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Prefa
e

This 
ollaborative report 
ontains the pro
eedings of the Prague Stringology Club

Workshop '99 (PSCW'99), held at the Department of Computer S
ien
e and Engi-

neering of Cze
h Te
hni
al University in Prague on July 8{9, 1999. The workshop was

pre
eded by PSCW'96 whi
h was the �rst a
tion of the Prague Stringology Club, by

PSCW'97 and by PSCW'98. The pro
eedings of PSCW'96, PSCW'97 and PSCW'98

were published as 
ollaborative reports DC{96{10, DC{97{03 and DC{98{06, respe
-

tively, of Department of Computer S
ien
e and Engineering and are also available in

the posts
ript form at Web site with URL: http://
s.felk.
vut.
z/ps
. While

the papers of PSCW'96 were invited papers, the papers of PSCW'97 and PSCW'98

were sele
ted from the papers submitted as a response to a 
all for papers. The papers

in this pro
eedings are alphabeti
ally ordered by the authors.

The PSCW aims at strengthening the 
onne
tion between stringology (the 
om-

puter s
ien
e on strings and sequen
es) and �nite automata theory. The automata

theory has been developed and su

essfully used in the �eld of 
ompiler 
onstru
tion

and 
an be very useful in the �eld of stringology too. The automata theory 
an fa
il-

itate the understanding of existing algorithms and the developing of new algorithms.

Jan Holub and Milan

�

Sim�anek, editors
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The Closest Common Subsequen
e Problems

1

Gabriela Andrejkov�a

Department of Computer S
ien
e, Fa
ulty of S
ien
e, P. J.

�

Saf�arik University,

Jesenn�a 5, 041 54 Ko�si
e, Slovakia

e-mail: andrejk�kosi
e.upjs.sk

Abstra
t. EÆ
ient algorithms are presented that solve general 
ases of the

Common Subsequen
e Problems, in whi
h both input strings 
ontain symbols

with 
ompeten
e values or sets of symbols with 
ompeten
e values. These prob-

lems arise from a sear
hing of the sets of most similar strings.

Key words: Subsequen
e, 
ommon subsequen
e, measure of the string, dy-

nami
 programming, design and analysis of algorithms.

1 Introdu
tion

The motivation to the CCS Problems 
an be found in the typing of a text on the

keyboard. The following mistakes 
an be made in typing some string:

1. Typing a di�erent 
hara
ter, usually from the neighbour area of the given 
har-

a
ter.

2. Inserting a single 
hara
ter into the sour
e string.

3. Omiting (skipping) any single sour
e 
hara
ter.

In the most frequent mistakes, a 
hara
ter from the area on the keyboard adja
ent

to the required 
hara
ter was typed instead of the required 
hara
ter. For example,

the neighborhood of the 
hara
ter f is the set f = ff,d, g, r, t, 
, vg. The sequen
e of

sets A = f, r, e, s, 
, o belongs to the word fres
o. In this 
ase (typing mistakes)

let us assign 
ompeten
e value (
.v.) to ea
h element of the neighborhood in su
h

way that the 
hara
ter itself has 
.v. 1 and the 
.v.'s of "more erroneous" 
hara
ter

are smaller than those of the "better one". For example, for set f we have �(f) =

1; �(d) = 0:4; �(g) = 0:4; �(r) = 0:2; �(t) = 0:4; �(
) = 0:3; �(v) = 0:3. We 
onsider

that in the text, it is ne
essary to �nd the words whi
h are very 
lose to the word

fres
o. We 
onsider the sum of 
.v.'s of a given string as a measure of its similarity of

the string to the given word fres
o. The lengths of the found words 
an be di�erent

to the length of the given word fres
o. For example, if the word fres
o is found in the

text then the measure of the similarity to the given word fres
o is the length of the

word fres
o (6), if the word tres
 is found then the measure of the similarity is 4.4

be
ause the symbol t is very 
lose to the symbol f and symbol o is omitted.

1

This resear
h was partially supported by Slovak Grant Agen
y for S
ien
e VEGA, proje
t No.

1/4375/97
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It is possible to 
onsider the des
ribed problem as the 
losest 
ommon subsequen
e

problem of the two similar strings and its repetition for text of strings.

The 
ommon subsequen
e problem of two strings is to determine one of the sub-

sequen
es that 
an be obtained by deleting zero or more symbols from ea
h of the

given strings. It is possible to demand some additional properties for the 
ommon

subsequen
e. Usually, it is the greatest length of the 
ommon subsequen
e, but we


an 
onsider some di�erent measures for the 
ommon subsequen
e.

The longest 
ommon subsequen
e problem (LCS Problem) of two strings is to de-

termine the 
ommon subsequen
e with the maximal length. For example, the string

AGI is a 
ommon subsequen
e and the string ALGI is the longest 
ommon subse-

quen
e of the strings ALGORITHM and ALLEGATION. Algorithms for this problem


an be used in 
hemi
al and geneti
 appli
ations and in many problems 
on
erning

data and text pro
essing [15℄, [12℄, [3℄. Further appli
ations in
lude the string-to-

string 
orre
tion problem [12℄ and determining the measure of di�eren
es between

text �les [3℄. The length of the longest 
ommon subsequen
e (LLCS Problem) 
an

determine the measure of di�eren
es (or similarities) of text �les. The simulation

method for the approximate strings and sequen
e mat
hing using the Levenstein

metri
 
an be found in J. Holub [9℄ and the algorithm for the sear
hing of the subse-

quen
es is in Z. Tron���
ek and B. Meli
har [16℄.

D. S. Hirs
hberg and L. L. Larmore [7℄ have dis
ussed a generalization of LCS

Problem, whi
h is 
alled Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequen
e of symbols

and the se
ond string is a sequen
e of subsets over an alphabet 
. The elements of

ea
h subset 
an be used as an arbitrary permutation of elements in the subset. The

longest 
ommon subsequen
e in this 
ase is a sequen
e of symbols with maximal

length. The SLCS Problem has an appli
ation to problems in 
omputer driven musi


[7℄. D. S. Hirs
hberg and L.L. Larmore have presented O(m � n)-time and O(m+ n)-

spa
e algorithm,m;n are the lengths of the strings. The Set-Set LCS Problem (SSLCS

Problem) is dis
ussed by D. S. Hirs
hberg and L. L. Larmore [8℄. In this 
ase both

strings are strings of subsets over an alphabet 
. In the paper [8℄ is presented the

O(m � n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general 
ases of the Common Subsequen
e

Problem, it means Closest Common Subsequen
e Problems:CCS Problem (for two

strings of symbols), CCRS Problem (for two strings of symbols with restri
ted using

of the symbols), SCCS Problem (for one string of symbols and se
ond string of symbol

sets) and SSCCS Problem (for two strings of symbol sets).

2 Basi
 De�nitions

In this se
tion, some basi
 de�nitions and results 
on
erning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let 
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of 
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2 
; 1 � i � m be a string over an alphabet 
, where

jAj = m is the length of the string A.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some 
ompeten
e (membership) values of

elements in the string A.

2
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e Problems

The pair (A; �

A

) is the string A with the 
ompeten
e fun
tion �

A

, 
f-string (A; �

A

)

for short. V al(A; �

A

) is a measure of (A; �

A

) de�ned by the (1).

V al(A; �

A

) = �

m

i=1

�

A

(a

i

) (1)

The string C 2 P (
); C = 


1

: : : 


p

is a subsequen
e of the string A = a

1

: : : a

m

, if

a monotonous in
reasing sequen
e of natural numbers i

1

< : : : < i

p

exists su
h that




j

= a

i

j

; 1 � j � p. The string C is a 
ommon subsequen
e of two strings A;B if C

is a subsequen
e of A and C is a subsequen
e of B. jCj is the length of the 
ommon

subsequen
e. The 
lassi
al problem to �nd the longest 
ommon subsequen
e is de�ned

and solved in Hirs
hberg [5℄.

The string (C; �

C

) is a subsequen
e with the 
ompeten
e fun
tion �

C

, 
f-subsequen
e

for short of the 
f-string (A; �

A

) if C is a subsequen
e of the string A and 0 < �

C

(


t

) �

�

A

(a

i

t

), for 1 � t � p. The 
f-subsequen
e (C; �

C

) is a 
losest 
f-subsequen
e if

V al(C; �

C

) = �

p

j=1

�

C

(


j

) = �

p

j=1

�

A

(a

i

j

).

The string (C; �

C

) is a 
ommon 
f-subsequen
e of two 
f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a 
f-subsequen
e of (A; �

A

) and (C; �

C

) is a 
f-subsequen
e of

(B; �

B

).

The string (C; �

C

) is a 
losest 
ommon 
f-subsequen
e of the 
f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a 
ommon 
f-subsequen
e with the maximal value V al(C; �

C

).

It means, if (D; �

D

) is a 
ommon 
f-subsequen
e of the strings (A; �

A

) and (B; �

B

)

then V al(D; �

D

) � V al(C; �

C

).

If (C; �

C

) is a 
losest 
ommon 
f-subsequen
e of the 
f-strings, (A; �

A

) and (B; �

B

)

then �

C

(


t

) = minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let (A; �

A

) and (B; �

B

) be 
f-strings. To �nd a 
losest


ommon subsequen
e of the 
f-strings (A; �

A

) and (B; �

B

), CCS((A; �

A

); (B; �

B

))

for short.

The MCCS Problem is to �nd the measure of CCS 
f-string, MCCS for

short. It means, MCCS((A; �

A

); (B; �

B

)) = V al(CCS((A; �

A

); (B; �

B

))). �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a 
 a

b

a

b




d b




b

A=

B=

Figure 1. The 
losest 
ommon subsequen
e of two 
f-strings A and B.
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P

P

P

P

P
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Example 1. 
 = fa; b; 
g; A = abaaba
ab; m = 9; B = ab
db
b; n =

7, �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), �

B

= (0:6; 0:6; 0:3; 0:4; 0:9; 0:5; 0:6).

The string C = ab
b is a subsequen
e, C

0

= abb
b is the longest 
ommon subsequen
e

of the strings A and B, and (C"; �

C"

), C" = ab
b; �

C"

= (0:6; 0:9; 0:4; 0:5) is the


losest 
ommon subsequen
e of the 
f-strings (A; �

A

) and (B; �

B

); V al(C"; �

C"

) =

MCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 1.

Let (A; �

A

) be the string A with the 
ompeten
e fun
tion �

A

. A sequen
e of

indi
es, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

< h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a

partition of the string (A; �

A

).

3
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The sequen
e h

A

divides the string (A; �

A

) in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

subst

A

2

: : : subst

A

k

A

,

where subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. [(A; �

A

); h

A

℄ is 
alled the 
f-string with

the partition.

For example, 
 = fa; b; 
g, A = jabajaba
a
jbabj; m = 12, �

A

= (0:4; :2; :8; :4; :7; :3;

:3; :7; :5; :4; :8; :6), h

A

= 0; 3; 9; 12; subst

A

1

= aba; subst

A

2

= aba
a
; subst

A

3

= bab.

A string C = 


1




2

: : : 


p

; 1 � p � m is a restri
ted subsequen
e of the 
f-string with

the partition [(A; �

A

); h

A

℄, if and only if

1. there exists a sequen
e of indi
es 1 � i

1

< i

2

< : : : < i

p

� m su
h that

a

i

t

= 


t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then 


u

6= 


v

, for all r, 1 � r � k

A

,

(ea
h element of an alphabet 
(subst

A

r

) 
an be used in C on
e at most).

The string (C; �

C

) is a 
ommon restri
ted 
f-subsequen
e of two 
f-strings with par-

tition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a restri
ted 
f-subsequen
e of

[(A; �

A

); h

A

℄ and (C; �

C

) is a restri
ted 
f-subsequen
e of [(B; �

B

); h

B

℄ at on
e.

The string (C; �

C

) is a 
losest 
ommon restri
ted 
f-subsequen
e of two 
f-strings

with partition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a 
ommon restri
ted 
f-

subsequen
e with maximal value de�ned by (1).

The CCRS Problem: Let [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ be the 
f-strings. To

�nd the 
losest 
ommon subsequen
e of the 
f-strings [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄,

CCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for short.

The MCCRS Problem is to �nd the measure of CCRS 
f-string,MCCRS

for short. It means,MCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) = V al(CCRS([(A; �

A

); h

A

℄;

[(B; �

B

); h

B

℄)). �

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a 
 a 


b

a

b

b

a

b


 
 a 
 


b




b

A=

B=

Figure 2. Closest 
ommon restri
ted subsequen
e of two strings A and B.
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Example 2. 
 = fa; b; 
g, A = jabajaba
a
jbabj; m = 12, �

A

= (0:4; 0:2; 0:8; 0:4;

0:7; 0:3; 0:3; 0:7; 0:5; 0:4; 0:8; 0:6), h

A

= 0; 3; 9; 12; B = jbab
j
a
j
b
bj; n = 11, �

B

=

(0:4; 0:3; 0:4; 0:5; 0:3; 0:5; 0:6; 0:3; 0:7; 0:6; 0:5). The string C = ba
b is a restri
ted sub-

sequen
e, C

0

= ba
ab is the 
losest restri
ted 
ommon subsequen
e with measure 2.3

as it 
an be seen in Figure 2. The string C" = bab
a
bb is the longest 
ommon sub-

sequen
e of the strings A = abaaba
a
bab and B = bab

a

b
b if the partition does

not matter.

A string of sets, set-string for short, B over an alphabet 
 is any �nite sequen
e of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of

4
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sets in B. The length of the symbol string des
ribed by B is N = �

n

i=1

jB

i

j. The pair

(B; �

B

) is the set-string B with the 
ompeten
e fun
tions �

B

, set-
f-string for short.

A string of symbols C = 


1




2

: : : 


p

; 


i

2 
; 1 � i � p, is a subsequen
e of symbols

(subsequen
e, for short) of the set-string B if there is a nonin
reasing mapping F :

f1; 2; : : : ; pg ! f1; 2; : : : ; ng, su
h that

1. if F (i) = k then 


i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then 


i

6= 


j

.

The 
ombination of a string and a set-string and the �nding of their 
losest 
ommon


f-subsequen
e leads to the solution of problems in above motivation.

Let (A; �

A

), be 
f-string over 
 and (B; �

B

) be a set-
f-string over P (
). The


f-string (C; �

C

) is a 
ommon 
f-subsequen
e of (A; �

A

) and (B; �

B

) if (C; �

C

) is a


f-subsequen
e of A and (C; �

C

) is a 
f-subsequen
e of the set-string B. A 
los-

est 
ommon 
f-subsequen
e of the 
f-string (A; �

A

) and the set-
f-string (B; �

B

),

SCCS((A; �

A

); (B; �

B

)) is a 
ommon 
f-subsequen
e (C; �

C

) with the maximal value

V al(C; �

C

). Note that (C; �

C

) is not unique in general way.

The SCCS Problem: The Set 
losest Common Subsequen
e problem of the 
f-

string (A; �

A

) and the set-
f-string (B; �

B

), SCCS((A; �

A

); (B; �

B

)) for short, 
onsists

of �nding a 
losest 
ommon 
f-subsequen
e (C; �

C

).

The MSCCS Problem 
onsists of �nding the measure of SCCS 
f-string,

MSCCS for short.

This means that MSCCS((A; �

A

); (B; �

B

)) = V al(SCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a 
 a

b

a

b




b d b




A=

B=

Figure 3. The 
losest 
ommon subsequen
e of two strings A and B.
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Example 3. Let A = abaaba
ab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; 
gfb; dgfb; 
g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

(
) = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

(
) = 0:5. Then MSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown

in the Figure 3.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over

an alphabet 
. The string of symbols C is a 
ommon subsequen
e of symbols of A

and B is C a subsequen
e of symbols of A and C is a subsequen
e of symbols of the

set-string B. The longest 
ommon subsequen
e problem of the set-strings A and B

(SSLCS(A;B) 
onsists of �nding a 
ommon subsequen
e of symbols C of the maximal

length. Note that C is not in general unique.

The SSCCS Problem: Let (A; �

A

); (B; �

B

) be two set-
f-string.

The Set-Set Closest Common Subsequen
e problem of the set-
f-strings (A; �

A

) and

(B; �

B

), (SSCCS((A; �

A

); (B; �

B

)) for short, 
onsists of �nding a 
losest 
ommon 
f-

subsequen
e (C; �

C

).
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The MSSCCS Problem 
onsists of �nding the measure of SSCCS set-
f-

string, MSSCCS for short.

It means, MSSCCS((A; �

A

); (B; �

B

)) = V al(SSCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m

m m m m m m m m m m m

a

d


 a

b

e

b

a

d

e 
 a

d

e

b d




b d

A=

B=

Figure 4. The 
losest 
ommon subsequen
e of two set-strings A and B.

f gf g

f g

f g

f gf gf g

0.4

0.7 0.3 0.6 0.4 0.5 0.6 0.3 0.8

0.3 0.5 0.7 0.6 0.8 0.9 0.5 0.7 0.5 0.3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Example 4. Let A = fa; dg; f
; a; dg; fe; b; ag; m = 3, �

A

1

= (0:7; 0:3); �

A

2

=

(0:6; 0:4; 0:5); �

A

3

= (0:6; 0:3; 0:8); B = fd; e; 
g; fa; d; eg; fb; d; 
g; fb; dg; n = 4: �

B

1

=

(0:4; 0:3; 0:5); �

B

2

= (0:7; 0:6; 0:8); �

B

3

= (0:9; 0:5; 0:7); �

B

4

= (0:5; 0:3). The 
ompe-

ten
e values are des
ribed a

ording to the named order in the set. For example,

�

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the de�nition of MSSC Problem it follows:

MCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the 
ommon


f � subsequen
e of (A; �

A

) and (B; �

B

)g (2)

The expression (2) 
an be written in the following way

= max

(C;�

C

)

f�

p

t=1

�

C

(


t

) : 


t

= a

k

t

= b

l

t

; 1 � t � p; 1 � k

1

< : : : < k

p

� m;

1 � l

1

< : : : < l

p

� ng and 0 < �

C

(


t

) = minf�

a

(a

k

t

); �

B

(b

l

t

)g: (3)

It means

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

minf�

A

(a

k

t

); �

B

(b

l

t

)g : a

k

t

= b

l

t

;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (4)

Let M

min

be a matrix de�ned as follows:

M

min

[i; j℄ =

�

minf�

A

(a

i

); �

B

(b

j

); g; if a

i

= b

j

0; otherwise.

(5)

The expression (4) is the basis for the following algorithm and it should be written

now in the following way:

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

M

min

[k

t

; l

t

℄ :

k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (6)
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The expression (6) 
an be used in the re
ursive algorithm or nonre
ursive algorithm

using the method of dynami
 programming.

Designation.

� A[i::k℄ = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� MM [m;n℄ = MCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

Re
ursive version of the algorithm is 
onstru
ted a

ording to the following idea:

If an element 


t

is in the CCS((A; �

A

); (B; �

B

)) then the strings 
an be split into two

parts and

MCCS((A; �

A

); (B; �

B

)) = �(


t

) +MCCS((A[1::k

t�1

℄; �

A

); (B[1::l

t�1

℄; �

B

))

+MCCS((A[k

t+1

::m℄; �

A

); (B[l

t+1

::n℄; �

B

)) (7)

The re
ursive version of the algorithm has exponential time 
omplexity. Some 
om-

putations are repeated and it means in the algorithm, it is possible to use the dynami


programming method to 
ompute the partial values MM [i; j℄ on
e only and to use

them in the following 
omputations.

In the algorithm, two fun
tions are used: The fun
tion Minim 
omputes mini-

mum of two values, the fun
tion Maxim 
omputes maximum of three values. The

i�th line of the matrix MM is 
omputed from two lines (i � 1)�th and the already


omputed part of i�th 
olumn. It means that the spa
e 
omplexity of the algorithm


an be redu
ed to O(n), for m � n. The algorithm works in the O(m�n) time. It 
an

be written in the following simple form (without the 
onstru
tion of the matrixM

min

):

Algorithm MCCS:

for i:=0 to m do MM[i,0℄:=0;

for j:=1 to n do MM[0,j℄:=0;

for i:=1 to m do

for j:=1 to n do

begin

if a[i℄=b[j℄ then help:=MM[i-1,j-1℄ + Minim(miA[i℄,miB[j℄)

else help:=0;

MM[i,j℄:= Maxim(MM[i-1,j℄, help, MM[i, j-1℄);

end;

Example 5. The 
omputation ofMCCS((A; �

A

); (B; �

B

)) for the strings in Example

1 a

ording to the algorithm MCCS.

B= 0.6 0.6 0.3 0.4 0.9 0.5 0.6

a b 
 d b 
 b

A= -------------------------------------------

a 0.9 | 0.6 0.6 0.6 0.6 0.6 0.6 0.6

b 0.9 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

a 0.6 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5
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a 0.5 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

a 0.8 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7


 0.4 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

a 0.6 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basi
 idea to the solution 
an be found in [1℄. The algorithm for LRCS Prob-

lem have to be modi�ed in the 
omputation of the the measure of 
losest 
ommon

restri
ted subsequen
e. In the algorithm, the Boolean fun
tion Candidate gives the

value true if the pair (a

i

; �(a

i

)); (b

j

; �(b

j

)) is a potential 
andidate to in
rease the


losest 
ommon subsequen
e, false otherwise. The fun
tion Candidate is used in the

same form as in [1℄. The main part of the modi�
ation is designed in the program

text. It 
ould be proved (similar as for LRCS Algorithm in [1℄) that the modi�ed

algorithm 
omputes 
orre
tly the 
losest 
ommon restri
ted subsequen
e of two 
f-

strings and it works in O(m � n � p)-time and O(n+ r)-spa
e, where r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj and p � minfm;ng is the number of elements in 
losest


ommon restri
ted subsequen
e.

The following dynami
 data stru
tures are used in the algorithm:

type vertex=re
ord

x, y: indi
es;

p: pointer;

end;

pointerv=^vertex;

genseq=re
ord

val: real;

pt:pointer;

end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}

{Input: [(A, mvA), hA℄, [(B,mvB), hB℄ - two 
f-strings of symbols

with partitions over alphabet;

mvA, mvB - 
ompeten
e fun
tions of A and B}

{Output: pptr is the pointer to the 
losest 
ommon restri
ted

subsequen
e of A and B;}

{Variables: Arrays C, D[0..m℄ of the type genseq.}

{C[1..i℄, D[1..i℄ 
ontain pointers to the 
losest 
ommon

subsequen
es of A(1..i) and B(1..j);}

{hA[1..kA℄, hB[1..kB℄ - arrays of partitions of the strings A and B;}

{uA, uB - upper bounds of intervals in the partitions for 
urrent

positions i, j: uA\leq i, uB\leq j.}

{dA, dB - the numbers of intervals in the partitions,}

{pp - a pointer to the vertex.}
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Method:

begin

for j:=0 to n do

begin D[j℄.pt:=nil; D[j℄.val:=0; end;

C[0℄.pt:=nil; C[0℄.val:=0;

dA:=1; uA:=1;

for i:=1 to m do

begin if i>hA[dA℄ then begin in
(dA); uA:=hA[dA-1℄+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin if j>hB[dB℄ then begin in
(dB); uB:=hB[dB-1℄+1 end;

if a[i℄.el=b[j℄.el then

q:=Candidate(D[j-1℄.pt,a[i℄,uA,uB)

else q:=false;

if q then {***modified part***}

begin if a[i℄.mv<=b[j℄.mv then min:=a[i℄.mv

else min:=b[j℄.mv;

help:=D[j-1℄.val+min;

if (help>D[j℄.val) and (help>C[j-1℄.val) then

begin new(pp); pp^.p:=D[j-1℄.pt; pp^.x:=i; pp^.y:=j;

C[j℄.pt:=pp; C[j℄.val:=D[j-1℄.val+min;

end {***end of the modified part***}

end else

if D[j℄.val>=C[j-1℄.val then C[j℄:=D[j℄

else C[j℄:=C[j-1℄;

{Invariant1}

end; {Invariant2}

for j:=1 to n do D[j℄:=C[j℄;

end;

value := C[n℄.val; pptr:= C[n℄.pt;

{"value" 
ontains the value of the 
losest 
ommon restri
ted

subsequen
e and C[n℄.pt 
ontains pointer to the CCRS(A,B)}

end;

Example 6. The 
omputation ofMCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for the strings

in Example 2 a

ording to the algorithm MCCRS.

B |0.4 0.3 0.4 0.5 |0.3 0.5 0.6 |0.3 0.7 0.6 0.5|

A | b a b 
 | 
 a 
 | 
 b 
 b |

-------|--------------------------------------------------------

a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4

b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4

_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9

b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9

a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6


 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9

9



Pro
eedings of the Prague Stringology Club Workshop '99

a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9

_
_0.5_| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

a 0.8 | 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1

_b_0.6_| 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basi
 idea of the algorithm starts from the de�nition of the MSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the 
ommon


f-subsequen
e of (A; �

A

) and (B; �

B

)g = (8)

max

p

f�

p

t=1

�

C

(


t

) : 


t

= a

k

t

= b

F (t)

i

and 0 < �

C

(


t

) = minf�

A

(a

k

t

); �

B

(b

F (t)

i

)g;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � i � n

F (t)

; 1 � F (1) � : : : � F (p) � ng (9)

The re
ursive version of the algorithm is 
onstru
ted a

ording to the following idea

(Figure 5.):

A

B

a

k

t

b

F (t)

i

1B

F (t)

�i

2B

F (t)

�i

Figure 5. The idea for the 
onstru
tion of algorithm

J

J

J

J

Designation.

� A = a

1

: : : a

m

; m � 1;B = B

1

: : : B

n

; n � 1; B

l

= fb

l

1

; b

l

2

; : : : ; b

l

n

l

g,

� MM [m;n℄ =MSCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MSCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

If an element 


t

is in the SGCD((A; �

A

); (B; �

B

)) then

MSCCS((A; �

A

); (B; �

B

)) = �(


t

) +

maxfMSCCS((A[1::k

t�1

℄; �

A

); (B[1::F (t� 1)℄1B

F (t)

�i

; �

B

)) +

MCCS((A[k

t+1

::m℄; �

A

); (B[F (t+ 1)::n℄2B

F (t)

�i

; �

B

))g (10)

where 1B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

1

and 2B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

2

are the disjoint

subsets 1B

F (t)

�i

and 2B

F (t)

�i

of the set (B

F (t)

� fb

F (t)

i

g) = 1B

F (t)

�i

[ 2B

F (t)

�i

and the

maximum is the maximal value over all disjoint partitions. The idea is shown in the

Figure 6. The time 
omplexity of the re
ursive version is exponential.

A 
attening of a sequen
e of sets is de�ned as a 
on
atenation, in order of the

sequen
e, of strings formed by some permutation of individual elements of the sets in
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the sequen
e. For example, the 
attening of the set-string A in example 3 is dada
abe

and so is adad
eba.

The very simple algorithm for MSCCS Problem 
an use Algorithm for MCCS

Problem for all pairs of the 
f-string A and the 
attening of the set-
f-string B. The

algorithm have to 
ompute and 
ompare results of �

n

j=1

jB

j

j pairs.

It is possible to represent the sets in the string B as the strings of symbols with all

permutations of elements (the method will be applied in the MSSCCS Algorithm).

Ea
h element of the string of symbols has the 
ompeten
e value the same as it has

in the set. Then it is possible to apply the algorithm for 
ommon subsequen
e with

a restri
ted use of elements [1℄.

The nonre
ursive algorithm is 
onstru
ted by the dynami
 programming method

and it has the following idea:

MM [i; j℄ = maxf MM [k � 1; j � 1℄ + V al(SCCS((A[k::i℄; �

A

); (B

j

; �

B

j

)));

MM [k; j � 1℄; k = 1; 2; : : : ; ig: (11)

The values of the matrixMM [�; �℄ 
an be 
omputed a

ording to 
olumns, the input

for j-th 
olumn is the matrix (j � 1)-th 
olumn. The set B

j


an mat
h better some

elements in the string A than the sets B

1

; : : : ; B

j�1

and it is ne
essary to 
ompute

these mat
hing values and to �nd the maximal value.

The following algorithm has a motivation in Hirs
hberg's and Larmore's method

[7℄ for SLCS Problem. We use the a data stru
ture U , whi
h is 
alled unique sta
k

(for 
ontrol of elements from the sets), but our unique sta
k works in a di�erent way.

It has the 
ondition that no member 
an o

ur twi
e or more in the sta
k. When

Push(U, x, k) is exe
uted for some element x, x is �rst 
ompared to the elements in

the sta
k. If x is in the sta
k in the position l then the 
ompeten
e values of the both

o

urren
es are 
ompared. If the 
ompeten
e value of the element x in the position

l is greater than the 
ompeten
e value of the new element x then the unique sta
k

is not modi�ed else the element in the position l is deleted and the new element x is

pushed on the top of the unique sta
k. In the sta
k are the elements of the string A

whi
h have best mat
hing to the some set in the string of sets B.

pro
edure Push(var U:Usta
k; x:Element; k:integer);

{Push the element x on the top of the unique sta
k U;

k is the index of x in the string A;

Competen
e values are less than Maxi1000;}

var Upom: Usta
k;

tophlp: integer;

kk: integer;

begin

kk:=top;

tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk℄.p) then

begin in
(tophlp); Uhlp[tophlp℄:=U[kk℄;

end else begin
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Maximum:=U[kk℄.mi;

if Maximum<x.mi then Maximum:= x.mi;

if Maximum>x.mi then

begin in
(tophlp);

Uhlp[tophlp℄:=U[kk℄;

Maxi:=Maximum;

end;

end;

de
(kk);

end;

top:=0;

for kk:=tophlp downto 1 do

begin in
(top); U[top℄:=Uhlp[kk℄; end;

if (Maxi<x.mi) or (Maxi=Max1000) then

begin in
(top); U[top℄:= x; best[x.p℄:=k;

end;

end; {Push}

The pro
edure Findpeaks sear
hes for the values peak[k℄; : : : ; peak[0℄ whi
h 
an

represent measures of the new 
andidates for SCCS. In Findpeak, as k de
reases,

U is the list of all elements in B

j

whi
h are found in the substring A[k+ 1::m℄ in the

order in whi
h they �rst o

ur and a

ording to their 
ompeten
e fun
tion. For any

x 2 U , first[x℄ is the index of that best o

urren
e.

pro
edure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;

m - the length of the symbol string A;

top- global variable for the top of Unique sta
k.}

begin

top:=0;

for k:=m downto 0 do

begin measure:=Mi[k,j-1℄;

peak[k℄:=measure;

for x:=top downto 1 do

begin xx:=U[x℄.p;

Minimum:= Minim(U[x℄,B[j℄);

measure:=measure+Minimum;

peak[best[xx℄℄:= Maxim{measure,peak[best[xx℄℄};

end;

if k>0 then

if A[k℄.p in B[j℄.pp then Push(U,A[k℄,k);

end;

end;

The main algorithm has the following form:

Algorithm MSCCS:
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for i:=0 to m do MM[i,j℄:=0;

for j:=1 to n do

begin Findpeak(j);

MM[0,j℄:=0;

for i:=1 to m do

MM[i,j℄:= Maxim{peak[i℄,MM[i-1,j℄};

end;

Example 7. Let A = abaaba
ab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; 
gfbdgfb
g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

(
) = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

(
) = 0:5 then MCCS(A;B) = 2:4 as it is 
omputed in the

following matrix.

B B1 B2 B3

a 0.6

b 0.6 b 0.9 b 0.6

A 
 0.3 d 0.4 
 0.5

---------------------

a 0.9 | 0.6 0.6 0.6

b 0.9 | 1.2 1.5 1.5

a 0.6 | 1.2 1.5 1.5

a 0.5 | 1.2 1.5 1.5

b 0.2 | 1.2 1.5 1.5

a 0.8 | 1.2 1.5 1.5


 0.4 | 1.5 1.5 1.9

a 0.6 | 1.5 1.5 1.9

b 0.5 | 1.5 2.0 2.4

The subsequen
e 
an be re
overed after the algorithm is �nished if an array of a

ba
kpointers to the best mat
hing elements is maintained. Corre
tness of the algo-

rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values MM [i; j℄; 0 � i � m are


omputed. After the n-th iteration we have all values MM [i; n℄; 0 � i � m and

MM [m;n℄ = MCCS((A; �

A

); (B; �


alB

).

(2) Findpeak(j) 
omputes the best mat
hing of the j-th set B

j

, peak[j℄ �MM [i; j℄

and there exist some j

0

� j su
h that peak[j

0

℄ �MM [i; j℄.

Time 
omplexity. The main algorithm has the 
y
le for i and the 
all of pro
edure

Findpeak inside of the 
y
le for j. It means O(m � n � N)-time 
omplexity, where

N = �

n

j=1

; jB

j

j.

Spa
e 
omplexity. The presented algorithm requires O(m � n)-spa
e for the array

MM and O(m)-spa
e for the unique sta
k.

6 Algorithm for MSSCCS Problem

The basi
 idea of the algorithm is very similar to the previous algorithm for MSCCS.

It starts from the de�nition of MSSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the 
ommon

13
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f � subsequen
e of (A; �

A

) and (B; �

B

)g (12)

If we have some 
attenings of both set-strings then it is possible to apply the

MCCS algorithm. It is ne
essary to 
ompute MCCS values of all pairs of all 
at-

tenings both set-strings but that is too time 
onsuming.

If we have the 
attening of one set-string and the se
ond is as set-string then it

is possible to use the MSCCS algorithms. But it is ne
essary to 
ompute MSCCS

value for all 
attenings of one string. This is also too time 
onsuming. Both algo-

rithms have exponential time 
omplexity.

It is possible to use the following algorithm of polynomial time 
omplexity. The

algorithm works in two steps:

1. to 
reate the string of symbols for ea
h of set-string; ea
h set 
an be en
oded

as the string of all permutations of its elements (the length of su
h string is

k

2

� 2 � k + 4, k is the number of elements in set [13℄);

2. to apply the MCCRS algorithm for the two 
onstru
ted strings (ea
h element

of the set 
an be used on
e at most);

The algorithm works in polynomial time: O(M

2

�N

2

�K), where M = �

m

i=1

jA

i

j; N =

�

n

j=1

jB

j

j, and K is the number of elements in 
losest 
ommon restri
ted subsequen
e.

7 Con
luding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and

MSCCS Problem with a 
ompeten
e fun
tions have been presented. The MSSCCS

Problem was formulated and the polynomial time algorithm for its solution was de-

veloped. However, we are 
onvin
ed of the existen
e of an algorithm with better time


omplexity.
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Abstra
t. In this paper we present experimental results for string mat
hing

algorithms whi
h have a 
ompetitive theoreti
al worst 
ase run time 
omplexity.

Of these algorithms a few are already famous for their speed in pra
ti
e, su
h

as the Boyer-Moore and its derivatives. We 
hose to evaluate the algorithms by


ounting the number of 
omparisons made and by timing how long they took

to 
omplete a given sear
h. Using the experimental results we were able to

introdu
e a new string mat
hing algorithm and 
ompared it with the existing

algorithms by experimentation. These experimental results 
learly show that

the new algorithm is more eÆ
ient than the existing algorithms for our 
ho-

sen data sets. Using the 
hosen data sets over 1,500,000 separate tests were


ondu
ted to determine the most eÆ
ient algorithm.

Key words: string mat
hing, pattern mat
hing, algorithms on words.

1 Introdu
tion

Many promising data stru
tures and algorithms dis
overed by the theoreti
al 
ommu-

nity are never implemented or tested at all. Moreover, theoreti
al analysis (asymp-

toti
 worst-
ase running time) will show only how algorithms are likely to perform in

pra
ti
e, but they are not suÆ
iently a

urate to predi
t a
tual performan
e. In this

paper we show that by 
onsiderable experimentation and �ne-tuning of the algorithms

we 
an get the most out of a theoreti
al idea.

The string mat
hing problem [CR94℄ has attra
ted a lot of interest throughout the

history of 
omputer s
ien
e, and is 
ru
ial to the 
omputing industry. String mat
hing

is �nding an o

urren
e of a pattern string in a larger string of text. This problem

arises in many 
omputer pa
kages in the form of spell 
he
kers, sear
h engines on the

internet, �nd utilities on various ma
hines, mat
hing of DNA strands and so on.

Se
tion 2 des
ribes string mat
hing algorithms whi
h are known to be fast. Se
-

tion 3 gives experimental results for these algorithms. From the �ndings of the exper-

imental results dis
ussed in Se
tion 3, we identify two fast algorithms to produ
e a

new algorithm. The new algorithm is des
ribed in Se
tion 4. In Se
tion 5 we 
ompare

the new algorithm with the existing algorithms.
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2 The String Mat
hing Algorithms

String mat
hing algorithms work as follows. First the pattern of length m, P [1::m℄,

is aligned with the extreme left of the text of length n, T [1::n℄. Then the pattern


hara
ters are 
ompared with the text 
hara
ters. The algorithms 
an vary in the

order in whi
h the 
omparisons are made. After a mismat
h is found the pattern

is shifted to the right and the distan
e the pattern 
an be shifted is determined

by the algorithm that is being used. It is this shifting pro
edure and the speed at

whi
h a mismat
h is found whi
h is the main di�eren
e between the string mat
hing

algorithms.

In the Naive or Brute For
e (BF) algorithm, the pattern is aligned with the

extreme left of the text 
hara
ters and 
orresponding pairs of 
hara
ters are 
ompared

from left to right. This pro
ess 
ontinues until either the pattern is exhausted or a

mismat
h is found. Then the pattern is shifted one pla
e to the right and the pattern


hara
ters are again 
ompared with the 
orresponding text 
hara
ters from left to

right until either the text is exhausted or a full mat
h is obtained. This algorithm 
an

be very slow. Consider the worst 
ase when both pattern and text are all a's followed

by a b. The total number of 
omparisons in the worst 
ase is O(nm). However, this

worst 
ase example is not one that o

urs often in natural language text.

An improved version of the BF algorithm, the Not So Naive (NSN) algorithm

[HA93℄, 
hanges the order of the 
omparisons. Suppose the pattern is aligned with the

text 
hara
ters, �rst the se
ond pattern 
hara
ter is 
ompared with the 
orresponding

text 
hara
ter followed by 
omparisons of the rest of the pattern with 
orresponding

text 
hara
ters, and then the last 
hara
ters to be 
ompared are the �rst 
hara
ter

of the pattern and the text 
hara
ter it is aligned with. A shift of two is made if a

mismat
h is made with the se
ond 
hara
ter of the pattern and the �rst two 
hara
ters

of the pattern are the same, or if the se
ond 
hara
ter of the pattern mat
hes the

text but a mismat
h o

urs and the �rst two 
hara
ters are not equal.

The number of 
omparisons 
an be redu
ed by moving the pattern to the right

by more than one position when a mismat
h is found. This is the idea behind the

Knuth-Morris-Pratt (KMP) algorithm [KMP77℄. The KMP algorithm starts and


ompares the 
hara
ters from left to right the same as the BF algorithm. When a

mismat
h o

urs the KMP algorithm moves the pattern to the right by maintaining

the longest overlap of a pre�x of the pattern with a suÆx of the part of the text

that has mat
hed the pattern so far. After a shift, the pattern 
hara
ter 
ompared

against the mismat
hed text 
hara
ter has to be di�erent from the 
hara
ter that

mismat
hed. The KMP algorithm takes at most 2n 
hara
ter 
omparisons. The

KMP algorithm does O(m+ n) operations in the worst 
ase.

The Colussi (COL) [CO91℄ algorithm is an improvement of the KMP algorithm.

The number of 
hara
ter 
omparisons is 1.5n in the worst 
ase. The set of pattern

positions is divided into two disjoint subsets due to the 
ombinatorial properties

of their positions. First the 
omparisons are performed from left to right for the


hara
ters at positions in the �rst set. If there is no mismat
h, the 
hara
ters at

positions in the se
ond set are 
ompared from right to left. This strategy redu
es the

number of 
omparisons.

Galil and Gian
arlo (GG) [GG92℄ improved the COL algorithm by redu
ing the

number of 
hara
ter 
omparisons in the worst 
ase to

4

3

n. In these algorithms the
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prepro
essing takes O(m) time.

The Boyer-Moore (BM) algorithm [BM77℄ di�ers in one main feature from the

algorithms already dis
ussed. Instead of the 
hara
ters being 
ompared from left to

right, in the BM algorithm the 
hara
ters are 
ompared from right to left starting with

the rightmost 
hara
ter of the pattern. In a 
ase of mismat
h it uses two fun
tions, last

o

urren
e fun
tion and good suÆx fun
tion and shifts the pattern by the maximum

number of positions 
omputed by these fun
tions. The good suÆx fun
tion returns

the number of positions for moving the pattern to the right by the least amount, so

as to align the already mat
hed 
hara
ters with any other substring in the pattern

that are identi
al. The number of positions returned by the last o

uren
e fun
tion

determines the rightmost o

urren
e of the mismat
hed text 
hara
ter in the pattern.

If the text 
hara
ter does not appear in the pattern then the last o

uren
e fun
tion

returns m. The worst 
ase running time of the BM algorithm is O(mn).

The Turbo Boyer-Moore (TBM) algorithm [CC94℄ and the Apostoli
o-Gian
arlo

(AG) algorithm [AG86℄ are ameliorations of the BM algorithm. When a partial mat
h

is made between the pattern and the text these algorithms remember the 
hara
ters

that mat
hed and do not 
ompare them again with the text. The TBM algorithm

and the Apostoli
o-Gian
arlo algorithm perform in the worst 
ase at most 2n and

1.5n 
hara
ter 
omparisons respe
tively [CL97b℄.

The Horspool (HOR) algorithm [HO80℄ is a simpli�
ation of the BM algorithm. It

does not use the good suÆx fun
tion, but uses a modi�ed version of the last o

urren
e

fun
tion. The modi�ed last o

urren
e fun
tion determines the right most o

urren
e

of the (k +m)th text 
hara
ter, T [k +m℄ in the pattern, if a mismat
h o

urs when

a pattern is aligned with T [k::k + m℄. This algorithm 
hanges the order in whi
h


hara
ters of the pattern are 
ompared with the text. It 
ompares the rightmost


hara
ter in the pattern �rst then 
ompares the leftmost 
hara
ter, then all the other


hara
ters in as
ending order from the se
ond position to the m� 1th position.

The Raita (RAI) algorithm [RA92℄ again 
hanges the order in whi
h 
hara
ters of

the pattern are 
ompared with the text. The pro
ess used to 
ompare the rightmost


hara
ter of the pattern, then the leftmost 
hara
ter, then the middle 
hara
ter and

then the rest of the 
hara
ters from the se
ond to the (m � 1)th position. If at any

time during the pro
edure a mismat
h o

urs then it performs the shift as in the

HOR algorithm.

The Qui
ksear
h (QS) algorithm [SU90℄ is similar to the HOR algorithm and the

RAI algorithm. It does not use the good suÆx fun
tion to 
ompute the shifts. It

uses a modi�ed version of the last o

urren
e fun
tion. Assume that a pattern is

aligned with the text 
hara
ters T [k::k+m℄. After a mismat
h the length of the shift

is at least one. So, the 
hara
ter at the next position in the text after the alignment

(T [k+m+1℄) is ne
essarily involved in the next attempt. The last o

urren
e fun
tion

determines the right most o

urren
e of T [k+m+ 1℄ in the pattern. If T [k+m+ 1℄

is not in the pattern the pattern 
an be shifted by m+1 positions. The 
omparisons

between text and pattern 
hara
ters during ea
h attempt 
an be done in any order.

The Maximal Shift (MS) algorithm [SU90℄ is another variant of the QS algorithm.

The algorithm is designed in su
h a way that the pattern 
hara
ters are 
ompared in

the order whi
h will give the maximum shift if a mismat
h o

urs.

The Smith (SMI) algorithm [SM91℄ uses HOR and Qui
k Sear
h last o

urren
e

fun
tions. When a mismat
h o

urs, it takes the maximum values between these
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fun
tions.

The Zhu and Takaoka (ZT) algorithm [ZT87℄ is another variant of the BM algo-

rithm. The 
omparisons are done in the same way as BM (i.e. from right to left)

and it uses the good suÆx fun
tion. If a mismat
h o

urs at T [i℄, the last o

urren
e

fun
tion determines the right most o

urren
e of T [i � 1::i℄ in the pattern. If the

substring is in the pattern, the pattern and text are aligned at these two 
hara
ters

for the next attempt. The shift is m, if the two 
hara
ter substring is not in the

pattern.

Sear
hing 
an be done in O(n) time using a minimal Deterministi
 Finite Automa-

ton (DFA) [SI93℄. This algorithm uses O(�m) spa
e and O(� + m) pre-pro
essing

time, where � is the size of the alphabet. The Simon (SIM) algorithm [SI93℄ redu
es

the pre-pro
essing time and the spa
e to O(m).

The pre-pro
essing is needed for the algorithm to 
al
ulate the relevant shifts upon

a mismat
h/mat
h ex
ept for the BF algorithm whi
h has no pre-pro
essing. The

pre-pro
essing 
ost of the algorithms does not e�e
t the eÆ
ien
y of the algorithms

as they are relatively very small and all are approximately the same.

3 Experimental Results of the Existing

Algorithms

Monitoring the number of 
omparisons performed by ea
h algorithm was 
hosen as a

way to 
ompare the algorithms. All the algorithms were 
oded in C and their C 
ode

are taken from [CL97a℄ and animations of the algorithms 
an be found at [CL98℄.

This 
olle
tion of string mat
hing algorithms were easy to implement as fun
tions

into our main 
ontrol program. The algorithms were 
oded as their authors had

devised them in their papers. The main 
ontrol program read in the text and pattern

and had one of the algorithms to be tested inserted into it for the sear
hing pro
ess.

The main 
ontrol program was the same for ea
h algorithm and so did not a�e
t the

performan
e of the algorithms. Ea
h algorithm had an integer 
ounter inserted into

it, to 
ount the number of 
omparisons made between the pattern and the text. The


ounter was in
remented by one ea
h time a 
omparison was made.

A random text of 200,000 words from the UNIX English di
tionary was used for

the �rst set of experiments. The random text was 
onstru
ted so as to simulate an

a
tual English text. All the letters in the UNIX di
tionary were made lower 
ase

to in
rease the probability of a mat
h. In English text roughly only every 1 in 10

words begin with a 
apital letter. We de
ided to number ea
h of the words in UNIX

di
tionary from 1 to 25,000. Then we used a pseudo random number generator to pi
k

words from the UNIX di
tionary and pla
e them in the random text. Separating ea
h

word by a spa
e 
hara
ter. Pun
tuation was also removed as we were 
on
erned with

�nding words and the pun
tuation would not e�e
t the results obtained. The reason

for using a large text (200,000 words) was to ensure that as many of the 25,000 words

in the UNIX English di
tionary o

urred somewhere in the random text generated.

For ea
h pattern in the di
tionary, we sear
hed the text (of 200,000 words) for the

�rst o

urren
e of the pattern.

The text was sear
hed for ea
h word in the UNIX di
tionary and the results are

given in Table 1. The �rst 
olumn in Table 1 is the length of the pattern. The se
ond
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olumn is the number of words of that length in the UNIX English di
tionary. For

example, for a pattern length of 7, 4042 test 
ases were 
arried out and the average

number of 
hara
ter 
omparisons made by the KMP algorithm was 197,000 (to the

nearest 1000). The average was 
al
ulated by taking the total number of 
omparisons

performed to �nd all 4042 
ases and dividing this number by 4042. These 
olumns

are arranged in des
ending order of the average of the total number of 
omparisons

of the algorithms. An interesting observation is that for (almost) ea
h row the values

are in des
ending order ex
ept for the last two 
olumns.

p. len num. BF KMP DFA SIM NSN COL GG BM AG HOR RAI TBM MS QS ZT SMI

2 133 7 7 7 7 6 6 6 3 3 3 3 3 2 2 3 2

3 765 38 38 37 37 37 37 37 13 13 13 13 13 11 10 13 10

4 2178 82 82 80 80 80 79 79 23 23 23 23 22 19 19 22 18

5 3146 151 150 145 145 145 145 145 34 34 34 34 34 30 30 32 28

6 3852 186 185 179 179 179 178 178 36 36 36 36 36 33 32 33 30

7 4042 198 197 191 191 191 190 190 34 34 34 34 34 32 31 30 28

8 3607 205 204 197 197 197 196 196 32 32 31 32 31 30 29 27 26

9 3088 212 211 204 204 204 203 203 30 30 30 30 30 29 28 25 24

10 1971 220 219 212 212 212 210 210 29 29 29 29 29 28 27 24 23

11 1120 209 207 201 201 200 198 198 26 26 26 26 25 25 24 21 21

12 593 218 217 210 210 209 207 207 25 25 25 25 25 24 24 21 20

13 279 224 222 215 215 213 212 212 24 24 24 24 24 23 23 19 19

14 116 228 227 220 220 219 217 217 23 23 23 23 23 23 23 19 19

15 44 151 150 144 144 143 142 142 15 15 15 15 14 14 14 11 12

16 17 227 225 217 217 215 214 214 20 21 21 21 20 20 20 18 16

17 7 233 231 222 222 221 218 218 20 20 20 20 19 19 20 15 16

18 4 236 234 225 225 223 221 221 19 20 20 20 19 19 20 14 16

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 1 132 131 122 122 121 119 119 10 10 10 10 10 10 10 7 8

21 2 311 309 295 295 290 288 288 24 24 25 25 23 23 24 15 18

22 1 491 486 455 455 451 445 445 33 33 33 33 33 31 34 22 27

total 24966 180 179 174 174 173 172 172 31 31 30 30 30 28 28 27 25

Table 1: Results of sear
hing a text of 200,000 words for ea
h word in the UNIX di
tionary.

The algorithm with the largest number of 
omparisons is the BF algorithm. This

is be
ause the algorithm shifts the pattern by one pla
e to the right when a mismat
h

o

urs, no matter how mu
h of a partial/full mat
h has been made. This algorithm

has a quadrati
 worst 
ase time 
omplexity. But the KMP algorithm whi
h has a lin-

ear worst 
ase time 
omplexity, does roughly the same number of 
omparisons as the

BF algorithm. The reason for this is that in a natural language a multiple o

urren
e

of a substring in a word is not 
ommon. For the same reason, the KMP variants,

COL and GG algorithms have only a small improvement over the KMP algorithm.

Other linear time algorithms, DFA and SIM, also have roughly the same number of


omparisons as the BF algorithm. We will see below that the other quadrati
 worst


ase time 
omplexity algorithms perform mu
h better than these linear worst 
ase

time algorithms. This is a good example showing that asymptoti
 worst-
ase running

time analysis 
an be indi
ative of how algorithms are likely to perform in pra
ti
e,

but they are not suÆ
iently a

urate to predi
t a
tual performan
e.

The BM algorithm uses the good suÆx fun
tion to 
al
ulate the shift whi
h de-

pends on a reo

urren
e of a substring in a word. But, it also uses the last o

urren
e

fun
tion. It is this last o

urren
e fun
tion that redu
es the number of 
omparisons

signi�
antly. In pra
ti
e, on an English text, the BM algorithm is three or more times

faster than the KMP algorithm [SG82℄. >From Table 1 one 
an see that the KMP

algorithm is takes six times more 
omparisons than the BM algorithm on average.

The other algorithms, TBM, AG, HOR, RAI, QS, MS, SMI and ZT, are variants of

the BM algorithm. The number of 
omparisons for these algorithms is roughly the

same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of 
omparisons for

pattern lengths less than or equal to twelve and greater than twelve respe
tively.
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4 The New Algorithm - the BR algorithm

>From the �ndings of the experimental results dis
ussed in se
tion 3, it is 
lear that

the SMI and ZT algorithms have the lowest number of 
omparisons among the others.

We 
ombined the 
al
ulations of a valid shift in SMI and ZT algorithms to produ
e

a more eÆ
ient algorithm. If a mismat
h o

urs when the pattern P [1::m℄ is aligned

with the text T [k + 1::k +m℄, the shift is 
al
ulated by the rightmost o

urren
e of

the substring T [k+m+1::k+m+2℄ in the pattern. If the substring is in the pattern

then the pattern and text are aligned at this substring for the next attempt. This


an be done shifting the pattern as shown in the table below. Let � be a wild
ard


hara
ter that is any 
hara
ter in the ASCII set. Note that if T [k+m+1::k+m+2℄

is not in the pattern, the pattern is shifted by m+ 2 positions. The total number of


omparisons in the worst 
ase is O(nm).

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� P [1℄ m+ 1

P [i℄ P [i+ 1℄ m� i+ 1, 1 � i � m� 1

P [m℄ � 1

Otherwise m+ 2

For example, the following shifts would be asso
iated with the pattern, onion.

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� o 6

o n 5

n i 4

i o 3

o n 2

n � 1

Otherwise 7

After a mismat
h the 
al
ulation of a shift in our BR algorithm takes O(1) time.

Note that for the substrings ni and n* have a value of 4 and 1 respe
tively. This

ambiguity 
an be solved by the higher shift value being overwritten with the lower

value. We will explain this later in this se
tion. For a given pattern P [1::m℄ the

prepro
essing is done as follows, and it takes O(�

2

) time.

There are 128 
hara
ters in the ASCII set and (128)2 = 16384 distin
t pairs. We

de�ne an array Shift Array (SA) of length 16384 and initialise it to m + 2. Using a

hash fun
tion we insert the values for ea
h pair and the hash fun
tion we use is:

T [m+k+1℄� 127+T [m+k+2℄ where for P [m+k+1℄ and P [m+k+2℄ we use

their ASCII values. This gives ea
h pair of 
hara
ter a distin
t value in SA and we

insert into the SA the shift for the pair. If the same pair o

urs more than on
e then

the lower shift value overwrites the higher value. So for example for the pair [i℄[o℄ we

would insert the value 3 at the [105� 127℄ + 111 = 13446th position in SA.

[wild
ard℄[o℄ = 6 all array positions that satisfy x[0℄mod127 = 111mod127 = 6

[o℄[n℄ = 5 position 111� 127 + 110 = 14207

[n℄[i℄ = 4 position 110� 127 + 105 = 14075

[i℄[o℄ = 3 position 105� 127 + 111 = 13446

[o℄[n℄ = 2 position 111� 127 + 110 = 14207

[n℄[wild
ard℄ = 1 position 110� 127 + 0::127 = 13970::14097

The order of performing the steps is important in ensuring the 
orre
t values

appear in the array. Note that the higher values have been over written by the lower
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values.

In the RAI algorithm the �rst and last 
hara
ters of the pattern are made variables.

This 
uts down the number of array look ups performed during a sear
h. We adapted

this idea to our algorithm and 
ompared the least frequent pattern 
hara
ter with

its 
orresponding text 
hara
ter. We then repeated the pro
ess for the se
ond least

frequent 
hara
ter and then the rest of the 
hara
ters in order from right to left.

The UNIX di
tionary used in the tests was used to see how many times ea
h letter

o

urred in the di
tionary. The frequen
y of ea
h letter is given in the following 
hart.

letter frequen
y ranking letter frequen
y ranking letter frequen
y ranking

a 16395 25 j 432 3 s 10167 19

b 4110 10 k 1923 6 t 12789 22


 8209 17 l 10013 18 u 6476 16

d 5763 14 m 5822 15 v 1890 5

e 20083 26 n 12062 20 w 1950 7

f 2660 8 o 12696 21 x 616 4

g 4125 11 p 5514 13 y 3618 9

h 5179 12 q 377 1 z 429 2

i 13963 24 r 13409 23

Note that we 
hoose the 
hara
ters in the pattern that have the lowest ranking.

If the 
hara
ter is not in the pattern then it has a ranking of 0 and is 
hosen as the

least frequent 
hara
ter.

We now give an example of our BR algorithm in a
tion to �nd the pattern onion.

The SA array for the pattern onion were used to 
al
ulate the shift after a mismat
h.

P [2℄ is the least frequent and P [5℄ is the next least frequent 
hara
ter.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([n℄[t℄) = 110 � 127 + 116 = SA[14086℄ = 1

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([t℄[℄) = 116 � 127 + 32 = SA[14764℄ = 7.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([s℄[t℄) = 115 � 127 + 116 = SA[14721℄ = 7

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismat
h shift on SA([℄[o℄) = 32 � 127 + 111 = SA[4175℄ = 6.

w e w a n t t o t e s t w i t h o n i o n

= = = = =

5 1 4 3 2

o n i o n

So the word onion is found in 9 
omparisons in a text of length 26. On the above

full mat
h the order in whi
h the 
omparisons are 
ondu
ted is shown on the third

row.
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5 Experimental Results and Comparisons with the

BR Algorithm

We sele
t the best nine algorithms from the results in Table 1 and the KMP algorithm,

and 
ompare with our BR algorithm. Experiments were 
arried out for di�erent

random texts as des
ribed in Se
tion 3. The texts were 
onstru
ted by randomly


hoosing words from the UNIX English di
tionary. There were 2 di�erent texts of

10,000 words, a text of 50,000 words and a text of 100,000 words. The results are

des
ribed in Tables 3-6 (see appendix) respe
tively. Tables 3-6 (whi
h 
an be found

in the appendix at the ba
k of this paper) show the average number of 
omparisons

required for a sear
h for the given pattern length. They are based on taking the total

number of 
omparisons for the sear
h for all the patterns of a length and dividing the

number by the number of patterns of that size to give the average. So for example,

in Table 3 the BM algorithm takes 12,000 
omparisons (to the nearest thousand) on

average if the pattern length is 7. From these tables one 
an observe that the relative

order of their performan
e is the same as in Table 1. The main observation is that

the BR algorithm performs better than the other algorithms for all pattern lengths

and for all texts used in the experiments.

p. len. num. KMP AG BM HOR RAI TBM MS QS ZT SMI

2 133 199.98 93.96 93.96 94.00 93.96 93.89 35.94 32.92 93.96 31.48

3 765 366.02 64.09 64.18 64.20 64.19 63.70 28.78 28.21 60.03 24.93

4 2178 449.02 50.97 51.11 50.86 50.90 50.77 28.25 25.77 43.19 19.73

5 3146 540.11 44.91 45.02 44.58 44.46 44.72 28.33 26.47 33.91 18.13

6 3852 626.30 42.58 42.42 41.83 41.68 41.91 30.02 27.32 27.71 16.42

7 4042 719.01 42.07 41.38 40.92 41.00 40.72 31.49 28.83 24.94 16.08

8 3607 807.61 40.76 40.58 40.28 40.35 39.95 32.27 30.10 21.67 15.49

9 3088 896.18 41.85 41.52 40.92 40.84 40.69 34.75 32.19 19.29 15.45

10 1971 982.63 42.38 42.19 41.69 41.79 41.16 36.62 34.37 17.75 15.64

11 1120 1067.87 44.91 44.14 43.67 43.79 42.97 38.57 37.18 17.06 16.32

12 593 1164.14 45.36 45.28 44.58 44.68 44.20 40.06 39.28 16.14 17.34

13 279 1245.53 48.85 47.88 47.22 47.32 46.36 42.26 41.61 12.65 17.54

14 116 1322.70 46.46 46.74 46.46 46.60 45.16 42.62 42.26 11.32 17.03

15 44 1426.02 50.78 51.20 51.51 51.59 49.23 44.73 45.29 8.72 19.00

16 17 1527.28 48.99 49.34 50.44 50.60 47.37 46.60 49.06 24.80 20.02

17 7 1598.50 45.09 45.29 44.51 44.58 43.42 40.22 45.01 6.72 16.95

18 4 1700.81 50.34 50.58 53.96 54.06 48.54 50.12 53.59 6.09 22.21

19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 1 1948.74 58.37 58.37 58.12 58.07 58.37 52.25 63.51 3.01 29.43

21 2 1947.96 58.13 57.38 63.98 63.99 56.32 57.59 57.50 2.22 21.84

22 1 2129.14 50.97 50.97 49.87 49.89 50.97 45.07 55.43 1.04 25.09

total 24992 737.56 43.54 43.29 42.83 42.82 42.65 32.00 29.72 26.09 16.66

Table 2: The average di�eren
e between ea
h of the existing algorithms and our BR algorithm as a per
entage.

Table 2 summarises the results of Tables 3-6. The entries in Table 2 are in per-


entage form and des
ribe how many fewer 
omparisons our BR algorithm uses, when


ompared with the existing algorithms. The �gures are an average of the four di�er-

ent texts used. To 
al
ulate the di�eren
e as a per
entage between our BR algorithm

and the existing algorithms we used the following formula. The average number of


omparisons was taken from the relevant 
ell in Tables 3-6 and divided by the value

for that pattern length for our BR algorithm. This value was then dedu
ted by 1

and multiplied by 100 to give the per
entage di�eren
e between the two algorithms.

An interesting observation of the existing algorithms when 
ompared with the BR

algorithm, is that for ea
h individual text the per
entages were within 1% for ea
h

spe
i�
 algorithm. Ea
h value in Table 2 is 
al
ulated by taking the di�eren
e as a

per
entage between ea
h algorithm and our BR algorithm for ea
h pattern length,

adding them together and dividing by 4. For example, for a pattern length of 4 the

BM algorithm takes on average 51.11% more 
omparisons than our BR algorithm.

The result of a full sear
h for the di
tionary over all four texts is given in the last
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row of Table 2. From this we 
an see that the BM algorithm took on average 43.54%

more 
omparisons than our BR algorithm (see 5th 
olumn, last row) for a 
omplete

sear
h for all the words in the di
tionary.

Further to 
ounting the number of 
omparisons we time the algorithms. The

saving in the number of 
omparisons may be paid for by extra overhead due to

a

essing the pre
omputed shift table. We timed the sear
h of the medium text of

50,000 words for all o

urren
es of the words in the UNIX di
tionary. We used a 486-

DX66 with 8 megabytes of RAM and a 100 megabyte hard drive running SUSE 5.2.

In Table 7, the total number of 
omparisons for the sear
h are given along with the

time taken by ea
h algorithm for the sear
h, in
luding any prepro
essing performed

by the algorithm. The number of 
omparisons are redu
ed by a fa
tor of 1000. i.e.

for BF 10911786 means 10911786000 
omparisons.

medium1 book1 book2 papers

number time % dif BR num. 
omp. time se
. % dif. BR time % dif. BR time % dif. BR

BF 10911786 1315m 13s 528.54

KMP 10433340 1341m 25s 541.06

DFA 10433340 892m 59s 326.75

SIM 10433340 1688m 18 706.83

NSN 10482487 777m 52s 271.74

BM 2002822 371m 51s 77.71 3602739 674m 79.73 663s 69.57 264s 58.08

AG 2005310 972m 10s 364.60

HOR 1985219 244m 41s 16.93 3580863 442m 17.87 446s 14.07 249s 49.10

RAI 1998657 238m 27s 13.95 3601251 431m 14.93 434s 11.00 173s 3.59

MS 1815486 318m 49s 52.36

QS 1785730 245m 58s 17.55 3189368 444m 18.40 452s 15.60 180s 7.78

ZT 1761716 420m 55s 101.15

TBM 1683516 1166m 4s 457.26

SMI 1621591 280m 41s 34.14 2930285 513m 36.80 514s 31.46 207s 23.95

BR 1489839 209m 15s n/a 2682916 375m n/a 391s n/a 167s n/a

Table 7: Timing for a 
omplete sear
h for the di
tionary in the given texts.

>From this table we 
an see that the algorithms that take a high number of


omparisons are quite slow as well. The lower the number of 
omparisons the better

the time. Although putting the algorithms in order of how many 
omparisons they

take from highest to lowest starting at the BM we get the list: BM, RAI, AG, HOR,

MS, QS, ZT, TBM, SMI and the BR. If we do the same for the timings we get ZT,

BM, MS, SMI, QS, RAI and the BR. The reason for the di�eren
e in the lists is due

to overheads in traversing the data stru
tures whi
h are present in the algorithms

for the 
al
ulation of the 
orre
t shift value. Also the pre-pro
essing of some of the

algorithms are expensive. So we 
an not assume that be
ause an algorithm takes a

fewer number of 
omparisons that it will be more eÆ
ient than another.

We 
an also save time by performing the 
omparisons as in the RAI algorithm.

This is done by making the least and se
ond least likely 
hara
ters variables instead

having to look them up in the pattern array. Although 
ounting the 
omparisons is

a good estimate of whi
h algorithm is the best to use we have to a
tual time the

algorithms to �nd the best algorithm for the task of string mat
hing.

We repeated the tests for the medium text for the book1 text for the 5 algorithms

with the best times and our BR algorithm. From Table 7 we 
an see that our BR

algorithm is still the qui
kest and the other algorithms are still over 14% more time

than our algorithm. So our �ndings for a random text hold for this real English

text. We then 
onsidered two other texts, book2 and the six papers 
on
atenated

together from the Calgary 
orpus [CAL℄. We sear
hed for 500 random words from the

UNIX di
tionary again for the best 5 algorithms and our BR algorithm. The results

do
umented in Table 7 show that algorithm is the fastest algorithm for these tests.

The main reason for the speed of our BR algorithm is the improved maximum shift
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of m+ 2 and the sear
hing on the least likely to o

ur 
hara
ters.

Con
lusions

The experimental results show that the BR algorithm is more eÆ
ient than the exist-

ing algorithms in pra
ti
e for our 
hosen data sets. Over our 4 random texts and 3 real

texts where the BR algorithm is 
ompared to the existing algorithms, our algorithm

is 
omfortably more eÆ
ient over ea
h text. With the addition of pun
tuation and


apital letters it does not a�e
t the BR algorithm. If the pattern to be sear
hed for

began with a 
apital letter then this would make the 
apital letter the least frequent


hara
ter and so it would be sear
hed for �rst. We would expe
t the probability of

a mismat
h to rise and so the algorithm would speed up 
onsiderably. So in the real

world we would expe
t our savings to remain and make our BR algorithm 
ompetitive

with the existing algorithms. It is also possible to apply some of our �nding to what

makes a fast algorithm to the existing algorithms. This may make them faster but

we were 
on
erned with the original algorithms that were devised by their authors.
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Appendix

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 20 7 7 7 7 7 6 6 7 5 4

4 2178 41 11 11 11 11 11 10 10 11 9 7

5 3146 60 14 14 13 13 13 12 12 12 11 9

6 3852 67 13 13 13 13 13 12 12 12 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 7

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 70 8 8 8 8 8 8 8 6 7 5

13 279 72 8 8 8 8 8 8 8 6 6 5

14 116 69 7 7 7 7 7 7 7 5 6 5

15 44 72 7 7 7 7 7 7 7 5 6 5

16 17 70 6 6 6 6 6 6 6 5 5 4

17 7 75 7 7 7 7 6 6 6 5 5 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 89 7 7 7 7 7 7 7 4 5 4

21 2 88 7 7 7 7 7 6 7 4 5 4

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 64 11 11 11 11 11 10 10 10 9 7

Table 3: Averages for random TEXT A of 10,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 21 7 7 7 7 7 6 6 7 6 4

4 2178 42 12 12 12 12 12 10 10 11 9 8

5 3146 59 13 13 13 13 13 12 12 12 11 9

6 3852 66 13 13 13 13 13 12 12 11 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 8

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 7

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 71 8 8 8 8 8 8 8 6 7 6

13 279 71 8 8 8 8 8 8 7 6 6 5

14 116 70 7 7 7 7 7 7 7 6 6 5

15 44 64 6 6 6 6 6 6 6 5 5 4

16 17 74 7 7 7 7 7 7 7 5 5 5

17 7 64 6 6 6 6 6 5 6 4 4 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 72 5 5 6 6 5 5 5 4 4 3

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 63 11 11 11 11 11 10 10 10 9 8

Table 4: Averages for random TEXT B of 10,000 words
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p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 9 6 6 6 6 6 4 4 6 4 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 77 21 21 21 21 21 18 18 20 17 13

5 3146 133 30 30 30 30 30 27 26 28 25 20

6 3852 159 31 31 31 31 31 29 28 28 26 21

7 4042 170 29 29 29 29 29 27 27 26 24 20

8 3607 176 27 27 27 27 27 26 25 24 22 19

9 3088 181 26 26 26 26 26 25 24 22 21 18

10 1971 185 24 24 24 24 24 23 23 20 20 17

11 1120 184 23 23 23 23 23 22 22 18 18 15

12 593 186 21 21 21 21 21 21 20 17 17 14

13 279 183 20 20 20 20 20 19 19 15 16 13

14 116 194 20 20 20 20 20 19 19 15 16 13

15 44 164 16 16 16 16 16 16 16 12 13 10

16 17 217 20 20 20 20 20 20 20 17 16 13

17 7 172 15 15 15 15 14 14 15 11 12 10

18 4 147 12 12 13 13 12 12 13 9 10 8

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 221 17 17 18 18 17 17 17 11 13 10

22 1 397 27 27 27 27 27 26 28 18 22 17

total 24966 155 27 27 26 26 26 24 24 23 22 18

Table 5: Averages for random text of 50,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 13 7 7 7 7 7 5 5 7 5 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 80 22 22 22 22 22 19 18 21 17 15

5 3146 149 34 34 34 34 34 30 29 31 28 23

6 3852 182 36 36 36 36 36 33 32 33 29 25

7 4042 193 33 33 33 33 33 31 30 29 27 24

8 3607 201 31 31 31 31 31 29 29 27 26 22

9 3088 198 28 28 28 28 28 27 26 24 23 20

10 1971 198 26 26 26 26 26 25 25 22 21 18

11 1120 199 25 25 25 24 24 24 23 20 20 17

12 593 217 25 25 25 25 25 24 24 20 20 17

13 279 207 23 23 23 23 22 22 22 18 18 15

14 116 180 20 19 19 19 19 18 18 14 15 13

15 44 218 22 22 22 22 21 21 21 17 17 14

16 17 162 15 15 15 15 15 15 15 12 12 10

17 7 220 20 20 20 20 19 19 19 14 15 13

18 4 208 17 17 17 17 17 17 18 12 14 11

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 157 12 12 12 12 12 12 13 8 10 8

21 2 89 7 7 7 7 7 7 7 11 5 4

22 1 315 21 21 21 21 21 20 22 14 18 14

total 24966 173 30 30 30 30 29 27 27 26 24 21

Table 6: Averages for random text of 100,000 words
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Abstra
t. String mat
h pro
edures with respe
t to two sets are investigated.

The pro
edures traditionally used for data 
ompression are based on single-

string mat
h with respe
t to a single set [LZ78, W84℄. Some re
ent work broad-

ened this view by presenting pro
edures for multiple-string mat
h with respe
t

to a single set [FPC98, PFP99℄ with improved performan
e as 
ompared to

the single-mat
h versions. In this work an algorithm based on double-mat
h

with respe
t to two sets is stated. We do 
onje
ture that multiple-string mat
h

pro
edures with respe
t to two sets 
an a
hieve even better performan
e. A pre-

liminary analysis 
orroborating this 
onje
ture with some eviden
e is reported

in this work.

Key words: Multiple-string mat
h, Lempel-Ziv algorithm, Data 
ompression.

1 Introdu
tion

The pro
edure proposed by Lempel and Ziv in 1978 [LZ78℄ for lossless data 
ompres-

sion is a rather simple and elegant string-mat
h based algorithm. Its low 
omplexity

and implementation simpli
ity has turned it into a very popular algorithm whi
h is

used for instan
e in the 
ompress program of UNIX operational system.

By sele
ting diferent 
ombinations of the basi
 parameters of this algorithm many

variations 
an be established. In the result published in [FPC98℄ a version that

sear
hes for double-string mat
hes instead of the usual single-mat
h is stated |

an improved performan
e was obtained. Extension to multiple string-mat
h was

proposed in [PFP99℄. Similar results were reported by Hartman and Rodeh in [HR85℄.

In this work the two most popular Lempel-Ziv variations, LZ78 and LZW [LZ78,

W84℄, has been 
ast in the framework of string-mat
h with respe
t to two sets. We

also propose two new variations (designated lg-LZ and dt-LZ), whi
h are inspired

and dis
ussed in this new framework. Although the ultimate goal of �nding new

1

This work was supported by grant CNPq-502235/91-8(NV) and AEB/PR-004/97.

29



Pro
eedings of the Prague Stringology Club Workshop '99

algorithms with improved is a motivation behind the algorithms proposed, the ime-

diate obje
tive is to expand the ways of looking at the string mat
hes algorithms and

hopefully to �nd better pro
edures.

This work is organized as follows: in Se
tion 3, we present the idea of string mat
h

with respe
t to two sets and establish a motivation by dis
ussing two well-known

algorithms in the framework of mat
hing with respe
t to two sets. A new algorithm

(lg-LZ) whi
h is a simple variation of the Lempel-Ziv algorithm is also proposed in this

se
tion. In Se
tion 4 a version of double-mat
h/double-tree algorithm is introdu
ed.

Results obtained by 
omputer simulation are presented in Se
tion 5. Our 
on
lusion

is then summarized in Se
tion 5.

2 Notations

We establish the following notation for use in this work.

1. x

j

i

= x

i

x

i+1

: : : x

j

, j > i denotes a �nite sequen
e of symbols x

k

, i � k � j,

that take their values in a given set A = fa

0

; a

1

; �; a

jAj�1

g of 
ardinality jAj. If

j = i, this is the single symbol string x

i

and if i > j we will assume that x

j

i

is

the empty string.

2. j�j denotes the length, if � is a sequen
e, or the 
ardinality, if � is a set.

3. � denotes the null-length string, i.e. j�j = 0.

4. s

i

Æ s

j

denotes the 
on
atenation of the strings s

i

and s

j

. (the result of the


on
atenation will also be indi
ated by s

i

s

j

or s

i

,s

j

)

5. When s

1

; s

2

; � � � ; s

k

2 A

�

are strings of symbols of lengths js

1

j; js

2

j; � � � ; js

k

j re-

spe
tively, the notation s

k

1

represents the string of length js

1

j+ js

2

j+ � � �+ js

k

j

formed by the 
on
atenation of strings s

1

Æ s

2

Æ � � � Æ s

k

.

6. The 
on
atenation of the string ` 2 L = f`

0

; � � � ; `

jLj�1

g and the set M =

fm

0

; � � � ;m

jMj�1

g is the set

` ÆM =

jMj�1

[

i=0

f` Æm

i

g

7. Let L = f`

0

; � � � ; `

jLj�1

g andM = fm

0

; � � � ;m

jMj�1

g. We de�ne the 
on
atena-

tion of these two sets by

L ÆM =

jLj�1

[

i=0

f`

i

ÆMg

8. dxe denotes the smallest integer greater than or equal to number x.

9. �[zjL℄, for jLj > 0, is the longest string `

i

2 L = f`

0

; � � � ; `

jLj�1

g whi
h is a

pre�x of z.
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10. X [sjL℄ is the unique integer index i that identify the member `

i

2 L su
h that

`

i

= s.

11. z � y, when z = x

i

x

i+1

� � �x

j

and y = x

i

x

i+1

� � �x

k

is a pre�x of z, represents

the string x

k+1

� � �x

j

.

12. F [z℄ is the length 1 pre�x of z, if jzj > 0 else it is the empty string.

13. S[z℄ is the length jzj � 1 pre�x of z.

14. �

k

[J ℄, k � logJ (base 2 logarithm) is the trivial k-bit binary representation of

the integer J .

3 The Idea of String Mat
h Algorithm with Re-

spe
t to Two Sets

To establish the framework and the rationale behind our dis
ussion, the well-known

string-mat
h pro
edure proposed by Ziv and Lempel [LZ78℄ for data 
ompression

will be presented, in the 
ontext of string mat
h with respe
t to two sets. We will

undistinguishably refer to this as a double-tree string mat
h 
ontext sin
e the sets we

will be dealing with are tree-stru
tured.

3.1 Lempel-Ziv Algorithm (LZ78)

Let us 
onsider that z

0

= x

N�1

0

is the sequen
e of N symbols generated by the

information sour
e whi
h is to be en
oded (ea
h sour
e symbol x

i

belongs to the

sour
e alphabet A, of dyadi
 
ardinallity for simpli
ity). Generally speaking the

Lempel-Ziv algorithm (LZ78) [LZ78℄ 
an be envisioned as divided in three tasks: The

�rst task, (parsing), whi
h yields the unique parsing

x

N�1

0

= (`

0

Æm

0

); (`

1

Æm

1

); � � � ; (`

t

Æm

t

)

of the sour
e sequen
e in t+ 1 phrases. The next task, (map to integers), assign ea
h

phrase s

i

= (`

i

Æm

i

) to a unique pair of integers (J

i

; K

i

) whi
h are then, in the task

that follows (integer 
ode), repla
ed (or en
oded) by a binary representation a

ording

to some rule to en
ode integer numbers into binary.

Spe
i�
ally, the algorithm LZ78 [LZ78℄ 
an be stated using the double-tree frame-

work by initially setting L

0

= f�; x

0

g, M

0

= A and s

0

= (`

0

Æm

0

) = (� Æ x

0

) = x

0

.

At a general step i, the sets L

i�1

and M

i�1

are known, the sour
e string has been

parsed in i phrases s

0

; � � � ; s

i�1

and there is a remaining unparsed string whi
h will

be denoted by z

i

. The algorithm is des
ribed next.
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Algorithm LZ78

i = 0

z

0

= x

N�1

0

L

0

= f�g, M

0

= A

s

0

= `

0

Æm

0

with `

0

= � and m

0

= x

0

.

1 � i � t

1. Update unparsed string:

z

i

= z

i�1

� (`

i�1

Æm

i�1

)

2. Find longest mat
h s

i

with respe
t to D

i

= L

i�1

ÆM

i�1

:

s

i

= �[z

i

jD

i

℄ = `

i

Æm

i

,

with `

i

= �[z

i

jL

i�1

℄, and m

i

= �[(z

i

� `

i

)jM

i�1

℄.

3. (J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

4. Update L-tree:

L

i

= L

i�1

[ f`

i

Æ F [m

i

℄g

M

i

= A

5. (B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

The eÆ
ien
y of a string mat
h algorithm is 
losely related to the number t+1 of

phrases parsed o� from the sour
e string and to the rate of growth of the sets L and

M. In the present 
ase, LZ78, t+1 phrases are generated and the N sour
e symbols

will be represented by L binary symbols,

L =

t

X

i=0

(jB

i

j+ jC

i

j) = (t+ 1) log

2

jAj+

t

X

i=0

jB

i

j;

rendering a � = L=N 
ompression rate. If the sour
e symbols are drawn from an

stationary sour
e, the 
ompression rate provedly [LZ78℄ 
onverges to the entropy of

the sour
e. The interplay between these two parameters is quite envolved [S97℄ and is

not our main 
on
ern. It is worth mentioning that Integer Codes more eÆ
ient than

the one used to produ
e the binary blo
k (B

i

; C

i

) 
ould be used. An improvement in

the above 
ode, for instan
e, 
an be introdu
ed simply by noti
ing that the phrase s

i

whi
h is parsed o� at the i-th step, a
tually belongs to a set D

i

(
alled di
tionary or


odebook)

D

i

= L

i�1

ÆM

i�1

with some elements (or 
odewords) on it, whi
h are not able to be sele
ted as a mat
h

to s

i

| the enumeration reserved for these are therefore a waste of bits. This is of

little 
on
ern to us at this point and the Integer Code as it is will be used with the

other algorithm versions dis
ussed in the entire work.

The important point to be stressed in relation to the LZ78 is that no matter

the value of i, the asso
iated tree M

i

is kept �xed, equal to A. Whether there are

pro
edures whi
h performs more eÆ
iently, by allowing M

i

, the se
ond di
tionary

tree, to grow rather than be �xed, is a 
onje
ture naturally raised. This issue is

examined on the next se
tion. A variation of the LZ78 whi
h 
onstru
ts the di
tionary

D

i

in a sligthly di�erent manner and whi
h, for this reason, has a slightly better

performan
e will be presented. Example I ilustrates the workings of LZ78.
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Example I

Let the sample string to be 
ompressed be

Sample0 = x

33

0

= aa
abadababaa
adaba
abadadababaaaba

The quaternary sour
e alphabet is A = fa,b,
,dg. The sequen
e fL

i

: i = 0; 14g

of sets obtained with the LZ78 pro
edure, the 
orresponding phrases and binary


odewords obtained are next presented.

Step i = 0

z

0

= aa
abadababaa
adaba
abadadababaaaba

L

0

= f�g, M

0

= A

`

0

= �, m

0

= a

s

0

= `

0

Æm

0

= a, W

0

= 00

Step i = 1

s

0

; z

1

= a,a
abadababaa
adaba
abadadababaaaba

L

1

= fag

`

0

= a, m

0

= 


s

1

= `

1

Æm

1

= a Æ 
, W

1

= 1 10

Keep going like this will take us to

s

13

0

z

14

=a,a
,ab,ad,aba,b,aa,
,ada,ba,
a,bad,adab,abaa,aba

L

14

= f a, a
, ab, ad, aba, b, aa, 
, ada, ba, 
a, bad, adab,

abaa g

s

14

= aba �; W

14

= 0101 �

3.2 A Less Greedy LZ78

We observe, in the plain LZ78 dis
ussed on Se
tion 3.1, that the set L

i

is in
reasead

by one element at ea
h step i, i.e., jL

i

j = jL

i�1

j + 1. The di
tionary D

i

is built

by transforming the tree 
orresponding to L

i�1

into a 
omplete tree having only

terminal nodes and nodes with exa
tly jAj bran
hes stemming from them. This

greedy expansion of the set L

i�1

seems to be one reason for the degraded performan
e

of the LZ78 algorithm, as 
ompared to other variations, su
h as LZW for instan
e.

The variation introdu
ed in this se
tion (lg-LZ, in short), allows for a less-greedy

expansion in order to get the di
tionary D

i

. The longest string mat
h is not found

this time (lg-LZ), with respe
t to the di
tionary D

i

= L

i�1

ÆM

i�1

but, instead, with

respe
t to the di
tionary

D

i

= L

i�1

[ fs

i

Æ Ag:

The di
tionary D

i

is now built by expanding the L

i�1

tree by appending to the node


orresponding to the path just sele
ted as a longest mat
h, the tree 
orresponding to

the alphabet A. The algorithm is stated next.
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Algorithm lg-LZ

i = 0

z

0

= x

N�1

0

L

0

= A, M

0

= A

s

0

= x

0

J

0

= X [s

0

jA℄, B

0

= �

dlog jAje

[J

0

℄

1 � i � t

1. Update unparsed string

z

i

= z

i�1

� s

i�1

2. Find longest mat
h s

i

with respe
t to D

i

= L

i�1

[fs

i�1

ÆM

i�1

g

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄)

4. B

i

= �

dlog jD

i

je

[J

i

℄

5. Updating tree

`

new

= s

i�1

Æ F [s

i

℄

if j`

new

j = js

i

j and s

i

=2 L

i�1

then `

new

= s

i

L

i

= L

i�1

[ f`

new

g

M

i

= A

Also here we have s

i

= `

i

Æm

i

with, possibly,m

i

= �. The performan
es displayed

on Table 2, obtained by 
omputer simulation show instan
es where the lg-LZ performs

better when 
ompared to its 
ounterpart LZW. The example presented next ilustrate

the workings of the lg-LZ.

Example II

Let x

33

0

= aa
abadababaa
adaba
abadadababaaaba. A = fa; b; 
; dg. The pars-

ing that the pro
edure lg-LZ yields is

a, a
, a, b, a, d, ab, aba, a
a, da, ba, 
, aba, da, dab, abaa, aba

The 
ompressed representation of x

33

0

is a binary string with 72 bits | 
ompression

rate of 0:257

3.3 Lempel-Ziv-Wel
h Algorithm

The Lempel-Ziv-Wel
h pro
edure, popularly 
alled LZW, is known to have a perfor-

man
e on the average 10% better then the plain LZ78 version. One aspe
t that makes

the LZW di�erent from LZ78 is that it works with a rule that build the di
tionary

D

i

by appending only one node to the 
orresponding tree L

i�1

.

The following would be the des
ription of the LZW algorithm.
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Algorithm LZW

i = 0

z

0

= x

N�1

0

L

0

= A,

M

0

= f�g and

s

0

= x

0

. `

0

= x

0

1 � i � t

1. z

i

= z

i�1

� s

i�1

2. Find longest mat
h with respe
t to D

i

= L

i�1

[ `

i�1

ÆM

i�1

`

i

= �[z

i

jL

i�1

℄,

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄

4. L

i

= D

i

M

i

= fF [z

i

� s

i

℄g

5. B

i

=�

dlog jD

i

je

[J

i

℄

Example III

Consider again Sample0 = x

33

0

= aa
abadababaa
adaba
abadadababaaaba with

A = fa; b; 
; dg. This sequen
e is parsed into 20 phrases as follows

a, a, 
, a, b, a, d, ab, aba, a
, ad, aba, 
a, ba, da, da,

ba, ba, aa, ba

and its 
ompressed representation is a binary string with 81 bits | a 
ompression

rate of 0:289

4 Des
ription of Double-tree Algorithms

In the previous se
tion two known agorithms (LZ78 and LZW) and a simple variation

of the former (lg-LZ) were stated within the framework of a double-tree string mat
h.

Ea
h one of the algorithms produ
e a sequen
e of trees fL

i

g

i=0;t

and 
orresponding

sequen
e of di
tionaries fD

i

g

i=0;t

with a string mat
h done with respe
t to ea
h

di
tionary. The basi
 di�eren
e among the three algorithms relies in the manner

in whi
h the tree L

i�1

is 
on
atenated with the 
orresponding M

i�1

, to build the

di
tionary D

i

. Table 1 summarizes this aspe
t.

LZ78: jD

i

j = jL

i�1

ÆM

i�1

j

� jL

i�1

jjM

i�1

j

lg-LZ: jD

i

j = jL

i�1

[ f`

i

Æ Agj

= jL

i�1

j+ jAj

LZW: jD

i

j = jL

i�1

[ `

i�1

ÆM

i�1

j

= jL

i�1

j+ 1

Table 1: Length of the di
tionaries
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A point whi
h is 
ommon to the three algorithms so far dis
ussed is that they all


on
atenate the set L

i�1

with a depth one tree in order to build their di
tionaries.

It is quite natural at this point to ask whether there are pro
edures whi
h performs

more eÆ
iently when the se
ond di
tionary tree is allowed to have depth greater

than one. A double-tree string mat
h algorithm, with a se
ond tree having a more

general stru
ture is stated in this se
tion. Allowing a more general stru
ture for the

se
ond tree M

i�1

, enlarge the number of algorithm variations that 
an be stated.

The sear
h for string mat
hes are now sear
hes for double-mat
hes | this imply that

more general ways to sear
h are possible and that the longest-mat
h is not ne
essarily

a 
on
atenation of a string `

i

(whi
h is the longest mat
h with respe
t to the tree

L

i�1

) with the string m

i

(whi
h is the longest mat
h with respe
t to the tree M

i�1

).

Now, in order to optimize the number t + 1 of parses, the best strategy is to sear
h

for a 
on
atenation (`

i

Æm

i

) whi
h among all double-mat
hes, have the largest size

j`

i

j+jm

i

j. We have implemented one version of a double-mat
h/double-tree pro
edure

and analysed their performan
e by 
omputer simulations. The algorithm, whi
h will

be, abreviatedly, referred to as dt-LZ, is presented next.

Algorithm dt-LZ

i = 0 (Initialization step)

� z

0

= x

N�1

0

� L

0

=M

0

= A

� m

0

= �[z

0

jM

0

℄,

� K

0

= X [m

0

jM

0

℄;

� C

0

= �

dlog jM

0

je

[K

0

℄

� z

1

= z

0

�m

0

;

� M

0

=M

0

[ fm

0

Æ F [z

1

℄g

1 � i � t (Generi
 step)

1. Segmentation:

(a) `

i

= �[z

i

jL

i�1

℄,

z

temp

= z

i

� `

i

,

m

i

= �[z

temp

jM

i�1

℄,

� = j`

i

j+ jm

i

j,

u = `

i

.

(b) i. u = S[u℄

z

temp

= z

i

� u

v = �[z

temp

jM

i�1

℄.

ii. If (juj+ jvj � �): (`

i

;m

i

) = (u;v), � = j`

i

j+ jm

i

j.

iii. If juj > 0 return to step (i).

(
) z

i

= (z

i

� `

i

)�m

i

2. Update Di
tionaries:

L

i

= L

i�1

[ f`

i

Æ F [m

i

℄g

M

i

=M

i�1

[ fm

i

Æ F [z

i

℄g

3. Map to Integer

(J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)
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4. Integer Code:

(B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

Example IV

Let x

33

0

= aa
abadababaa
adaba
abadadababaaaba. A = fa; b; 
; dg. The pars-

ing for the pro
edure dt-LZ yields is

(-,a), (a,
), (a,b), (a,d), (a,ba), (b,aa), (
,a), (d,a), (ba,
a),

(ba,da), (da,bab), (a,aa),(b,a).

where we show the double-mat
hes displayed in parenthesis.

5 Some Computer Simulation Results

The algorithms dis
ussed have been implemented as 
omputer programs whi
h were

used to 
ompress some sample sequen
es. Although the performan
e of all these

algorithms are optimum in the sense that their 
ompression rate asymptoti
ally 
on-

verges to the entropy of the information sour
e or to the Lempel-Ziv 
omplexity of

the individual sequen
e, they perform quite di�erently when �nite sequen
es and the

rate of 
onvergen
e to the asymptoti
 optimum are 
onsidered. Table 2 displays some

of the simulation results exhibiting the performan
e of the algorithms. We have not

Sequen
e LZW lg-LZ dt-LZ

(size) (size) (size) (size)

Sample0 .289 .257 .311

(280) (81) (72) (87)

Sample1 .089 .099 .097

(576) (51) (57) (56)

Sample2 .077 .086 .103

(544) (42) (47) (56)

Sample3 .357 .371 .335

(672) (240) (249) (225)

Sample4 .258 .113 .320

(256) (66) (29) (82)

Table 2: Compression rate of algorithms LZW, lg-LZ and dt-LZ (all sequen
e sizes,

in parenthesis, are in bits)

presented results for the LZ78 algorithm. As the other versions this algorithm is

asymptoti
ally optimum but has an inferior perfoman
e as 
ompared to the LZW.

As it 
an be noti
ed from the results presented in Table 2 the behavior of the algo-

rithms are sequen
e dependent. For some sequen
es the LZW 
an a
hieve a better

result than the lg-LZ | this gain is basi
ally due to the penalty paid by the lg-LZ

for expanding the �rst tree with A nodes to build the di
tionary, instead of the one

node expansion done by the LZW. This gain in performan
e tend to disappear as

the sequen
e length grows larger. Examining the line on Table 2 
orresponding to

Sample4 one 
an see that the performan
e of lg-LZ 
an 
onverge 
onsiderably fast
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to the optimum, as 
ompared to LZW, for 
ertain types of sequen
es. These are

sequen
es 
onstru
ted to bene�t the performan
e of lg-LZ (no su
h 
onstru
tion 
an

be done, we 
onje
ture, to bene�t LZW).

Con
lusion

We have proposed algorithms whi
h are based on the idea of string mat
hes with

respe
t to two sets or, equivalently, string mat
h with respe
t to two trees. Many

implementations variations of these algorithms are possible | a double-string mat
h

with respe
t to two trees version (
alled dt-LZ) was implemented.

In our preliminary investigation we exam the behavior of these algorithms and

analyse its performan
e by 
omputer simulation. Also we stated the well known

LZ78 algorithm [LZ78℄ in the framework of string mat
h with respe
t to two trees, as

well as the LZW [W84℄. A simple modi�
ation of the LZ78 was also proposed (this

was 
alled lg-LZ).

It is our expe
tation that higher 
ompression 
an be a
hieved with double-string

mat
h with respe
t to two trees pro
edures. This is based on the argument that

the use of two trees allows the 
onstru
tion of 
on
atenated trees with more general

stru
tures, leaving more room for optimizing the sear
h. It is also based on results we

have obtained with multiple-string mat
hes algorithms [PFP99℄ | whi
h a
hieve a

better 
ompression than single-mat
hes ones. These multiple-string mat
h algorithms

are based on the double-tree idea yet the two trees involved in the pro
ess are kept

equal.

The results presented in this work do not single out a de�nite better double-

mat
h/double-tree algorithm | if one 
an be found | but bring to our attention

that there are many variations. Our investigations will be further pursued by exam-

ining other double-mat
h/double-tree implementations. An extension of the multiple-

mat
h des
ribed in [PFP99℄ will also be sought.
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Abstra
t. This paper deals with a new pra
ti
al method for solving the longest


ommon subsequen
e (LCS) problem. Given two strings of lengths m and n,

n � m, on an alphabet of size s, we �rst present an algorithm whi
h determines

the length p of an LCS in O(ns + minfmp; p(n � p)g) time and O(ns) spa
e.

This result has been a
hieved before [Ri
94, Ri
95℄, but our algorithm is signi�-


antly faster than previous methods. We also provide a se
ond algorithm whi
h

generates an LCS in O(ns+minfmp;m logm+ p(n� p)g) time while preserv-

ing the linear spa
e bound, thus solving the problem posed in [Ri
94, Ri
95℄.

Experimental results 
on�rm the eÆ
ien
y of our method.

Key words: Design and analysis of algorithms, edit distan
e, longest 
ommon

subsequen
e.

1 Introdu
tion

Let x = x

1

: : : x

m

and y = y

1

: : : y

n

, n � m, be two strings over an alphabet � =

f�

1

; : : : ; �

s

g of size s. A subsequen
e of x is a sequen
e of symbols obtained by deleting

zero or more 
hara
ters from x. The Longest Common Subsequen
e (LCS) Problem

is to �nd a 
ommon subsequen
e of x and y whi
h is of greatest possible length.

It will be 
onvenient to des
ribe the problem in another way. An ordered pair

(k; `), 1 � k � m, 1 � ` � n, is 
alled a mat
h if x

k

= y

`

. The set M of all mat
hes


an be identi�ed with a mat
hing matrix of size m�n in whi
h ea
h mat
h is marked

with a dot. For example, if x = aba
b
ba and y = 
babba
a
, then M is as shown

in Fig. 1 (a). De�ne a partial order � on N � N by establishing (k; `) � (k

0

; `

0

)

i� both k < k

0

and ` < `

0

. A 
hain C � M is a set of points whi
h are pairwise


omparable, i.e., for any two distin
t p

1

; p

2

2 C, either p

1

� p

2

or p

1

� p

2

, where

p

1

� p

2

means p

2

� p

1

. Then the LCS problem 
an be viewed as �nding a 
hain of

maximal 
ardinality in M . One su
h 
hain is indi
ated as a path in Fig. 1 (b).

Finding an LCS is 
losely related with the 
omputation of string edit distan
es

[LW75, MP80, Wag75, WC76℄ and shortest 
ommon supersequen
es [GMS80℄. It was

�

Resear
h supported by Deuts
he Fors
hungsgemeins
haft, Grant CL 64/3-1
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Figure 1: (a) mat
hing matrix, (b) path representing an LCS.

�rst used by mole
ular biologists to study similar amino a
ids [Day65, Day69, NW70,

SC73℄. Other appli
ations are in data 
ompression [AHU76, GMS80, Mai78℄ and

pattern re
ognition [FB73, LF78℄.

The LCS problem 
an be solved in O(mn) time by a dynami
 programming ap-

proa
h [SK83, WF74℄, while the asymptoti
ally fastest general solution uses the \four

russians" tri
k and takes O(nm= logn) time [MP80℄. A lot of other algorithms have

also been developed whi
h are sensitive to other problem parameters, e.g., the length

p of an LCS. They usually perform mu
h better than the latter algorithms, although

they all have a worst 
ase time 
omplexity at least of 
(mn). For example, Hunt and

Szymanski [HS77℄ have presented an O((r+n) logn) algorithm, where r := jM j. Thus

their appro
h is fast when r is small, e.g., r = O(n), but its worst{
ase time 
omplex-

ity is O(n

2

logn). Later, this has been improved to O(mn) [Apo86℄. There are also

several routines whi
h run in O(n(n+1�p)) or O(n(m+1�p)) time, and thus are ef-

�
ient when an LCS is expe
ted to be long [Mye86, NKY82, Ukk85, WMM90℄. Other

algorithms have running times O(n(p + 1)) or O(m(p + 1)) and should be used for

short LCS [Apo87, AG87, Hir77, HD84℄. However, it might be very diÆ
ult to a pri-

ori sele
t a good strategy be
ause in general the length p 
annot be easily estimated.

Also, when having a small alphabet, we 
an expe
t p to be of intermediate size, e.g.,

for s = 4, the average length of an LCS is bounded between 0:54 �m � p � 0:71 �m

[CS75, DP94, Dek79, PD94, SK83℄. Then none of the above methods performs well.

Therefore re
ent resear
h has been 
on
entrated on more 
exible algorithms whi
h

are eÆ
ient for short, intermediate, and long LCS, su
h as the method proposed by

Chin/Poon [CP94℄. Another approa
h from Ri
k [Ri
94, Ri
95℄ with running time

O(ns+minfmp; p(n� p)g) has been widely a

epted as the fastest algorithm for the

general LCS problem.

In this paper, we shall develop a new algorithm whi
h is based on a kind of

dualization of Ri
k's method. A detailed des
ription of the theoreti
al ba
kground

will be given in Se
t. 2 and 3. Our idea does not improve the O(ns+minfmp; p(n�

p)g) time bound, but two important advantages are obtained. First, the number of

mat
hes pro
essed while 
omputing the length of an LCS is signi�
antly de
reased,

resulting in a faster exe
ution speed. The 
orresponding algorithm will be presented

in Se
t. 4. Se
ond, when generating an LCS, we 
an a
hieve linear spa
e through a

divide{and{
onquer s
heme similar to that of other (but slower) algorithms [ABG92,
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Hir75, KR87℄. This will be explained in Se
t. 5. The methods mentioned before all

need at least 
(nm= logn) spa
e in their worst 
ases (see [PD94℄ for a survey), and

most of them, in
luding Ri
k's approa
h, 
annot be 
ombined with the divide{and{


onquer te
hnique. The open problem of a linear spa
e implementation of Ri
k's

algorithm [Ri
95℄ is hereby solved. Experimental results presented in Se
t. 6 
on�rm

the eÆ
ien
y of our method.

2 A New Approa
h to the LCS Problem

As already mentioned in the introdu
tion, the LCS problem is equivalent to �nding a


hain of maximum 
ardinality in M . Dilworth's fundamental theorem [Dil50℄ states

that this 
ardinality equals the minimum number of disjoint anti
hains into whi
h

M 
an be de
omposed (an anti
hain of M 
onsists of mat
hes whi
h are pairwise

in
omparable). In our example, this number (
alled the Sperner number ofM) equals

�ve. A suitable de
omposition is shown in Fig. 2 (f). To �nd su
h a minimum

de
omposition, we �rst split [1 : m℄� [1 : n℄ into subsets denoted by T

i

, L

i

, B

i

, and

R

i

, where

T

i

:= fig � [i : n+ 1� i℄

L

i

:= [i+ 1 : m + 1� i℄� fig

B

i

:= fm+ 1� ig � [i + 1 : n+ 1� i℄

R

i

:= [i+ 1 : m� i℄� fn+ 1� ig

and 1 � i � dm=2e (see Fig. 2 (a) for an illustration). Additionally, let

T

�i

:=

[

j�i

T

j

; L

�i

:=

[

j�i

L

j

; B

�i

:=

[

j�i

B

j

; R

�i

:=

[

j�i

R

j

:

Now for i = 1; 2; : : : ; dm=2e, we 
onstru
t four sets of anti
hains A

T;i

, A

L;i

, A

B;i

, and

A

R;i

whi
h de
ompose (a suitable subset of) T

�i

, L

�i

, B

�i

, and R

�i

, respe
tively. The

de
ompositions are generated by updating the previous sets, using the mat
hes found

in T

i

, L

i

, B

i

, and R

i

(details are given below). We use A

u

A

T;i

to denote an anti
hain in

A

T;i

, where u is an index between 1 and the size e

T;i

:= jA

T;i

j of A

T;i

. Therefore e

T;i

is also 
alled the end index of A

T;i

. For A

L;i

, A

B;i

, and A

R;i

, we introdu
e analogous

notations. Furthermore, there are two start indi
es s

TL;i

and s

BR;i

. The �rst one is

used to split both A

T;i

and A

L;i

into two parts. One part 
ontains all anti
hains with

indi
es less than s

TL;i

, and the other part 
onsists of the rest. Only the latter part

will be used for the updating pro
ess, whereas the former one will be 
opied to A

T;i+1

resp. A

L;i+1

without 
hange. s

BR;i

similarly splits A

B;i

and A

R;i

.

Fig. 2 (b), (
), (d), and (e) give a preview of the 
onstru
tion in the sample

mat
hing matrix after step i = 1, 2, 3, and 4, respe
tively. The 
entered grey box

represents the remaining part of M whi
h has not been pro
essed so far. By our


onstru
tion, with ea
h step, it shrinks by two rows and 
olumns.

We need the following terminology for the des
ription of the 
onstru
tion pro
ess.

For two anti
hains C;D �M the set

IP(C;D) := fp

1

2 C j 8 p

2

2 D : :(p

1

� p

2

_ p

1

� p

2

)g
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Figure 2: (a) splitting of M , (b){(e) 
onstru
tion of anti
hains, (f) �nal de
ompo-

sition.

is 
alled the in
omparable part of C relative to D. Clearly, IP(C;D) [ D is the

greatest anti
hain above D 
ontained in C [ D. We say C is in
omparable to D if

IP(C;D) = C, and a single mat
h p

1

2M is in
omparable toD if IP(fp

1

g; D) = fp

1

g.

We are now prepared to dis
uss the generation of the anti
hains in more detail.

Initially, there are no anti
hains, i.e., we have A

T;0

= A

L;0

= A

B;0

= A

R;0

= ; by

initializing ea
h start and end index to 1 and 0, respe
tively. Then, for ea
h step

i = 1; : : : ; dm=2e, we start with T

i

to determine A

T;i

from A

T;i�1

. Let s := s

TL;i�1

and e := e

T;i�1

. The �rst s � 1 anti
hains remain un
hanged and are simply 
opied

from A

T;i�1

to A

T;i

. Now de�ne A

s

A

T;i

as A

s

A

T;i�1

[IP(T

i

\M;A

s

A

T;i�1

). For example, when

pro
essing T

2

in Fig. 2 (b), IP(T

2

\M;A

1

A

T;1

) = f(2; 2)g, and thus the mat
h (2; 2)
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ombined with A

1

A

T;1

makes up A

1

A

T;2

as shown in Fig. 2 (
). Next, for u = s+ 1; : : : ; e,

the anti
hain A

u

A

T;i�1

is handled in the same way to set up A

u

A

T;i

, but only those mat
hes

in T

i

not belonging to A

s

A

T;i

; : : : ; A

T;i

A

u�1

are 
onsidered. Finally, we establish s

TL;i

:= s

and, if there are no mat
hes left, e

T;i

:= e. Otherwise, we set e

T;i

to e+1 and 
olle
t all

remaining mat
hes in a new anti
hain A

T;i

A

e+1

. Also, if A

R;i�1

6= ;, we 
he
k whether its

last anti
hain A

~e

A

R;i�1

, ~e := e

R;i�1

, is in
omparable to A

T;i

A

e+1

. In this 
ase we say A

~e

A

R;i�1

is ina
tivated by A

T;i

A

e+1

, and we remove A

~e

A

R;i�1

from A

R;i

by setting e

R;i

:= e

R;i�1

.

Continuing our example with T

2

in Fig. 2 (b), we see there are two mat
hes (2; 4)

and (2; 5) left after pro
essing A

1

A

T;2

. Therefore a new anti
hain A

2

A

T;2

is 
reated, but

A

1

A

R;1

remains un
hanged be
ause, for example, (2; 4) � (4; 9). The �nal set A

T;2

is

shown in Fig. 2 (
) (the modi�
ations to the other anti
hains are des
ribed below).

Now let us 
onsider the work involved with T

3

. The mat
h (3; 3) 
annot be put into

A

1

A

T;3

, but into A

2

A

T;3

, and the other mat
h (3; 6) makes up the new anti
hain A

3

A

T;3

. This

time (3; 6) ina
tivates (3; 8), and thus A

2

A

R;2

is removed. The result is illustrated in

Fig. 2 (d) (all mat
hes lo
ated in deleted anti
hains are indi
ated by grey dots).

S := T

i

\M ; (� Determine A

T;i

�)

For u := s

TL;i�1

To e

T;i�1

Do f

A

u

A

T;i

:= A

u

A

T;i�1

[ IP(S;A

u

A

T;i�1

);

S := S n IP(S;A

u

A

T;i�1

);

5 g;

If S 6= ; Then f

e

T;i

:= e

T;i�1

+ 1; e := e

T;i

; A

e

A

T;i

:= S;

e

R;i

:= e

R;i�1

; ~e := e

R;i

;

If s

BR;i�1

� e

R;i�1

Then f

10 If IP(A

~e

A

R;i�1

; A

e

A

T;i

) = A

~e

A

R;i�1

Then f

D

TR

:= D

TR

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

15 g Else f e

T;i

:= e

T;i�1

; e

R;i

:= e

R;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

T;i

:= A

u

A

T;i�1

;

S := L

i

\M ; (� Determine A

L;i

�)

For u := s

TL;i�1

To e

L;i�1

Do f

A

u

A

L;i

:= A

u

A

L;i�1

[ IP(S;A

u

A

L;i�1

);

20 S := S n IP(S;A

u

A

L;i�1

);

g;

If S 6= ; Then f

e

L;i

:= e

L;i�1

+ 1; e := e

L;i

; A

e

A

L;i

:= S;

e

B;i

:= e

B;i�1

; ~e := e

B;i

;

25 If s

BR;i�1

� e

B;i�1

Then f

If IP(A

~e

A

B;i�1

; A

e

A

L;i

) = A

~e

A

B;i�1

Then f

D

BL

:= D

BL

[ A

~e

A

B;i�1

;

e

B;i

:= ~e� 1;

g;

30 g;

g Else f e

L;i

:= e

L;i�1

; e

B;i

:= e

B;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

L;i

:= A

u

A

L;i�1

;

33 s

TL;i

:= s

TL;i�1

;

S := B

i

\M ; (� Determine A

B;i

�)

For u := s

BR;i�1

To e

B;i

Do f

A

u

A

B;i

:= A

u

A

B;i�1

[ IP(S;A

u

A

B;i�1

);

S := S n IP(S;A

u

A

B;i�1

);

g;

If S 6= ; Then f

e

B;i

:= e

B;i

+ 1; e := e

B;i

; A

e

A

B;i

:= S;

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL

:= D

BL

[ A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

B;i

:= A

u

A

B;i�1

;

S := R

i

\M ; (� Determine A

R;i

�)

For u := s

BR;i�1

To e

R;i

Do f

A

u

A

R;i

:= A

u

A

R;i�1

[ IP(S;A

u

A

R;i�1

);

S := S n IP(S;A

u

A

R;i�1

);

g;

If S 6= ; Then f

e

R;i

:= e

R;i

+ 1; e := e

R;i

; A

e

A

R;i

:= S;

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR

:= D

TR

[A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

R;i

:= A

u

A

R;i�1

;

s

BR;i

:= s

BR;i�1

;

(a) (b)

Figure 3: The algorithms for generating A

T;i

& A

L;i

(a), and A

B;i

& A

R;i

(b).

Having determined A

T;i

, we 
ontinue with the ne
essary 
al
ulations for A

L;i

whi
h

are very similar. The �rst s� 1 anti
hains are 
opied and then, for u = s; : : : ; e

L;i�1

,

A

u

A

L;i

is de�ned as the union of A

u

A

L;i�1

and the in
omparable part of L

i

relative to

A

u

A

L;i�1

, where only those mat
hes are 
onsidered whi
h have not already been used.

Remaining mat
hes form a new anti
hain and, if they are in
omparable to the last
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anti
hain in A

B;i�1

, we de
rease e

B;i

by one. The 
orresponding algorithm in Fig. 3 (a)

also introdu
es two additional sets D

TR

and D

BL

whi
h 
ontain all deleted mat
hes.

Details will be given in the next se
tion.

Before pro
essing A

B;i�1

and A

R;i�1

in an analogous way, we �rst 
he
k whether

the �rst anti
hain in A

T;i

or A

L;i

is TL{
omplete, i.e., whether one of them 
ontains a

mat
h (k; `) su
h that 1 � k; ` � i. For example, in the 
on�guration shown in Fig. 2

(
), A

1

A

T;2

is TL{
omplete due to the mat
h (2; 2). As soon as A

s

A

T;i

is dete
ted to be

TL{
omplete, s

TL;i

is in
reased by one, thus the �rst anti
hains in both 
orresponding

sets whi
h are 
he
ked for additional mat
hes remain un
hanged from now on. If there

is no su
h anti
hain in A

L;i

(i.e. s > e

L;i

), but s

BR;i�1

� e

B;i

, then we additionally

test whether A

s

A

T;i

is in
omparable to the last anti
hain in A

B;i�1

and, should this

situation arise, delete this anti
hain from A

B;i

by de
reasing e

B;i

.

Now assume A

s

A

L;i

is TL{
omplete. Then, as shown in Fig. 4 (a), we also in
rease

s

TL;i

, and similarly, if s > e

T;i

and s

BR;i�1

� e

R;i

, we de
rease e

R;i

if A

s

A

L;i

ina
tivates

the last anti
hain in A

R;i

.

(� Che
k A

T;i

for TL{
ompleteness �)

If s

TL;i

� e

T;i

Then f

s := s

TL;i

;

If 9 (k; `) 2 A

s

A

T;i

: k; ` � i Then f

5 If s > e

L;i

Then f

If s

BR;i�1

� e

B;i

Then f

~e := e

B;i

;

If IP(A

~e

A

B;i�1

; A

s

A

T;i

) = A

~e

A

B;i�1

Then f

D

BL;i

:= D

BL;i

[A

~e

A

B;i�1

;

10 e

B;i

:= ~e� 1;

g;

g;

e

L;i

:= s; A

s

A

L;i

:= ;;

g;

15 s

TL;i

:= s+ 1;

g;

g;

(� Che
k A

L;i

for TL{
ompleteness �)

If s

TL;i

� e

L;i

Then f

20 s := s

TL;i

;

If 9 (k; `) 2 A

s

A

L;i

: 1 � k; ` � i Then f

If s > e

T;i

Then f

If s

BR;i�1

� e

R;i

Then f

~e := e

R;i

;

25 If IP(A

~e

A

R;i�1

; A

s

A

L;i

) = A

~e

A

R;i�1

Then f

D

TR;i

:= D

TR;i

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

30 e

T;i

:= s; A

s

A

T;i

:= ;;

g;

s

TL;i

:= s+ 1;

g;

34 g;

(� Che
k A

B;i

for BR{
ompleteness �)

If s

BR;i

� e

B;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

B;i

: k > m� i ^ ` > n� i Then f

If s > e

R;i

Then f

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR;i

:= D

TR;i

[ A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

e

R;i

:= s; A

s

A

R;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(� Che
k A

R;i

for BR{
ompleteness �)

If s

BR;i

� e

R;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

R;i

: k > m� i ^ ` > n� i Then f

If s > e

B;i

Then f

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL;i

:= D

BL;i

[A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

e

B;i

:= s; A

s

A

B;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(a) (b)

Figure 4: The algorithms for handling 
omplete anti
hains in A

T;i

& A

L;i

(a), and in

A

B;i

& A

R;i

(b).

The remaining work in step i 
on
erns with the analogous 
onstru
tion of A

B;i

and

A

R;i

. (The analogue of TL{
ompleteness is 
alled BR{
ompleteness. An anti
hain is

BR{
omplete if it 
ontains a mat
h (k; `) with m � i < k � m and n � i < ` � n.)

Details are available from the algorithms shown in Fig. 3 (b) and Fig. 4 (b).
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The main program shown in Fig. 5 is straightforward. Our next task is to elaborate

the 
onne
tion between the generated anti
hains and a minimal de
omposition of M .

This is done in the next se
tion.

i := 1; (� Initialization �)

s

T;0

:= 1; s

L;0

:= 1; s

B;0

:= 1; s

R;0

:= 1;

e

T;0

:= 0; e

L;0

:= 0; e

B;0

:= 0; e

R;0

:= 0;

For i := 0 To dm=2e Do D

TL;i

:= ;;

5 For i := 0 To bm=2
 Do D

BR;i

:= ;;

While i � bm=2
 Do f (� Main loop �)

Determine A

T;i

and A

L;i

; (� see Fig. 3 (a) �)

Look for TL-
omplete anti
hains in A

T;i

and A

L;i

; (� see Fig. 4 (a) �)

Determine A

B;i

and A

R;i

; (� see Fig. 3 (b) �)

10 Look for BR-
omplete anti
hains in A

B;i

and A

R;i

; (� see Fig. 4 (b) �)

i := i+ 1;

g;

If Odd(m) Then f

Determine A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 3 (a) �)

15 Look for TL-
omplete anti
hains in A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 4 (a) �)

g;

Figure 5: The main program for de
omposing M

3 Analysis of the Constru
tion

In this se
tion, we study how to 
ombine the anti
hains into larger ones su
h that

a minimal de
omposition of M is obtained. We further establish some results whi
h

later help us to 
onstru
t an LCS in linear spa
e.

Let us assume m is odd, and let i = dm=2e. For te
hni
al reasons, we then put

A

u

A

B;i

:= A

u

A

B;i�1

and A

u

A

R;i

:= A

u

A

R;i�1

for all 1 � u � e

B;i�1

and 1 � u � e

R;i�1

. We also

set s

BR;i

:= s

BR;i�1

, e

B;i

:= e

B;i�1

, and e

R;i

:= e

R;i�1

. Furthermore, for 0 � i � dm=2e,

we de�ne A

u

A

T;i

:= ;, A

u

A

L;i

:= ;, A

u

A

B;i

:= ;, and A

u

A

R;i

:= ; for u > e

T;i

, u > e

L;i

, u > e

B;i

,

and u > e

R;i

, respe
tively.

Lemma 3.1 Let 1 � i � dm=2e. Then the following holds:

a) 8 s

TL;i�1

� u < v � e

T;i

8 p

1

2 A

v

A

T;i

9 p

2

2 A

u

A

T;i

: p

1

� p

2

:

b) 8 s

TL;i�1

� u < v � e

L;i

8 p

1

2 A

v

A

L;i

9 p

2

2 A

u

A

L;i

: p

1

� p

2

:


) 8 s

BR;i�1

� u < v � e

B;i

8 p

1

2 A

v

A

B;i

9 p

2

2 A

u

A

B;i

: p

1

� p

2

:

d) 8 s

BR;i�1

� u < v � e

R;i

8 p

1

2 A

v

A

R;i

9 p

2

2 A

u

A

R;i

: p

1

� p

2

:

Proof. We only show the �rst 
laim, the other proofs are similar. Let p

1

= (k; `). Sin
e

A

v

A

T;i

� T

�dm=2e

, p

1

has been added to A

v

A

T;k

while pro
essing T

k

in step k, and k � i.

Clearly, from the way S is handled in lines 1{5 of Fig. 3 (a), p

1

=2 IP(T

k

\M;A

j

A

T;k�1

),

for s

TL;k�1

� j < v. Hen
e, sin
e s

TL;k�1

� s

TL;i�1

� u < v, there is some p

2

2 A

u

A

T;k�1

su
h that p

1

� p

2

or p

1

� p

2

. But the se
ond 
ase would imply p

2

2 T

k

0

for some

k

0

> k whi
h is impossible during the �rst k steps of our 
onstru
tion. Finally observe

that the algorithm never removes mat
hes while updating an anti
hain, thus p

2

is still

present in A

u

A

T;i

. 2
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Lemma 3.2 The following holds:

a) 8 1 � i � dm=2e 8 v : v < s

TL;i

() A

v

A

T;i

or A

v

A

L;i

is TL{
omplete :

b) 8 1 � i � dm=2e 8 v : v < s

BR;i

() A

v

A

B;i

or A

v

A

R;i

is BR{
omplete :

Proof. We only prove the �rst 
laim, the other one is similar.

If. By 
ontradi
tion, let i be the �rst step su
h that A

v

A

T;i

or A

v

A

L;i

is TL{
omplete,

but v � s

TL;i

. Clearly v 6= s

TL;i�1

, otherwise the TL{
ompleteness would have been

dete
ted by the algorithm shown in Fig. 4 (a), and thus, 
ontradi
ting the property of

v, we would have v < s

TL;i

= s

TL;i�1

+1. Hen
e v > s

TL;i�1

. By the TL{
ompleteness,

there is some mat
h (k; `) 2 A

v

A

T;i

[A

v

A

L;i

su
h that 1 � k; ` � i. Furthermore, by Lemma

3.1, there exists some mat
h (k

0

; `

0

) 2 A

T;i

A

v�1

[A

L;i

A

v�1

su
h that (k

0

; `

0

)� (k; l). But then

1 � k

0

; `

0

< i, and therefore either A

T;i

A

v�1

or A

L;i

A

v�1

would be TL-
omplete after step i�1,

a 
ontradi
tion to the 
hoi
e of i.

Only if. Obvious from the management of the start indi
es. 2

Lemma 3.3 For all i; u de�ne A

u

A

TL;i

:= A

u

A

T;i

[ A

u

A

L;i

and A

u

A

BR;i

:= A

u

A

B;i

[ A

u

A

R;i

. Then

a) 8 0 � i � dm=2e 8 1 � u � minfe

T;i

; e

L;i

g : A

u

A

TL;i

is an anti
hain .

b) 8 0 � i � dm=2e 8 1 � u � minfe

B;i

; e

R;i

g : A

u

A

BR;i

is an anti
hain .

Proof. We prove the �rst 
laim by indu
tion on i. The base i = 0 it trivial be
ause

A

T;0

= A

L;0

= ;. For the indu
tion step i� 1! i, we 
onsider three di�erent 
ases.

Case a: 1 � u < s

TL;i�1

. Then A

u

A

T;i

= A

u

A

T;i�1

and A

u

A

L;i

= A

u

A

L;i�1

(see lines 15 and 30

in Fig. 3 (a), respe
tively). Thus, by the indu
tion hypothesis, A

u

A

TL;i

is an anti
hain.

Case b: s

TL;i�1

� u � minfe

T;i�1

; e

L;i�1

g. By de�nition the set T := IP(S;A

u

A

T;i�1

)

added toA

u

A

T;i

in line 3 (Fig. 3 (a)) is in
omparable to A

u

A

T;i�1

, but it is also in
omparable

to A

u

A

L;i

as we now demonstrate. Let (k; `) 2 IP(S;A

u

A

T;i�1

) and (k

0

; `

0

) 2 A

u

A

L;i

. Observe

k = i and ` � i. Also note that k

0

> `

0

and `

0

� i be
ause A

u

A

L;i

� L

�i

. Thus

(k; `) � (k

0

; `

0

) would 
ontradi
t ` � i � `

0

. Furthermore, (k

0

; `

0

) � (k; `) would

imply `

0

< k

0

< k = i, i.e., A

u

A

L;i�1

would be TL-
omplete, a 
ontradi
tion to Lemma

3.2 and the 
hoi
e of u. Similar arguments 
an be used for the set L := IP(S;A

u

A

L;i�1

)

added to A

u

A

L;i

in line 19. Finally note that T � T

i

and L � L

i

are also in
omparable.

Case 
: minfe

T;i�1

; e

L;i�1

g < u � minfe

T;i

; e

L;i

g. Clearly, this 
ase is only possible

if u = e

T;i

= e

T;i�1

+ 1 or u = e

L;i

= e

L;i�1

+ 1. If both 
onditions hold, then

A

u

A

T;i

� T

i

\M (lines 1 and 7) and A

u

A

L;i

� L

i

\M (lines 17 and 23), thus their union

obviously makes up an anti
hain. Otherwise, only one new anti
hain is generated

whereas the other one is updated, and we 
an argument as in the se
ond 
ase to show

that both anti
hains are in
omparable.

The proof of the se
ond 
laim is similar. 2

Lemma 3.4 Let 1 � i � dm=2e. Then the following holds:

a) 8 j � maxfe

T;i

; e

L;i

g 8 p

j

2 A

j

A

TL;i

9 p

1

2 A

1

A

TL;i

; : : : ; p

j�1

2 A

j�1

A

TL;i

:

p

1

� : : :� p

j

:
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b) 8 j � maxfe

B;i

; e

R;i

g 8 p

j

2 A

j

A

BR;i

9 p

1

2 A

1

A

BR;i

; : : : ; p

j�1

2 A

j�1

A

BR;i

:

p

1

� : : :� p

j

:

Proof. We prove the �rst 
laim by 
hoosing p

v

for v = j � 1; : : : ; 1.

Consider step j

0

� i when p

v+1

was added to A

v+1

A

TL;j

0

� A

v+1

A

TL;i

. Then Lemma 3.1

implies the existen
e of p

v

if v � s

TL;j

0

�1

. Otherwise, by Lemma 3.2, A

v

A

T;j

0

�1

or A

v

A

L;j

0

�1

has been dete
ted to be TL{
omplete before step j

0

, i.e., A

v

A

TL;j

0

�1


ontains a mat
h

(k

0

; `

0

) su
h that k

0

; `

0

< j

0

. But p

v+1

is of the form (k; `) with k; ` � j

0

, thus we 
an


hoose p

v

:= (k

0

; `

0

).

Similar arguments 
an be used for the se
ond 
laim. 2

Lemma 3.5 For 0 � i � dm=2e, there are two 
hains

C

TR;i

; C

BL;i

� T

�i

[ L

�i

[ B

�i

[ R

�i

of length e

T;i

+ e

R;i

and e

B;i

+ e

L;i

, respe
tively.

Proof. We prove the existen
e of the �rst 
hain C

TR;i

by indu
tion on i. The base

i = 0 is trivial. For the indu
tion step (i� 1)! i, we have to analyse the situations

whi
h 
ause e

T;i

+ e

R;i

to be greater than e

T;i�1

+ e

R;i�1

. One su
h situation is given

in lines 7{14 of Fig. 3 (a) if the 
ondition in line 10 is not satis�ed be
ause then

e := e

T;i

= e

T;i�1

+ 1 and ~e := e

R;i

= e

R;i�1

. But sin
e IP(A

~e

A

R;i�1

; A

e

A

T;i

) 6= A

~e

A

R;i�1

there exist two 
omparable mat
hes 


T

2 A

e

A

T;i

and 


R

2 A

~e

A

R;i�1

. More pre
isely, sin
e




T

2 T

i

and 


R

2 R

�i�1

, we must have (k; `)� (k

0

; `

0

). Thus, by Lemma 3.4, we 
an


onstru
t a 
hain

p

1

� : : :� p

e�1

� 


T

� 


R

� p

0

~e�1

� : : :� p

0

1

of length e + ~e.

Similar arguments 
an be used for the remaining situations and for the other


hain. 2

Our next task is to reveal the stru
ture in D

TR

and D

BL

. We shall show that

for ea
h deleted mat
h there always is some anti
hain whi
h is in
omparable to this

mat
h. In order to prove this property, we keep tra
k of ea
h deleted mat
h by assign-

ing it to some anti
hain during the 
onstru
tion pro
ess. More pre
isely, whenever

an anti
hain A is removed due to the existen
e of some other anti
hain B whi
h ina
-

tivates it, all mat
hes in A are assigned to B, e.g., 
onsidering the situation in Fig. 2

(d), the mat
h (3; 8) is assigned to A

3

A

T;3

. Furthermore, all previously deleted mat
hes

assigned to A now also belong to B. The assigned mat
hes are inherited when an

anti
hain is updated, e.g., in Fig. 2 (e), (3; 8) also belongs to A

3

A

T;4

. These rules guar-

antee that after step i, ea
h deleted mat
h is assigned to exa
tly one anti
hain in

A

T;i

[A

L;i

[A

B;i

[A

R;i

. We write D(A) to denote the set of mat
hes assigned to an

anti
hain A.

Lemma 3.6 Let 1 � i � dm=2e, and assume (k; `) 2 D(A) for some anti
hain A in

A

T;i

, A

L;i

, A

B;i

, or A

R;i

. Then

a) (k; `) 2 D

TR

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.
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b) (k; `) 2 D

BL

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.

Proof. For the �rst 
laim, let us assume (k; `) was assigned to A while exe
uting line

11 in Fig. 3 (a) during step j � i (the following arguments 
an analogously be applied

to the other instru
tions whi
h modify D

TR

). Thus A = A

e

A

T;i

, where e = e

T;j

. Now

we 
onsider two 
ases 
on
erning the status of (k; `) before step j.

Case a: (k; `) 2 A

~e

A

R;j�1

� R

�j�1

, ~e = e

R;j�1

. Then ` > n � j + 1. From lines 1,

6, 7, and 10 we see that (k; `) is in
omparable to any mat
h (k

00

; `

00

) in A

e

A

T;j

. But

A

e

A

T;j

� T

j

, thus k

00

= j and `

00

� n� j +1. Hen
e, the in
omparability implies k � j.

Now observe that A

e

A

T;j

is the �rst 
onstru
ted part of A

e

A

T;i

, later extensions are taken

from T

j+1

; : : : ; T

i

. Thus every mat
h (k

0

; `

0

) 2 A

e

A

T;i

ful�lls k

0

� j and `

0

� n� j + 1,

and the 
laim follows.

Case b: (k; `) is assigned to A

~e

A

R;j�1

. We 
an indu
tively assume

8 (k

00

; `

00

) 2 A

~e

A

R;j�1

: k � k

00

^ ` � `

00

Deleted mat
hes are never assigned to empty anti
hains. Thus there is at least one

mat
h (k

00

; `

00

) 2 A

~e

A

R;j�1

, and we 
an prove as in the �rst 
ase that k

00

� k

0

and `

00

� `

0

.

Hen
e we have k � k

0

and ` � `

0

.

The proof of the se
ond 
laim follows similar arguments and is therefore omitted. 2

Lemma 3.7 Let 1 � i � dm=2e. Then the following holds:

a) 8 1 � u � e

T;i

: D

BL

\D(A

u

A

T;i

) 6= ; =) A

u

A

L;i

= ; ^ A

u

A

T;i

is TL{
omplete .

b) 8 1 � u � e

L;i

: D

TR

\D(A

u

A

L;i

) 6= ; =) A

u

A

T;i

= ; ^ A

u

A

L;i

is TL{
omplete .


) 8 1 � u � e

B;i

: D

TR

\D(A

u

A

B;i

) 6= ; =) A

u

A

R;i

= ; ^ A

u

A

B;i

is BR{
omplete .

d) 8 1 � u � e

R;i

: D

BL

\D(A

u

A

R;i

) 6= ; =) A

u

A

B;i

= ; ^ A

u

A

R;i

is BR{
omplete .

Proof. We again only show the �rst 
laim. From lines 10 and 11 in Fig. 3 (a),

we see that all mat
hes assigned there to A

u

A

T;i

are either pla
ed into D

TR

, or they

have been assigned before to some non{
omplete anti
hain in A

R;i�1

. But 
on
erning

the latter 
ase, we see from lines 26 and 27 in Fig. 3 (b) that any su
h mat
h has

been put into D

TR

as well, or again belongs to some non{
omplete anti
hain in A

T;j

,

j < i. Repeating this argument, we 
on
lude that all mat
hes assigned to A

T;i

are


ontained in D

TR

. The only ex
eption is given by lines 8 and 9 in Fig. 4 (a), where

deleted mat
hes are assigned to A

u

A

T;i

, but added to D

BL

. But then, from lines 3, 4,

and 13, the 
laim follows. 2

Lemma 3.8 All mat
hes assigned to an anti
hain A are pairwise in
omparable, thus

by Lemma 3.6, they extend the anti
hain to a larger one.

Proof. Whenever a mat
h is deleted, the algorithm always removes a 
omplete an-

ti
hain. By indu
tion, this anti
hain B together with its assigned mat
hes forms a

larger anti
hain C. If there already is a set of mat
hes D assigned to A (whi
h is

only possible when A is dete
ted to be 
omplete), then, following the arguments given
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in the proof of Lemma 3.7, C � D

BL

and D � D

TR

or vi
e versa, and Lemma 3.6

immediately implies that B and D are pairwise in
omparable. 2

We are now prepared to 
onstru
t a minimal de
omposition of M . We start by

de
omposing M n (D

TR

[D

BL

), the deleted mat
hes are later 
onsidered in Thm. 3.9

below. The 
onstru
tion is as follows. Using Lemma 3.3, we 
ombine the �rst

e

TL

:= minfe

T;dm=2e

; e

L;dm=2e

g anti
hains in A

T;dm=2e

and A

L;dm=2e

to larger ones. We

also 
onne
t the �rst e

BR

:= minfe

B;dm=2e

; e

R;dm=2e

g anti
hains in A

B;dm=2e

to the 
orre-

sponding ones in A

R;dm=2e

. For example, in Fig. 2 (e), we have e

T;dm=2e

= e

B;dm=2e

= 3

and e

L;dm=2e

= e

R;dm=2e

= 2, thus this generates four 
ombined anti
hains. Con
erning

the remaining anti
hains we 
onsider four di�erent 
ases.

Case a: e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Then we leave the remaining

anti
hains as they are and have p := e

L;dm=2e

+ e

B;dm=2e

anti
hains in total. But by

Lemma 3.5, there also exists a 
hain of this length. Thus, by Dilworth's theorem, the

de
omposition is minimal.

Case b: e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Similar to the �rst 
ase we have

p := e

T;dm=2e

+ e

R;dm=2e

anti
hains, and also a 
hain of this length.

Case 
: e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

< e

R;dm=2e

. From the management of the

start and end indi
es, we have e

T;dm=2e

� s

TL;dm=2e

� 1. Thus, by Lemma 3.2, A

u

A

L;dm=2e

is not TL{
omplete for u > e

T;dm=2e

. This implies k > dm=2e and ` � dm=2e for

any mat
h (k; `) 2 A

u

A

L;dm=2e

� L

�dm=2e

. For all v > e

B;dm=2e

and (k

0

; `

0

) 2 A

v

A

R;dm=2e

we similarly have k

0

� dm=2e and `

0

> n � bm=2
 � dm=2e. Thus A

u

A

L;dm=2e

and

A

v

A

R;dm=2e

are in
omparable. Now assume e

L;dm=2e

� e

R;dm=2e

. Then we 
an 
onne
t

all remaining anti
hains in A

R;dm=2e

to 
orresponding ones in A

L;dm=2e

and obtain

p := e

L;dm=2e

+ e

B;dm=2e

anti
hains in total, thus again a minimal de
omposition. If

e

L;dm=2e

< e

R;dm=2e

, then similarly p := e

T;dm=2e

+ e

R;dm=2e

is the optimal length of a


hain in M n (D

TR

[D

BL

).

Case d : e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

> e

R;dm=2e

. Finding a minimal de
omposition

is slightly more 
ompli
ated in this 
ase. Consider the following algorithm. Starting

with u := e

T;dm=2e

and v := e

R;dm=2e

+ 1, we 
he
k whether A

u

A

T;dm=2e

and A

v

A

B;dm=2e

are

in
omparable. If they are not, then we ba
kup u and v in ~u and ~v, respe
tively, and

in
rease v by one. Otherwise the anti
hains are 
onne
ted, u is set to u� 1, and v is

set to v+1. We repeat this until all remaining anti
hains in either A

T;dm=2e

or A

B;dm=2e

have been used, i.e., u = e

L;dm=2e

or v > e

B;dm=2e

. Then the total number of anti
hains

is p := u + e

B;dm=2e

. Thus, if u = e

L;dm=2e

, we have p = e

L;dm=2e

+ e

B;dm=2e

, and the

de
omposition is optimal. Now assume u > e

L;dm=2e

. If ~u and ~v are unused, then all

remaining anti
hains in A

B;dm=2e

have been 
onne
ted to 
orresponding anti
hains in

A

T;dm=2e

, and we have p = e

T;dm=2e

+e

R;dm=2e

. Hen
e, in this 
ase the de
omposition is

also a minimal one. Finally assume that ~u and ~v have been used for saving u and v at

least on
e. Then for j = ~v + 1; : : : ; e

B;dm=2e

, A

j

A

B;dm=2e

has been 
onne
ted to A

~u+~v�j

A

T;dm=2e

,

and we have u = ~u� (e

B;dm=2e

� ~v). Thus p = ~u� (e

B;dm=2e

� ~v) + e

B;dm=2e

= ~u+ ~v.

But from the properties of ~u and ~v, it 
an be shown (similar to the proof of Lemma

3.5) that there is a 
hain of length ~u + ~v whi
h 
ontains two mat
hes p

1

2 A

~u

A

T;dm=2e

and p

2

2 A

~v

A

B;dm=2e

. Hen
e, the 
onstru
ted de
omposition is optimal.

Let us 
onsider our example. Case d applies to the situation in Fig. 2 (e), and A

3

A

T;4

is 
ompared with A

3

A

B;4

. Sin
e these anti
hains are in
omparable, they are 
onne
ted,

and we obtain a de
omposition 
onsisting of 5 anti
hains in total.
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Theorem 3.9 The length of an LCS in M equals p as de�ned in the four 
ases above.

Proof. Consider a 
ombined anti
hain A of the de
omposition. Assume an anti
hain

A

u

A

T;dm=2e

2 A

T;dm=2e

is one 
omponent of it (otherwise, we 
an handle the following


onstru
tion in a similar way).

Case a: A

u

A

T;dm=2e

is the only 
omponent of A. Then we extend A with the set B of

deleted mat
hes assigned to A

u

A

T;dm=2e

. Lemma 3.8 guarantees that the result is still

an anti
hain.

Case b: A

u

A

T;dm=2e

has been 
ombined with A

u

A

L;dm=2e

. By Lemma 3.7, B � D

TR

. Let

(k; `) 2 A

u

A

L;dm=2e

and (k

0

; `

0

) 2 A

u

A

T;dm=2e

. From (k; `) 2 L

dm=2e

, (k

0

; `

0

) 2 T

dm=2e

, and

the in
omparability of (k; `) and (k

0

; `

0

), we have k � k

0

^ ` � `

0

. Now 
onsider a

mat
h (k

00

; `

00

) 2 B. By Lemma 3.6, we have k � k

0

� k

00

and ` � `

0

� `

00

. Hen
e,

A

u

A

L;dm=2e

is in
omparable to B. We 
an use a similar way to show that the set C of

deleted mat
hes assigned to A

u

A

L;dm=2e

is a subset of D

BL

and in
omparable to A

u

A

T;dm=2e

.

Finally, B and C are 
learly in
omparable as well. Thus A

u

A

T;dm=2e

[ A

u

A

L;dm=2e

[B [ C

is still an anti
hain.

Case 
: A

u

A

T;dm=2e

has been 
ombined with some other anti
hain D 2 A

B;i

. Then,

similar to the proof of the se
ond 
ase, we 
an show that the union of A and the two


orresponding sets of assigned mat
hes still make up an anti
hain.

By handling ea
h 
ombined anti
hain in this way, we 
an 
onstru
t a de
omposi-

tion of M without generating any additional anti
hains. The proof is 
omplete. 2

Fig. 2 (f) illustrates the 
orresponding de
omposition for our example.

4 Implementation

We now des
ribe an eÆ
ient implementation for the given algorithm and analyse its

time and spa
e 
omplexity.

All new anti
hains 
reated in step i are extensions from anti
hains generated

during step i�1. Furthermore, the only anti
hains used for de
omposingM are from

the last step. Thus for the implementation it is suÆ
ient to update the anti
hains of

interest. The same is true for the start and end indi
es, and we thus sometimes drop

the index i from now on. The ne
essary information for ea
h a
tual anti
hain 
an be

kept in one single number as follows. Let 1 � i � dm=2e and 1 � u � e

T;i

. We de�ne

ThreshT [u℄ as the leftmost 
olumn used by some mat
h in A

u

A

T;i

, i.e.,

ThreshT [u℄ := minf` j 9 k : (k; `) 2 A

u

A

T;i

g :

For example, in Fig. 2 (b), ThreshT [1℄ = 3, and in Fig. 2 (d), Top-Thresh[1℄ = 2,

ThreshT [2℄ = 3, and ThreshT [3℄ = 6. To update this array in ea
h step, we use an

auxiliary array LeftPos on �� [1 : n+ 1℄ given by

LeftPos [
; `℄ := min(fn+ 1g [ fj j ` � j � n ^ y

`

= 
g) ;

i.e., LeftPos[a

i

; `℄ equals the 
olumn number of the leftmost o

uren
e of a mat
h in

row i lo
ated right to 
olumn `, and equals n + 1 if there is no su
h mat
h. In our

example (y = 
babba
a
), we obtain the following values:
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a 3 3 3 6 6 6 8 8 10 10

b 2 2 4 4 5 10 10 10 10 10


 1 7 7 7 7 7 7 9 9 10

Now it is not diÆ
ult to see that the following routine 
orre
tly updates ThreshT

when pro
essing T

i

, representing lines 1{7 in Fig. 3 (a). (Similar pro
edures are used

in [AG87, Ri
94, Ri
95℄ to determine 
ontours whi
h 
orrespond to the anti
hains

used here.)

k := LeftPos[a

i

; i℄;

For u := s

TL

To e

T

Do f

j := ThreshT [u℄;

If k � j And k � n� i+ 1 Then f

ThreshT [u℄ := k; k := LeftPos [a

i

; j + 1℄;

g;

g;

If k � n� i+ 1 Then f e

T

:= e

T

+ 1; ThreshT [e

T

℄ := k g;

For A

L;i

, A

B;i

, and A

R;i

we introdu
e additional arrays ThreshL, ThreshB , and

ThreshR whi
h similarly store the topmost rows, rightmost 
olumns, and bottommost

rows used by the 
orresponding anti
hains. To handle them analogously to ThreshT ,

we also need three more auxiliary arrays given by

TopPos[
; k℄ := min(fm + 1g [ fj j k � j � m ^ x

j

= 
g) ; (1 � k � m + 1) ;

RightPos[
; `℄ := max(f0g [ fj j 1 � j � ` ^ y

`

= 
g) ; (0 � ` � n) ;

BottomPos[
; k℄ := max(f0g [ fj j 1 � j � k ^ x

j

= 
g) ; (0 � k � m) :

Note that in Fig. 3 and Fig. 4, ea
h test for the in
omparability of two anti
hains


an be repla
ed by a rather simple 
onditional statement. For example, 
onsidering

line 10 in Fig. 3 (a), we know that all mat
hes in T

i

are lo
ated to the left of any

mat
h in R

�i�1

. Thus, with e := e

T;i

and ~e := e

R;i

, A

e

A

T

and A

~e

A

R

are in
omparable if

and only if A

~e

A

R

is also 
ompletely 
ontained in the �rst i rows, i.e., ThreshR[~e℄ � i.

The algorithm presented in Fig. 6 shows how the other situations are handled. It also

makes use of some spe
ial implementation details whi
h 
annot be dis
ussed here,

e.g., the 
onstru
tion starts with the bottommost row instead of the topmost one

when m is even. In Fig. 6 some lines are marked with a dot (�) on their left sides.

These lines are used for the 
onstru
tion of an LCS and should be ignored for the

moment.

The 
omplexity of the algorithm may be dedu
ed as follows. The four auxiliary

arrays 
an be easily prepro
essed in O(ns) time and spa
e, where s = j�j. Clearly,

during one of the dm=2e iterations of the main loop, none of the four inner While{

loops takes more than O(p) time, and when determining p, at most dm=2e pairs of

anti
hains have to be 
ompared. Thus the algorithm takes at most O(ns+mp) time.

Furthermore, observe that the j{th anti
hain in A

T

(whi
h is added to A

T

during

some step i � j) must 
ontain a mat
h (k; `) with ` � n� (p� j), otherwise it would

be impossible to 
onstru
t a 
hain of length p. But then this anti
hain is dete
ted

to be TL{
omplete after step n� (p� j), therefore it is only 
onsidered for at most

n� (p� j)� i � n� p times in the 
orresponding While{loop (lines 59{65). Similar

arguments 
an be given for anti
hains in A

L

, A

B

, and A

R

. Hen
e, we have shown the

following theorem.
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Determine TopPos and LeftPos;

Determine BottomPos and RightPos;

For u := 0 To dm=2e Do f

ThreshT [u℄ := 0; ThreshL[u℄ := 0;

5 g;

For u := 0 To bm=2
 Do f

ThreshB [u℄ := n+ 1; ThreshR[u℄ := m+ 1;

g;

t := 1; ` := 1; b := m; r := n;

10 s

TL

:= 1; e

T

:= 0; e

L

:= 0;

s

BR

:= 1; e

B

:= 0; e

R

:= 0;

If Odd(m) Then Goto Line 57;

While t � b Do f (� Main loop �)

k := RightPos [x

b

; r℄; (� Update A

B

�)

15 u := s

BR

;

While u � e

B

Do f

j := ThreshB [u℄;

If k � j Then f

ThreshB [u℄ := k; k := RightPos [x

b

; j � 1℄;

20 g;

u := u+ 1;

g;

If k � ` Then f

e

B

:= u; ThreshB [e

B

℄ := k;

25 If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update 


B

, 


L

, `

BL

;

g;

k := BottomPos [y

r

; b� 1℄; (� Update A

R

�)

u := s

BR

;

30 While u � e

R

Do f

j := ThreshR[u℄;

If k � j Then f

ThreshR[u℄ := k; k := BottomPos [y

r

; j � 1℄;

g;

35 u := u+ 1;

g;

If k � t Then f

e

R

:= u; ThreshR[e

R

℄ := k;

If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update 


T

, 


R

, `

TR

;

g;

(� Che
k for BR{
omplete anti
hains �)

If ThreshB [s

BR

℄ = r Then f

If s

BR

> e

R

Then f

45 If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update 


T

, 


R

, `

TR

;

g;

s

BR

:= s

BR

+ 1;

g Else If ThreshR[s

BR

℄ = b Then f

50 If s

BR

> e

B

Then f

If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update 


B

, 


L

, `

BL

;

g;

s

BR

:= s

BR

+ 1;

55 g;

t := t+ 1; ` := `+ 1;

k := LeftPos [x

t

; `℄; (� Update A

T

�)

u := s

TL

;

While u � e

T

Do f

60 j := ThreshT [u℄;

If k � j Then f

ThreshT [u℄ := k; k := LeftPos[x

t

; j + 1℄;

g;

u := u+ 1;

65 g;

If k � r Then f

e

T

:= u; ThreshT [e

T

℄ := k;

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update 


T

, 


R

, `

TR

;

70 g;

k := TopPos [y

l

; t℄; (� Update A

L

�)

u := s

TL

;

While u � e

L

Do f

j := ThreshL[u℄;

75 If k � j Then f

ThreshL[u℄ := k; k := TopPos[y

l

; j + 1℄;

g;

u := u+ 1;

g;

80 If k � b Then f

e

L

:= u; ThreshL[e

L

℄ := k;

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update 


B

, 


L

, `

BL

;

g;

85 (� Che
k for TL{
omplete anti
hains �)

If ThreshT [s

TL

℄ = ` Then f

If s

TL

> e

L

Then f

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update 


B

, 


L

, `

BL

;

90 g;

s

TL

:= s

TL

+ 1;

g Else If ThreshL[s

TL

℄ = t Then f

If s

TL

> e

T

Then f

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update 


T

, 


R

, `

TR

;

g;

s

TL

:= s

TL

+ 1;

g;

b := b� 1; r := r � 1;

100 g;

(� Determine length p of an LCS �)

If e

T

> e

L

And e

B

> e

R

Then f

If s

TL

� e

L

Then s

TL

:= e

L

+ 1;

If s

BR

� e

R

Then s

BR

:= e

R

+ 1;

105 u := e

T

; v := s

BR

;

While u � s

TL

And v � e

B

Do f

If ThreshT [u℄ � ThreshB [v℄

Then u := u� 1

� Else f ~u := u; ~v := v g;

110 v := v + 1;

g;

p := u+ e

B

;

113 g Else p := maxfe

L

+ e

B

; e

T

+ e

R

g;

Figure 6: The O(ns+minfmp; p(n� p)g) algorithm for determining the length p of

an LCS.

Theorem 4.1 The length p of an LCS 
an be 
omputed in O(ns+minfmp; p(n�p)g)

time and O(ns) spa
e.

This result has been a
hieved before by Ri
k [Ri
94, Ri
95℄, and in fa
t, the algo-

rithm presented here is some kind of dualization of Ri
k's method, but our algorithm
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is signi�
antly faster as we shall show in Se
t. 6.

5 Constru
tion of an LCS in Linear Spa
e

This se
tion deals with the generation of an LCS. The idea is to apply the divide{

and{
onquer s
heme [ABG92, Hir75, KR87℄ whi
h �rst identi�es at least one point

of an LCS su
h that this LCS is splitted into two parts of roughly the same size.

Then the remainder is 
omputed by re
ursive 
alls. The method presented here

usually determines two LCS{neighbouring mat
hes 


TL

and 


BR

whi
h are lo
ated

in T

�dm=2e

[ L

�dm=2e

and B

�dm=2e

[ R

�dm=2e

, respe
tively. This is a

omplished as

follows.

In ea
h step i of the 
onstru
tion des
ribed in Se
t. 2, we subsequently update

the following variables:

� p

TL

is the mat
h whi
h 
aused A

s

A

T;i

or A

s

A

L;i

to be
ome TL{
omplete, s = s

TL;i

�1.

For example, in Fig. 2 (
), p

TL

= (2; 2), and in Fig. 2 (d) and (e), p

TL

= (3; 3).

� p

BR

has a 
orresponding meaning for the last BR{
omplete anti
hain in A

B;i

and A

R;i

, e.g., in Fig. 2 (d), p

BR

= (6; 7).

� 


T

and 


R

are the two mat
hes introdu
ed in the proof of Lemma 3.5. They

both lie in C

TR;i

and are neighbours in this 
hain. Furthermore, 


T

and 


R

are always lo
ated in the �rst i topmost rows and i rightmost 
olumns of M ,

respe
tively.

� 


B

and 


L

have analogous properties for C

BL;i

.

� `

TR

and `

BL

is the position of 


T

in C

TR;i

and of 


L

in C

BL;i

, respe
tively. Also,

`

TR

+1 and `

BL

+1 is the position of 


R

in C

TR;i

and of 


B

in C

BL;i

, respe
tively.

p

TL

and p

BR


an be easily updated. For example, 
onsider lines 85{98 in Fig. 6 where

new TL{
omplete anti
hains are handled. Let p

TL

= (u; v). If the 
ondition in line

86 is satis�ed, then we know p

TL

has to be set to the bottommost mat
h lo
ated in

the �rst t rows and 
olumn `. Therefore two additional statements 
an be inserted

between lines 86 and 87 su
h that u is set to BottomPos[y

`

; t℄ and v is set to `. Similar

statements apply for the situation in lines 92{98, and this 
ompletes the des
ription

of the management for p

TL

. p

BR


an be handled in a similar way.




T

, 


R

, and `

TR

must be updated whenever the length of C

TR;i

in
reases. These

situations are indi
ated in lines 40, 46, 69, and 95 in Fig. 6, and here we only sket
h

how to manage them. By arguments analogous to the ones given in the proof of

Lemma 3.4, we have to distinguish two 
ases when updating 


T

. If s

TL;i

> e

T;i

, then




T

is set to p

TL

, otherwise 


T


an be determined by some additional statements whi
h

are similar to the ones used for updating p

TL

. In either 
ase, we set `

TR

to e

T;i

be
ause

e

T;i

is the position of 


T

in C

TR;i

, as seen in the proof of Lemma 3.5. The management

of 


B

, 


L

, and `

BL

is similar.

Now let us review the 
onstru
tion of the �nal de
omposition given in the end of

Se
t. 3. If p is set to e

T;dm=2e

+ e

R;dm=2e

, then we 
an use 


T

and 


R

as the appropriate

mat
hes for 


TL

and 


BR

. Similarly, if p = e

B;dm=2e

+ e

L;dm=2e

, we establish 


TL

= 


L

and 


BR

= 


B

. Finally, if a longest 
hain is determined by the algorithm des
ribed in
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ase d of the 
onstru
tion (
orresponding to lines 103{112 in Fig. 6), and p is not set

to one of the above values, then we 
an use the ba
kup values ~u and ~v to determine




TL

:= (BottomPos[y

û

; b℄; y

û

) and 


BR

:= (TopPos[y

v̂

; t℄; y

v̂

), where û := ThreshT [~u℄

and v̂ := ThreshB [~v℄.

Before re
ursively 
alling the algorithm for the remaining parts of the LCS, we

see it is ne
essary for our routine to not only work on the 
omplete matrix of size

[1 : m℄� [1 : n℄, but also on any subarea [k

1

: k

2

℄� [`

1

: `

2

℄. The ne
essary 
hanges are

quite straightforward, and we do not provide any details here. Moreover, it might be

impossible to lo
ate both 


TL

and 


BR

(e.g., when jM j = 1), but then one re
ursive


all 
an simply be skipped.

Theorem 5.1 An LCS 
an be 
onstru
ted in O(ns+minfmp;m logm+ p(n� p)g)

time and O(ns) spa
e.

Proof. Clearly, for the top{level 
all, the additional overhead needed to keep tra
k

of the new variables is bounded by O(m). Thus, not taking into a

ount the time


onsumed by prepro
essing or any re
ursive 
alls, we 
an assume the number of ele-

mentary operations to be bounded by d(m+minfmp; p(n�p)g), for some appropriate


onstant d. We �rst examine the bound d(m+mp). Let 


TL

= (k; `) and 


BR

= (k

0

; `

0

)

(if only one mat
h has been determined, the analysis is similar). Consider the two

�rst{level re
ursive 
alls 
on
erning the areas M

1

:= [1 : k � 1℄ � [1 : ` � 1℄ and

M

2

:= [k

0

+1 : m℄� [`

0

+1 : n℄. Let p

1

and p

2

denote the length of an LCS in M

1

and

M

2

, respe
tively, i.e., p

1

+ p

2

= p � 2. Re
all that 


TL

is lo
ated in the �rst dm=2e

rows and 
olumns, i.e., the length of one side of M

1

is bounded by dm=2e � 1. The

same is true for M

2

, and thus the number of operations taken for both �rst{level 
alls

is bounded by

d(dm=2e � 1)(p

1

+ 1) + d(dm=2e � 1)(p

2

+ 1) � dp

m

2

Repeating this argument, we obtain a dmp=2

i

bound for the at most 2

i

ith{level

re
ursive 
alls. Sin
e re
ursion ends at level dlog(m=2)e, this sums up to at most

2 � dmp for the 
omplete algorithm.

For the other bound d(m + p(n � p)), let g := (

p

5 � 1)=2 � 0:618 and 
onsider

the following two 
ases.

Case a: p � gm. Then

2 � dmp �

2

1� g

d(1� g)mp =

2

1� g

d(m� gm)p �

2

1� g

d(m� p)p �

2

1� g

d(n� p)p

Case b: p > gm. Let h := maxfk � 1; `� 1g and h

0

:= maxfm� k

0

; n� `

0

g. Clearly

h+ h

0

� n� 2. Also note that p

1

; p

2

� dm=2e� 1 be
ause an LCS 
annot ex
eed the

length of any side of M

1

and M

2

. But then the two �rst{level re
ursive 
alls use at

most

d(dm=2e � 1 + p

1

(h� p

1

)) + d(dm=2e � 1 + p

2

(h

0

� p

2

))

� d(m+ p

1

(h� p

1

) + p

2

(h

0

� p

2

)) � d(m+ (dm=2e � 1)(h� p

1

+ h

0

� p

2

))

� d(m+ (dm=2e � 1)(n� p)) � d(m+

1

2g

p(n� p))
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operations. Similarly, all ith{level re
ursive 
alls together use at most

d(m + p(n� p)=(2g)

i

)

operations. This sums up to

d(m logm+

1

1� 1=(2g)

p(n� p)) = d(m logm +

2

1� g

p(n� p)) :

Both 
ases imply that the algorithm takes at mostO(ns+minfmp;m logm+p(n�p)g)

time, and the worst 
ase overhead fa
tor 
an be expe
ted to be 2=(1 � g) < 5:25.

Furthermore, when 
omparing the divide{and{
onquer routine with the algorithm

whi
h determines the length p of an LCS, we only need O(logm) additional sta
k

spa
e, and thus the O(ns) spa
e bound is still valid. 2

6 Experimental Results

We 
ompared our routine with the algorithm proposed by Ri
k [Ri
94, Ri
95℄ whi
h


learly outperforms any other method when 
onstru
ting longest 
ommon subse-

quen
es of intermediate lengths. Ri
k's algorithm is also a 
exible one, being very

eÆ
ient for short and long LCS as well. It uses a strategy similar to the one pre-

sented here, but only 
onstru
ts anti
hains (or 
ontours) from the top and left side

of M . While this substantially simpli�es the implementation and also the prepro-


essing phase (i.e., we only have to 
ompute LeftPos and TopPos), there are two

severe drawba
ks. First, in order to re
over an LCS after determining its length, the

so{
alled dominant mat
hes must be saved during the 
onstru
tion of the 
ontours,

and this might take 
(mn) spa
e. Se
ond, the number of 
he
ks of Thresh{values is

signi�
antly in
reased when de
omposing M from only two sides. For an alphabet of

size 8, Table 1 shows some sample results when determining p for di�erent settings

of m, n, and p.

Table 1: Frequen
y of 
he
ks of Thresh{values

m n p Ri
k [Ri
95℄ New method

500 500 100 16864 14983

500 500 200 28962 23078

500 500 300 33276 23394

500 500 400 20384 13276

m n p Ri
k [Ri
95℄ New method

1500 1500 300 145129 126796

1500 1500 600 265107 216845

1500 1500 900 280026 207000

1500 1500 1200 172846 121516

The 
orresponding running times are presented in Table 2. Both algorithms were

programmed in a straightforward way, using no spe
ial optimizations, and were tested

on an Intel Pentium II at 300 MHz. It 
an be seen that our algorithm only takes

about 70% of the time needed by Ri
k's method when 
omputing the length of an

LCS whi
h is of intermediate length. For very short or very long LCS our method

slightly su�ers from the additional overhead during the prepro
essing phase, but is

still very eÆ
ient.

Finally, we 
he
ked the running times and the 
onsumed spa
e when generating

an LCS. Table 3 shows that in spite of the linear spa
e restri
tion, our algorithm
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Table 2: Running times in mi
rose
onds for determining the length p of an LCS.

m n p Ri
k [Ri
95℄ New method

500 500 100 3352 3626

500 500 200 5659 4725

500 500 300 6978 4890

500 500 400 5000 3516

m n p Ri
k [Ri
95℄ New method

1500 1500 300 24451 21868

1500 1500 600 46099 34835

1500 1500 900 54176 33791

1500 1500 1200 38791 22308

sometimes runs more than twi
e as fast as Ri
k's method. This is due to the signi�
ant

overhead in Ri
k's routine whi
h is 
aused by the additional statements responsible

for saving the 
ontours in memory. Furthermore, the worst 
ase fa
tor 5.25 
al
ulated

in the proof of Thm. 5.1 is mu
h too pessimisti
 in pra
ti
al situations. Instead, a


omparison with Table 2 shows that it roughly equals 2.

Table 3: Running times in mi
rose
onds for 
onstru
ting an LCS of length p.

m n p Ri
k [Ri
95℄ New method

500 500 100 6319 6044

500 500 200 14341 9066

500 500 300 19505 9890

500 500 400 15769 7802

m n p Ri
k [Ri
95℄ New method

750 750 250 23132 16374

750 750 400 39835 20495

750 750 550 38516 16758

750 750 700 16319 9945

Table 4: Allo
ated spa
e in bytes for 
onstru
ting an LCS of length p.

m n p Ri
k [Ri
95℄ New method

500 500 100 64284 34072

500 500 200 143820 34072

500 500 300 199464 34072

500 500 400 176328 34072

m n p Ri
k [Ri
95℄ New method

750 750 250 219244 51072

750 750 400 390172 51072

750 750 550 396136 51072

750 750 700 193780 51072

Con
lusions

We have investigated a new algorithm for the Longest Common Subsequen
e Problem.

In spite of the quite 
ompli
ated te
hni
al details ne
essary for the 
onstru
tion and

analysis, the �nal routines proved to be extremely pra
ti
al. More pre
isely, we have

shown three results. First, we have presented a new fast method for determining the

length of an LCS. Se
ond, we have developed a linear spa
e algorithm for 
onstru
ting

an LCS in O(ns+minfmp;m logm+ p(n� p)g) time, thus solving a previously open

problem. And third, we have shown by some experimental results that this algorithm

is by far the fastest one when dealing with usual appli
ations.
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Abstra
t. A 
entroid of a tree T is a node v whi
h minimizes over all nodes the

largest 
onne
ted 
omponent of T indu
ed by removing v from T . A 
entroid

tree U of another tree T is de�ned on the same set of nodes of T : the root v

of U is a 
entroid of T and the subtrees of v (in U) are the 
entroid trees of

the 
onne
ted 
omponents of T � v. We des
ribe some interesting properties of

the 
entroid and of the 
entroid tree. Our linear algorithm to �nd a 
entroid

of a tree improves on the previously known algorithms either in terms of spa
e

requirement or in terms of time requirement. From the algorithm for �nding a


entroid it is easy to obtain an O(n log n) time algorithm to 
onstru
t a 
entroid

tree of a given tree with n nodes. However, we do not know whether this is

the best that one 
an a
hieve. By exploiting the properties of the 
entroid

tree, we devise an eÆ
ient algorithm for the longest 
ommon substring problem

(LCS). Given two strings S (the text) of length n and P (the pattern) of length

m, the LCS problem is to �nd the longest substring that appears in both the

text and the pattern. Our algorithm requires O(n logn) time and O(n) spa
e

to prepro
ess the text. After prepro
essing of the text, the algorithm takes

O(m log n) time using O(m) extra spa
e to �nd the solution. The algorithm

may be used in the DNA appli
ations in whi
h the text is very large and �xed

and is to be sear
hed with many di�erent patterns (n� m).

Key words: balan
ed trees, 
entroid of trees, string pattern mat
hing, the

longest 
ommon substring problem

1 Introdu
tion

Let T be an arbitrary tree and let V denote the set of nodes in T . Let v 2 V and

let T

1

; T

2

; � � � ; T

d

be the 
onne
ted 
omponents of T indu
ed by removing v from T

(denoted by T � v). Let jT j denote the number of nodes in T . De�ne

N(v) = max

1�i�d

fjT

i

jg:
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A 
entroid of the tree T [Har69℄ is a node v




whi
h minimizes N(v) over all nodes v,

i.e.,v




satis�es

N(v




) = min

v2V

fN(v)g:

It 
an be shown that every tree has either one 
entroid or two. This fa
t has been

extensively applied (see, for examples, [Gol71℄, [KH79℄, [FJ80℄, [MTZC81℄, [Sla82℄).

Goldman [Gol71℄ and Megiddo et al. [MTZC81℄ proposed linear algorithms for �nding

the 
entroid of a tree. All algorithms known to us that make use of a 
entroid �nding

algorithm 
all either Goldman's algorithm or Megiddo's algorithm as a subroutine.

Goldman's algorithm requires a 
opy of the original tree T as an auxiliary tree on

whi
h it works. Therefore, O(n) extra spa
e is needed. While Megiddo's algorithm

does not need any extra spa
e, it has to visit ea
h node at least on
e. In this paper,

we present an algorithm, whi
h might be viewed as a 
ombination of Goldman's

algorithm and Megiddo's algorithm. Our algorithm improves on the mentioned two

algorithms either in terms of spa
e or in terms of time. Spe
i�
ally, our algorithm

does not need an extra 
opy of the original tree; at the same time, it does not need

more time than Goldman's algorithm. Our algorithm visits ea
h node of the tree at

most on
e; at the same time, it does not need more spa
e than Megiddo's algorithm.

Of 
ourse, one 
annot improve the 
omplexity order of the two mentioned algorithms

sin
e both are asymptoti
ally optimal in terms of spa
e and time.

The notion of the 
entroid of a tree inspired the notion of the 
entroid tree.

A 
entroid tree U of another tree T has the same set of nodes as T . U 's root v

is a 
entroid of T and v's 
hildren (in U) are the 
entroid trees of the 
onne
ted


omponents of T � v. A ni
e property of the 
entroid tree is that its height is logn.

It is easy to obtain an O(n logn) time algorithm to 
onstru
t a 
entroid tree from the

algorithm for �nding a 
entroid of a tree. However, it is unknown whether this is the

best time 
omplexity that one 
an a
hieve.

By exploiting the properties of the 
entroid tree, we are able to give an eÆ
ient

algorithm for the longest 
ommon substring (LCS) problem. Given two strings S (the

text) of length n and P (the pattern) of length m, the LCS problem is to �nd the

longest substring that appears in both the text and the pattern. An eÆ
ient solution

to the problem 
an be useful for homology sear
hing in nu
leotide/protein sequen
e

databases [Wat89℄, in the editing distan
e problem, in the multiple pattern sear
hing

problem, et
. Our algorithm requires O(n logn) time and O(n) spa
e to prepro
ess

the text. After the prepro
essing, a query 
an be answered in O(m logn) time. The

algorithm is probabilisti
 and there is a small 
han
e of error. That is, it may 
laim

that a substring of the pattern is identi
al to a substring of the text while they are not

really identi
al. This is 
alled a \false mat
h". However, the probability of a false

mat
h 
an be made arbitrarily (inverse-polynomially) small within the above time

bounds. Our algorithm has obvious advantages over the previously known algorithms

and is parti
ularly useful for the DNA appli
ations in whi
h the text is very large

and �xed (n � m) and in whi
h one wishes to sear
h the text with many di�erent

patterns (For example, the DNA sequen
e of a human being may have up to 3� 10

9

nu
leotides and a typi
al pattern sequen
e may have a few hundreds to thousands

nu
leotides).

The rest of the paper is organized as follows. In Se
tion 2 we present our algorithm

for �nding a 
entroid of a tree. We address the problem of 
onstru
ting a 
entroid

tree in Se
tion 3. In Se
tion 4 we devise an algorithm for the LCS problem applying
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the results presented in Se
tions 2 and 3. We then 
on
lude the paper by dis
ussing

some open problems in Se
tion 5.

2 Finding 
entroid

Lemma 2.1 ([Har69℄) Every tree has either one 
entroid or two. In the later 
ase,

the two 
entroids are 
onne
ted by an edge.

If i and j are two neighboring nodes of the tree T , then by removing the edge (i; j)

two 
onne
ted 
omponents C(i; j) and C(j; i) are indu
ed: C(i; j) is the 
omponent

whi
h 
ontains node i and C(j; i) is the 
omponent whi
h 
ontains node j (Note that

C is de�ned on ordered pairs of neighboring nodes). Let u be a node of T and let

x

1

; � � � ; x

d

be all neighbors of u. Then C(x

1

; u); � � � ; C(x

d

; u) are all the 
onne
ted


omponents of T � u. In the following we sometimes simply use C(i; j) to refer to

jC(i; j)j (i.e., the number of nodes in C(i; j)) when no ambiguity would likely o

ur.

The following lemma is 
ru
ial for our algorithm to �nd a 
entroid of a tree


orre
tly.

Lemma 2.2 A node v is a 
entroid of the tree T if and only if

N(v) � n=2:

Proof We �rst prove the ne
essary 
ondition of the lemma. Let v be a 
entroid of

the tree T . Suppose N(v) > n=2. Let x

1

; � � � ; x

d

be all neighboring nodes of v. Then

by the de�nition of a 
entroid, there must exist a neighboring node, say x

i

0

, of v su
h

that C(x

i

0

; v) > n=2. Let y

1

; � � � ; y

k�1

; y

k

= v be all neighboring nodes of x

i

0

. Then,

N(x

i

0

) = maxfC(y

1

; x

i

0

); C(y

2

; x

i

0

); � � � ; C(y

k�1

; x

i

0

); C(v; x

i

0

)g (13)

We then have

N(x

i

0

) = C(v; x

i

0

) if C(v; x

i

0

) � C(y

j

; x

i

0

)(j = 1; : : : ; k � 1)

N(x

i

0

) < C(x

i

0

; v) otherwise :

(14)

Sin
e C(x

i

0

; v) > n=2, C(v; x

i

0

) < n=2. It then follows that

N(x

i

0

) < C(x

i

0

; v) = N(v):

So by the de�nition of a 
entroid of a tree, v 
annot be a 
entroid of the tree T . This


ontradi
ts the assumption that v is a 
entroid of the tree T and therefore establishes

the ne
essary 
ondition of the lemma.

We now turn to prove the suÆ
ient 
ondition of the lemma. Suppose v is a node

of the tree T satisfying N(v) � n=2. Let u be a 
entroid of T . If u = v, the suÆ
ient


ondition is proved. We thus 
onsider the 
ase in whi
h u 6= v. Let x

1

; � � � ; x

d

be

all neighboring nodes of u. v must be in one of the 
onne
ted 
omponents of T � u,

say C(x

i

0

; u). Let y

1

; � � � ; y

k

= v be all neighboring nodes of v. Let y

j

0

6= v be

the neighboring node of v on the path from x

i

0

to v. From N(v) � n=2, we know

that C(y

j

0

; v) � n=2, and then C(v; y

j

0

) � n=2. Be
ause C(v; y

j

0

) is a subtree of

the 
omponent C(x

i

0

; u), we know that C(x

i

0

; u) � n=2. Thus, N(u) � n=2. Thus,
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N(u) � N(v). Therefore, sin
e u is a 
entroid of T , v must also be a 
entroid of T

and N(u) = N(v). This 
ompletes the proof of the suÆ
ient 
ondition of the lemma.

2

Lemma 2.2 says a node v is a 
entroid of T if no 
onne
ted 
omponent indu
ed by

removing v from T 
ontains more than n=2 nodes.

We now des
ribe the algorithm. Without loss of generality, we let the tree T be

rooted at an arbitrary node r. We denote by K(i) the number of nodes in the subtree

rooted at i. Then it is easy to see the following:

1. K(i) = 1 if i is a leaf, and

2. K(i) =

P


: 
hild of i

K(
) + 1 if i is not a leaf.

The algorithm 
omputes K(i)s by pro
eeding from the leaves of the tree towards the

root. One may start from any leaf. But by rule, one is only allowed to use rules (1)

and (2) to 
ompute K(i)s (This is 
alled the bottom-up manner).

The algorithm

Compute the K(i)s in the above de�ned bottom-up manner until a node v is rea
hed

su
h that K(v) � n=2. Node v is a 
entroid of T . If K(v) = n=2, v's father is another


entroid of T .

The 
ost

We assume that the representation of the tree allows us to a

ess ea
h leaf of the tree

in 
onstant time and any node 
an be rea
hed from any of it's 
hildren in 
onstant

time. We note that it is easy to build a linked representation of the tree that will

have these desired properties in linear time and spa
e. Then in the worst 
ase, the

algorithm needs to visit ea
h node of the tree just on
e. The worst 
ase o

urs only

when the sole 
entroid of the tree is also the root of the tree.

We 
ould use, for instan
e, the most 
ommon left-
hild, right-brother representa-

tion of a tree. In this representation, ea
h node x of the tree 
ontains three pointers:

1. parent[x℄ points to the parent of node x, 2. left-
hild[x℄ points to the leftmost


hild of x, and 3. right-brother[x℄ points to the brother of x immediately to the right.

Under this representation, the algorithm will enter ea
h node x at most twi
e: 1.

either from its father or from its left-brother, and 2. (when x is a nonterminal node)

from one of its 
hildren. So if the left-
hild, right-brother representation of a tree is

used, the algorithm needs at most 2n� f node visits where f denotes the number of

leaves of the tree. Note that this implementation of the algorithm does not make use

of the assumption that at any point one 
an a

ess the leaves of the tree in 
onstant

time. This is why this implementation may visit some nodes of the tree more than

on
e (but at most twi
e). If we augment the left-
hild, right-brother representation

of a tree with an array of pointers ea
h pointing to a leaf node of the tree, the above

algorithms only needs to visit ea
h node of the tree at most on
e.

Megiddo's algorithm needs �rst to traverse the tree to 
ompute some fun
tion

whose de�nition is similar to that of K(i) for ea
h node i, then looks for the 
entroid
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along a \right" path of the tree. That is, it need at least 2n � f steps if the left-


hild, right-brother representation of the tree is used. While the idea of Goldman's

algorithm is similar to that of ours, Goldman's algorithm requires an extra 
opy of

the tree to work on. It deletes in some way the nodes of the extra tree until there is

only one node left; this remaining node is then a 
entroid of the tree (see [KH79℄ for

another version of Goldman's algorithm).

The 
orre
tness of the algorithm

If v is the �rst node we en
ountered in the 
ourse of 
omputing the k(i)'s in the

bottom-up manner su
h that k(v) � n=2, then N(v) � n=2. The 
orre
tness of the

algorithm then follows from Lemma 2.2.

3 Centroid trees

De�nition 3.1 (
entroid tree) A 
entroid tree U of another tree T is de�ned on

the same set of nodes of T : the root v of U is a 
entroid of T , and the subtrees of v

(in U) are the 
entroid trees of the 
onne
ted 
omponents of T � v and v (in U) is


onne
ted to the roots of these (sub-)
entroid trees.

We sometimes use U(T ) to denote a 
entroid tree of another tree T . Note that

U(T ) 6= T in general but U(U(T )) = U(T ). So di�erent trees may have the same


entroid tree. Lemma 3.2 shows a ni
e property of the 
entroid tree, whi
h motivated

our work of sear
hing for eÆ
ient methods for 
onstru
ting 
entroid trees.

Lemma 3.2 For any tree T with n nodes, the height of its 
entroid tree U is O(logn).

Proof Ea
h node ex
ept the leaves in U has at least two 
hildren; by Lemma 2.2 the

number of nodes in any bran
h at any node v in U is no more than half the number

of nodes in the subtree rooted at v in T . So the height of U 
annot ex
eed the height

of a 
omplete binary tree with the same number of nodes, whi
h is blog

2

n
. 2

A straightforward approa
h to the 
onstru
tion of a 
entroid tree is to repeatedly


all the 
entroid �nding algorithm dis
ussed in the previous se
tion. This approa
h

requires O(n logn) time. There are many ways to speed up this approa
h. However,

it is not 
lear whether it is possible to asymptoti
ally improve the time 
omplexity

of this naive approa
h. Let's 
all this simple approa
h Algorithm Naive.

The following simple observations may help us to gain more insight into the 
en-

troid tree 
onstru
tion problem.

Lemma 3.3 Let u be any node of the tree T . If the sizes of all 
onne
ted 
omponents

of T�u are less than or equal to n=2, then u is a 
entroid of T . Otherwise, the 
entroid

of T must be in the maximal 
omponent of T � u.

Proof The 
orre
tness follows from Lemma 2.2. 2
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Lemma 3.4 If a 
entroid v of the tree T is in a subtree S of T , then v must lie on

the path s; � � � ; u or lie on the path s; � � � ; u; u

0

where s denotes the root of S, u is a


entroid of S and u

0

is a 
hild of u (with respe
t to the root s). In the latter 
ase,

both u and u

0

are the 
entroids of T .

Proof Let v be a 
entroid of T . Suppose that v is not on the path s; � � � ; u. Then

there are two 
ases to 
onsider.

In the �rst 
ase, v's father f (v 6= f) is on a path f

0

; � � � ; f; v su
h that f

0

is on

the path s; � � � ; u (it is possible that f = f

0

). Sin
e v is a 
entroid of T , jC(f; v)j �

n=2. Thus C(v; f) (the subtree rooted at v) 
ontains at least n=2 nodes. Then the


onne
ted 
omponent of S that 
onsists of C(v; f) and the path s; � � � ; f 
ontains at

least n=2 + 1 nodes. Therefore, by Lemma 2.2, u 
annot be a 
entroid of the subtree

S, whi
h leads to a 
ontradi
tion.

In the se
ond 
ase, v is a des
endant of u

0

and v 6= u

0

where u

0

is a 
hild of u (it is

possible that u'=u). Sin
e v is a 
entroid of T , C(v; u

0

) (the subtree rooted at v) has

at least n=2 nodes. We need to 
onsider two sub
ases: a. C(v; u

0

) has exa
tly n=2

nodes. Then by Lemma 2.2, u

0

is another 
entroid of T . It is easy to see that u = u

0

.

Otherwise, the subtree rooted at u

0


ontains at least n=2+1 nodes and therefore, u is

not a 
entroid of the subtree S, whi
h is a 
ontradi
tion. b. C(v; u

0

) has more than

n=2 nodes. This means a bran
h of u that 
ontains u

0

has more than n=2 + 1 nodes.

Thus, u 
annot be a 
entroid of the subtree S, whi
h is also a 
ontradi
tion.

This 
ompletes the proof of Lemma 3.4. 2

Lemma 3.5 Let s

1

and s

2

be any two neighboring nodes of the tree T with jC(s

1

; s

2

)j

= n

1

, jC(s

2

; s

1

)j = n

2

and n

2

> n

1

. Let u be a 
entroid of C(s

2

; s

1

) and let n

3

denote

the number of nodes of the subtree rooted at u of T . If the K(i)s of all nodes i of

T are known, we need at most min(n=2 � n

1

; n=2 � n

3

) steps ea
h of whi
h takes


onstant time to �nd a 
entroid of the entire tree T .

Proof Let v be a 
entroid of the tree T . By Lemma 3.4, v must lie on the path

s

2

; � � � ; u. We 
an 
he
k the nodes on the path one by one until we �nally rea
h a


entroid of T . The 
onne
ted 
omponent of T � v that 
ontains s

2

has at most n=2

nodes; so if we pro
eed from s

2

towards u we need at most n=2� n

1

steps before we

rea
h a 
entroid of T . The 
onne
ted 
omponent of T �v that 
ontains u has at most

n=2 nodes; so if we pro
eed from u towards s

2

we need at most n=2 � n

3

steps. In

either of these two dire
tions, ea
h step takes 
onstant time be
ause the K(i)s of all

nodes i of T are known. 2

We have modi�ed Algorithm Naive by making use of Lemmas 3.3, 3.4 and 3.5.

The resulting algorithm is 
alled Algorithm Heuristi
. We have applied Algorithm

Heuristi
 to several random trees. The preliminary experimental results showed that

Algorithm Heuristi
 
onstru
ted a 
entroid tree for a given random tree in time

proportional to the number of nodes in the tree on the average. However, at we are

unable to prove this behavior of Algorithm Heuristi
 rigorously.
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4 Appli
ation to string pro
essing

In this se
tion we make use of the properties of the 
entroid tree to solve the longest


ommon substring (LCS) problem. The problem is, given a string S (the text) of n


hara
ters and a string P (the pattern) of m 
hara
ters over some �nite alphabet �,

to �nd the longest substring whi
h o

urs in both of the two strings. An eÆ
ient

solution to the problem 
an be useful for homology sear
hing in nu
leotide/protein

sequen
e databases [Wat89℄, in the editing distan
e problem, in the multiple pattern

sear
hing problem [Per93℄, et
. We are parti
ularly interested in the 
ase of the

problem in whi
h the text is given in advan
e and is �xed, and many queries with

di�erent patterns will be made later.

Three algorithms for the LCS problem are previously known (named algorithms

P1, P2, and P3 respe
tively) [Per93℄. It is also possible to solve the problem by


onstru
ting a suÆx tree for the 
on
atenation of the two strings and then marking

ea
h node of the suÆx tree that has leaves from both of the two strings in its subtree.

Let's name this algorithm Cat. In the following we will propose a new algorithm

for the problem. Table 1 shows the time and spa
e bounds of the previously known

algorithms 
ompared with this new algorithm (named Algorithm New).

Table 1: Comparison of the LCS algorithms

Algorithm Prepro
essing Sear
hing time

spa
e time worst 
ase average

P1 m j�j m j�j+m

2

n

P2 j�j j�j+m mn n logn

P3 m + j�j 2m+ j�j mn (1 +

m

j�j

)n

Cat m+ n

New n n logn m logn

A weakness of Algorithm P1 is that it requires large amounts of spa
e and pre-

pro
essing time for large alphabets and/or patterns. Algorithm P2 requires that the

size of the pattern be no more than the size of a word of the ma
hine on whi
h the

algorithm is exe
uted. When the size of the underlying alphabet is quite small, e.g.,

j�j = 4 in the 
ase of DNA appli
ations, the average-
ase performan
e of Algorithm

P3 deteriorates to its worst-
ase performan
e. While Algorithm Cat runs in O(n+m)

time, it is not proper for appli
ations in whi
h the text is very large and �xed and

one wishes to sear
h the text with many di�erent shorter patterns (n � m). This

is be
ause although the text is �xed and stati
 for many queries, for ea
h new query

(new pattern) Algorithm Cat has to rebuild a suÆx tree for the text and the pattern

whi
h takes as mu
h as O(n +m) time. For example, a DNA sequen
e of a human

being may have up to 3 � 10

9

nu
leotides and a typi
al pattern sequen
e may have

a few hundreds to thousands nu
leotides. In su
h 
ases, m + n � m logn, the time

needed by our new algorithm to answer a query.

The new algorithm �nds the longest pre�x of ea
h of the suÆxes of the pattern P

in the text S. Note that P has m suÆxes and therefore there are at most m longest

pre�xes (of the suÆxes) that appear in T . The algorithm then simply 
hoose the
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longest one from these pre�xes found as an answer to the LCS problem. It requires

O(n logn) time and O(n) spa
e to prepro
ess the text. After the prepro
essing, a

query 
an be answered in O(m logn) time. An advantage of this approa
h is that in


ases where the text is large (e.g., n > m logn) and stati
 for many queries, we only

have to prepro
ess the text on
e; after the text has been prepro
essed, a query 
an

be answered qui
kly. It is a probabilisti
 algorithm and there is a small 
han
e of

error. That is, the algorithm may 
laim that a substring of the pattern is equal to a

substring of the text while they are not equal at all (This is 
alled a \false mat
h").

However, as will be seen later, the probability of a false mat
h 
an be made arbitrarily

(inverse-polynomially) small.

The general stru
ture of the algorithm is as follows:

� Prepro
essing stage

{ 
onstru
t a suÆx tree T for the text S

{ 
onstru
t a 
entroid tree U for the suÆx tree T

� Sear
hing stage

{ sear
h the 
entroid tree U for lo
ations of the longest pre�x of ea
h of the

suÆxes of the pattern P in the text T

Now, we des
ribe the algorithm in detail. Sin
e algorithms for building suÆx trees

in linear time and spa
e are known in the literature [Wei73, M
C76, Ukk95℄ and we

have already presented an algorithm for building the 
entroid tree (in Se
tion 3), we

will 
on
entrate on the sear
hing stage of the algorithm.

Let the text be S = S[1℄ � � �S[n℄ and let the pattern be P = P [1℄ � � �P [m℄. We

use a suÆx tree to represent the text. Assuming that the suÆx tree T of the text S

and a 
entroid tree U of T are already available, our sear
h algorithm sear
hes the

trees for the o

urren
es of the pattern in the text.

Let w be the end node of the path that the pattern P determines in T . If P is

not a substring of S, then we de�ne the end node w to be the node that 
orresponds

to the longest pre�x of P that is a substring of S. Our goal is to �nd w.

We maintain the following variables:

� v, the 
urrent node in U ; v is a 
entroid of some 
onne
ted 
omponent C of T .

� u, the topmost node of C (in T ); the substring 
orresponding to u is the longest

substring of S found so far that is a pre�x of P .

� i, an index to P su
h that P [1℄; � � � ; P [i℄ determines the path from the root to

u.

� j, the length of the substring determined by the path from u to v.

� k, a pointer to S that 
orresponds to the end position of the substring deter-

mined by the path from the root to v.

Furthermore, let x be any node of T . We denote by x:length the length of the

substring determined by the path from the root to node x and denote by x:end an
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index to S that 
orresponds to the end position of this substring in S. Note that by

assumption, x:length and x:end are already stored in ea
h node x on 
onstru
tion of

the suÆx tree.

Given u and v 
omputing j and k is easy:

j := v:length� u:length;

k := v:end:

(15)

Initially, u := the root of T ; v := the root of U ; i := 0; and j and k are 
omputed

by (15).

In order to �nd w eÆ
iently we need to �nd a way to de
ide qui
kly whi
h of

the 
onne
ted 
omponents indu
ed by removing v from T 
ontains w. There are

two possibilities: w is in the 
omponent that is \above" v or w is in one of the


omponents that are \below" v. We noti
e that w is a des
endant of v if and only

if S[k � j + 1℄ � � �S[k℄ = P [i + 1℄ � � �P [i + j℄. If w is in the 
omponent \above" v,

we assign the 
entroid of that 
omponent to v and u is un
hanged; if we know whi
h

of the 
omponents \below" v 
ontains w, we assign the root of that 
omponent to

u and assign the 
entroid of that 
omponent to v. The above ideas are pre
isely

presented in pro
edure sear
h in Figure 1. pro
edure sear
h �nds and stores w

in its variable v and stores the index to P referring to the end position of the longest

pre�x of P that is equal to a substring of S in its variable i when exe
uted with u

being initialized to be the root of T , v being initialized to be the root of U and i

being initialized to be 0.

The question that is 
ru
ial to implement pro
edure sear
h eÆ
iently is: Given

a substring S[k℄ � � �S[k + j℄ of S and a substring P [i℄ � � �P [i + j℄ of P , how 
an we

answer qui
kly whether they are equal or not? There is a probabilisti
 method [Nao91,

KR87℄ whi
h, after prepro
essing the strings S and P in linear time and spa
e, 
an

test whether a substring of S is equal to a substring of P in 
onstant time. There is a

probability of error (a false mat
h) in any test. But the probability of a false mat
h


an be made arbitrarily (inverse polynomially) small.

The method needs a prime q whi
h is 
hosen at random from a set of primes

smaller than M (to be stated soon). It is this prime q that may lead to a false mat
h.

By Theorem 3 of [KR87℄ the probability of a false mat
h is less than �(n)/�(M)

where �(n) denotes the number of primes smaller than n. By Lemma 2 of [KR87℄

u

lnu

� �(u) � 1:25506

u

lnu

. Thus, for example, if we 
hoose M to be n

3

logn, the

probability of a false mat
h is (asymptoti
ally) 1/n

2

logn.

We now look at the 
omplexity of pro
edure sear
h. Note that at ea
h step v

is assigned to one of its 
hildren (in U). By Lemma 3.2 the height of U is O(logn).

So pro
edure sear
h requires O(logn) steps. From the above dis
ussion, ea
h step

takes 
onstant time. So pro
edure sear
h needs O(logn) time to �nd the longest

pre�x of P that appears in S.

To solve the whole LCS problem, for every suÆx P

i

= P [i℄ � � �P [m℄ (i = 1; � � � ; m)

we �nd the longest pre�x of P

i

that appears in S with pro
edure sear
h. From

among all these (lo
ally) longest pre�xes found, we 
hoose the (globally) longest one

as an answer to the LCS problem. All this takes O(m logn) time.

To summarize, our algorithm for the LCS problem 
onsists of:

� Prepro
essing the text
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pro
edure sear
h(node: u, v; integer: i);

integer: j, k;

begin

j := v:length� u:length;

k := v:end;

if S[k � j + 1℄ : : : S[k℄ = P [i+ 1℄ : : : P [i+ j℄ then /* j may be 0 */

if i+ j = m then i := m; stop

/* P is equal to the substring of S 
orresponding to node v */

else

if there exists a 
hild 
 of v in T 
orresponding to the symbol

P [i+ j + 1℄ then

if the substring S[k + 1℄ : : : S[k + l℄ of S 
orresponding to the edge

(v; 
) is equal to a substring of P starting at P [i+ j + 1℄ then

u := 
;

v := v's 
hild in U 
orresponding to the subtree rooted at 
 in T ;

i := i+ j + l;

sear
h(u; v; i)

else

/* Let L denote the maximal x in [1; l℄ su
h that

S[k + 1℄ : : : S[k + x℄ = P [i+ j + 1℄ : : : P [i+ j + x℄ */

�nd L with binary sear
h supported with the substring equality

testing te
hnique;

i := i+ j + L; stop

/* P [1℄:::P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring is the 
on
atenation of the

substring 
orresponding to node v and S[k + 1℄ : : : S[k + L℄ */

end

else

i := i + j; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring 
orresponds to node v */

end

end

else

if there exists a 
hild of u in T 
orresponding to P [i+ 1℄ then

v := v's 
hild in U 
orresponding to the 
omponent \above" v;

sear
h(u; v; i)

else

v := u; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring 
orresponds to node v */

end

end

Figure 1: Sear
h for end node of path determined by pattern.
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{ 
onstru
t a suÆx tree T for the text S in O(n) time and spa
e.

{ 
onstru
t a 
entroid tree U for the suÆx tree T in O(n logn) time and

using O(n) spa
e.

{ pro
ess the text S in order to be able to 
he
k qui
kly the substring equal-

ity. This takes O(n) time and spa
e.

� Sear
hing for the pattern

{ pro
ess the pattern P in order to be able to 
he
k qui
kly the substring

equality. This takes O(m) time and spa
e.

{ sear
h the 
entroid tree U for lo
ations of the longest pre�xes of all the

suÆxes of the pattern P in the text S in O(m logn) time and O(1) spa
e.

That is, the prepro
essing takes O(n logn) time and O(n) spa
e and the sear
hing

takes O(m logn) time and O(m) extra spa
e.

To make this algorithm error free, we 
an add a step that 
he
ks whether a 
laimed

mat
h is true or false. If the 
laimed longest mat
h is false, we dis
ard it and 
he
k the

se
ond longest mat
h, and so on, until we rea
h a true mat
h. Sin
e the probability

of a false mat
h 
an be made arbitrarily (inverse-polynomially) small without asymp-

toti
ally in
reasing the time and spa
e requirements of the algorithm, the 
han
e of

using this 
he
king step 
an be made arbitrarily inverse-polynomially small as well.

5 Open questions

It is of 
onsiderable interest to either establish that there exists a non-linear lower

bound on the run time of all algorithms whi
h 
onstru
t a 
entroid tree for any given

tree, or to exhibit an algorithm whose run time is O(n).

It is also interesting, at least from a pra
ti
al point of view, to �nd 
entroid tree


onstru
tion algorithms that run in linear time on the average and require linear spa
e

even if their worst-
ase behavior 
ould be mu
h worse. Are there any deterministi


algorithms to do the sear
h (as dis
ussed in Se
tion 4) using the same order of time

as the probabilisti
 one does?
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