 10013 18 u 6476 16
d 5763 14 m 5822 15 v 1890 5
e 20083 26 n 12062 20 w 1950 7
f 2660 8 0 12696 21 X 616 4
g 4125 11 p 5514 13 y 3618 9
h 5179 12 q 377 1 z 429 2
i 13963 24 r 13409 23

Note that we choose the characters in the pattern that have the lowest ranking.
If the character is not in the pattern then it has a ranking of 0 and is chosen as the
least frequent character.

We now give an example of our BR algorithm in action to find the pattern onion.
The SA array for the pattern onion were used to calculate the shift after a mismatch.
PI2] is the least frequent and P[5] is the next least frequent character.

w wla|n|t| [t]o t|le|s |t w|li|t]|h o|n|i|lo|n

e
Z
n

o i| o n

mismatch shift on SA([n][t]) = 110 x 127 + 116 = SA[14086] = 1

w | e wlal|ln]|t t | o t|le|s |t wl|i|t|h o|n|i|lo|n

Z

o|n |i |[o]|n

mismatch shift on SA([t][]) = 116 x 127 + 32 = SA[14764] = 7.

w | e wlal|ln|t]| |t t e |s |t wli|t|h o|n|iflo|n

[¢]
Z
n

o ilo|n

mismatch shift on SA([s][t]) = 115 x 127 + 116 = SA[14721] =7

w | e wla|ln|t| |[t]o]| |t]|el|s]|t it |h o|n|iflo|n

RNE

ilo|n

mismatch shift on SA([][o]) = 32 x 127 + 111 = SA[4175] = 6.

o

w | e wla|ln|t|] [t]o] |t]|e|s|t]|] |w]|]i|t]|h

—

ooy |e
S TE
e rSInE:
oleol |
EASTRE

So the word onion is found in 9 comparisons in a text of length 26. On the above

full match the order in which the comparisons are conducted is shown on the third
row.

A Fast String Matching Algorithm and Experimental Results

5 Experimental Results and Comparisons with the
BR Algorithm

We select the best nine algorithms from the results in Table 1 and the KMP algorithm,
and compare with our BR algorithm. Experiments were carried out for different
random texts as described in Section 3. The texts were constructed by randomly
choosing words from the UNIX English dictionary. There were 2 different texts of
10,000 words, a text of 50,000 words and a text of 100,000 words. The results are
described in Tables 3-6 (see appendix) respectively. Tables 3-6 (which can be found
in the appendix at the back of this paper) show the average number of comparisons
required for a search for the given pattern length. They are based on taking the total
number of comparisons for the search for all the patterns of a length and dividing the
number by the number of patterns of that size to give the average. So for example,
in Table 3 the BM algorithm takes 12,000 comparisons (to the nearest thousand) on
average if the pattern length is 7. From these tables one can observe that the relative
order of their performance is the same as in Table 1. The main observation is that
the BR algorithm performs better than the other algorithms for all pattern lengths
and for all texts used in the experiments.

p. len{ num.| KMP AG BM HOR| RAI| TBM| MS QS 7T SMI

2 133 199.98 | 93.96 93.96 94.00 93.96 93.89 35.94] 32.92] 93.96 31.4§
3 765 366.02 [64.09 64.18 64.200 64.19 63.700 28.78 28.21] 60.03 24.93
4 2178 | 449.02 | 50.97 51.11] 50.86 50.900 50.77] 28.25 25.77 43.19 19.73
5 3146 | 540.11 | 44.91| 45.02 44.58 44.46(44.72[28.33 26.47] 33.91] 18.13
6 3852 | 626.30 [42.58 42.421 41.83 41.6§ 41.91] 30.02] 27.32] 27.71 16.42
7 4042 | 719.01 | 42.07 41.38 40.92 41.000 40.72[31.49 28.83 24.94 16.0§
8 3607 | 807.61 | 40.76(40.5§ 40.28 40.35 39.95 32.27 30.100 21.67 15.49
9 3088 | 896.18 | 41.85 41.52 40.92| 40.84{ 40.69] 34.75 32.19 19.29 15.45
10 1971 | 982.63 | 42.38 42.19 41.69 41.79 41.16| 36.62] 34.37] 17.75 15.64
11 1120 | 1067.87 44.91| 44.14 43.67| 43.79 42.97 38.57] 37.1§ 17.06 16.32
12 593 1164.14f 45.36) 45.28 44.58 44.68 44.20 40.06(39.28 16.14] 17.34
13 279 1245.53 48.85 47.88 47.22 47.32 46.36] 42.26(41.61] 12.65 17.54
14 116 1322.70 46.46(46.74 46.46f 46.600 45.16] 42.62] 42.26(11.32 17.03
15 44 1426.02[50.78 51.200 51.51] 51.59 49.23| 44.73 45.29 8.72 | 19.0

16 17 1527.28 48.99 49.34] 50.44] 50.600 47.37 46.600 49.061 24.80 20.02
17 7 1598.50] 45.09 45.29 44.51] 44.58 43.42] 40.22] 45.01] 6.72 | 16.95
18 4 1700.81] 50.34f 50.58 53.96 54.06 48.54] 50.12] 53.59 6.09 | 22.21
19 0 0.00 0.00 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 | 0.00 [0.00 | 0.00

20 1 1948.74[58.37 58.37 58.12] 58.07 58.37 52.25 63.51] 3.01 | 29.43
21 2 1947.96/ 58.13 57.38 63.98 63.99 56.32] 57.59 57.500 2.22 | 21.84

22 1 2129.14 50.97] 50.97 49.87| 49.89 50.97| 45.07 55.43 1.04 | 25.09
total 24992 737.56 | 43.54] 43.29 42.83 42.82 42.65 32.000 29.72 26.09 16.66|

Table 2: The average difference between each of the existing algorithms and our BR algorithm as a percentage.

Table 2 summarises the results of Tables 3-6. The entries in Table 2 are in per-
centage form and describe how many fewer comparisons our BR algorithm uses, when
compared with the existing algorithms. The figures are an average of the four differ-
ent texts used. To calculate the difference as a percentage between our BR algorithm
and the existing algorithms we used the following formula. The average number of
comparisons was taken from the relevant cell in Tables 3-6 and divided by the value
for that pattern length for our BR algorithm. This value was then deducted by 1
and multiplied by 100 to give the percentage difference between the two algorithms.
An interesting observation of the existing algorithms when compared with the BR
algorithm, is that for each individual text the percentages were within 1% for each
specific algorithm. Each value in Table 2 is calculated by taking the difference as a
percentage between each algorithm and our BR algorithm for each pattern length,
adding them together and dividing by 4. For example, for a pattern length of 4 the
BM algorithm takes on average 51.11% more comparisons than our BR. algorithm.

The result of a full search for the dictionary over all four texts is given in the last

Proceedings of the Prague Stringology Club Workshop 99

row of Table 2. From this we can see that the BM algorithm took on average 43.54%
more comparisons than our BR algorithm (see 5th column, last row) for a complete
search for all the words in the dictionary.

Further to counting the number of comparisons we time the algorithms. The
saving in the number of comparisons may be paid for by extra overhead due to
accessing the precomputed shift table. We timed the search of the medium text of
50,000 words for all occurrences of the words in the UNIX dictionary. We used a 486-
DX66 with 8 megabytes of RAM and a 100 megabyte hard drive running SUSE 5.2.
In Table 7, the total number of comparisons for the search are given along with the
time taken by each algorithm for the search, including any preprocessing performed
by the algorithm. The number of comparisons are reduced by a factor of 1000. i.e.
for BF 10911786 means 10911786000 comparisons.

medium1 book1l book2 papers
number time % dif BR| num. comp/| time sec| % dif. BR| timd % dif. BR| timd % dif. BR]
BF 10911786 1315m 13 528.54
KM 10433340 1341m 259 541.06
DFA | 10433340 892m 59s 326.75
SIM 1043334 1688m 18 | 706.83
NSN | 10482487 777m 52s 271.74

BM 2002822 | 371m 51s | 77.71 3602739 674m 79.73 663s| 69.57 264s| 58.08
AG 2005310 [972m 10s | 364.60
HOR| 1985219 | 244m 41s | 16.93 3580863 442m 17.87 446s) 14.07 249s[49.10
RAI | 1998657 | 238m 27s | 13.95 3601251 431m 14.93 434s] 11.00 173s| 3.59
MS 1815486 | 318m 49s | 52.36

QS 1785730 | 245m 58s | 17.55 3189368 444m 18.40 452s[15.60 180s| 7.78
ZT 1761716 | 420m 55s | 101.15
TBM| 1683516 1166m 4s | 457.26
SMI [1621591 280m 41s | 34.14 2930285 513m 36.80 514s| 31.46 207s] 23.95
BR 1489839 | 209m 15s | n/a 2682916 375m n/a 391s| n/a 167s| n/a

Table 7: Timing for a complete search for the dictionary in the given texts.

. From this table we can see that the algorithms that take a high number of
comparisons are quite slow as well. The lower the number of comparisons the better
the time. Although putting the algorithms in order of how many comparisons they
take from highest to lowest starting at the BM we get the list: BM, RAI, AG, HOR,
MS, QS, ZT, TBM, SMI and the BR. If we do the same for the timings we get ZT,
BM, MS, SMI, QS, RAI and the BR. The reason for the difference in the lists is due
to overheads in traversing the data structures which are present in the algorithms
for the calculation of the correct shift value. Also the pre-processing of some of the
algorithms are expensive. So we can not assume that because an algorithm takes a
fewer number of comparisons that it will be more efficient than another.

We can also save time by performing the comparisons as in the RATI algorithm.
This is done by making the least and second least likely characters variables instead
having to look them up in the pattern array. Although counting the comparisons is
a good estimate of which algorithm is the best to use we have to actual time the
algorithms to find the best algorithm for the task of string matching.

We repeated the tests for the medium text for the book1 text for the 5 algorithms
with the best times and our BR algorithm. From Table 7 we can see that our BR
algorithm is still the quickest and the other algorithms are still over 14% more time
than our algorithm. So our findings for a random text hold for this real English
text. We then considered two other texts, book2 and the six papers concatenated
together from the Calgary corpus [CAL]. We searched for 500 random words from the
UNIX dictionary again for the best 5 algorithms and our BR algorithm. The results
documented in Table 7 show that algorithm is the fastest algorithm for these tests.
The main reason for the speed of our BR algorithm is the improved maximum shift

A Fast String Matching Algorithm and Experimental Results

of m + 2 and the searching on the least likely to occur characters.

Conclusions

The experimental results show that the BR algorithm is more efficient than the exist-
ing algorithms in practice for our chosen data sets. Over our 4 random texts and 3 real
texts where the BR algorithm is compared to the existing algorithms, our algorithm
is comfortably more efficient over each text. With the addition of punctuation and
capital letters it does not affect the BR algorithm. If the pattern to be searched for
began with a capital letter then this would make the capital letter the least frequent
character and so it would be searched for first. We would expect the probability of
a mismatch to rise and so the algorithm would speed up considerably. So in the real
world we would expect our savings to remain and make our BR algorithm competitive
with the existing algorithms. It is also possible to apply some of our finding to what
makes a fast algorithm to the existing algorithms. This may make them faster but
we were concerned with the original algorithms that were devised by their authors.

Acknowledgments

We wish to thank Carl Bamford for comments and suggestions made to us during the
writing of this paper.

References

[AGS86] Apostolico A., Giancarlo R., "The Boyer-Moore-Galil string strategies re-
visited”, STAM Journal of Computing, 15(1), pages 98-105, 1986.

[BM77] Boyer R. S., Moore J. S., "A fast string searching algorithm”, Communi-
cations of the ACM, 23(5), pages 1075-1091, 1977.

[CAL] Calgary Corpus available at:
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/

[CL97a] Charras C., Lecroq T., Exact string matching available at:
HTTP://www.dir.univ-rouen.fr/ lecroq/string.ps, 1997.

[CL9S] Charras C., Lecroq T., Exact string matching animation in JAVA available
at: HTTP://www. dir.univ-rouen.fr/ charras/string/, 1998.

[CO91] Colussi L., ”Correctness and efficiency of the pattern matching algo-
rithms”, Information Computing, 95(2), pages 225-251, 1991.

[CCY4] Crochemore M., Czumaj A., Gasieniec L., Jarominek T., Lecroq T.,
Plandowski W., Rytter W., ”Speeding up two string matching algorithms”,
Algorithmica, 12(4), pages 247-267, 1994.

[CL97b] Crochemore M., Lecroq T., "Tight bounds on the complexity of the
Apostolico-Giancarlo algorithm”, Information Processing Letters, 63(4),
pages 195-203, 1997.

Proceedings of the Prague Stringology Club Workshop 99

[CR94]

[GG92

[HA93]

[HO80]

[KMP77]

[RA92]

[S193]

[SMO1]

[SGS82]

[SU9O]

[ZT87]

Crochemore M., Rytter W., "Text algorithms”, Oxford University Press,
1994.

Galil Z., Giancarlo R., ”On the exact complexity of string matching: upper
bounds”, STAM Journal of Computing, 21(3), pages 407-437, 1992.

Hancart C., "Analyse exacte et en moyenne d’algorithmes de recherche
d’un motif dans un texte”. Thése de doctorat de 'Université de Paris 7,
France, 1993.

Horspool R. N., ”Practical fast searching in strings”. Software Practice
and Experience. 10(6), pages 501-506, 1980.

Knuth D. E., Morris Jr J. H., Pratt V. R., "Fast pattern matching in
strings”, STAM Journal of Computing, 6(1), pages 323-350, 1977.

Raita T., "Tuning the Boyer-Moore-Horspool string searching algorithm”,
Software Practice and Experience, 22(10), pages 879-884, 1992.

Simon 1., ”String matching algorithms and automata”, First American
Workshop on String Processing, ed. Baeza-Yates and Ziviani, pages 151-
157. Universidade Federal de Minas Gerais, 1993.

Smith P. D., "Ezperiments with a very fast substring search algorithm”,
Software Practice and Experience, 21(10), pages 1065-1074, 1991.

de Smit G. V., "A Comparison of Three String Matching Algorithms”,
Software Practice and Experience, 12(1), pages 57-66, 1982.

Sunday D. M., A very fast substring search algorithm”, Communications
of the ACM, 33(8), pages 132-142, 1990.

Zhu R. F., Takaoka T., "On improving the average case of the Boyer-
Moore string matching algorithm”, Journal of Information Processing,
10(3), pages 173-177, 1987.

A Fast String Matching Algorithm and Experimental Results

Appendix

p lenf num | KMP| AG| BM| HOR| RAI TBM| MS QS ZT| SMI BR]
2 133 6 3 3 3 3 3 2 2 3 2 2
3 765 | 20 T 7 7 7 6 |6 |7]5 4
4 2178 | 41 11] 11 | 11 11 11 10 10| 11{ 9 7
5 3146 | 60 14| 14 | 13 13 13 12| 12] 12] 11 9
6 3852 | 67 13 13| 13 13 | 13 12 12 12| 11 | 9
7 4042 | 68 12] 12 | 12 12 12 11| 11| 10| 10 8
8 3607 | 69 1] 11] 11 11 | 11 10| 10] 9 | 9 7
9 3088 | 70 10 | 10 | 10 10 10 9 9 8 8 7
10 1971 | 71 9 9 9 9 9 9 9 8 8 6
11 1120 | 70 9 9 9 9 9 8 8 7 7 6
12 593 70 8 8 8 8 8 8 8 6 7 5
13 279 72 8 8 8 8 8 8 8 6 6 5
14 116 | 69 7|7 7 7 7 7T | 7|5 |6 5
15 44 72 7|7 7 7 7 7T 7|5 |6 5
16 17 70 6 |6 6 6 6 6 |6 |5 |5 4
17 7 75 7|7 7 7 6 6 |6 |5 |5 4
18 4 87 7|7 7 7 7 7T 7|5 |6 5
19 0 0 0 0 0 0 0 0 0 0 0 0
20 1 89 T 7 7 7 7171415 4
21 2 88 T 7 7 7 6 |7 |4]5 4
22 1 89 6 6 6 6 6 6 6 4 15 4
total| 24966 64 11] 11 | 11 11 11 10| 10| 10{ 9 7
Table 3: Averages for random TEXT A of 10,000 words
p lenf num | KMP| AG| BM| HOR| RAI TBM| MS QS ZT| SMI BR]
2 133 6 3 3 3 3 3 2 2 3 2 2
3 765 | 21 T 7 7 7 6 |6 |7]6 4
4 2178 | 42 12| 12 | 12 12 12 10 10| 11{ 9 8
5 3146 | 59 13| 13 | 13 13 13 12| 12] 12| 11 9
6 3852 | 66 13| 13| 13 13 | 13 12| 12| 11| 11 | 9
7 4042 | 68 12] 12 | 12 12 12 11| 11| 10| 10 8
8 3607 | 69 1] 11] 11 11 | 11 10| 10] 9 | 9 8
9 3088 | 70 10 | 10 | 10 10 | 10 9 19 |88 7
10 1971 | 71 9 |9 9 9 9 9 |9 |88 7
11 1120 | 70 9 9 9 9 9 8 8 7 7 6
12 593 71 8 8 8 8 8 8 8 6 7 6
13 279 71 8 8 8 8 8 8 716 6 5
14 116 | 70 T 7 7 7 7| 7]161]6 5
15 44 64 6 6 6 6 6 6 6 5 5 4
16 17 74 T 7 7 7 7171515 5
17 7 64 6 | 6 6 6 6 516 |44 4
18 4 87 7|7 7 7 7 7T 7|5 |6 5
19 0 0 0 [0 0 0 0 0 [0 |O0]O 0
20 1 41 3 |3 3 3 3 3 131213 2
21 2 72 5 |5 6 6 5 5 |5 |44 3
22 1 89 6 6 6 6 6 6 6 4 15 4
total| 24966 63 11] 11 | 11 11 11 10| 10| 10{ 9 8

Table 4: Averages for random TEXT B of 10,000 words

Proceedings of the Prague Stringology Club Workshop 99

p lenl num | KMP| AG BM| HOR| RAI TBM| MS| QS| ZT| SMI BR]
2 133 | 9 6 | 6 6 6 6 4 |46 |4 3
3 765 | 37 13| 13 | 13 13 | 13 10 | 10| 13| 10 | 8
4 2178 | 77 21 21 | 21 21 21 18 | 18| 20| 17 13
5 3146 | 133 | 30 | 30 | 30 30 | 30 27| 26| 28| 25 | 20
6 3852 | 159 31 31| 31 31 31 29 | 28] 28| 26 21
7 4042 | 170 291 29 | 29 29 29 27| 27| 26| 24 20
8 3607 | 176 27 | 27 | 27 27 | 27 26 | 25| 24| 22 19
9 3088 | 181 26 | 26 | 26 26 26 25| 24| 22| 21 18
10 1971 | 185 24 | 24 | 24 24 24 23| 23] 20| 20 17
11 1120 | 184 23| 23 | 23 23 23 22| 22| 18| 18 15
12 593 186 21 21 | 21 21 21 211 20| 17| 17 14
13 279 183 | 20| 20 | 20 20 | 20 19| 19| 15| 16 | 13
14 116 194 20| 20 | 20 20 20 19| 19| 15| 16 13
15 44 164 16 | 16 | 16 16 16 16 | 16| 12| 13 10
16 17 217 20| 20 | 20 20 20 20| 20| 17| 16 13
17 7 172 15| 15 | 15 15 14 14| 15| 11| 12 10
18 4 147 12| 12 | 13 13 12 12| 13(9 10 8
19 0 0 0 0 0 0 0 0 010 0 0
20 1 41 3 3 3 3 3 3 3| 2 3 2
21 2 221 17| 17 | 18 18 17 17| 17| 11| 13 10
22 1 397 27 | 27 | 27 27 | 27 26 | 28| 18| 22 17
total| 24966 155 27 | 27 | 26 26 26 24 | 24| 23| 22 18
Table 5: Averages for random text of 50,000 words

p len| num | KMP| AG BM| HOR| RAI TBM| MS QS| ZT| SMI BR]
2 133 13 7 7 7 7 7 5 5 715 3
3 765 | 37 13| 13 | 13 13 | 13 10 | 10| 13| 10 | 8
4 2178 | 80 22| 22 | 22 22 22 19| 18] 21| 17 15
5 3146 | 149 | 34| 34 | 34 34 | 34 30| 29| 31| 28 | 23
6 3852 | 182 | 36| 36 | 36 36 | 36 33| 32| 33| 29 | 25
7 4042 | 193 | 33| 33 | 33 33 | 33 31| 30| 29| 27 | 24
8 3607 | 201 31 31| 31 31 31 29| 29| 27| 26 22
9 3088 | 198 28 | 28 | 28 28 28 27| 26| 24| 23 20
10 1971 | 198 26 | 26 | 26 26 26 25| 25| 22| 21 18
11 1120 | 199 25| 25 | 25 24 24 24| 23| 20| 20 17
12 593 217 25| 25 | 25 25 25 24| 24| 20| 20 17
13 279 207 23| 23 | 23 23 22 22| 22| 18| 18 15
14 116 180 20 19 | 19 19 19 18| 18| 14| 15 13
15 44 218 22| 22 | 22 22 21 21 21| 17| 17 14
16 17 162 15| 15 | 15 15 15 15| 15] 12] 12 10
17 7 220 20 | 20 | 20 20 19 19| 19| 14| 15 13
18 4 208 17| 17 | 17 17 17 17| 18] 12| 14 11
19 0 0 0 0 0 0 0 0 010 0 0
20 1 157 12| 12 | 12 12 12 12| 13| 8 10 8
21 2 89 7|7 7 7 7 7T |7 |11]5 4
22 1 315 21 21| 21 21 21 20| 22| 14| 18 14
total| 24966 173 30| 30 | 30 30 29 27| 27| 26| 24 21

Table 6: Averages for random text of 100,000 words

