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Preface

This collaborative report contains the proceedings of the Prague Stringology Club
Workshop ’99 (PSCW’99), held at the Department of Computer Science and Engi-
neering of Czech Technical University in Prague on July 8-9, 1999. The workshop was
preceded by PSCW’96 which was the first action of the Prague Stringology Club, by
PSCW’97 and by PSCW’98. The proceedings of PSCW’96, PSCW’97 and PSCW’98
were published as collaborative reports DC-96-10, DC-97-03 and DC-98-06, respec-
tively, of Department of Computer Science and Engineering and are also available in
the postscript form at Web site with URL: http://cs.felk.cvut.cz/psc. While
the papers of PSCW’96 were invited papers, the papers of PSCW’97 and PSCW’98
were selected from the papers submitted as a response to a call for papers. The papers
in this proceedings are alphabetically ordered by the authors.

The PSCW aims at strengthening the connection between stringology (the com-
puter science on strings and sequences) and finite automata theory. The automata
theory has been developed and successfully used in the field of compiler construction
and can be very useful in the field of stringology too. The automata theory can facil-
itate the understanding of existing algorithms and the developing of new algorithms.

Jan Holub and Milan Simdnek, editors






The Closest Common Subsequence Problems!

Gabriela Andrejkova

Department of Computer Science, Faculty of Science, P. J. Safarik University,
Jesenna 5, 041 54 Kosice, Slovakia

e-mail: andrejk@kosice.upjs.sk

Abstract. Efficient algorithms are presented that solve general cases of the
Common Subsequence Problems, in which both input strings contain symbols
with competence values or sets of symbols with competence values. These prob-
lems arise from a searching of the sets of most similar strings.

Key words: Subsequence, common subsequence, measure of the string, dy-
namic programming, design and analysis of algorithms.

1 Introduction

The motivation to the CCS Problems can be found in the typing of a text on the
keyboard. The following mistakes can be made in typing some string:

1. Typing a different character, usually from the neighbour area of the given char-
acter.

2. Inserting a single character into the source string.
3. Omiting (skipping) any single source character.

In the most frequent mistakes, a character from the area on the keyboard adjacent
to the required character was typed instead of the required character. For example,
the neighborhood of the character fis the set f = {f,d, g, r, t, ¢, v}. The sequence of
sets A = f, r, e, s, ¢, 0 belongs to the word fresco. In this case (typing mistakes)
let us assign competence value (c.v.) to each element of the neighborhood in such
way that the character itself has c.v. 1 and the c.v.’s of "more erroneous” character
are smaller than those of the "better one”. For example, for set f we have pu(f) =
1, u(d) = 0.4, 1(g) = 0.4, u(r) = 0.2, u(t) = 0.4, u(c) = 0.3, u(v) = 0.3. We consider
that in the text, it is necessary to find the words which are very close to the word
fresco. We consider the sum of c.v.’s of a given string as a measure of its similarity of
the string to the given word fresco. The lengths of the found words can be different
to the length of the given word fresco. For example, if the word fresco is found in the
text then the measure of the similarity to the given word fresco is the length of the
word fresco (6), if the word tresc is found then the measure of the similarity is 4.4
because the symbol ¢ is very close to the symbol f and symbol o is omitted.

! This research was partially supported by Slovak Grant Agency for Science VEGA, project No.
1/4375/97
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It is possible to consider the described problem as the closest common subsequence
problem of the two similar strings and its repetition for text of strings.

The common subsequence problem of two strings is to determine one of the sub-
sequences that can be obtained by deleting zero or more symbols from each of the
given strings. It is possible to demand some additional properties for the common
subsequence. Usually, it is the greatest length of the common subsequence, but we
can consider some different measures for the common subsequence.

The longest common subsequence problem (LCS Problem) of two strings is to de-
termine the common subsequence with the maximal length. For example, the string
AGI is a common subsequence and the string ALGI is the longest common subse-
quence of the strings ALGORITHM and ALLEGATION. Algorithms for this problem
can be used in chemical and genetic applications and in many problems concerning
data and text processing [15], [12], [3]. Further applications include the string-to-
string correction problem [12] and determining the measure of differences between
text files [3]. The length of the longest common subsequence (LLCS Problem) can
determine the measure of differences (or similarities) of text files. The simulation
method for the approximate strings and sequence matching using the Levenstein
metric can be found in J. Holub [9] and the algorithm for the searching of the subse-
quences is in Z. Troni¢ek and B. Melichar [16].

D. S. Hirschberg and L. L. Larmore [7] have discussed a generalization of LCS
Problem, which is called Set LCS Problem (SLCS Problem) of two strings where
however the strings are not of the same type. The first string is a sequence of symbols
and the second string is a sequence of subsets over an alphabet ). The elements of
each subset can be used as an arbitrary permutation of elements in the subset. The
longest common subsequence in this case is a sequence of symbols with maximal
length. The SLCS Problem has an application to problems in computer driven music
[7]. D. S. Hirschberg and L.L. Larmore have presented O(m - n)-time and O(m + n)-
space algorithm, m, n are the lengths of the strings. The Set-Set LCS Problem (SSLCS
Problem) is discussed by D. S. Hirschberg and L. L. Larmore [8]. In this case both
strings are strings of subsets over an alphabet 2. In the paper [8] is presented the
O(m - n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general cases of the Common Subsequence
Problem, it means Closest Common Subsequence Problems: CCS Problem (for two
strings of symbols), CCRS Problem (for two strings of symbols with restricted using
of the symbols), SCCS Problem (for one string of symbols and second string of symbol
sets) and SSCCS Problem (for two strings of symbol sets).

2 Basic Definitions

In this section, some basic definitions and results concerning to CCS Problem, SCCS
and SSCCS Problem are presented.

Let  be a finite alphabet, || = s, P(2) the set of all subsets of Q, |P(Q2)| = 2°.

Let A = a1as...am,0; € 2,1 < i < m be a string over an alphabet (), where
|A| = m is the length of the string A.

Let pa(a;) € (0,1),1 < ¢ < m, be some competence (membership) values of
elements in the string A.
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The pair (A, p4) is the string A with the competence function pa, cf-string (A, p14)
for short. Val(A, ) is a measure of (A, ) defined by the (1).

Val(A, pa) = X2 pa(as) (1)
The string C' € P(Q2),C = ¢;...¢, is a subsequence of the string A = ay ...ay,, if
a monotonous increasing sequence of natural numbers 7; < ... <4, exists such that

cj = aj;, 1 < j < p. The string C'is a common subsequence of two strings A, B if C
is a subsequence of A and C'is a subsequence of B. |C] is the length of the common
subsequence. The classical problem to find the longest common subsequence is defined
and solved in Hirschberg [5].

The string (C, uc) is a subsequence with the competence function uc, cf-subsequence
for short of the cf-string (A, u4) if C' is a subsequence of the string A and 0 < pc(c;) <
pal(a;,), for 1T < t < p. The cf-subsequence (C,uc) is a closest cf-subsequence if
Val(C, po) = Zj_ype(ej) = X5_  palaiy).

The string (C, uc) is a common cf-subsequence of two cf-strings (A, p4) and
(B, up) if (C, pue) is a cf-subsequence of (A, pa) and (C, uc) is a cf-subsequence of
(Ba MB) :

The string (C, uc) is a closest common cf-subsequence of the cf-strings (A, 1) and
(B, up) if (C, pe) is a common cf-subsequence with the maximal value Val(C, ue).
It means, if (D, up) is a common cf-subsequence of the strings (A, p4) and (B, up)
then Val(D, up) < Val(C, uc).

If (C, pc) is a closest common cf-subsequence of the cf-strings, (A, u4) and (B, up)
then pc(e) = min{pa(ar,), ps(by)}, for 1 <t <p.

The CCS Problem: Let (A, pu4) and (B, ug) be cf-strings. To find a closest
common subsequence of the cf-strings (A, u4) and (B, ug), CCS((A, pa), (B, ug))
for short.

The MCCS Problem is to find the measure of CCS cf-string, MCC'S for
short. It means, MCCS((A, pa), (B, pup)) = Val(CCS((A, pa), (B, up))). ©

09 09 06 0.5 0.2 0.8 04 0.6 0.5
A @|> o ®© 9
B @ @\@

0.6 0.6 0.3 0.4 0.9 0.5 0.6

Figure 1. The closest common subsequence of two cf-strings A and B.

Example 1. Q={a,b,c}, A=abaabacab, m =9, B = abcdbch, n =
7, pa = (0.9,0.9,0.6,0.5,0.2,0.8,0.4,0.6,0.5), up = (0.6,0.6,0.3,0.4,0.9,0.5,0.6).
The string C' = abcb is a subsequence, C’ = abbeb is the longest common subsequence
of the strings A and B, and (C”, puc»), C” = abeb, ue» = (0.6,0.9,0.4,0.5) is the
closest common subsequence of the cf-strings (A, p4) and (B, ug), Val(C”, uc») =
MCCS((A, pa), (B, pup)) = 2.4 as it is shown in the Figure 1.

Let (A, pa) be the string A with the competence function py. A sequence of
indices, h* = hithi'hs' .. b, 0 =h{l <hi! <hi <...<hli=m1<k*<misa
partition of the string (A, pa).
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The sequence h* divides the string (A, uu4) in the following way:

A = laaz...apalapay - capa].Japa oo .ah£A| = subst{ substs ... subst,,
where subst! = Apa 4q---Qpa, 1 <0< kA [(A, pa), b is called the cf-string with
the partition.

For example, Q = {a, b, c}, A = |abalabacac|bab|,m = 12, uy = (0.4,.2,.8,.4,.7, .3,
3,.7,.5,.4,.8,.6), h" = 0,3,9,12; substy' = aba, substy = abacac, substs = bab.

A string C = cica...¢p, 1 <p < mis a restricted subsequence of the cf-string with
the partition [(4, j14), h*], if and only if

1. there exists a sequence of indices 1 < 7; < iy < ... < 4, < m such that
ait:Cta]-StSp) and

2. if hf,‘fl <y by < hf.‘ then ¢, # ¢,, forall r, 1 < r < k4,
(each element of an alphabet (subst2) can be used in C' once at most).

The string (C, pue) is a common restricted cf-subsequence of two cf-strings with par-
tition [(A, pa), h*] and [(B, pug), hB] if (C, uc) is a restricted cf-subsequence of
[(A, 14), h*] and (C, uc) is a restricted cf-subsequence of [(B, ug), hB] at once.

The string (C, uc) is a closest common restricted cf-subsequence of two cf-strings
with partition [(A, pa), h*] and [(B, up), h®] if (C,uc) is a common restricted cf-
subsequence with maximal value defined by (1).

The CCRS Problem: Let [(A, u4), h"] and [(B, up), h?] be the cf-strings. To
find the closest common subsequence of the cf-strings [(A, 4), k] and [(B, ug), h?],
CCRS([(A, pa), b, [(B, ug), hP]) for short.

The MCCRS Problem is to find the measure of CCRS cf-string, MCCRS
for short. Tt means, MCCORS([(A, pa), k], (B, ug), h?]) = Val(CCRS([(A, pa), h1],
(B, pp), hP])). o
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Figure 2. Closest common restricted subsequence of two strings A and B.

Example 2. Q= {a,b,c}, A= |aba|abacac|bab|l,m =12, us = (0.4,0.2,0.8,0.4,
0.7,0.3,0.3,0.7,0.5,0.4,0.8,0.6), h* = 0,3,9,12; B = |babc|cac|cbeb|,n = 11, pg =
(0.4,0.3,0.4,0.5,0.3,0.5,0.6,0.3,0.7,0.6,0.5). The string C' = bacb is a restricted sub-
sequence, C' = bacab is the closest restricted common subsequence with measure 2.3
as it can be seen in Figure 2. The string C” = babcacbb is the longest common sub-
sequence of the strings A = abaabacacbab and B = babccaccbeb if the partition does
not matter.

A string of sets, set-string for short, B over an alphabet 2 is any finite sequence of
sets from P (). Formally, B= B'B%...B", B' € P(Q),1 < i < n, n is the number of
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sets in B. The length of the symbol string described by B is N = £ | |B¢|. The pair
(B, ug) is the set-string B with the competence functions g, set-cf-string for short.

A string of symbols C' = cicz...cp,c; € Q,1 < i < p, is a subsequence of symbols
(subsequence, for short) of the set-string B if there is a nonincreasing mapping F :
{1,2,...,p} = {1,2,...,n}, such that

1. if F(i) =k then ¢; € By, fori=1,2,...,p
2. if F(i) =k and F(j) =k and i # j then ¢; # ;.

The combination of a string and a set-string and the finding of their closest common
cf-subsequence leads to the solution of problems in above motivation.

Let (A, pa), be cf-string over Q and (B, ug) be a set-cf-string over P(Q2). The
cf-string (C, uc) is a common cf-subsequence of (A, pua) and (B, ug) if (C,pc) is a
cf-subsequence of A and (C,puc) is a cf-subsequence of the set-string B. A clos-
est common cf-subsequence of the cf-string (A, p4) and the set-ct-string (B, ug),
SCCS((A, pra), (B, ug)) is a common cf-subsequence (C, p1¢) with the maximal value
Val(C, pc). Note that (C, puc) is not unique in general way.

The SCCS Problem: The Set closest Common Subsequence problem of the cf-
string (A, u4) and the set-cf-string (B, ug), SCCS((A, pa), (B, us)) for short, consists
of finding a closest common cf-subsequence (C, ).

The MSCCS Problem consists of finding the measure of SCC'S cf-string,
MSCCS for short.
This means that MSCCS((A, pa), (B, ug)) = Val(SCCS((A, ua), (B, ug))), ©

0.9 09 0.6 0.5 0.2 0.8 0.4 0.6 0.5

-{@ ©® oH ® o o e}
06 0.6 0.3 0.9 04 0.6 0.5
Figure 3. The closest common subsequence of two strings A and B.

A—

Example 3. Let A = abaabacab,pa = (0.9,0.9,0.6,0.5,0.2,0.8,0.4,0.6,0.5), B =
{a,b,c}{b,d}{b,c}, pupi(a) = 0.6, upi1(b) = 0.6, up1(c) = 0.3, up2(b) = 0.9, up=(d) =
0.4, ups(b) = 0.6, pupz(c) = 0.5. Then MSCCS((A, pa), (B, us)) = 2.4 as it is shown
in the Figure 3.

Let A = A'...A™ B = B'...B" 1 < m < n, be two set-strings of sets over
an alphabet 2. The string of symbols C' is a common subsequence of symbols of A
and B is C' a subsequence of symbols of A and C' is a subsequence of symbols of the
set-string B. The longest common subsequence problem of the set-strings A and B
(SSLCS(A, B) consists of finding a common subsequence of symbols C' of the maximal
length. Note that (' is not in general unique.

The SSCCS Problem: Let (A, p4), (B, us) be two set-cf-string.

The Set-Set Closest Common Subsequence problem of the set-cf-strings (A, p4) and
(B, 1u5), (SSCCS((A, pa), (B, us)) for short, consists of finding a closest common cf-
subsequence (C, puc).
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The MSSCCS Problem consists of finding the measure of SSCCS set-cf-
string, MSSCC'S for short.
It means, MSSCCS((A, pa), (B, ) = Val(SSCCS((A, pa), (B, us))), ¢

}

OH® ©F
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H~

® O 6 @
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0.7 0.3 .6 04 0.5, 0.6 0.3 0.8
A 9 0.5
Figure 4. The closest common subsequence of two set-strings A and B.
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Example 4. Let A = {a,d},{c,a,d},{e,b,a},m = 3, uyp = (0.7,0.3), iz =
(0.6,0.4,0.5), a2 = (0.6,0.3,0.8), B={d,e,c},{a,d, e}, {b,d,c},{b,d},n=4. up =
(0.4,0.3,0.5), upz = (0.7,0.6,0.8), ups = (0.9,0.5,0.7), ups = (0.5,0.3). The compe-
tence values are described according to the named order in the set. For example,
pai(a) =0.7, par(d) = 0.3.

Then MSSCCS((A, pa), (B, ug)) = 2.4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the definition of MSSC Problem it follows:

MCCS((A, pa), (B, pup)) = mazcu){Val(C, ue) : (C, pue)is the common
cf — subsequence of (A, pa)and (B, ug)} (2)

The expression (2) can be written in the following way

= maxcuc){Si—ipclc) e =ap, =b,, 1 <t <p, 1 <k <...<k,<m,
1<l <...<l, <n}and0 < pc(e) = min{pa(ag,), ps(by,)}- (3)

It means

MCCS((A, pa), (B, pp)) = maz{S_ymin{palar,), psby,)}t : ak, = by,
1<t<p, 1<k <...<k,<m1<l<...<l,<n} (4)

Let M,,;, be a matrix defined as follows:

s 41 — mzn{/'LA(aZ)al'LB(b])a }7 if a; = b]
Maninli, ] = { 0, otherwise. (5)

The expression (4) is the basis for the following algorithm and it should be written
now in the following way:

MCCS((A, pa), (B, pp)) = maz{Si_, Mpin ki, 1]
ky<...<ky,<m,1<l<...<l,<n} (6)
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The expression (6) can be used in the recursive algorithm or nonrecursive algorithm
using the method of dynamic programming.

Designation.
o Ali..k] = ajaiyy...ax, for 1 <i <k <m,
o MM[m,n] = MCCS((A, ppa), (B, us)),
o MM]i,j] = MOCS((A[L..i), j1a), (B[L..j], us)).

Recursive version of the algorithm is constructed according to the following idea:
If an element ¢; is in the CCS((A, a), (B, up)) then the strings can be split into two
parts and

MCCS((A, pa), (B, pg)) = pler) +MCCOS((A[L.kia], pa), (B[1..li—1], pug))
+MCCS((Alkiy1--m], pa), (Blliyr--n], pg)) (7)

The recursive version of the algorithm has exponential time complexity. Some com-
putations are repeated and it means in the algorithm, it is possible to use the dynamic
programming method to compute the partial values M MTi, j|] once only and to use
them in the following computations.

In the algorithm, two functions are used: The function Minim computes mini-
mum of two values, the function Mazim computes maximum of three values. The
i—th line of the matrix MM is computed from two lines (i — 1)—th and the already
computed part of i—th column. It means that the space complexity of the algorithm
can be reduced to O(n), for m < n. The algorithm works in the O(m=n) time. It can
be written in the following simple form (without the construction of the matrix M,,;,):

Algorithm MCCS:

for i:=0 to m do MM[i,0]:=0;
for j:=1 to n do MM[O,j]:=0;

for i:=1 to m do
for j:=1 to n do

begin
if al[i]l=b[j] then help:=MM[i-1,j-1] + Minim(miA[i],miB[j])
else help:=0;
MM[i,j]:= Maxim(MM[i-1,j], help, MM[i, j-11);
end;

Example 5. The computation of MCCS((A, pa), (B, ug)) for the strings in Example
1 according to the algorithm MCCS.
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a0.51] 0.6 1.2 1.2 1.2 1.5 1.5 1.5
b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7
a0.8] 0.6 1.2 1.2 1.2 1.5 1.5 1.7
c0.4] 0.6 1.2 1.5 1.5 1.5 1.9 1.9
a0.61 0.6 1.2 1.5 1.5 1.5 1.9 1.9
b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basic idea to the solution can be found in [1]. The algorithm for LRCS Prob-
lem have to be modified in the computation of the the measure of closest common
restricted subsequence. In the algorithm, the Boolean function Candidate gives the
value true if the pair (a;, pu(a;)), (b;, (b;)) is a potential candidate to increase the
closest common subsequence, false otherwise. The function Candidate is used in the
same form as in [1]. The main part of the modification is designed in the program
text. It could be proved (similar as for LRCS Algorithm in [1]) that the modified
algorithm computes correctly the closest common restricted subsequence of two cf-
strings and it works in O(m - n - p)-time and O(n + r)-space, where r = |{(i,j) : a; =
bj,1 <i<m,1<j<n} and p < min{m,n} is the number of elements in closest
common restricted subsequence.
The following dynamic data structures are used in the algorithm:

type vertex=record
X, y: indices;
p: pointer;
end;
pointerv="vertex;
genseq=record
val: real;
pt:pointer;
end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}
{Input: [(A, mvA), hA]l, [(B,mvB), hB] - two cf-strings of symbols
with partitions over alphabet;
mvA, mvB - competence functions of A and B}
{Output: pptr is the pointer to the closest common restricted
subsequence of A and B;}
{Variables: Arrays C, D[0..m] of the type genseq.}
{C[1..i], D[1..i] contain pointers to the closest common
subsequences of A(1..i) and B(1..j);}
{hA[1..kA], hB[1..kB] - arrays of partitions of the strings A and B;}
{uA, uB - upper bounds of intervals in the partitions for current
positions i, j: uA\leq i, uB\leq j.}
{dA, dB - the numbers of intervals in the partitioms,}
{pp - a pointer to the vertex.}
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Method:
begin
for j:=0 to n do
begin D[j].pt:=nil; D[j].val:=0; end;
C[0].pt:=nil; C[0].val:=0;
dA:=1; uA:=1;
for i:=1 to m do
begin if i>hA[dA] then begin inc(dA); uA:=hA[dA-1]+1 end;
dB:=1; uB:=1;
for j:=1 to n do
begin if j>hB[dB] then begin inc(dB); uB:=hB[dB-1]+1 end;
if a[i].el=b[j].el then
q:=Candidate(D[j-1] .pt,ali],ud,uB)
else q:=false;
if q then {***modified part*xx*}
begin if alil .mv<=b[j].mv then min:=ali].mv
else min:=b[j] .mv;
help:=D[j-1].val+min;
if (help>D[j].val) and (help>C[j-1].val) then
begin new(pp); pp~.p:=D[j-1].pt; pp~.x:=i; pp~.y:=j;
CLj].pt:=pp; C[jl.val:=D[j-1].val+min;
end {**xend of the modified part*xx*}
end else
if D[j].val>=C[j-1].val then C[j]:=D[j]
else C[jl:=C[j-11;
{Invarianti}
end; {Invariant2}
for j:=1 to n do D[jl:=C[j];
end;
value := C[n].val; pptr:= C[n].pt;
{"value" contains the value of the closest common restricted
subsequence and C[n].pt contains pointer to the CCRS(A,B)}
end;

Example 6. The computation of MCCRS([(A, pa), h4],[(B, ug), hP]) for the strings
in Example 2 according to the algorithm MCCRS.

B 0.4 0.3 0.4 0.5 10.3 0.5 0.6 10.3 0.7 0.6 0.5]

A | b a b c | c a c | c b c b |
_______ | S
a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4
b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4
_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6
a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9
b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9
a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6
c 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9
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a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9
_c_0.5_]| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1
b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1
a 0.8 | 0.4 0.7 o7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1
b_0.6_]| 0.4 0.7 o7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basic idea of the algorithm starts from the definition of the M. SCC'S Problem.

MSCCS((A, pa), (B, pp)) = mazc ) {Val(C, ue) : (C, pe) is the common
cf-subsequence of (A, pa) and (B, ug)} = (8)

maz, {S_ pe(cr) - o = ar, = b P and 0 < pe(er) = min{paar,), ps(b ")},

1<t<p 1<k <...<k,<m1<i<npy,1<F1)<...<F()<n} (9

The recursive version of the algorithm is constructed according to the following idea
(Figure 5.):

A A,

B 1BFW pF®) opF®

1 ) —1

Figure 5. The idea for the construction of algorithm

Designation.
e A=ay...ap,,m>1,B=B'...B", n>1,B' = {i, bé,...,nl}
e MM[m,n| = MSCCS((A, pa), (B, us)),
o MMTJi,jl = MSCCS((A[1..¢], pa), (B[1..4], us))-

If an element ¢, is in the SGCD((A, pa), (B, pg)) then

MSCCS((A, pa), (B, pus)) = pler) +
maz{ MSCCS((A[1..ky_1], pa), (B[L.F(t — D)]1BTD 1p)) +
MCCS((Alky1.m), pa), (BIF(t + 1).n]2B"9 up)} (10)

where 1Bi-(t) = (BF®) — {I)F(lt)})1 and QBF = ( - {b }) are the disjoint
subsets IBZ-(t) and 2Bi() of the set (BF® {b }) = 1B~ (t) U2B~ () and the
maximum is the maximal value over all disjoint partitions. The 1dea is shown in the
Figure 6. The time complexity of the recursive version is exponential.

A flattening of a sequence of sets is defined as a concatenation, in order of the
sequence, of strings formed by some permutation of individual elements of the sets in
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the sequence. For example, the flattening of the set-string A in example 3 is dadacabe
and so is adadceba.

The very simple algorithm for MSCCS Problem can use Algorithm for MCCS
Problem for all pairs of the cf-string A and the flattening of the set-cf-string B. The
algorithm have to compute and compare results of H?:1|Bj| pairs.

It is possible to represent the sets in the string B as the strings of symbols with all
permutations of elements (the method will be applied in the MSSCCS Algorithm).
Each element of the string of symbols has the competence value the same as it has
in the set. Then it is possible to apply the algorithm for common subsequence with
a restricted use of elements [1].

The nonrecursive algorithm is constructed by the dynamic programming method
and it has the following idea:

MM][i,j] = maz{ MM][k—1,j — 1] + Val(SCOS((A[k..i], 1), (B, i),
MMk, j—1],k=1,2,...,i}. (11)

The values of the matrix M M[x, ] can be computed according to columns, the input
for j-th column is the matrix (5 — 1)-th column. The set B’ can match better some
elements in the string A than the sets B',..., B! and it is necessary to compute
these matching values and to find the maximal value.

The following algorithm has a motivation in Hirschberg’s and Larmore’s method
[7] for SLCS Problem. We use the a data structure U, which is called unique stack
(for control of elements from the sets), but our unique stack works in a different way.
It has the condition that no member can occur twice or more in the stack. When
Push(U, z, k) is executed for some element z, x is first compared to the elements in
the stack. If z is in the stack in the position [ then the competence values of the both
occurrences are compared. If the competence value of the element z in the position
[ is greater than the competence value of the new element x then the unique stack
is not modified else the element in the position [ is deleted and the new element x is
pushed on the top of the unique stack. In the stack are the elements of the string A
which have best matching to the some set in the string of sets B.

procedure Push(var U:Ustack; x:Element; k:integer);
{Push the element x on the top of the unique stack U;
k is the index of x in the string A;
Competence values are less than Maxil000;}
var Upom: Ustack;
tophlp: integer;

kk: integer;
begin
kk:=top;
tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk].p) then
begin inc(tophlp); Uhlp[tophlp]:=U[kk];
end else begin
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Maximum:=U[kk] .mi;
if Maximum<x.mi then Maximum:= x.mi;
if Maximum>x.mi then
begin inc(tophlp);
Uhlp[tophlp] :=U[kk];
Maxi:=Maximum;
end;
end;
dec (kk) ;
end;
top:=0;
for kk:=tophlp downto 1 do
begin inc(top); Ultop]:=Uhlp[kk]; end;
if (Maxi<x.mi) or (Maxi=Max1000) then
begin inc(top); Ultopl:= x; best[x.pl:=k;

end;
end; {Push}
The procedure Findpeaks searches for the values peakl[k], ..., peak[0] which can

represent measures of the new candidates for SCCS. In Findpeak, as k decreases,
U is the list of all elements in B; which are found in the substring A[k + 1..m] in the
order in which they first occur and according to their competence function. For any
x € U, first[z] is the index of that best occurrence.

procedure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;
m - the length of the symbol string A;
top- global variable for the top of Unique stack.}

begin
top:=0;
for k:=m downto O do
begin measure:=Mil[k, j-1];
peak [k] :=measure;
for x:=top downto 1 do
begin xx:=U[x].p;
Minimum:= Minim(U[x],B[j]);
measure:=measure+Minimum;
peak[best[xx]]:= Maxim{measure,peak[best[xx]]};
end;
if k>0 then
if A[k].p in B[j].pp then Push(U,A[k],k);
end;
end;

The main algorithm has the following form:

Algorithm MSCCS:
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for i:=0 to m do MM[i,j]:=0;
for j:=1 to n do
begin Findpeak(j);
MM[O, j1:=0;
for i:=1 to m do
MM[i,j]:= Maxim{peak[i],MM[i-1,j]1};
end;

Example 7.  Let A = abaabacab, i = (0.9,0.9,0.6,0.5,0.2,0.8,0.4,0.6,0.5),

B =
{a,b, c}{bd}{bc}, ppi(a) = 0.6, up1(b) = 0.6, upi(c) = 0.3, up2(b) = 0.9, up2(d) =
0.4, ugs(b) = 0.6, ups(c) = 0.5 then MCCS(A,B) = 2.4 as it is computed in the
following matrix.

B B1 B2 B3

a 0.6
b0.6 b0.9 bo0.6
A c 0.3 4d0.4 ¢ 0.5
a 0.9 | 0.6 0.6 0.6
b 0.9 | 1.2 1.5 1.5
a 0.6 | 1.2 1.5 1.5
a 0.5 | 1.2 1.5 1.5
b 0.2 | 1.2 1.5 1.5
a 0.8 | 1.2 1.5 1.5
c 0.4 | 1.5 1.5 1.9
a 0.6 | 1.5 1.5 1.9
b 0.5 | 1.5 2.0 2.4

The subsequence can be recovered after the algorithm is finished if an array of a
backpointers to the best matching elements is maintained. Correctness of the algo-
rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values M M[i, j],0 < i < m are
computed. After the n-th iteration we have all values M M[i,n],0 < i < m and
MM[ma n] = MCCS((Aa HJA); (Ba McalB)-

(2) Findpeak(j) computes the best matching of the j-th set B’ peak[j] < M M][i, j]
and there exist some jo < j such that peak[jo] > MM]i, j].

Time complexity. The main algorithm has the cycle for ¢ and the call of procedure
Findpeak inside of the cycle for j. It means O(m - n - N)-time complexity, where
N =%, |B|.

Space complezity. The presented algorithm requires O(m - n)-space for the array

MM and O(m)-space for the unique stack.

6 Algorithm for MSSCCS Problem

The basic idea of the algorithm is very similar to the previous algorithm for MSCCS.
It starts from the definition of M SSCCS Problem.

MSCCS((A, pa), (B, up)) = mazcu{Val(C, pe) : (C, pe) is the common
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cf — subsequenceof (A, pa) and (B, pg) } (12)

If we have some flattenings of both set-strings then it is possible to apply the
MCCS algorithm. It is necessary to compute MCC'S values of all pairs of all flat-
tenings both set-strings but that is too time consuming.

If we have the flattening of one set-string and the second is as set-string then it
is possible to use the M SCCS algorithms. But it is necessary to compute M SCC'S
value for all flattenings of one string. This is also too time consuming. Both algo-
rithms have exponential time complexity.

It is possible to use the following algorithm of polynomial time complexity. The
algorithm works in two steps:

1. to create the string of symbols for each of set-string; each set can be encoded
as the string of all permutations of its elements (the length of such string is
k* — 2 -k + 4, k is the number of elements in set [13]);

2. to apply the MCCRS algorithm for the two constructed strings (each element
of the set can be used once at most);

The algorithm works in polynomial time: O(M?- N?- K), where M = ¥, |AY|, N =
I/ |B7|, and K is the number of elements in closest common restricted subsequence.

7 Concluding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and
MSCCS Problem with a competence functions have been presented. The MSSCCS
Problem was formulated and the polynomial time algorithm for its solution was de-
veloped. However, we are convinced of the existence of an algorithm with better time
complexity.
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Abstract. In this paper we present experimental results for string matching
algorithms which have a competitive theoretical worst case run time complexity.
Of these algorithms a few are already famous for their speed in practice, such
as the Boyer-Moore and its derivatives. We chose to evaluate the algorithms by
counting the number of comparisons made and by timing how long they took
to complete a given search. Using the experimental results we were able to
introduce a new string matching algorithm and compared it with the existing
algorithms by experimentation. These experimental results clearly show that
the new algorithm is more efficient than the existing algorithms for our cho-
sen data sets. Using the chosen data sets over 1,500,000 separate tests were
conducted to determine the most efficient algorithm.

Key words: string matching, pattern matching, algorithms on words.

1 Introduction

Many promising data structures and algorithms discovered by the theoretical commu-
nity are never implemented or tested at all. Moreover, theoretical analysis (asymp-
totic worst-case running time) will show only how algorithms are likely to perform in
practice, but they are not sufficiently accurate to predict actual performance. In this
paper we show that by considerable experimentation and fine-tuning of the algorithms
we can get the most out of a theoretical idea.

The string matching problem [CR94| has attracted a lot of interest throughout the
history of computer science, and is crucial to the computing industry. String matching
is finding an occurrence of a pattern string in a larger string of text. This problem
arises in many computer packages in the form of spell checkers, search engines on the
internet, find utilities on various machines, matching of DNA strands and so on.

Section 2 describes string matching algorithms which are known to be fast. Sec-
tion 3 gives experimental results for these algorithms. From the findings of the exper-
imental results discussed in Section 3, we identify two fast algorithms to produce a
new algorithm. The new algorithm is described in Section 4. In Section 5 we compare
the new algorithm with the existing algorithms.
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2 The String Matching Algorithms

String matching algorithms work as follows. First the pattern of length m, P[1..m],
is aligned with the extreme left of the text of length n, T'[1..n]. Then the pattern
characters are compared with the text characters. The algorithms can vary in the
order in which the comparisons are made. After a mismatch is found the pattern
is shifted to the right and the distance the pattern can be shifted is determined
by the algorithm that is being used. It is this shifting procedure and the speed at
which a mismatch is found which is the main difference between the string matching
algorithms.

In the Naive or Brute Force (BF) algorithm, the pattern is aligned with the
extreme left of the text characters and corresponding pairs of characters are compared
from left to right. This process continues until either the pattern is exhausted or a
mismatch is found. Then the pattern is shifted one place to the right and the pattern
characters are again compared with the corresponding text characters from left to
right until either the text is exhausted or a full match is obtained. This algorithm can
be very slow. Consider the worst case when both pattern and text are all a’s followed
by a b. The total number of comparisons in the worst case is O(nm). However, this
worst case example is not one that occurs often in natural language text.

An improved version of the BF algorithm, the Not So Naive (NSN) algorithm
[HA93], changes the order of the comparisons. Suppose the pattern is aligned with the
text characters, first the second pattern character is compared with the corresponding
text character followed by comparisons of the rest of the pattern with corresponding
text characters, and then the last characters to be compared are the first character
of the pattern and the text character it is aligned with. A shift of two is made if a
mismatch is made with the second character of the pattern and the first two characters
of the pattern are the same, or if the second character of the pattern matches the
text but a mismatch occurs and the first two characters are not equal.

The number of comparisons can be reduced by moving the pattern to the right
by more than one position when a mismatch is found. This is the idea behind the
Knuth-Morris-Pratt (KMP) algorithm [KMP77]. The KMP algorithm starts and
compares the characters from left to right the same as the BF algorithm. When a
mismatch occurs the KMP algorithm moves the pattern to the right by maintaining
the longest overlap of a prefix of the pattern with a suffix of the part of the text
that has matched the pattern so far. After a shift, the pattern character compared
against the mismatched text character has to be different from the character that
mismatched. The KMP algorithm takes at most 2n character comparisons. The
KMP algorithm does O(m + n) operations in the worst case.

The Colussi (COL) [CO91] algorithm is an improvement of the KMP algorithm.
The number of character comparisons is 1.5n in the worst case. The set of pattern
positions is divided into two disjoint subsets due to the combinatorial properties
of their positions. First the comparisons are performed from left to right for the
characters at positions in the first set. If there is no mismatch, the characters at
positions in the second set are compared from right to left. This strategy reduces the
number of comparisons.

Galil and Giancarlo (GG) [GG92] improved the COL algorithm by reducing the
number of character comparisons in the worst case to %n. In these algorithms the
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preprocessing takes O(m) time.

The Boyer-Moore (BM) algorithm [BM77] differs in one main feature from the
algorithms already discussed. Instead of the characters being compared from left to
right, in the BM algorithm the characters are compared from right to left starting with
the rightmost character of the pattern. In a case of mismatch it uses two functions, last
occurrence function and good suffix function and shifts the pattern by the maximum
number of positions computed by these functions. The good suffix function returns
the number of positions for moving the pattern to the right by the least amount, so
as to align the already matched characters with any other substring in the pattern
that are identical. The number of positions returned by the last occurence function
determines the rightmost occurrence of the mismatched text character in the pattern.
If the text character does not appear in the pattern then the last occurence function
returns m. The worst case running time of the BM algorithm is O(mn).

The Turbo Boyer-Moore (TBM) algorithm [CC94] and the Apostolico-Giancarlo
(AG) algorithm [AG86] are ameliorations of the BM algorithm. When a partial match
is made between the pattern and the text these algorithms remember the characters
that matched and do not compare them again with the text. The TBM algorithm
and the Apostolico-Giancarlo algorithm perform in the worst case at most 2n and
1.5n character comparisons respectively [CL97h].

The Horspool (HOR) algorithm [HOS80] is a simplification of the BM algorithm. It
does not use the good suffix function, but uses a modified version of the last occurrence
function. The modified last occurrence function determines the right most occurrence
of the (k + m)th text character, T'[k 4+ m] in the pattern, if a mismatch occurs when
a pattern is aligned with T[k..k + m]. This algorithm changes the order in which
characters of the pattern are compared with the text. It compares the rightmost
character in the pattern first then compares the leftmost character, then all the other
characters in ascending order from the second position to the m — 1th position.

The Raita (RAI) algorithm [RA92] again changes the order in which characters of
the pattern are compared with the text. The process used to compare the rightmost
character of the pattern, then the leftmost character, then the middle character and
then the rest of the characters from the second to the (m — 1)th position. If at any
time during the procedure a mismatch occurs then it performs the shift as in the
HOR algorithm.

The Quicksearch (QS) algorithm [SU90] is similar to the HOR algorithm and the
RAT algorithm. It does not use the good suffix function to compute the shifts. It
uses a modified version of the last occurrence function. Assume that a pattern is
aligned with the text characters T'[k..k +m]. After a mismatch the length of the shift
is at least one. So, the character at the next position in the text after the alignment
(T'[k+m+1]) is necessarily involved in the next attempt. The last occurrence function
determines the right most occurrence of T'[k + m + 1] in the pattern. If T[k +m + 1]
is not in the pattern the pattern can be shifted by m + 1 positions. The comparisons
between text and pattern characters during each attempt can be done in any order.

The Maximal Shift (MS) algorithm [SU90] is another variant of the QS algorithm.
The algorithm is designed in such a way that the pattern characters are compared in
the order which will give the maximum shift if a mismatch occurs.

The Smith (SMI) algorithm [SM91] uses HOR and Quick Search last occurrence
functions. When a mismatch occurs, it takes the maximum values between these
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functions.

The Zhu and Takaoka (ZT) algorithm [ZT87] is another variant of the BM algo-
rithm. The comparisons are done in the same way as BM (i.e. from right to left)
and it uses the good suffix function. If a mismatch occurs at T'[i], the last occurrence
function determines the right most occurrence of T[i — 1..i] in the pattern. If the
substring is in the pattern, the pattern and text are aligned at these two characters
for the next attempt. The shift is m, if the two character substring is not in the
pattern.

Searching can be done in O(n) time using a minimal Deterministic Finite Automa-
ton (DFA) [SI93]. This algorithm uses O(om) space and O(o + m) pre-processing
time, where o is the size of the alphabet. The Simon (SIM) algorithm [SI93] reduces
the pre-processing time and the space to O(m).

The pre-processing is needed for the algorithm to calculate the relevant shifts upon
a mismatch/match except for the BF algorithm which has no pre-processing. The
pre-processing cost of the algorithms does not effect the efficiency of the algorithms
as they are relatively very small and all are approximately the same.

3 Experimental Results of the Existing
Algorithms

Monitoring the number of comparisons performed by each algorithm was chosen as a
way to compare the algorithms. All the algorithms were coded in C and their C code
are taken from [CL97a] and animations of the algorithms can be found at [CL98].
This collection of string matching algorithms were easy to implement as functions
into our main control program. The algorithms were coded as their authors had
devised them in their papers. The main control program read in the text and pattern
and had one of the algorithms to be tested inserted into it for the searching process.
The main control program was the same for each algorithm and so did not affect the
performance of the algorithms. Each algorithm had an integer counter inserted into
it, to count the number of comparisons made between the pattern and the text. The
counter was incremented by one each time a comparison was made.

A random text of 200,000 words from the UNIX English dictionary was used for
the first set of experiments. The random text was constructed so as to simulate an
actual English text. All the letters in the UNIX dictionary were made lower case
to increase the probability of a match. In English text roughly only every 1 in 10
words begin with a capital letter. We decided to number each of the words in UNIX
dictionary from 1 to 25,000. Then we used a pseudo random number generator to pick
words from the UNIX dictionary and place them in the random text. Separating each
word by a space character. Punctuation was also removed as we were concerned with
finding words and the punctuation would not effect the results obtained. The reason
for using a large text (200,000 words) was to ensure that as many of the 25,000 words
in the UNIX English dictionary occurred somewhere in the random text generated.
For each pattern in the dictionary, we searched the text (of 200,000 words) for the
first occurrence of the pattern.

The text was searched for each word in the UNIX dictionary and the results are
given in Table 1. The first column in Table 1 is the length of the pattern. The second
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column is the number of words of that length in the UNIX English dictionary. For
example, for a pattern length of 7, 4042 test cases were carried out and the average
number of character comparisons made by the KMP algorithm was 197,000 (to the
nearest 1000). The average was calculated by taking the total number of comparisons
performed to find all 4042 cases and dividing this number by 4042. These columns
are arranged in descending order of the average of the total number of comparisons
of the algorithms. An interesting observation is that for (almost) each row the values
are in descending order except for the last two columns.

p. len [num BF [KMP [DFA [SIM [NSN |COL |GG |BM |AG [HOR |RAI [TBM |MS [QS [ZT [SMI
2 133 7 7 7 7 6 6 6 3 3 3 3 3 2 2 3 2
3 765 38 |38 37 37 37 37 37 13 13 |13 13 13 11 |10 [13 |10
4 2178 [82 82 80 80 80 79 79 23 23  [23 23 22 19 |19 [22 |18
5 3146 151 [150 145 145 (145 145 145 |34 34 |34 34 134 30 [30 |32 [28
6 3852 |186 |[185 179 [179 179 |178 178 |36 36 |36 36 136 33 [32 |33 [30
7 4042 [198 [197 191 191 (191 190 190 |34 34 |34 34 34 32 [31 |30 [28
8 3607 [205 [204 197 [197 197 [196 196 |32 32 |31 32 31 30 29 [27 |26
9 3088 212 211 204 |204 [204 |203 203 |30 30 |30 30 130 29 |28 25 |24
10 1971  |220 |219 212 212 (212 |210 210 |29 29 [29 29 29 28 |27 [24 |23
11 1120 209 [207 201 201 [200 (198 198 |26 26 [26 26 25 25 [24 21 21
12 593 218 [217 210 210 [209 [|207 207 |25 25 [25 25 25 24 24 21 |20
13 279 224 (222 215 215 (213 |212 212 |24 24 [24 24 24 23 |23 |19 |19
14 116 228 [227 220 [220 [219 217 217 |23 23 [23 23 23 23 |23 |19 [19
15 44 151 150 144  [144 143  [142 142 |15 15 |15 15 14 14 14 [11 12
16 17 227 [225 217 217 (215 |214 214 |20 21 21 21 20 20 |20 |18 |16
17 7 233 [231 222 222 [221 218 218 |20 20 [20 20 19 19 [20 [15 |16
18 4 236 [234 225 [225 [223 221 221 |19 20 [20 20 19 19 [20 [14 [i6
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 132 |131 122 122 (121 119 119 |10 10 |10 10 10 10 |10 |7 8
21 2 311 [309 295 295 [290 288 288 [24 24 |25 25 23 23 [24 |15 |18
22 1 491 (486 455 |455 [451 445 445 |33 33 |33 33 33 31 34 [22 |27
total [24966 [180 (179 174 [174 173 [172 172 |31 31 |30 30 130 28 |28 27 |25

Table 1: Results of searching a text of 200,000 words for each word in the UNIX dictionary.

The algorithm with the largest number of comparisons is the BF algorithm. This
is because the algorithm shifts the pattern by one place to the right when a mismatch
occurs, no matter how much of a partial /full match has been made. This algorithm
has a quadratic worst case time complexity. But the KMP algorithm which has a lin-
ear worst case time complexity, does roughly the same number of comparisons as the
BF algorithm. The reason for this is that in a natural language a multiple occurrence
of a substring in a word is not common. For the same reason, the KMP variants,
COL and GG algorithms have only a small improvement over the KMP algorithm.
Other linear time algorithms, DFA and SIM, also have roughly the same number of
comparisons as the BF algorithm. We will see below that the other quadratic worst
case time complexity algorithms perform much better than these linear worst case
time algorithms. This is a good example showing that asymptotic worst-case running
time analysis can be indicative of how algorithms are likely to perform in practice,
but they are not sufficiently accurate to predict actual performance.

The BM algorithm uses the good suffix function to calculate the shift which de-
pends on a reoccurrence of a substring in a word. But, it also uses the last occurrence
function. It is this last occurrence function that reduces the number of comparisons
significantly. In practice, on an English text, the BM algorithm is three or more times
faster than the KMP algorithm [SG82]. ;From Table 1 one can see that the KMP
algorithm is takes six times more comparisons than the BM algorithm on average.
The other algorithms, TBM, AG, HOR, RAI, QS, MS, SMI and ZT, are variants of
the BM algorithm. The number of comparisons for these algorithms is roughly the
same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of comparisons for
pattern lengths less than or equal to twelve and greater than twelve respectively.
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4 The New Algorithm - the BR algorithm

JFrom the findings of the experimental results discussed in section 3, it is clear that
the SMI and ZT algorithms have the lowest number of comparisons among the others.
We combined the calculations of a valid shift in SMI and ZT algorithms to produce
a more efficient algorithm. If a mismatch occurs when the pattern P[1..m] is aligned
with the text T[k + 1..k + m], the shift is calculated by the rightmost occurrence of
the substring T'[k +m+ 1..k +m+ 2] in the pattern. If the substring is in the pattern
then the pattern and text are aligned at this substring for the next attempt. This
can be done shifting the pattern as shown in the table below. Let % be a wildcard
character that is any character in the ASCII set. Note that if T[k +m+1..k +m + 2]
is not in the pattern, the pattern is shifted by m + 2 positions. The total number of
comparisons in the worst case is O(nm).

Tk+m+1] | Tlk+m+2] | Shift
* P[1] m+1
PJi] Pli+1] m—i+1,1<i<m-—1
P[m)] * 1
Otherwise m+ 2

For example, the following shifts would be associated with the pattern, onion.

Tk+m+1] | Tlk+m+2] | Shift

* 0 6

0 n 5

n [ 4

9 0 3

] n 2

n * 1
Otherwise 7

After a mismatch the calculation of a shift in our BR algorithm takes O(1) time.
Note that for the substrings ni and n* have a value of 4 and 1 respectively. This
ambiguity can be solved by the higher shift value being overwritten with the lower
value. We will explain this later in this section. For a given pattern P[l..m] the
preprocessing is done as follows, and it takes O(o?) time.

There are 128 characters in the ASCII set and (128)2 = 16384 distinct pairs. We
define an array Shift Array (SA) of length 16384 and initialise it to m + 2. Using a
hash function we insert the values for each pair and the hash function we use is:

Tim+k+1] x 127+ T[m+ k + 2] where for P[m + k + 1] and P[m + k + 2] we use
their ASCII values. This gives each pair of character a distinct value in SA and we
insert into the SA the shift for the pair. If the same pair occurs more than once then
the lower shift value overwrites the higher value. So for example for the pair [i][o] we
would insert the value 3 at the [105 x 127] + 111 = 13446th position in SA.

[wildcard][o] = 6 all array positions that satisfy z[0]mod127 = 111mod127 = 6
[0][n] = 5 position 111 x 127 + 110 = 14207
[n][i] = 4 position 110 x 127 + 105 = 14075
[i][o] = 3 position 105 x 127 4+ 111 = 13446
[
[

~

o][n] = 2 position 111 x 127 + 110 = 14207
n][wildcard] = 1 position 110 x 127 + 0..127 = 13970..14097

The order of performing the steps is important in ensuring the correct values
appear in the array. Note that the higher values have been over written by the lower
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values.

In the RAT algorithm the first and last characters of the pattern are made variables.
This cuts down the number of array look ups performed during a search. We adapted
this idea to our algorithm and compared the least frequent pattern character with
its corresponding text character. We then repeated the process for the second least
frequent character and then the rest of the characters in order from right to left.

The UNIX dictionary used in the tests was used to see how many times each letter
occurred in the dictionary. The frequency of each letter is given in the following chart.

letter | frequency | ranking | letter | frequency | ranking | letter | frequency | ranking

a 16395 25 j 432 3 S 10167 19
b 4110 10 k 1923 6 t 12789 22
c 8209 17 1 10013 18 u 6476 16
d 5763 14 m 5822 15 v 1890 5
e 20083 26 n 12062 20 w 1950 7
f 2660 8 0 12696 21 X 616 4
g 4125 11 p 5514 13 y 3618 9
h 5179 12 q 377 1 z 429 2
i 13963 24 r 13409 23

Note that we choose the characters in the pattern that have the lowest ranking.
If the character is not in the pattern then it has a ranking of 0 and is chosen as the
least frequent character.

We now give an example of our BR algorithm in action to find the pattern onion.
The SA array for the pattern onion were used to calculate the shift after a mismatch.
PI2] is the least frequent and P[5] is the next least frequent character.

w wla|n|t| [t]o t|le|s |t w|li|t]|h o|n|i|lo|n

e
Z
n

o i| o n

mismatch shift on SA([n][t]) = 110 x 127 + 116 = SA[14086] = 1

w | e wlal|ln]|t t | o t|le|s |t wl|i|t|h o|n|i|lo|n

Z

o|n |i |[o]|n

mismatch shift on SA([t][]) = 116 x 127 + 32 = SA[14764] = 7.

w | e wlal|ln|t]| |t t e |s |t wli|t|h o|n|iflo|n

[¢]
Z
n

o ilo|n

mismatch shift on SA([s][t]) = 115 x 127 + 116 = SA[14721] =7

w | e wla|ln|t| |[t]o]| |t]|el|s]|t it |h o|n|iflo|n

RNE

ilo|n

mismatch shift on SA([][o]) = 32 x 127 + 111 = SA[4175] = 6.

o

w | e wla|ln|t|] [t]o] |t]|e|s|t]|] |w]|]i|t]|h

—

ooy |e
S TE
e rSInE:
oleol |
EASTRE

So the word onion is found in 9 comparisons in a text of length 26. On the above

full match the order in which the comparisons are conducted is shown on the third
row.
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5 Experimental Results and Comparisons with the
BR Algorithm

We select the best nine algorithms from the results in Table 1 and the KMP algorithm,
and compare with our BR algorithm. Experiments were carried out for different
random texts as described in Section 3. The texts were constructed by randomly
choosing words from the UNIX English dictionary. There were 2 different texts of
10,000 words, a text of 50,000 words and a text of 100,000 words. The results are
described in Tables 3-6 (see appendix) respectively. Tables 3-6 (which can be found
in the appendix at the back of this paper) show the average number of comparisons
required for a search for the given pattern length. They are based on taking the total
number of comparisons for the search for all the patterns of a length and dividing the
number by the number of patterns of that size to give the average. So for example,
in Table 3 the BM algorithm takes 12,000 comparisons (to the nearest thousand) on
average if the pattern length is 7. From these tables one can observe that the relative
order of their performance is the same as in Table 1. The main observation is that
the BR algorithm performs better than the other algorithms for all pattern lengths
and for all texts used in the experiments.

p. len{ num.| KMP AG BM HOR| RAI| TBM| MS QS 7T SMI

2 133 199.98 | 93.96 93.96 94.00 93.96 93.89 35.94] 32.92] 93.96 31.4§
3 765 366.02 [ 64.09 64.18 64.200 64.19 63.700 28.78 28.21] 60.03 24.93
4 2178 | 449.02 | 50.97 51.11] 50.86 50.900 50.77] 28.25 25.77 43.19 19.73
5 3146 | 540.11 | 44.91| 45.02 44.58 44.46( 44.72[ 28.33 26.47] 33.91] 18.13
6 3852 | 626.30 [ 42.58 42.421 41.83 41.6§ 41.91] 30.02] 27.32] 27.71 16.42
7 4042 | 719.01 | 42.07 41.38 40.92 41.000 40.72[ 31.49 28.83 24.94 16.0§
8 3607 | 807.61 | 40.76( 40.5§ 40.28 40.35 39.95 32.27 30.100 21.67 15.49
9 3088 | 896.18 | 41.85 41.52 40.92| 40.84{ 40.69] 34.75 32.19 19.29 15.45
10 1971 | 982.63 | 42.38 42.19 41.69 41.79 41.16| 36.62] 34.37] 17.75 15.64
11 1120 | 1067.87 44.91| 44.14 43.67| 43.79 42.97 38.57] 37.1§ 17.06 16.32
12 593 1164.14f 45.36) 45.28 44.58 44.68 44.20 40.06( 39.28 16.14] 17.34
13 279 1245.53 48.85 47.88 47.22 47.32 46.36] 42.26( 41.61] 12.65 17.54
14 116 1322.70 46.46( 46.74 46.46f 46.600 45.16] 42.62] 42.26( 11.32 17.03
15 44 1426.02[ 50.78 51.200 51.51] 51.59 49.23| 44.73 45.29 8.72 | 19.0

16 17 1527.28 48.99 49.34] 50.44] 50.600 47.37 46.600 49.061 24.80 20.02
17 7 1598.50] 45.09 45.29 44.51] 44.58 43.42] 40.22] 45.01] 6.72 | 16.95
18 4 1700.81] 50.34f 50.58 53.96 54.06 48.54] 50.12] 53.59 6.09 | 22.21
19 0 0.00 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00 | 0.00

20 1 1948.74[ 58.37 58.37 58.12] 58.07 58.37 52.25 63.51] 3.01 | 29.43
21 2 1947.96/ 58.13 57.38 63.98 63.99 56.32] 57.59 57.500 2.22 | 21.84

22 1 2129.14 50.97] 50.97 49.87| 49.89 50.97| 45.07 55.43 1.04 | 25.09
total 24992 737.56 | 43.54] 43.29 42.83 42.82 42.65 32.000 29.72 26.09 16.66|

Table 2: The average difference between each of the existing algorithms and our BR algorithm as a percentage.

Table 2 summarises the results of Tables 3-6. The entries in Table 2 are in per-
centage form and describe how many fewer comparisons our BR algorithm uses, when
compared with the existing algorithms. The figures are an average of the four differ-
ent texts used. To calculate the difference as a percentage between our BR algorithm
and the existing algorithms we used the following formula. The average number of
comparisons was taken from the relevant cell in Tables 3-6 and divided by the value
for that pattern length for our BR algorithm. This value was then deducted by 1
and multiplied by 100 to give the percentage difference between the two algorithms.
An interesting observation of the existing algorithms when compared with the BR
algorithm, is that for each individual text the percentages were within 1% for each
specific algorithm. Each value in Table 2 is calculated by taking the difference as a
percentage between each algorithm and our BR algorithm for each pattern length,
adding them together and dividing by 4. For example, for a pattern length of 4 the
BM algorithm takes on average 51.11% more comparisons than our BR. algorithm.

The result of a full search for the dictionary over all four texts is given in the last
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row of Table 2. From this we can see that the BM algorithm took on average 43.54%
more comparisons than our BR algorithm (see 5th column, last row) for a complete
search for all the words in the dictionary.

Further to counting the number of comparisons we time the algorithms. The
saving in the number of comparisons may be paid for by extra overhead due to
accessing the precomputed shift table. We timed the search of the medium text of
50,000 words for all occurrences of the words in the UNIX dictionary. We used a 486-
DX66 with 8 megabytes of RAM and a 100 megabyte hard drive running SUSE 5.2.
In Table 7, the total number of comparisons for the search are given along with the
time taken by each algorithm for the search, including any preprocessing performed
by the algorithm. The number of comparisons are reduced by a factor of 1000. i.e.
for BF 10911786 means 10911786000 comparisons.

medium1 book1l book2 papers
number time % dif BR| num. comp/| time sec| % dif. BR| timd % dif. BR| timd % dif. BR]
BF 10911786 1315m 13 528.54
KM 10433340 1341m 259 541.06
DFA | 10433340 892m 59s 326.75
SIM 1043334 1688m 18 | 706.83
NSN | 10482487 777m 52s 271.74

BM 2002822 | 371m 51s | 77.71 3602739 674m 79.73 663s| 69.57 264s| 58.08
AG 2005310 [ 972m 10s | 364.60
HOR| 1985219 | 244m 41s | 16.93 3580863 442m 17.87 446s) 14.07 249s[ 49.10
RAI | 1998657 | 238m 27s | 13.95 3601251 431m 14.93 434s] 11.00 173s| 3.59
MS 1815486 | 318m 49s | 52.36

QS 1785730 | 245m 58s | 17.55 3189368 444m 18.40 452s[ 15.60 180s| 7.78
ZT 1761716 | 420m 55s | 101.15
TBM| 1683516 1166m 4s | 457.26
SMI [ 1621591 280m 41s | 34.14 2930285 513m 36.80 514s| 31.46 207s] 23.95
BR 1489839 | 209m 15s | n/a 2682916 375m n/a 391s| n/a 167s| n/a

Table 7: Timing for a complete search for the dictionary in the given texts.

. From this table we can see that the algorithms that take a high number of
comparisons are quite slow as well. The lower the number of comparisons the better
the time. Although putting the algorithms in order of how many comparisons they
take from highest to lowest starting at the BM we get the list: BM, RAI, AG, HOR,
MS, QS, ZT, TBM, SMI and the BR. If we do the same for the timings we get ZT,
BM, MS, SMI, QS, RAI and the BR. The reason for the difference in the lists is due
to overheads in traversing the data structures which are present in the algorithms
for the calculation of the correct shift value. Also the pre-processing of some of the
algorithms are expensive. So we can not assume that because an algorithm takes a
fewer number of comparisons that it will be more efficient than another.

We can also save time by performing the comparisons as in the RATI algorithm.
This is done by making the least and second least likely characters variables instead
having to look them up in the pattern array. Although counting the comparisons is
a good estimate of which algorithm is the best to use we have to actual time the
algorithms to find the best algorithm for the task of string matching.

We repeated the tests for the medium text for the book1 text for the 5 algorithms
with the best times and our BR algorithm. From Table 7 we can see that our BR
algorithm is still the quickest and the other algorithms are still over 14% more time
than our algorithm. So our findings for a random text hold for this real English
text. We then considered two other texts, book2 and the six papers concatenated
together from the Calgary corpus [CAL]. We searched for 500 random words from the
UNIX dictionary again for the best 5 algorithms and our BR algorithm. The results
documented in Table 7 show that algorithm is the fastest algorithm for these tests.
The main reason for the speed of our BR algorithm is the improved maximum shift
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of m + 2 and the searching on the least likely to occur characters.

Conclusions

The experimental results show that the BR algorithm is more efficient than the exist-
ing algorithms in practice for our chosen data sets. Over our 4 random texts and 3 real
texts where the BR algorithm is compared to the existing algorithms, our algorithm
is comfortably more efficient over each text. With the addition of punctuation and
capital letters it does not affect the BR algorithm. If the pattern to be searched for
began with a capital letter then this would make the capital letter the least frequent
character and so it would be searched for first. We would expect the probability of
a mismatch to rise and so the algorithm would speed up considerably. So in the real
world we would expect our savings to remain and make our BR algorithm competitive
with the existing algorithms. It is also possible to apply some of our finding to what
makes a fast algorithm to the existing algorithms. This may make them faster but
we were concerned with the original algorithms that were devised by their authors.
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Appendix

p lenf num | KMP| AG| BM| HOR| RAI TBM| MS QS ZT| SMI BR]
2 133 6 3 3 3 3 3 2 2 3 2 2
3 765 | 20 T 7 7 7 6 |6 |7 ]5 4
4 2178 | 41 11 ] 11 | 11 11 11 10 10| 11{ 9 7
5 3146 | 60 14| 14 | 13 13 13 12| 12] 12] 11 9
6 3852 | 67 13 13| 13 13 | 13 12 12 12| 11 | 9
7 4042 | 68 12 ] 12 | 12 12 12 11| 11| 10| 10 8
8 3607 | 69 1] 11 ] 11 11 | 11 10| 10] 9 | 9 7
9 3088 | 70 10 | 10 | 10 10 10 9 9 8 8 7
10 1971 | 71 9 9 9 9 9 9 9 8 8 6
11 1120 | 70 9 9 9 9 9 8 8 7 7 6
12 593 70 8 8 8 8 8 8 8 6 7 5
13 279 72 8 8 8 8 8 8 8 6 6 5
14 116 | 69 7|7 7 7 7 7T | 7|5 |6 5
15 44 72 7|7 7 7 7 7T 7|5 |6 5
16 17 70 6 |6 6 6 6 6 |6 |5 |5 4
17 7 75 7|7 7 7 6 6 |6 |5 |5 4
18 4 87 7|7 7 7 7 7T 7|5 |6 5
19 0 0 0 0 0 0 0 0 0 0 0 0
20 1 89 T 7 7 7 7171415 4
21 2 88 T 7 7 7 6 |7 |4]5 4
22 1 89 6 6 6 6 6 6 6 4 15 4
total| 24966 64 11 ] 11 | 11 11 11 10| 10| 10{ 9 7
Table 3: Averages for random TEXT A of 10,000 words
p lenf num | KMP| AG| BM| HOR| RAI TBM| MS QS ZT| SMI BR]
2 133 6 3 3 3 3 3 2 2 3 2 2
3 765 | 21 T 7 7 7 6 |6 |7]6 4
4 2178 | 42 12| 12 | 12 12 12 10 10| 11{ 9 8
5 3146 | 59 13| 13 | 13 13 13 12| 12] 12| 11 9
6 3852 | 66 13| 13| 13 13 | 13 12| 12| 11| 11 | 9
7 4042 | 68 12 ] 12 | 12 12 12 11| 11| 10| 10 8
8 3607 | 69 1] 11 ] 11 11 | 11 10| 10] 9 | 9 8
9 3088 | 70 10 | 10 | 10 10 | 10 9 19 |88 7
10 1971 | 71 9 |9 9 9 9 9 |9 |88 7
11 1120 | 70 9 9 9 9 9 8 8 7 7 6
12 593 71 8 8 8 8 8 8 8 6 7 6
13 279 71 8 8 8 8 8 8 716 6 5
14 116 | 70 T 7 7 7 7| 7]161]6 5
15 44 64 6 6 6 6 6 6 6 5 5 4
16 17 74 T 7 7 7 7171515 5
17 7 64 6 | 6 6 6 6 516 |44 4
18 4 87 7|7 7 7 7 7T 7|5 |6 5
19 0 0 0 [0 0 0 0 0 [0 |O0]O 0
20 1 41 3 |3 3 3 3 3 131213 2
21 2 72 5 |5 6 6 5 5 |5 |44 3
22 1 89 6 6 6 6 6 6 6 4 15 4
total| 24966 63 11 ] 11 | 11 11 11 10| 10| 10{ 9 8

Table 4: Averages for random TEXT B of 10,000 words
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p lenl num | KMP| AG BM| HOR| RAI TBM| MS| QS| ZT| SMI BR]
2 133 | 9 6 | 6 6 6 6 4 |46 |4 3
3 765 | 37 13| 13 | 13 13 | 13 10 | 10| 13| 10 | 8
4 2178 | 77 21 21 | 21 21 21 18 | 18| 20| 17 13
5 3146 | 133 | 30 | 30 | 30 30 | 30 27| 26| 28| 25 | 20
6 3852 | 159 31 31| 31 31 31 29 | 28] 28| 26 21
7 4042 | 170 291 29 | 29 29 29 27| 27| 26| 24 20
8 3607 | 176 27 | 27 | 27 27 | 27 26 | 25| 24| 22 19
9 3088 | 181 26 | 26 | 26 26 26 25| 24| 22| 21 18
10 1971 | 185 24 | 24 | 24 24 24 23| 23] 20| 20 17
11 1120 | 184 23| 23 | 23 23 23 22| 22| 18| 18 15
12 593 186 21 21 | 21 21 21 211 20| 17| 17 14
13 279 183 | 20| 20 | 20 20 | 20 19| 19| 15| 16 | 13
14 116 194 20| 20 | 20 20 20 19| 19| 15| 16 13
15 44 164 16 | 16 | 16 16 16 16 | 16| 12| 13 10
16 17 217 20| 20 | 20 20 20 20| 20| 17| 16 13
17 7 172 15| 15 | 15 15 14 14| 15| 11| 12 10
18 4 147 12| 12 | 13 13 12 12| 13( 9 10 8
19 0 0 0 0 0 0 0 0 010 0 0
20 1 41 3 3 3 3 3 3 3| 2 3 2
21 2 221 17| 17 | 18 18 17 17| 17| 11| 13 10
22 1 397 27 | 27 | 27 27 | 27 26 | 28| 18| 22 17
total| 24966 155 27 | 27 | 26 26 26 24 | 24| 23| 22 18
Table 5: Averages for random text of 50,000 words

p len| num | KMP| AG BM| HOR| RAI TBM| MS QS| ZT| SMI BR]
2 133 13 7 7 7 7 7 5 5 715 3
3 765 | 37 13| 13 | 13 13 | 13 10 | 10| 13| 10 | 8
4 2178 | 80 22| 22 | 22 22 22 19| 18] 21| 17 15
5 3146 | 149 | 34| 34 | 34 34 | 34 30| 29| 31| 28 | 23
6 3852 | 182 | 36| 36 | 36 36 | 36 33| 32| 33| 29 | 25
7 4042 | 193 | 33| 33 | 33 33 | 33 31| 30| 29| 27 | 24
8 3607 | 201 31 31| 31 31 31 29| 29| 27| 26 22
9 3088 | 198 28 | 28 | 28 28 28 27| 26| 24| 23 20
10 1971 | 198 26 | 26 | 26 26 26 25| 25| 22| 21 18
11 1120 | 199 25| 25 | 25 24 24 24| 23| 20| 20 17
12 593 217 25| 25 | 25 25 25 24| 24| 20| 20 17
13 279 207 23| 23 | 23 23 22 22| 22| 18| 18 15
14 116 180 20 19 | 19 19 19 18| 18| 14| 15 13
15 44 218 22| 22 | 22 22 21 21 21| 17| 17 14
16 17 162 15| 15 | 15 15 15 15| 15] 12] 12 10
17 7 220 20 | 20 | 20 20 19 19| 19| 14| 15 13
18 4 208 17| 17 | 17 17 17 17| 18] 12| 14 11
19 0 0 0 0 0 0 0 0 010 0 0
20 1 157 12| 12 | 12 12 12 12| 13| 8 10 8
21 2 89 7|7 7 7 7 7T |7 |11]5 4
22 1 315 21 21| 21 21 21 20| 22| 14| 18 14
total| 24966 173 30| 30 | 30 30 29 27| 27| 26| 24 21

Table 6: Averages for random text of 100,000 words
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Abstract. String match procedures with respect to two sets are investigated.
The procedures traditionally used for data compression are based on single-
string match with respect to a single set [LZ78, W84]. Some recent work broad-
ened this view by presenting procedures for multiple-string match with respect
to a single set [FPC98, PFP99] with improved performance as compared to
the single-match versions. In this work an algorithm based on double-match
with respect to two sets is stated. We do conjecture that multiple-string match
procedures with respect to two sets can achieve even better performance. A pre-
liminary analysis corroborating this conjecture with some evidence is reported
in this work.

Key words: Multiple-string match, Lempel-Ziv algorithm, Data compression.

1 Introduction

The procedure proposed by Lempel and Ziv in 1978 [LZ78] for lossless data compres-
sion is a rather simple and elegant string-match based algorithm. Its low complexity
and implementation simplicity has turned it into a very popular algorithm which is
used for instance in the compress program of UNIX operational system.

By selecting diferent combinations of the basic parameters of this algorithm many
variations can be established. In the result published in [FPC98] a version that
searches for double-string matches instead of the usual single-match is stated —
an improved performance was obtained. Extension to multiple string-match was
proposed in [PFP99]. Similar results were reported by Hartman and Rodeh in [HR85].

In this work the two most popular Lempel-Ziv variations, LZ78 and LZW [LZ78,
W84], has been cast in the framework of string-match with respect to two sets. We
also propose two new variations (designated lg-LZ and dt-LZ), which are inspired
and discussed in this new framework. Although the ultimate goal of finding new

1This work was supported by grant CNPq-502235/91-8(NV) and AEB/PR-004/97.
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algorithms with improved is a motivation behind the algorithms proposed, the ime-
diate objective is to expand the ways of looking at the string matches algorithms and
hopefully to find better procedures.

This work is organized as follows: in Section 3, we present the idea of string match
with respect to two sets and establish a motivation by discussing two well-known
algorithms in the framework of matching with respect to two sets. A new algorithm
(lg-LZ) which is a simple variation of the Lempel-Ziv algorithm is also proposed in this
section. In Section 4 a version of double-match/double-tree algorithm is introduced.
Results obtained by computer simulation are presented in Section 5. Our conclusion
is then summarized in Section 5.

2 Notations

We establish the following notation for use in this work.

1. xf = T;Tiy1-.-T4, J > 1 denotes a finite sequence of symbols zy, i < k < j,
that take their values in a given set A = {ag, a1, -, a4-1} of cardinality |A|. If
j =1, this is the single symbol string x; and if i > j we will assume that z! is

the empty string.
2. || denotes the length, if a is a sequence, or the cardinality, if « is a set.
3. A denotes the null-length string, i.e. |A| = 0.

4. s; o s; denotes the concatenation of the strings s; and s;. (the result of the
concatenation will also be indicated by s;s; or s;,s;)

5. When si,sy,---,s; € A" are strings of symbols of lengths |[s1],[sz2|,- -, |sk| re-
spectively, the notation s¥ represents the string of length |s;| + [sa| + -+ + |sg]
formed by the concatenation of strings s; 0 sy 0 --- 0 sy.

6. The concatenation of the string ¢/ € £ = {lo,---,{z-1} and the set M =
{myg, -+, mypq 1} is the set

IM|-1

toM= |]J {fom}

=0
7. Let L= {lo,---,{j-1} and M = {my,---,mrq_1}. We define the concatena-
tion of these two sets by

|c|—1
LoM=[]{tioM}

i=0
8. [z] denotes the smallest integer greater than or equal to number z.

9. I[z|L], for |£]| > 0, is the longest string ¢; € L = {fo, -+, -1} which is a
prefix of z.
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10. X[s|L] is the unique integer index ¢ that identify the member ¢; € £ such that
gi = S.

11. z —y, when z = z;2;41 ---2; and y = ;241 - - - T, is a prefix of z, represents
the string x4 - - 7;.

12. F|z] is the length 1 prefix of z, if |z| > 0 else it is the empty string.
13. SJz] is the length |z| — 1 prefix of z.

14. ¢g[J], k > log J (base 2 logarithm) is the trivial k-bit binary representation of
the integer J.

3 The Idea of String Match Algorithm with Re-
spect to Two Sets

To establish the framework and the rationale behind our discussion, the well-known
string-match procedure proposed by Ziv and Lempel [LZ78] for data compression
will be presented, in the context of string match with respect to two sets. We will
undistinguishably refer to this as a double-tree string match context since the sets we
will be dealing with are tree-structured.

3.1 Lempel-Ziv Algorithm (LZ78)

Let us consider that zg = z) ' is the sequence of N symbols generated by the

information source which is to be encoded (each source symbol x; belongs to the
source alphabet A, of dyadic cardinallity for simplicity). Generally speaking the
Lempel-Ziv algorithm (LZ78) [LZ78] can be envisioned as divided in three tasks: The
first task, (parsing), which yields the unique parsing
.I'évjl = (EU e} mo), (61 ©) ml), T, (gt [¢) mt)
of the source sequence in t 4+ 1 phrases. The next task, (map to integers), assign each
phrase s; = (¢; o m;) to a unique pair of integers (.J;, K;) which are then, in the task
that follows (integer code), replaced (or encoded) by a binary representation according
to some rule to encode integer numbers into binary.

Specifically, the algorithm LZ78 [LLZ78] can be stated using the double-tree frame-
work by initially setting Lo = {A\, 20}, My = A and sy = (fp o my) = (Ao xy) = xp.
At a general step i, the sets £, ; and M;_; are known, the source string has been
parsed in ¢ phrases sg,---,s;_1 and there is a remaining unparsed string which will
be denoted by z;. The algorithm is described next.
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Algorithm LZ78

1=20

zgzxév’l

Lo={A\}, Mg=A

So = ¢y o mg with {5 = A and mg = x.
1< <t

1. Update unparsed string:
Z; —Z;—1 — (@'—1 © mz’—l)
2. Find longest match s; with respect to D; = L£;_1 o M;_1:
S; = H[ZZ|DZ] = gz om;,
with ¢; = T[z;|L; 1], and m; = TI[(z; — ;)| M;_1].
3. (i, Ki) = (X[G]Lia], Xmi|M;4])
4. Update L-tree:
£i = £i—1 U {Ez @) ]:[ml]}
M;=A

5. (Biaci) = (¢f10g|ﬁi71ﬂ [Ji]ﬂ ¢f10g|Mi71H [Kl])

The efficiency of a string match algorithm is closely related to the number ¢+ 1 of
phrases parsed off from the source string and to the rate of growth of the sets £ and
M. In the present case, LZ78, t + 1 phrases are generated and the N source symbols
will be represented by L binary symbols,

t t
L=> (IB]|+|Cil) = (t+ 1) log, | A + > |Bil,

rendering a p = L/N compression rate. If the source symbols are drawn from an
stationary source, the compression rate provedly [LZ78] converges to the entropy of
the source. The interplay between these two parameters is quite envolved [S97] and is
not our main concern. It is worth mentioning that Integer Codes more efficient than
the one used to produce the binary block (B;, C;) could be used. An improvement in
the above code, for instance, can be introduced simply by noticing that the phrase s;
which is parsed off at the i-th step, actually belongs to a set D; (called dictionary or
codebook)
Di=Li1oM;,

with some elements (or codewords) on it, which are not able to be selected as a match
to s; — the enumeration reserved for these are therefore a waste of bits. This is of
little concern to us at this point and the Integer Code as it is will be used with the
other algorithm versions discussed in the entire work.

The important point to be stressed in relation to the LZ78 is that no matter
the value of 4, the associated tree M; is kept fixed, equal to A. Whether there are
procedures which performs more efficiently, by allowing M;, the second dictionary
tree, to grow rather than be fixed, is a conjecture naturally raised. This issue is
examined on the next section. A variation of the LLZ78 which constructs the dictionary
D; in a sligthly different manner and which, for this reason, has a slightly better
performance will be presented. Example I ilustrates the workings of LZ78.
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Example 1
Let the sample string to be compressed be

Sample0 = z33 = aacabadababaacadabacabadadababaaaba

The quaternary source alphabet is A = {a,b,c,d}. The sequence {L; : i = 0,14}
of sets obtained with the LZ78 procedure, the corresponding phrases and binary
codewords obtained are next presented.

Step i =0

Zy = aacabadababaacadabacabadadababaaaba
,C() = {)\}, Mo - A

60 = )\, myp=a

so =Vlyomy =a, Wy =100

Stepi=1
Sp,Z1 = a,acabadababaacadabacabadadababaaaba
,Cl = {a}

lh=a, myg=c

Slzflomlzaoc, W1:1 10

Keep going like this will take us to

sy3z14 =a,ac,ab,ad,aba,b,aa,c,ada,ba,ca,bad,adab,abaa,aba

Ly = { a, ac, ab, ad, aba, b, aa, ¢, ada, ba, ca, bad, adab,
abaa }

S14 = aba )\, W14 = 0101 A

3.2 A Less Greedy LZ78

We observe, in the plain LZ78 discussed on Section 3.1, that the set £; is increasead
by one element at each step i, i.e., |£;| = |£;—1| + 1. The dictionary D; is built
by transforming the tree corresponding to £;_; into a complete tree having only
terminal nodes and nodes with exactly |A| branches stemming from them. This
greedy expansion of the set £; | seems to be one reason for the degraded performance
of the LZ78 algorithm, as compared to other variations, such as LZW for instance.
The variation introduced in this section (lg-LZ, in short), allows for a less-greedy
expansion in order to get the dictionary D;. The longest string match is not found
this time (lg-LZ), with respect to the dictionary D; = L, ; o M;_; but, instead, with
respect to the dictionary
Di = ['ifl U {Si ©) A}

The dictionary D; is now built by expanding the £;_; tree by appending to the node
corresponding to the path just selected as a longest match, the tree corresponding to
the alphabet A. The algorithm is stated next.
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Algorithm lg-LZ

1=0

Zy = xév_l

Lo=A My=A

So = g

Jo = X[so|A], By = fiog|.4n[Jo]
1<i<t

1. Update unparsed string
Z; = Zj—1 — Sj—1
2. Find longest match s; with respect to D; = L£; 1 U{s; joM; }
S; = H[Z1|DZ],
4. Bj = Ppiogp;n[Ji
5. Updating tree
Enew =8,.10 f[SZ]
if |€new| = |Sz| and S; §é Ei—l then gnew = S;
£i - £i—1 U {Enew}
M, =A

Also here we have s; = ¢;om; with, possibly, m; = A. The performances displayed
on Table 2, obtained by computer simulation show instances where the lg-LZ performs
better when compared to its counterpart LZW. The example presented next ilustrate
the workings of the lg-LZ.

Example II

Let x33 = aacabadababaacadabacabadadababaaaba. A = {a,b,c,d}. The pars-
ing that the procedure 1g-LZ yields is
a, ac, a, b, a, d, ab, aba, aca, da, ba, c, aba, da, dab, abaa, aba
The compressed representation of z3 is a binary string with 72 bits — compression
rate of 0.257

3.3 Lempel-Ziv-Welch Algorithm

The Lempel-Ziv-Welch procedure, popularly called LZW, is known to have a perfor-
mance on the average 10% better then the plain LZ78 version. One aspect that makes
the LZW different from LZ78 is that it works with a rule that build the dictionary
D; by appending only one node to the corresponding tree £;_;.

The following would be the description of the LZW algorithm.
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Algorithm LZW
=0

Zy — .fI}'[])V_I E() = A,
My = {\} and

So = Tp. EUZZL'()
1<1<¢

1. z;=2; 1 —8;
2. Find longest match with respect to D; = L£;_1U¥l;_1o M;_4

;= Ulz;|Li1],

s; = I[z;|Dj],
3. Ji = X[s;|Dj]
4. L; =D,

M; = {Flz; —s;]}
5. Bi:¢[log |D;|] [JZ]

Example III
Consider again Sample0 = z}® = aacabadababaacadabacabadadababaaaba with
A ={a,b,c,d}. This sequence is parsed into 20 phrases as follows
a, a, ¢, a, b, a, d, ab, aba, ac, ad, aba, ca, ba, da, da,
ba, ba, aa, ba

and its compressed representation is a binary string with 81 bits — a compression
rate of 0.289

4 Description of Double-tree Algorithms

In the previous section two known agorithms (LZ78 and LZW) and a simple variation
of the former (lg-LZ) were stated within the framework of a double-tree string match.
Each one of the algorithms produce a sequence of trees {L£;};—o; and corresponding
sequence of dictionaries {D;};—p; with a string match done with respect to each
dictionary. The basic difference among the three algorithms relies in the manner
in which the tree £,_; is concatenated with the corresponding M;_;, to build the
dictionary D;. Table 1 summarizes this aspect.

LZ78: |Dz| = |»Ci—1 o Mi_1|
< LMy
= |Lia]+ A

LZW: |Dz| = |»Ci—1 U Ez’—l o} Mi_1|
= |Li]+1

Table 1: Length of the dictionaries
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A point which is common to the three algorithms so far discussed is that they all
concatenate the set £;_; with a depth one tree in order to build their dictionaries.
It is quite natural at this point to ask whether there are procedures which performs
more efficiently when the second dictionary tree is allowed to have depth greater
than one. A double-tree string match algorithm, with a second tree having a more
general structure is stated in this section. Allowing a more general structure for the
second tree M, i, enlarge the number of algorithm variations that can be stated.
The search for string matches are now searches for double-matches — this imply that
more general ways to search are possible and that the longest-match is not necessarily
a concatenation of a string ¢; (which is the longest match with respect to the tree
L; 1) with the string m; (which is the longest match with respect to the tree M; ;).
Now, in order to optimize the number ¢ + 1 of parses, the best strategy is to search
for a concatenation (¢; o m;) which among all double-matches, have the largest size
|¢;|+|m;|. We have implemented one version of a double-match/double-tree procedure
and analysed their performance by computer simulations. The algorithm, which will
be, abreviatedly, referred to as dt-L.Z, is presented next.
Algorithm dt-LZ

i = 0 (Initialization step)

® ZOZZL'(])Vil
L4 ,C():M()ZA

o my = [I[zo| My,

o Ky= X[my|My);

o Cy = Piog |Mmo|] [Ko]

® 7z, =7y — my;

o My = MyU{mgo Flz]}
1 < i <t (Generic step)

1. Segmentation:
(a) € = lz;|L;],
Ziemp = 24 — gi:
m; = H[Ztemp|Mifl]v
T = |4 + |my;
u= gz
(b) i. u= Su]
Ziemp — Z; — U
v = [Ztemp | Mi1].
i. If (Ju|+ |v| >7): (6iymy) = (u,v), 7= |{;| + |my|.
iii. If Ju] > 0 return to step (i).

(C) z;, = (Zi — gz) —m;
2. Update Dictionaries:
,Ci = 'Cifl U {gl e} f[mz]}
M; = M; 1 U{m,; o Flz;]}
3. Map to Integer
(/i K;) = (X[G] L], X[my[M;4])
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4. Integer Code:
(Bi, Ci) = (Siog 1ci—in[Jil: Prioglmti—i [K])

Example IV

Let 23> = aacabadababaacadabacabadadababaaaba. A = {a,b,c,d}. The pars-
ing for the procedure dt-LZ yields is
(-,a), (a,c), (a,b), (a,d), (a,ba), (b,aa), (c,a), (d,a), (ba,ca),
(ba,da), (da,bab), (a,aa),(b,a).
where we show the double-matches displayed in parenthesis.

5 Some Computer Simulation Results

The algorithms discussed have been implemented as computer programs which were
used to compress some sample sequences. Although the performance of all these
algorithms are optimum in the sense that their compression rate asymptotically con-
verges to the entropy of the information source or to the Lempel-Ziv complexity of
the individual sequence, they perform quite differently when finite sequences and the
rate of convergence to the asymptotic optimum are considered. Table 2 displays some
of the simulation results exhibiting the performance of the algorithms. We have not

Sequence | LZW | 1g-LZ | dt-LZ
(size) (size) | (size) | (size)
SampleO 289 | 257 311
(280) 81) | (72) | (87)
Samplel 089 | .099 | .097
(576) (61) | (57) | (56)
Sample2 | .077 | .086 | .103
(544) (42) | (47) | (56)
Sample3 | .357 | .371| .335
(672) | (240) | (249) | (225)
Sampled | .258 | .113| .320
(256) (66) | (29) | (82)

Table 2: Compression rate of algorithms LZW, 1g-LZ and dt-LZ (all sequence sizes,
in parenthesis, are in bits)

presented results for the LZ78 algorithm. As the other versions this algorithm is
asymptotically optimum but has an inferior perfomance as compared to the LZW.
As it can be noticed from the results presented in Table 2 the behavior of the algo-
rithms are sequence dependent. For some sequences the LZW can achieve a better
result than the lg-LZ — this gain is basically due to the penalty paid by the lg-LZ
for expanding the first tree with A nodes to build the dictionary, instead of the one
node expansion done by the LZW. This gain in performance tend to disappear as
the sequence length grows larger. Examining the line on Table 2 corresponding to
Sample4 one can see that the performance of 1g-LZ can converge considerably fast
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to the optimum, as compared to LZW, for certain types of sequences. These are
sequences constructed to benefit the performance of 1g-LZ (no such construction can
be done, we conjecture, to benefit LZW).

Conclusion

We have proposed algorithms which are based on the idea of string matches with
respect to two sets or, equivalently, string match with respect to two trees. Many
implementations variations of these algorithms are possible — a double-string match
with respect to two trees version (called dt-LZ) was implemented.

In our preliminary investigation we exam the behavior of these algorithms and
analyse its performance by computer simulation. Also we stated the well known
LZ78 algorithm [LZ78] in the framework of string match with respect to two trees, as
well as the LZW [W84]. A simple modification of the LZ78 was also proposed (this
was called 1g-LZ).

It is our expectation that higher compression can be achieved with double-string
match with respect to two trees procedures. This is based on the argument that
the use of two trees allows the construction of concatenated trees with more general
structures, leaving more room for optimizing the search. It is also based on results we
have obtained with multiple-string matches algorithms [PFP99] — which achieve a
better compression than single-matches ones. These multiple-string match algorithms
are based on the double-tree idea yet the two trees involved in the process are kept
equal.

The results presented in this work do not single out a definite better double-
match/double-tree algorithm — if one can be found — but bring to our attention
that there are many variations. Our investigations will be further pursued by exam-
ining other double-match /double-tree implementations. An extension of the multiple-
match described in [PFP99] will also be sought.
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Abstract. This paper deals with a new practical method for solving the longest
common subsequence (LCS) problem. Given two strings of lengths m and n,
n > m, on an alphabet of size s, we first present an algorithm which determines
the length p of an LCS in O(ns + min{mp,p(n — p)}) time and O(ns) space.
This result has been achieved before [Ric94, Ric95], but our algorithm is signifi-
cantly faster than previous methods. We also provide a second algorithm which
generates an LCS in O(ns + min{mp, mlogm + p(n — p)}) time while preserv-
ing the linear space bound, thus solving the problem posed in [Ric94, Ric95].
Experimental results confirm the efficiency of our method.

Key words: Design and analysis of algorithms, edit distance, longest common
subsequence.

1 Introduction

Let x = x1...2, and y = y;...Yn, n > m, be two strings over an alphabet ¥ =
{o1,...,05} of size s. A subsequence of x is a sequence of symbols obtained by deleting
zero or more characters from x. The Longest Common Subsequence (LCS) Problem
is to find a common subsequence of x and y which is of greatest possible length.

It will be convenient to describe the problem in another way. An ordered pair
(k,0), 1 <k <m,1</¢<n,is called a match if xy = y,. The set M of all matches
can be identified with a matching matriz of size m x n in which each match is marked
with a dot. For example, if x = abacbcba and y = cbabbacac, then M is as shown
in Fig. 1 (a). Define a partial order < on N x N by establishing (k,¢) < (k',¢)
iff both & < k' and ¢ < ¢'. A chain C C M is a set of points which are pairwise
comparable, i.e., for any two distinct pi,ps € C, either p; < py or p; > po, where
p1 > po means py K p;. Then the LCS problem can be viewed as finding a chain of
maximal cardinality in M. One such chain is indicated as a path in Fig. 1 (b).

Finding an LCS is closely related with the computation of string edit distances
[LW75, MP80, Wag75, WCT76| and shortest common supersequences [GMS80]. It was

*Research supported by Deutsche Forschungsgemeinschaft, Grant CL 64/3-1
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1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9

cbabbacac cbabbacac
1 a ° ° ° 1 a
2 b ° o0 2 b °
3 a ° ° ° 3 a
4 Ccle ° ° 4 Cle °
5 b ° o0 5 b °
6 Cle® ° ° 6 Cl® °
7 b ° o0 7 b °
8 a ° ° ° 8 a

@ (b)

Figure 1: (a) matching matrix, (b) path representing an LCS.

first used by molecular biologists to study similar amino acids [Day65, Day69, NW70,
SC73]. Other applications are in data compression [AHU76, GMS80, Mai78] and
pattern recognition [FB73, LF78].

The LCS problem can be solved in O(mn) time by a dynamic programming ap-
proach [SK83, WET74], while the asymptotically fastest general solution uses the “four
russians” trick and takes O(nm/logn) time [MP80]. A lot of other algorithms have
also been developed which are sensitive to other problem parameters, e.g., the length
p of an LCS. They usually perform much better than the latter algorithms, although
they all have a worst case time complexity at least of Q(mn). For example, Hunt and
Szymanski [HS77] have presented an O((r+n)logn) algorithm, where r := |M|. Thus
their approch is fast when r is small, e.g., r = O(n), but its worst—case time complex-
ity is O(n?logn). Later, this has been improved to O(mn) [Apo86]. There are also
several routines which run in O(n(n+1—p)) or O(n(m+1—p)) time, and thus are ef-
ficient when an LCS is expected to be long [Mye86, NKY82, Ukk85, WMM90]. Other
algorithms have running times O(n(p + 1)) or O(m(p + 1)) and should be used for
short LCS [Apo87, AG87, Hir77, HD84]. However, it might be very difficult to a pri-
ori select a good strategy because in general the length p cannot be easily estimated.
Also, when having a small alphabet, we can expect p to be of intermediate size, e.g.,
for s = 4, the average length of an L.CS is bounded between 0.54 -m < p < 0.71-m
[CST75, DP94, Dek79, PD94, SK83]. Then none of the above methods performs well.
Therefore recent research has been concentrated on more flexible algorithms which
are efficient for short, intermediate, and long LCS, such as the method proposed by
Chin/Poon [CP94]|. Another approach from Rick [Ric94, Ric95] with running time
O(ns + min{mp, p(n — p)}) has been widely accepted as the fastest algorithm for the
general LLCS problem.

In this paper, we shall develop a new algorithm which is based on a kind of
dualization of Rick’s method. A detailed description of the theoretical background
will be given in Sect. 2 and 3. Our idea does not improve the O(ns + min{mp, p(n —
p)}) time bound, but two important advantages are obtained. First, the number of
matches processed while computing the length of an LCS is significantly decreased,
resulting in a faster execution speed. The corresponding algorithm will be presented
in Sect. 4. Second, when generating an LCS, we can achieve linear space through a
divide—and—conquer scheme similar to that of other (but slower) algorithms [ABG92,
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Hir75, KR87]. This will be explained in Sect. 5. The methods mentioned before all
need at least Q(nm/logn) space in their worst cases (see [PD94] for a survey), and
most of them, including Rick’s approach, cannot be combined with the divide—and—
conquer technique. The open problem of a linear space implementation of Rick’s
algorithm [Ric95] is hereby solved. Experimental results presented in Sect. 6 confirm
the efficiency of our method.

2 A New Approach to the LCS Problem

As already mentioned in the introduction, the LCS problem is equivalent to finding a
chain of maximum cardinality in M. Dilworth’s fundamental theorem [Dil50] states
that this cardinality equals the minimum number of disjoint antichains into which
M can be decomposed (an antichain of M consists of matches which are pairwise
incomparable). In our example, this number (called the Sperner number of M) equals
five. A suitable decomposition is shown in Fig. 2 (f). To find such a minimum
decomposition, we first split [1 : m] x [1 : n] into subsets denoted by T%, L!, B?, and
R, where

T = {i} x[i:n+1—1i

L [i4+1:m+1—1] x {i}

B {m+1—i} x[i+1:n+1—1
R = [i+1:m—idx{n+1—i}

and 1 < i < [m/2] (see Fig. 2 (a) for an illustration). Additionally, let

TS = T, L% := L', BS := B/, RS = R .

j<i j<i j<i j<i
Now for i = 1,2,...,[m/2], we construct four sets of antichains AT, AL AP% and
AR% which decompose (a suitable subset of) 7<) L=, B<', and R, respectively. The
decompositions are generated by updating the previous sets, using the matches found
in T%, L', B!, and R’ (details are given below). We use A”* to denote an antichain in
AT where u is an index between 1 and the size e?* := |AT?| of AT, Therefore eI*
is also called the end index of AT, For AX' AB% and A% we introduce analogous
notations. Furthermore, there are two start indices s'** and sP%*. The first one is
used to split both A7 and A" into two parts. One part contains all antichains with
indices less than s’ and the other part consists of the rest. Only the latter part
will be used for the updating process, whereas the former one will be copied to AT>+!
resp. A" without change. sP® similarly splits A?* and A%,

Fig. 2 (b), (¢), (d), and (e) give a preview of the construction in the sample
matching matrix after step 7 = 1, 2, 3, and 4, respectively. The centered grey box
represents the remaining part of M which has not been processed so far. By our
construction, with each step, it shrinks by two rows and columns.

We need the following terminology for the description of the construction process.
For two antichains C, D C M the set

IP(C,D) = {p1 S C|\V/p2 eD: —|(p1 < pa Vpy >>p2)}
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Figure 2: (a) splitting of M, (b)—(e) construction of antichains, (f) final decompo-
sition.

is called the incomparable part of C relative to D. Clearly, IP(C,D) U D is the
greatest antichain above D contained in C'U D. We say C' is incomparable to D if
IP(C, D) = C, and a single match p; € M is incomparableto D if IP({p:}, D) = {p1}.

We are now prepared to discuss the generation of the antichains in more detail.
Initially, there are no antichains, i.e., we have AT0 = AL0 = ABD — ARD — () by
initializing each start and end index to 1 and 0, respectively. Then, for each step
i =1,...,[m/2], we start with T to determine AT from AT*~!. Let s := s™~!
and e := eT~1. The first s — 1 antichains remain unchanged and are simply copied
from AT to AT, Now define AT as AT LUIP(T'NM, AT 1). For example, when
processing T2 in Fig. 2 (b), IP(T?* N M, A'Y) = {(2,2)}, and thus the match (2,2)
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combined with AT"! makes up AT? as shown in Fig. 2 (c). Next, foru=s+1,... ¢,
the antichain A7*~! is handled in the same way to set up A7**, but only those matches
in T not belonging to AT, ..., AT are considered. Finally, we establish s™0 := s

and, if there are no matches left, ™ := e. Otherwise, we set e’** to e+ 1 and collect all
remaining matches in a new antichain AZY,. Also, if A%~ =£ (), we check whether its

last antichain A%~ & := e®~1 isincomparable to AZ;’. In this case we say A%*!
is inactivated by ALY, and we remove AZ~! from AR? by setting eftt = efil,

Continuing our example with 7% in Fig. 2 (b), we see there are two matches (2,4)
and (2,5) left after processing A2, Therefore a new antichain A2 is created, but
AR remains unchanged because, for example, (2,4) < (4,9). The final set AT>? is
shown in Fig. 2 (¢) (the modifications to the other antichains are described below).
Now let us consider the work involved with T3. The match (3,3) cannot be put into
AT3 but into AT>3, and the other match (3, 6) makes up the new antichain AT*3. This
time (3,6) inactivates (3,8), and thus A®? is removed. The result is illustrated in
Fig. 2 (d) (all matches located in deleted antichains are indicated by grey dots).

S :=Tin M; (+ Determine AT+ x) S :=Bin M, (+ Determine AB» x)
For v := sTL:i—1 Tg ¢T5i—1 Do { For v := sBRi—1 To ¢B'i Do {
Al = A= U IP(S, ATV 1), AB = ABI-1 U IP(S, ARy,
S =S\ IP(S, AT~ 1y, S =S\ IP(S,AB:i~1);
5 b b
If S # 0 Then { If S # 0 Then {
eTii=eDi=l 4 1; e:= Ty ATV := G eBiii= Bl L 1; e:=eBi; AB = 5
efi = efri=l; g .= oRoi, If s71t < elv? Then {
If sBRi=1 < eRyi=1 Then { é:=eli;
10 If IP(AB—1 AT:") = ARi~1 Then { If IP(AL? AB?) = AL Then {
DTR .— DTR [y AR-i~1, DBL .= DBL ( AL+,
eRii = 1, el =g —1;
}; b
}; , , , , b
15  } Else { Tt := Thi=l; eRii .= gRyim1 IS
For u := 1 To sTL+i=1 _ 1 Do AT .= ATvi—1, For u := 1 To sBRi-1 _1 Do AB .= AB.i— 1,
S:=LinM; (+ Determine AL+ x) S :=R'N M; (* Determine A% x)
For v := sTL:i—1 Tg eLsi=1 Do { For u := sBRi—1 To eR'i Do {
ALi = ALy IP(S, ALi-1y; ARt = AR-L U IP(S, AR,
20 S =S\ IP(S, AL~ 1), S =S\ IP(S, ARi~1);
b ;
If S # 0 Then { If S # 0 Then {
elhii=elvi=l 4 1; e:=eli; AL 1= S, efoi = eRoi 1 1; e 1= efol; AR 1= S
eBii =BTl g .= Bl If 7Lt < T+ Then {
25 If sBRi=1 < ¢Bsi=1 Then { é:=eli;
If IP(ABi—1 ALy = ABi~! Then { If IP(AT# A7) = AT Then {
DBL = DBL UAéB,i*l; DTR = DTR UAg’,i;
eB,i =6 — 1; eT’i =€ — 1;
b b
30 I b
} Else { elo? :=eli=1; Bl := ¢Bii—1 1, Y
For u := 1 To sTL+i=1 _ 1 Do AL+ .= AL:i-1, For u := 1 To sBRi—1 _1 Do AR .= AR.i-1,
33 g7l = gTLii1, §BR.i .= gBR,i—1,

(a) (b)

Figure 3: The algorithms for generating A™* & A (a), and A" & AR (b).

Having determined AT, we continue with the necessary calculations for A% which
are very similar. The first s — 1 antichains are copied and then, for v = s, ..., e,
AL is defined as the union of AZ*~! and the incomparable part of L’ relative to
AL=1 where only those matches are considered which have not already been used.

Remaining matches form a new antichain and, if they are incomparable to the last
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antichain in A%~ we decrease e by one. The corresponding algorithm in Fig. 3 (a)
also introduces two additional sets D™® and D?®" which contain all deleted matches.
Details will be given in the next section.

Before processing A?~1 and A®*~! in an analogous way, we first check whether
the first antichain in AT or A™* is TL-complete, i.e., whether one of them contains a
match (k, ¢) such that 1 < k, ¢ <. For example, in the configuration shown in Fig. 2
(c), AT is TL-complete due to the match (2,2). As soon as AT* is detected to be
TL-complete, s is increased by one, thus the first antichains in both corresponding
sets which are checked for additional matches remain unchanged from now on. If there
is no such antichain in A% (i.e. s > el), but sPF1 < B then we additionally
test whether A" is incomparable to the last antichain in AZ"~! and, should this
situation arise, delete this antichain from A% by decreasing e?*.

Now assume A% is TL—complete. Then, as shown in Fig. 4 (a), we also increase
sl and similarly, if s > e and sPF~1 < efi we decrease ef if AL inactivates
the last antichain in A%,

(* Check AT’il for TL—completeness x) (* Check AB’ilfor BR-completeness *)
If 70 < e_T” Then { If PR < e_B” Then {
s = sTh:t, ] 5 1= gBR1; ]
If 3 (k,0) € AT>%: k,£ < i Then { If3(k,0) € AB: k>m —i A€ >n—i Then {
5 If s > el Then { If s > eft’ Then {
If sBR/i-1 < ¢Bsi Then { If sT8i < Tt Then {
é:=ebB; . . ] é:=el; . . ]
If IP(AB#i=1 ATi) = AB~1 Then { If IP(AT, AR") = AT Then {
DBLsi .— DBLyi (j AB.i—1, DTR.i .— DTR.i j ATi,
10 eBi =g —1; elvi=e—1;
b b
}; b
elri =5 AL .= (), elt = g; AR .= (),
b b
15 sThot = s 4 1; sBR .= 5 4 1;
}; b
b b
(* Check AL’il for TL—completeness ) (* Check AR’ilfor BR—-completeness *)
If sTFt < elvi Then { If sBRi < eRsi Then {
20 5= sThit, s := sBR.;
If 3(k,0) € AL+': 1 <k,£<i Then { If3(k,0) € AF: k>m—iAL>n—iThen {
If s > e Then { If s > eP¢ Then {
If sBRi—1 < ¢Ri Then { If sTLvi < el Then {
é:=eli; _ _ _ é:=elt; ) ) )
25 If IP(AR—1 AL%) = ARi~1 Then { If IP(AL? AB?) = AL Then {
DTRi .= TRy J pARi=1, DBLi .= pBLyi g AL,
eRi =g 1, eli=6—1;
b b
b 4 b .
30 eli = s5; AT .= () eBri=s; AR .= 0,
Tt i= 5 4 1; sBRt =5 4 1;
b k;
34k b

(a) (b)

Figure 4: The algorithms for handling complete antichains in AT & AL (a), and in
ABE & AR (b).

The remaining work in step 7 concerns with the analogous construction of A% and
AR (The analogue of TL-completeness is called BR-completeness. An antichain is
BR—-complete if it contains a match (k,¢) with m —i <k <mand n—1i < ¢ < n.)
Details are available from the algorithms shown in Fig. 3 (b) and Fig. 4 (b).
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The main program shown in Fig. 5 is straightforward. Our next task is to elaborate
the connection between the generated antichains and a minimal decomposition of M.
This is done in the next section.

i:=1; (* Initialization x)
sTh0 = 1; s1:0 .= 1; sB:0 :=1; B0 := 1;

eT0 :=0; eL:0 := 0; B0 := 0; .eR’O =0
For i := 0 To [m/2] Do DTL’l_ =
5 For i := 0 To |m/2] Do DBR:? .= (),

While i < [m/2| Do { (* Main loop )
Determine ATt and A>%; (x see Fig. 3 (a) *)
Look for TL-complete antichains in AT>* and AL?; (x see Fig. 4 (a) *)
Determine AP and AR (x see Fig. 3 (b) )
10 Look for BR-complete antichains in AB+* and AR:i; (x see Fig. 4 (b) %)
i:=1+1;
b

If Odd(m) Then {
Determine AT>[™/21 and AF:[m/21; (x see Fig. 3 (a) %)
15 Look for TL-complete antichains in A7>[™/21 and AT:[™m/21; (x see Fig. 4 (a) *)

}s

Figure 5: The main program for decomposing M

3 Analysis of the Construction

In this section, we study how to combine the antichains into larger ones such that
a minimal decomposition of M is obtained. We further establish some results which
later help us to construct an LCS in linear space.

Let us assume m is odd, and let i = [m/2]. For technical reasons, we then put
ABi = AB=1 and AR .= AR T forall 1 < u<eP" ' and 1 <u<ef! We also
set sBRE 1= gBRi-L B .— Bl and eR .= B4~ Furthermore, for 0 < i < [m/2],
we define AT := (), ALV .= (), AB+ .= (), and AR := () for u > €T, u > el u > P,

and u > e’ respectively.

Lemma 3.1 Let 1 <i < [m/2]. Then the following holds:
a) Vst <u<wv<elVp € AT Ap, € AT p > p, .
b) VsTi=t <y <wv<eltVp € ALt dpy € A pr > py
c) VsBRi—l <y <v<ePiVp € AP dp, € ABY: pr < py .
d) VsPiml <y <v<eftiVp € AR Ip, € AR py < py .

Proof. We only show the first claim, the other proofs are similar. Let p; = (k, £). Since
AT C T<Im/21 5 has been added to AT* while processing T* in step k, and k < i.
Clearly, from the way S is handled in lines 1-5 of Fig. 3 (a), p; ¢ IP(T*N M, AT*=1)
for s™F=1 < 4 < v. Hence, since sT0F~1 < sTLi=1 < 4 < v, there is some py € ATF1
such that p; > p, or p; < po. But the second case would imply p, € T* for some
k" > k which is impossible during the first & steps of our construction. Finally observe
that the algorithm never removes matches while updating an antichain, thus ps is still
present in AT O
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Lemma 3.2 The following holds:
a) V1 <i<[m/2]Vv: v< st <= A% or ALY s TL-complete .

b) V1<i<[m/2]Vuv: v < s < AP or AR is BR—complete .

Proof. We only prove the first claim, the other one is similar.

If. By contradiction, let i be the first step such that A" or AL is TL-complete,
but v > s™5¢ Clearly v # s™~1, otherwise the TL-completeness would have been
detected by the algorithm shown in Fig. 4 (a), and thus, contradicting the property of
v, we would have v < s™%¢ = sT=1 11 Hence v > s"*~!. By the TL-completeness,
there is some match (k, () € AT*UAL such that 1 < k, ¢ < i. Furthermore, by Lemma
3.1, there exists some match (k',¢') € AT, U ALY such that (K, ¢') < (k,[). But then
1 <K', 0" < i, and therefore either AT or AL would be TL-complete after step i —1,
a contradiction to the choice of i.

Only if. Obvious from the management of the start indices. O

Lemma 3.3 For all i,u define AT .= AT U ALV and ABRY .= ABV U AR Then
a) VO <i<[m/2]V1 <u<min{e" e} AT s an antichain .

b) VO <i<[m/2] V1 <u<min{elP? et} ABRY s an antichain .

Proof. We prove the first claim by induction on 7. The base ¢ = 0 it trivial because
AT = A0 — (). For the induction step i — 1 — ¢, we consider three different cases.
Case a: 1 < u < s™*=1 Then AT = AT~ and Al = AL~ (see lines 15 and 30
in Fig. 3 (a), respectively). Thus, by the induction hypothesis, A5 is an antichain.
Case b: s"%=1 < u < min{e”! ™"}, By definition the set T' := IP(S, A1)
added to AT in line 3 (Fig. 3 (a)) is incomparable to AT~ but it is also incomparable
to AL as we now demonstrate. Let (k,¢) € IP(S, A1) and (K',¢') € AL, Observe
k = i and ¢ > i. Also note that ¥’ > ¢ and ¢ < i because A»* C L='. Thus
(k,0) < (K',¢") would contradict ¢ > i > {'. Furthermore, (k¥',¢') < (k,{) would
imply ¢’ < k' < k =1, i.e., AL"~! would be TL-complete, a contradiction to Lemma
3.2 and the choice of u. Similar arguments can be used for the set L := IP(S, A1)
added to A% in line 19. Finally note that T C 7% and L C L are also incomparable.
Case ¢: min{el" 1 i1} <y < min{e??, el'}. Clearly, this case is only possible
if u=¢€e" =e ! +1o0ru=ce" = e 4+ 1. If both conditions hold, then
AT CT'N M (lines 1 and 7) and A" C L' N M (lines 17 and 23), thus their union
obviously makes up an antichain. Otherwise, only one new antichain is generated
whereas the other one is updated, and we can argument as in the second case to show
that both antichains are incomparable.

The proof of the second claim is similar. O

Lemma 3.4 Let 1 <i < [m/2]. Then the following holds:

a) Vj < max{el e} Vp; € AT Ip, € ATB0 0 p_y € ATE:
P L. L pj.
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b) Vj < max{eP* ef'} Vp; € AP Ip, € APRY . p; oy € APRA:
P> >

Proof. We prove the first claim by choosing p, forv=7—-1,...,1.

Consider step j/ < i when p,;; was added to A%/ C ATE. Then Lemma 3.1
implies the existence of p, if v > s77'~'. Otherwise, by Lemma 3.2, A7 ~1 or Al'~1
has been detected to be TL-complete before step j', i.e., A7/ ~! contains a match
(k',0") such that k', ¢' < j'. But p,y is of the form (k,¢) with k,¢ > j', thus we can
choose p, := (K', ).

Similar arguments can be used for the second claim. O

Lemma 3.5 For 0 <i < [m/2], there are two chains
CTR,i CBL,i C TSZ U LSZ U Bgz U RSZ

of length e' 4 e and eB* + ™%, respectively.

Proof. We prove the existence of the first chain C*®' by induction on i. The base
i = 0 is trivial. For the induction step (i — 1) — ¢, we have to analyse the situations
which cause e’ + e to be greater than e/*=! + =1, One such situation is given
in lines 7-14 of Fig. 3 (a) if the condition in line 10 is not satisfied because then
e:= el = el 4+ 1 and € := e = e But since IP(AF 1, ATH) £ ARL
there exist two comparable matches ¢!’ € AT and cf € AF*~1. More precisely, since
¢’ € T and c® € RS~!) we must have (k, /) < (k’,¢'). Thus, by Lemma 3.4, we can
construct a chain

M. Lp L <<y, <. <)

of length e + €.
Similar arguments can be used for the remaining situations and for the other
chain. O

Our next task is to reveal the structure in D™ and DPF. We shall show that
for each deleted match there always is some antichain which is incomparable to this
match. In order to prove this property, we keep track of each deleted match by assign-
ing it to some antichain during the construction process. More precisely, whenever
an antichain A is removed due to the existence of some other antichain B which inac-
tivates it, all matches in A are assigned to B, e.g., considering the situation in Fig. 2
(d), the match (3, 8) is assigned to A7*3. Furthermore, all previously deleted matches
assigned to A now also belong to B. The assigned matches are inherited when an
antichain is updated, e.g., in Fig. 2 (e), (3,8) also belongs to AT**. These rules guar-
antee that after step i, each deleted match is assigned to exactly one antichain in
ATy ALY ABY Uy AR We write D(A) to denote the set of matches assigned to an
antichain A.

Lemma 3.6 Let 1 < i< [m/2], and assume (k,l) € D(A) for some antichain A in
ATi | ALi ABi or ARi Then

a) (k,() e DT = V(K. 0)eA: k<K ANL>0 .
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b) (k,0) € DBl = V(K () €A k>k AL L

Proof. For the first claim, let us assume (k, ¢) was assigned to A while executing line
11 in Fig. 3 (a) during step j < i (the following arguments can analogously be applied
to the other instructions which modify DT®). Thus A = AT, where e = 7. Now

e

we consider two cases concerning the status of (k, ¢) before step j.

Case a: (k,l) € ABI=1 C RS~! & = ef9='. Then ¢ > n — j + 1. From lines 1,
6, 7, and 10 we see that (k, /) is incomparable to any match (k”,¢") in A7. But
AT C 19, thus k" = j and ¢" < n— j + 1. Hence, the incomparability implies k& < j.
Now observe that AT+ is the first constructed part of A7*, later extensions are taken
from 77+, ... T% Thus every match (¥, ¢') € Al fulfills &' > j and ¢/ < n —j +1,
and the claim follows.

Case b: (k, () is assigned to A%~ We can inductively assume

V(K" 0" € ARV < KA 0> ("

Deleted matches are never assigned to empty antichains. Thus there is at least one
match (k”, (") € ARI=! and we can prove as in the first case that k” < k" and ¢" > /.
Hence we have k < k' and ¢ > 7.

The proof of the second claim follows similar arguments and is therefore omitted. O

Lemma 3.7 Let 1 <i < [m/2]. Then the following holds:
a) V1<u<el': DEEND(ATY) #£ ) = AL =0 A AT is TL-complete .
b) Vi<u<elt: DIEN DALY £ 0 = AT =0 N ALY is TL-complete .
c) V1<u<eli: DIRND(ABY) £ () = AR =0 A AB' is BR—complete .

d) V1 <u<elt: DPEND(ARY) £ 0 = AP' =0 A AR is BR—complete .

Proof. We again only show the first claim. From lines 10 and 11 in Fig. 3 (a),
we see that all matches assigned there to A" are either placed into D%, or they
have been assigned before to some non—complete antichain in A%~!. But concerning
the latter case, we see from lines 26 and 27 in Fig. 3 (b) that any such match has
been put into DT® as well, or again belongs to some non—complete antichain in A",
j < i. Repeating this argument, we conclude that all matches assigned to AT are
contained in DT®. The only exception is given by lines 8 and 9 in Fig. 4 (a), where
deleted matches are assigned to AT, but added to DPE. But then, from lines 3, 4,
and 13, the claim follows. O

Lemma 3.8 All matches assigned to an antichain A are pairwise incomparable, thus
by Lemma 3.6, they extend the antichain to a larger one.

Proof. Whenever a match is deleted, the algorithm always removes a complete an-
tichain. By induction, this antichain B together with its assigned matches forms a
larger antichain C'. If there already is a set of matches D assigned to A (which is
only possible when A is detected to be complete), then, following the arguments given
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in the proof of Lemma 3.7, C C DPF and D C D™ or vice versa, and Lemma 3.6
immediately implies that B and D are pairwise incomparable. O

We are now prepared to construct a minimal decomposition of M. We start by
decomposing M \ (D™ U D), the deleted matches are later considered in Thm. 3.9
below. The construction is as follows. Using Lemma 3.3, we combine the first
e™ = min{e""[™/?] ¢ m/2 } antichains in AT m/21 and ABI™/21 to larger ones. We
also connect the first e i— = min{e® ™21 efIm/21Y antichains in AP™/2] to the corre-
sponding ones in AR’fmm. For example, in Fig. 2 (e), we have e/ [m/2l = ¢B.Im/2] — 3
and e’»m/2l = ¢f:[m/2] — 2 thus this generates four combined antichains. Concerning
the remaining antichains we consider four different cases.

Case a: elm21 < elsIm/2l and eBIm/21 > eR[m/21  Then we leave the remaining
antlchalns as they are and have p := el m/2] 4 e B,m/2] antichains in total. But by
Lemma 3.5, there also exists a chain of this length. Thus, by Dilworth’s theorem, the
decomposition is minimal.

Case b: elIm/2l 5 elaIm/2] gnd eBIm/21 < eB:Im/2] ~ SQimilar to the first case we have
p = el [m/21 1 eR:[m/2] antichains, and also a chain of this length.

Case c: eI/l < el [m/2] and ePlm/2l < eflm/21 - From the management of the
start and end indices, we have " [™/21 > T:[m/2l _ 1 Thus, by Lemma 3.2, A%[m/?]
is not TL-complete for u > e°/™/21 This implies k¥ > [m/2] and ¢ < [m/2] for
any match (k,f) € ALI™/21 C [<m/21 For all v > eBI™/21 and (K, 0") € ARIm/21
we similarly have &' < [m/2] and ¢ > n — |m/2] > [m/2]. Thus AX™/2 and
ARIM/2] are incomparable. Now assume e[™/21 > ¢R[m/2l = Then we can connect
all remaining antichains in A%[™/21 to corresponding ones in A™[™/2l and obtain
p = el lm/2 + eB:Im/21 antichains in total, thus again a minimal decomposition. If
el Im/2l < eR:Im/21 "then similarly p := e© 2] + eflm/21 {5 the optimal length of a
chain in M\ (DTR u DBL).

Case d: eDIm/21 > elIm/2] apd eB[m/21 > eR:Im/2]  Finding a minimal decomposition
is slightly more complicated in this case. Consider the following algorithm. Starting
with u := eDI"™/2l and v := e®I™/21 41, we check whether AT[™/21 and AB[™/2] are
incomparable. If they are not, then we backup u and v in @ and 9, respectively, and
increase v by one. Otherwise the antichains are connected, u is set to u — 1, and v is
set to v+1. We repeat this until all remaining antichains in either AT:[™/21 or AB:[m/2]
have been used, i.e., u = e[™/21 or v > e#[™/21 Then the total number of antichains
is p := u+ eBI™/21 Thus, if u = eL["™/21 we have p = el[™/21 4 B:Im/21 and the
decomposition is optimal. Now assume u > e™[™/21_ If i and ¢ are unused, then all
remaining antichains in A%™/2] have been connected to corresponding antichains in
AT/ and we have p = e[™/21 4 f:Im/21 Hence, in this case the decomposition is
also a minimal one. Finally assume that @ and v have been used for saving u and v at

least once. Then for j =0+ 1,...,eBIm/21 AB.Im/2] hag been connected to AT[m/21,
and we have u = @i — (e™/?1 — ) Thus p =i — (ePIm/21 — ) + B2 = g + 3.

But from the properties of 4 and 7, it can be shown (similar to the proof of Lemma
3.5) that there is a chain of length @ + @ which contains two matches p; € ALIm/?]
and p, € ABI™/21 Hence, the constructed decomposition is optimal.

Let us consider our example. Case d applies to the situation in Fig. 2 (e), and AT+
is compared with AZ*. Since these antichains are incomparable, they are connected,
and we obtain a decomposition consisting of 5 antichains in total.
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Theorem 3.9 The length of an LCS in M equals p as defined in the four cases above.

Proof. Consider a combined antichain A of the decomposition. Assume an antichain
ATIm/21 ¢ AT:Im/21 i one component of it (otherwise, we can handle the following
construction in a similar way).
Case a: ATI"™/?1 is the only component of A. Then we extend A with the set B of
deleted matches assigned to AT:[™/?1 Lemma 3.8 guarantees that the result is still
an antichain.
Case b: ATI™/?1 has been combined with A%[™/21. By Lemma 3.7, B C D™. Let
(k,0) € AL/ and (i, ¢) € AT/ From (k,¢) € LI/, (K, ¢) € T/, and
the incomparability of (k,¢) and (k',¢'), we have k > k' A ¢ < {'. Now consider a
match (k”,¢") € B. By Lemma 3.6, we have k > k' > k" and ¢ < ¢' < {". Hence,
ALIm/21 s incomparable to B. We can use a similar way to show that the set C' of
deleted matches assigned to AX™/? is a subset of DP" and incomparable to AT[™/?1.
Finally, B and C are clearly incomparable as well. Thus AT[™/21 y ALI™/21y BuUC
is still an antichain.
Case ¢: AT[™/2] has been combined with some other antichain D € AP*. Then,
similar to the proof of the second case, we can show that the union of A and the two
corresponding sets of assigned matches still make up an antichain.

By handling each combined antichain in this way, we can construct a decomposi-
tion of M without generating any additional antichains. The proof is complete. O

Fig. 2 (f) illustrates the corresponding decomposition for our example.

4 Implementation

We now describe an efficient implementation for the given algorithm and analyse its
time and space complexity.

All new antichains created in step ¢ are extensions from antichains generated
during step : — 1. Furthermore, the only antichains used for decomposing M are from
the last step. Thus for the implementation it is sufficient to update the antichains of
interest. The same is true for the start and end indices, and we thus sometimes drop
the index 7 from now on. The necessary information for each actual antichain can be
kept in one single number as follows. Let 1 <4 < [m/2] and 1 < u < ™. We define
ThreshT[u] as the leftmost column used by some match in A7 i.e.,

ThreshT[u] :== min{¢|3k: (k,£) € AT} .

For example, in Fig. 2 (b), ThreshT[1] = 3, and in Fig. 2 (d), Top-Thresh[1] = 2,
ThreshT[2] = 3, and ThreshT[3] = 6. To update this array in each step, we use an
auxiliary array LeftPos on X x [1 : n + 1] given by

LeftPos[c, 0] :==min({n+ 1} U{j|[L<j<n Ay =c}),

i.e., LeftPos|a;, {] equals the column number of the leftmost occurence of a match in
row ¢ located right to column /¢, and equals n + 1 if there is no such match. In our
example (y = cbabbacac), we obtain the following values:
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a3 3 3 6 6 6 8 & 10 10
b|2 2 4 4 5 10 10 10 10 10
c|1 7 77 7 7 9 9 10

Now it is not difficult to see that the following routine correctly updates ThreshT
when processing T*, representing lines 1-7 in Fig. 3 (a). (Similar procedures are used
in [AG87, Ric94, Ric95] to determine contours which correspond to the antichains
used here.)

k := LeftPos[a;, ;

For u :=s™" To T Do {
j := ThreshT[ul;
Ifk<j And k<n—i+1 Then {
ThreshT[u] := k; k := LeftPos[a;,j + 1];

b
b
Ifk<n—i+1Then { el :=eT 4+ 1; ThreshT[eT] :=k };

For A AB and A% we introduce additional arrays ThreshL, ThreshB, and
ThreshR which similarly store the topmost rows, rightmost columns, and bottommost
rows used by the corresponding antichains. To handle them analogously to ThreshT,
we also need three more auxiliary arrays given by

TopPos[c,k] =min({m+1}U{jlk<ji<mAz;=c}), I1<k<m+1),
RightPos[c,l] =max({0}U{j|1<j<l Ay =c}), 0<e<n),
BottomPos[c, k] := max({0} U{j |1 <j <k A z;=c}) , (0<k<m) .

Note that in Fig. 3 and Fig. 4, each test for the incomparability of two antichains
can be replaced by a rather simple conditional statement. For example, considering
line 10 in Fig. 3 (a), we know that all matches in 7% are located to the left of any
match in R<~!. Thus, with e := e and ¢é := ef**, AT and ALE are incomparable if
and only if A is also completely contained in the first i rows, i.e., ThreshR[e] < i.
The algorithm presented in Fig. 6 shows how the other situations are handled. It also
makes use of some special implementation details which cannot be discussed here,
e.g., the construction starts with the bottommost row instead of the topmost one
when m is even. In Fig. 6 some lines are marked with a dot (e) on their left sides.
These lines are used for the construction of an LCS and should be ignored for the
moment.

The complexity of the algorithm may be deduced as follows. The four auxiliary
arrays can be easily preprocessed in O(ns) time and space, where s = |X|. Clearly,
during one of the [m/2] iterations of the main loop, none of the four inner While—
loops takes more than O(p) time, and when determining p, at most [m/2] pairs of
antichains have to be compared. Thus the algorithm takes at most O(ns+mp) time.
Furthermore, observe that the j—th antichain in AT (which is added to AT during
some step i > j) must contain a match (&, £) with £ < n— (p— j), otherwise it would
be impossible to construct a chain of length p. But then this antichain is detected
to be TL-complete after step n — (p — j), therefore it is only considered for at most
n—(p—j)—i<n-—p times in the corresponding While-loop (lines 59-65). Similar
arguments can be given for antichains in A, A®, and A®. Hence, we have shown the
following theorem.
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Determine TopPos and LeftPos;

Determine BottomPos and RightPos;

For u := 0 To [m/2] Do {
ThreshT[u] := 0; ThreshL[u] := 0;

For u := 0 To [m/2] Do {
ThreshB[u] := n + 1; ThreshR[u] := m + 1;

If Odd(m) Then Goto Line 57;
While ¢ < b Do {

(* Main loop *)

k := RightPos|zy,T]; (* Update AP x)
u = sBR;
While u < eB Do {
j := ThreshBlul;
If k > j Then {
ThreshB|u] := k; k := RightPos[zy,j — 1];

u:=u+1;
b
If k > £ Then {
eB :=u; ThreshB[eP] := k;
If ThreshLle®] > b Then el :=el —1
Else Update ¢B, ¢L, ¢BL;

b
k := BottomPos[y,,b— 1]; (x Update AR x)
u = sPR;

While u < e® Do {
j := ThreshR[ul;
If £ > j Then {
ThreshR[u] := k; k := BottomPos[yr,j — 1];

)
ui=u-+1;

)
If k >t Then {
el :=u; ThreshR[eR] := k;
If ThreshT[eT] > r Then eT :=eT —1
Else Update ¢, ¢, (TR,
b
(% Check for BR—complete antichains )
If ThreshB[sPR] = r Then {
If sBR > ¢F Then {
If ThreshT[eT] > r Then el := €T —1
Else Update T, cB, (TR,

S’BR = sBR + 1;
} Else If ThreshR[sPR] = b Then {
If sPR > ¢B Then {
If ThreshL[e’] > b Then el :=el — 1
Else Update cB, ¢, ¢BF;

;
sBR .= §BR 1 1;

b
t:=t+1;0:= L0+ 1;

60

65

70

75

80

85

90

100

105

110

113

k := LeftPos|x¢,{];
u = s
While u < T Do {
j := ThreshT[u];
If k < j Then {
ThreshT[u] := k; k := LeftPos[zt,j + 1];

(* Update AT x)

)
ui=u+1;

’
If k <r Then {
el :=u; ThreshT[eT] :=k;
If ThreshR[ef'] <t Then ef :=ef — 1
Else Update ¢, &, (TR,

b
k := TopPos[y;,t]; (* Update AL %)
u:=sTl;

While u < el Do {
j := ThreshL[ul;
If k < j Then {
ThreshL[u] := k; k := TopPos[y;,j + 1;

ui=u+1;
b
If £ < b Then {
el := u; ThreshL[el] := k;
If ThreshB[eP] < ¢ Then eB :=¢B —1
Else Update ¢B, ¢&, ¢BL,;
b
(* Check for TL—complete antichains )
If ThreshT[s™"] = ¢ Then {
If s > el Then {
If ThreshB[eP] < £ Then eB :=eB — 1
Else Update c¢B, cL, ¢BL,
b3

sTL .= gTL 4 1,
} Else If ThreshL[sT*] =t Then {
If s > ¢T Then {
If ThreshR[e®] <t Then ef :=eR — 1
Else Update ¢, ¢, (TR,

s’TL =T 41,
&
b:=b—1;r:=r—1;
b
(* Determine length p of an LCS x)
If e” > el And eP > ef! Then {
If s < e Then s := el 4 1;
If sBE < R Then sBF :=ef 4 1;
u:=eT; v:= sPR;
While u > s™ And v < B Do {
If ThreshT[u] > ThreshB[v]
Then uv:=u —1
Else { 4 :=u; 7 :=v };
v:i=v+1;
b
pi=u-+ eB;
} Else p := max{e” +eP,eT +ef};

Figure 6: The O(ns + min{mp, p(n — p)}) algorithm for determining the length p of
an LCS.

Theorem 4.1 The length p of an LCS can be computed in O(ns~+min{mp, p(n—p)})
time and O(ns) space.

This result has been achieved before by Rick [Ric94, Ric95], and in fact, the algo-

rithm presented here is some kind of dualization of Rick’s method, but our algorithm
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is significantly faster as we shall show in Sect. 6.

5 Construction of an LCS in Linear Space

This section deals with the generation of an LCS. The idea is to apply the divide—
and-conquer scheme [ABG92, Hir75, KR87| which first identifies at least one point
of an LLCS such that this LCS is splitted into two parts of roughly the same size.
Then the remainder is computed by recursive calls. The method presented here
usually determines two LCS-neighbouring matches ¢* and ¢®® which are located
in T<Im/21' g L=Im/21 and B=I™/21 g R<I™/21 respectively. This is accomplished as
follows.

In each step i of the construction described in Sect. 2, we subsequently update
the following variables:

e p'" is the match which caused A”7* or A" to become TL-complete, s = s —1.
For example, in Fig. 2 (¢), p™ = (2,2), and in Fig. 2 (d) and (e), p" = (3, 3).

e pPF has a corresponding meaning for the last BR—complete antichain in A5*
and A% e.g. in Fig. 2 (d), pPf = (6, 7).

o ¢ and c® are the two matches introduced in the proof of Lemma 3.5. They
both lie in C*%% and are neighbours in this chain. Furthermore, ¢! and cf
are always located in the first ¢ topmost rows and ¢ rightmost columns of M,
respectively.

e B and c” have analogous properties for OB

o /™ and ¢P" is the position of ¢! in CT%* and of c* in OB, respectively. Also,
(™% 11 and ¢PF 4-1 is the position of c® in CT%* and of ¢? in C'PL*, respectively.

p'™ and pPf can be easily updated. For example, consider lines 85-98 in Fig. 6 where
new TL-complete antichains are handled. Let p* = (u,v). If the condition in line
86 is satisfied, then we know p’” has to be set to the bottommost match located in
the first ¢ rows and column /. Therefore two additional statements can be inserted
between lines 86 and 87 such that  is set to BottomPos[y,, t] and v is set to . Similar
statements apply for the situation in lines 92-98, and this completes the description
of the management for p’”. p®® can be handled in a similar way.

c’', cf, and (™ must be updated whenever the length of C™%# increases. These
situations are indicated in lines 40, 46, 69, and 95 in Fig. 6, and here we only sketch
how to manage them. By arguments analogous to the ones given in the proof of
Lemma 3.4, we have to distinguish two cases when updating ¢’'. If s > e*, then
c!' is set to p™”, otherwise ¢! can be determined by some additional statements which
are similar to the ones used for updating p’*. In either case, we set /7% to e’ because
e is the position of ¢ in CT%%, as seen in the proof of Lemma 3.5. The management
of c¢?, ¢, and (P is similar.

Now let us review the construction of the final decomposition given in the end of
Sect. 3. If p is set to e [™/2] 4 efI™/21 then we can use ¢’ and c® as the appropriate
matches for ¢’* and ¢PF. Similarly, if p = eP[™/21 4 ¢L:[m/2] e establish ¢* = ¢&
and ¢PF = ¢P. Finally, if a longest chain is determined by the algorithm described in



A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem

case d of the construction (corresponding to lines 103-112 in Fig. 6), and p is not set
to one of the above values, then we can use the backup values @ and v to determine
¢ := (BottomPos|ys, ], ys) and ¢P% := (TopPoslys,t],ys), where 4 := ThreshT][u]
and 9 := ThreshB[0].

Before recursively calling the algorithm for the remaining parts of the LCS, we
see it is necessary for our routine to not only work on the complete matrix of size
[1:m]x[1: n], but also on any subarea [k : ka] X [¢; : £5]. The necessary changes are
quite straightforward, and we do not provide any details here. Moreover, it might be
impossible to locate both ¢ and ¢®® (e.g., when |M| = 1), but then one recursive
call can simply be skipped.

Theorem 5.1 An LCS can be constructed in O(ns + min{mp, mlogm + p(n —p)})
time and O(ns) space.

Proof. Clearly, for the top—level call, the additional overhead needed to keep track
of the new variables is bounded by O(m). Thus, not taking into account the time
consumed by preprocessing or any recursive calls, we can assume the number of ele-
mentary operations to be bounded by d(m+min{mp, p(n—p)}), for some appropriate
constant d. We first examine the bound d(m+mp). Let ¢’ = (k,¢) and "% = (K, (')
(if only one match has been determined, the analysis is similar). Consider the two
first—level recursive calls concerning the areas M; := [1 : k — 1] x [1 : £ — 1] and
My :=[kK'+1:m]x[¢'+1:n]. Let p; and py denote the length of an LCS in M; and
M,, respectively, i.e., p; + p» = p — 2. Recall that ¢ is located in the first [m/2]
rows and columns, i.e., the length of one side of M, is bounded by [m/2] — 1. The
same is true for Ms, and thus the number of operations taken for both first-level calls
is bounded by

d([m/2] — 1)(p1 + 1) +d([m/2] = 1)(p2 + 1) < dp%

Repeating this argument, we obtain a dmp/2' bound for the at most 2¢ ith-level
recursive calls. Since recursion ends at level [log(m/2)], this sums up to at most
2 - dmp for the complete algorithm.

For the other bound d(m + p(n — p)), let g := (v/5 —1)/2 ~ 0.618 and consider
the following two cases.
Case a: p < gm. Then
2 dmp < ——d(1 - g)mp = ——d(m — gm)p < ——d(m — p)p < ——d(n — p)p

T l-y l—g T l-y T l-y

Case b: p > gm. Let h := max{k — 1,/ — 1} and A’ := max{m — k’,n — ¢'}. Clearly
h+h < mn—2. Also note that p;,py < [m/2] — 1 because an LCS cannot exceed the
length of any side of M; and M,. But then the two first-level recursive calls use at
most

d([m/2] =1+ pi(h—p1)) +d([m/2] = 1+ pa(h' — p2))
<dm+pi(h—p1)+p2(h —p2)) <d(m+ ([m/2] —1)(h—p1 + I — ps))
<d(m+ ([m/2] = 1)(n —p)) <d(m+ 5p(n - p))
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operations. Similarly, all sth—level recursive calls together use at most

d(m +p(n —p)/(29))

operations. This sums up to

1 2
d(mlogm + —————=p(n —p)) = d(mlogm + ——p(n —p)) .
1-1/(29) l—g

Both cases imply that the algorithm takes at most O(ns+min{mp, mlogm-+p(n—p)})
time, and the worst case overhead factor can be expected to be 2/(1 — g) < 5.25.
Furthermore, when comparing the divide-and—conquer routine with the algorithm
which determines the length p of an LCS, we only need O(logm) additional stack

space, and thus the O(ns) space bound is still valid. O

6 Experimental Results

We compared our routine with the algorithm proposed by Rick [Ric94, Ric95] which
clearly outperforms any other method when constructing longest common subse-
quences of intermediate lengths. Rick’s algorithm is also a flexible one, being very
efficient for short and long LLCS as well. It uses a strategy similar to the one pre-
sented here, but only constructs antichains (or contours) from the top and left side
of M. While this substantially simplifies the implementation and also the prepro-
cessing phase (i.e., we only have to compute LeftPos and TopPos), there are two
severe drawbacks. First, in order to recover an LCS after determining its length, the
so—called dominant matches must be saved during the construction of the contours,
and this might take Q(mn) space. Second, the number of checks of Thresh—values is
significantly increased when decomposing M from only two sides. For an alphabet of
size 8, Table 1 shows some sample results when determining p for different settings
of m, n, and p.

Table 1: Frequency of checks of Thresh—values

m n D Rick [Ric95] New method m n D Rick [Ric95] New method
500 500 100 16864 14983 1500 1500 300 145129 126796
500 500 200 28962 23078 1500 1500 600 265107 216845
500 500 300 33276 23394 1500 1500 900 280026 207000
500 500 400 20384 13276 1500 1500 1200 172846 121516

The corresponding running times are presented in Table 2. Both algorithms were
programmed in a straightforward way, using no special optimizations, and were tested
on an Intel Pentium II at 300 MHz. It can be seen that our algorithm only takes
about 70% of the time needed by Rick’s method when computing the length of an
LCS which is of intermediate length. For very short or very long LCS our method
slightly suffers from the additional overhead during the preprocessing phase, but is
still very efficient.

Finally, we checked the running times and the consumed space when generating
an LCS. Table 3 shows that in spite of the linear space restriction, our algorithm
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Table 2: Running times in microseconds for determining the length p of an LCS.

m n p | Rick [Ric95] New method m n P Rick [Ric95] New method
500 500 100 3352 3626 1500 1500 300 24451 21868
500 500 200 5659 4725 1500 1500 600 46099 34835
500 500 300 6978 4890 1500 1500 900 54176 33791
500 500 400 5000 3516 1500 1500 1200 38791 22308

sometimes runs more than twice as fast as Rick’s method. This is due to the significant
overhead in Rick’s routine which is caused by the additional statements responsible
for saving the contours in memory. Furthermore, the worst case factor 5.25 calculated
in the proof of Thm. 5.1 is much too pessimistic in practical situations. Instead, a
comparison with Table 2 shows that it roughly equals 2.

Table 3: Running times in microseconds for constructing an LCS of length p.

m n P Rick [Ric95] New method m n p | Rick [Ric95] New method
500 500 100 6319 6044 750 750 250 23132 16374
500 500 200 14341 9066 750 750 400 39835 20495
500 500 300 19505 9890 750 750 550 38516 16758
500 500 400 15769 7802 750 750 700 16319 9945

Table 4: Allocated space in bytes for constructing an LCS of length p.

m n D Rick [Ric95] New method m n D Rick [Ric95] New method

500 500 100 64284 34072 750 750 250 219244 51072

500 500 200 143820 34072 750 750 400 390172 51072

500 500 300 199464 34072 750 750 550 396136 51072

500 500 400 176328 34072 750 750 700 193780 51072
Conclusions

We have investigated a new algorithm for the Longest Common Subsequence Problem.
In spite of the quite complicated technical details necessary for the construction and
analysis, the final routines proved to be extremely practical. More precisely, we have
shown three results. First, we have presented a new fast method for determining the
length of an LCS. Second, we have developed a linear space algorithm for constructing
an LCS in O(ns + min{mp, mlogm + p(n —p)}) time, thus solving a previously open
problem. And third, we have shown by some experimental results that this algorithm
is by far the fastest one when dealing with usual applications.

Acknowledgement. We would like to thank Dr. F. Kurth for helpful comments.
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Abstract. A centroid of a tree T is a node v which minimizes over all nodes the
largest connected component of T' induced by removing v from T. A centroid
tree U of another tree T is defined on the same set of nodes of T: the root v
of U is a centroid of T" and the subtrees of v (in U) are the centroid trees of
the connected components of T'— v. We describe some interesting properties of
the centroid and of the centroid tree. Our linear algorithm to find a centroid
of a tree improves on the previously known algorithms either in terms of space
requirement or in terms of time requirement. From the algorithm for finding a
centroid it is easy to obtain an O(nlogn) time algorithm to construct a centroid
tree of a given tree with n nodes. However, we do not know whether this is
the best that one can achieve. By exploiting the properties of the centroid
tree, we devise an efficient algorithm for the longest common substring problem
(LCS). Given two strings S (the text) of length n and P (the pattern) of length
m, the LCS problem is to find the longest substring that appears in both the
text and the pattern. Our algorithm requires O(nlogn) time and O(n) space
to preprocess the text. After preprocessing of the text, the algorithm takes
O(mlogn) time using O(m) extra space to find the solution. The algorithm
may be used in the DNA applications in which the text is very large and fixed
and is to be searched with many different patterns (n > m).

Key words: balanced trees, centroid of trees, string pattern matching, the
longest common substring problem

1 Introduction

Let T" be an arbitrary tree and let V' denote the set of nodes in 7. Let v € V and
let T1,T5,---,T; be the connected components of T induced by removing v from T’
(denoted by T'— v). Let |T| denote the number of nodes in 7. Define

N(v) = max{|Ti]}.

1<i<d
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A centroid of the tree T' [Har69] is a node v, which minimizes N(v) over all nodes v,
i.e.,v. satisfies
N(v.) = min{N(v)}.

veV
It can be shown that every tree has either one centroid or two. This fact has been
extensively applied (see, for examples, [Gol71], [KH79], [FJ80], [MTZC81], [Sla82]).
Goldman [Gol71] and Megiddo et al. [MTZC81] proposed linear algorithms for finding
the centroid of a tree. All algorithms known to us that make use of a centroid finding
algorithm call either Goldman’s algorithm or Megiddo’s algorithm as a subroutine.

Goldman’s algorithm requires a copy of the original tree 7" as an auxiliary tree on
which it works. Therefore, O(n) extra space is needed. While Megiddo’s algorithm
does not need any extra space, it has to visit each node at least once. In this paper,
we present an algorithm, which might be viewed as a combination of Goldman’s
algorithm and Megiddo’s algorithm. Our algorithm improves on the mentioned two
algorithms either in terms of space or in terms of time. Specifically, our algorithm
does not need an extra copy of the original tree; at the same time, it does not need
more time than Goldman’s algorithm. Our algorithm visits each node of the tree at
most once; at the same time, it does not need more space than Megiddo’s algorithm.
Of course, one cannot improve the complexity order of the two mentioned algorithms
since both are asymptotically optimal in terms of space and time.

The notion of the centroid of a tree inspired the notion of the centroid tree.
A centroid tree U of another tree 1" has the same set of nodes as T. U’s root v
is a centroid of 7" and v’s children (in U) are the centroid trees of the connected
components of T'— v. A nice property of the centroid tree is that its height is logn.
[t is easy to obtain an O(nlogn) time algorithm to construct a centroid tree from the
algorithm for finding a centroid of a tree. However, it is unknown whether this is the
best time complexity that one can achieve.

By exploiting the properties of the centroid tree, we are able to give an efficient
algorithm for the longest common substring (LCS) problem. Given two strings S (the
text) of length n and P (the pattern) of length m, the LCS problem is to find the
longest substring that appears in both the text and the pattern. An efficient solution
to the problem can be useful for homology searching in nucleotide/protein sequence
databases [Wat89], in the editing distance problem, in the multiple pattern searching
problem, etc. Our algorithm requires O(n logn) time and O(n) space to preprocess
the text. After the preprocessing, a query can be answered in O(m logn) time. The
algorithm is probabilistic and there is a small chance of error. That is, it may claim
that a substring of the pattern is identical to a substring of the text while they are not
really identical. This is called a “false match”. However, the probability of a false
match can be made arbitrarily (inverse-polynomially) small within the above time
bounds. Our algorithm has obvious advantages over the previously known algorithms
and is particularly useful for the DNA applications in which the text is very large
and fixed (n > m) and in which one wishes to search the text with many different
patterns (For example, the DNA sequence of a human being may have up to 3 x 10°
nucleotides and a typical pattern sequence may have a few hundreds to thousands
nucleotides).

The rest of the paper is organized as follows. In Section 2 we present our algorithm
for finding a centroid of a tree. We address the problem of constructing a centroid
tree in Section 3. In Section 4 we devise an algorithm for the LCS problem applying
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the results presented in Sections 2 and 3. We then conclude the paper by discussing
some open problems in Section 5.

2 Finding centroid

Lemma 2.1 ([Har69]) FEwvery tree has either one centroid or two. In the later case,
the two centroids are connected by an edge.

If i and j are two neighboring nodes of the tree T, then by removing the edge (i, j)
two connected components C(i, j) and C(j, i) are induced: C(i, j) is the component
which contains node i and C'(j, ) is the component which contains node j (Note that
C' is defined on ordered pairs of neighboring nodes). Let u be a node of T" and let
x1, -+, xqg be all neighbors of u. Then C(xy, u),---,C(z4, u) are all the connected
components of T'— u. In the following we sometimes simply use C(i, j) to refer to
|C'(7, )| (i-e., the number of nodes in C'(i, j)) when no ambiguity would likely occur.

The following lemma is crucial for our algorithm to find a centroid of a tree
correctly.

Lemma 2.2 A node v is a centroid of the tree T if and only if
N(v) <n/2.

Proof We first prove the necessary condition of the lemma. Let v be a centroid of
the tree T. Suppose N(v) > n/2. Let xy, - - -, x4 be all neighboring nodes of v. Then
by the definition of a centroid, there must exist a neighboring node, say z;,, of v such
that C(z;,, v) > n/2. Let yi, -+, yk—1, yx = v be all neighboring nodes of z;,. Then,

N(l‘io) = maX{C(yl, xio)v C(?J?a xio)v T C(yk—la xio)a C(Uv xio)} (13)
We then have

N(zi,) = C(v, z;y) if C(v, z4y) > Clyj, 239) (G =1, ...,k —1) (14)
N(z;,) < C(w,, v) otherwise .

Since C(x;,, v) > n/2, C(v, z;,) < n/2. It then follows that
N(ziy) < C(x4,, v) = N(v).

So by the definition of a centroid of a tree, v cannot be a centroid of the tree 7. This
contradicts the assumption that v is a centroid of the tree T" and therefore establishes
the necessary condition of the lemma.

We now turn to prove the sufficient condition of the lemma. Suppose v is a node
of the tree T satisfying N(v) < n/2. Let u be a centroid of T. If u = v, the sufficient
condition is proved. We thus consider the case in which u # v. Let xy, ---, x4 be
all neighboring nodes of u. v must be in one of the connected components of T" — u,
say C(x;,, u). Let yi, ---, yp = v be all neighboring nodes of v. Let y;, # v be
the neighboring node of v on the path from z;, to v. From N(v) < n/2, we know
that C(y;,, v) < n/2, and then C(v, y;,) > n/2. Because C(v, y;,) is a subtree of
the component C'(z;,, u), we know that C(x;,, u) > n/2. Thus, N(u) > n/2. Thus,
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N(u) > N(v). Therefore, since u is a centroid of T', v must also be a centroid of T'
and N(u) = N(v). This completes the proof of the sufficient condition of the lemma.
O

Lemma 2.2 says a node v is a centroid of 7" if no connected component induced by
removing v from 7' contains more than n/2 nodes.

We now describe the algorithm. Without loss of generality, we let the tree T be
rooted at an arbitrary node r. We denote by K (i) the number of nodes in the subtree
rooted at 7. Then it is easy to see the following:

1. K(i) =1ifiis a leaf, and
2. K(i) = > ¢ child of i K(c)+1ifidisnot a leaf.

The algorithm computes K (i)s by proceeding from the leaves of the tree towards the
root. One may start from any leaf. But by rule, one is only allowed to use rules (1)
and (2) to compute K (i)s (This is called the bottom-up manner).

The algorithm

Compute the K(i)s in the above defined bottom-up manner until a node v is reached
such that K(v) > n/2. Node v is a centroid of T. If K(v) = n/2, v’s father is another
centroid of T.

The cost

We assume that the representation of the tree allows us to access each leaf of the tree
in constant time and any node can be reached from any of it’s children in constant
time. We note that it is easy to build a linked representation of the tree that will
have these desired properties in linear time and space. Then in the worst case, the
algorithm needs to visit each node of the tree just once. The worst case occurs only
when the sole centroid of the tree is also the root of the tree.

We could use, for instance, the most common left-child, right-brother representa-
tion of a tree. In this representation, each node x of the tree contains three pointers:
1. parent[z] points to the parent of node x, 2. left-child[x] points to the leftmost
child of x, and 3. right-brother{x] points to the brother of x immediately to the right.
Under this representation, the algorithm will enter each node x at most twice: 1.
either from its father or from its left-brother, and 2. (when z is a nonterminal node)
from one of its children. So if the left-child, right-brother representation of a tree is
used, the algorithm needs at most 2n — f node visits where f denotes the number of
leaves of the tree. Note that this implementation of the algorithm does not make use
of the assumption that at any point one can access the leaves of the tree in constant
time. This is why this implementation may visit some nodes of the tree more than
once (but at most twice). If we augment the left-child, right-brother representation
of a tree with an array of pointers each pointing to a leaf node of the tree, the above
algorithms only needs to visit each node of the tree at most once.

Megiddo’s algorithm needs first to traverse the tree to compute some function
whose definition is similar to that of K (i) for each node i, then looks for the centroid
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along a “right” path of the tree. That is, it need at least 2n — f steps if the left-
child, right-brother representation of the tree is used. While the idea of Goldman’s
algorithm is similar to that of ours, Goldman’s algorithm requires an extra copy of
the tree to work on. It deletes in some way the nodes of the extra tree until there is
only one node left; this remaining node is then a centroid of the tree (see [KHT79] for
another version of Goldman’s algorithm).

The correctness of the algorithm

If v is the first node we encountered in the course of computing the £(i)’s in the
bottom-up manner such that k(v) > n/2, then N(v) < n/2. The correctness of the
algorithm then follows from Lemma 2.2.

3 Centroid trees

Definition 3.1 (centroid tree) A centroid tree U of another tree T is defined on
the same set of nodes of T': the root v of U is a centroid of T, and the subtrees of v
(in U) are the centroid trees of the connected components of T —v and v (in U) is
connected to the roots of these (sub-)centroid trees.

We sometimes use U(T') to denote a centroid tree of another tree 7. Note that
U(T) # T in general but U(U(T)) = U(T). So different trees may have the same
centroid tree. Lemma 3.2 shows a nice property of the centroid tree, which motivated
our work of searching for efficient methods for constructing centroid trees.

Lemma 3.2 For any tree T with n nodes, the height of its centroid tree U is O(logn).

Proof Each node except the leaves in U has at least two children; by Lemma 2.2 the
number of nodes in any branch at any node v in U is no more than half the number
of nodes in the subtree rooted at v in 7. So the height of U cannot exceed the height
of a complete binary tree with the same number of nodes, which is |log, n]. O

A straightforward approach to the construction of a centroid tree is to repeatedly
call the centroid finding algorithm discussed in the previous section. This approach
requires O(nlogn) time. There are many ways to speed up this approach. However,
it is not clear whether it is possible to asymptotically improve the time complexity
of this naive approach. Let’s call this simple approach Algorithm Naive.

The following simple observations may help us to gain more insight into the cen-
troid tree construction problem.

Lemma 3.3 Let u be any node of the tree T'. If the sizes of all connected components
of T—u are less than or equal to n/2, then u is a centroid of T. Otherwise, the centroid
of T must be in the maximal component of T — .

Proof The correctness follows from Lemma 2.2. O
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Lemma 3.4 If a centroid v of the tree T is in a subtree S of T, then v must lie on
the path s,---,u or lie on the path s,---,u,u’ where s denotes the root of S, u is a
centroid of S and u' is a child of u (with respect to the root s). In the latter case,
both u and u' are the centroids of T.

Proof Let v be a centroid of 7. Suppose that v is not on the path s,---,u. Then
there are two cases to consider.

In the first case, v’s father f (v # f) is on a path f’,---, f,v such that f’ is on
the path s,---,u (it is possible that f = f’). Since v is a centroid of T, |C(f,v)| <
n/2. Thus C(v, f) (the subtree rooted at v) contains at least n/2 nodes. Then the
connected component of S that consists of C'(v, f) and the path s,---, f contains at
least n/2 + 1 nodes. Therefore, by Lemma 2.2, u cannot be a centroid of the subtree
S, which leads to a contradiction.

In the second case, v is a descendant of u' and v # ' where v’ is a child of u (it is
possible that u’=u). Since v is a centroid of T', C'(v, u') (the subtree rooted at v) has
at least n/2 nodes. We need to consider two subcases: a. C(v,u’) has exactly n/2
nodes. Then by Lemma 2.2, v’ is another centroid of T'. It is easy to see that u = u’.
Otherwise, the subtree rooted at u' contains at least n/2+ 1 nodes and therefore, u is
not a centroid of the subtree S, which is a contradiction. b. C(v,u’) has more than
n/2 nodes. This means a branch of u that contains v’ has more than n/2 + 1 nodes.
Thus, v cannot be a centroid of the subtree S, which is also a contradiction.

This completes the proof of Lemma 3.4. O

Lemma 3.5 Let s; and sy be any two neighboring nodes of the tree T with |C(s1, s2)]
=ny, |C(s2, s1)| = ne and ny > ny. Let u be a centroid of C(sy, s1) and let ny denote
the number of nodes of the subtree rooted at u of T. If the K(i)s of all nodes i of
T are known, we need at most min(n/2 — ny, n/2 — n3) steps each of which takes
constant time to find a centroid of the entire tree T'.

Proof Let v be a centroid of the tree T. By Lemma 3.4, v must lie on the path
S9,-+-,u. We can check the nodes on the path one by one until we finally reach a
centroid of T. The connected component of T'— v that contains s, has at most n/2
nodes; so if we proceed from s, towards u we need at most n/2 — n; steps before we
reach a centroid of 7. The connected component of 7"— v that contains » has at most
n/2 nodes; so if we proceed from u towards s, we need at most n/2 — ng steps. In
either of these two directions, each step takes constant time because the K (i)s of all
nodes 7 of 7" are known. O

We have modified Algorithm Naive by making use of Lemmas 3.3, 3.4 and 3.5.
The resulting algorithm is called Algorithm Heuristic. We have applied Algorithm
Heuristic to several random trees. The preliminary experimental results showed that
Algorithm Heuristic constructed a centroid tree for a given random tree in time
proportional to the number of nodes in the tree on the average. However, at we are
unable to prove this behavior of Algorithm Heuristic rigorously.
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4 Application to string processing

In this section we make use of the properties of the centroid tree to solve the longest
common substring (LCS) problem. The problem is, given a string S (the text) of n
characters and a string P (the pattern) of m characters over some finite alphabet ¥,
to find the longest substring which occurs in both of the two strings. An efficient
solution to the problem can be useful for homology searching in nucleotide/protein
sequence databases [Wat89], in the editing distance problem, in the multiple pattern
searching problem [Per93], etc. We are particularly interested in the case of the
problem in which the text is given in advance and is fixed, and many queries with
different patterns will be made later.

Three algorithms for the LCS problem are previously known (named algorithms
P1, P2, and P3 respectively) [Per93]. It is also possible to solve the problem by
constructing a suffix tree for the concatenation of the two strings and then marking
each node of the suffix tree that has leaves from both of the two strings in its subtree.
Let’s name this algorithm Clat. In the following we will propose a new algorithm
for the problem. Table 1 shows the time and space bounds of the previously known
algorithms compared with this new algorithm (named Algorithm New).

Table 1: Comparison of the LCS algorithms

Algorithm | Preprocessing Searching time

space time worst case average
P1 m Y| m 3| + m? n
P2 2| 1Z| +m mn nlogn
P3 m+ |3 2m+ |3 mn (1+5)n
Cat m+n
New n nlogn mlogn

A weakness of Algorithm P71 is that it requires large amounts of space and pre-
processing time for large alphabets and/or patterns. Algorithm P2 requires that the
size of the pattern be no more than the size of a word of the machine on which the
algorithm is executed. When the size of the underlying alphabet is quite small, e.g.,
|¥| = 4 in the case of DNA applications, the average-case performance of Algorithm
P3 deteriorates to its worst-case performance. While Algorithm Cat runs in O(n+m)
time, it is not proper for applications in which the text is very large and fixed and
one wishes to search the text with many different shorter patterns (n > m). This
is because although the text is fixed and static for many queries, for each new query
(new pattern) Algorithm Cat has to rebuild a suffix tree for the text and the pattern
which takes as much as O(n + m) time. For example, a DNA sequence of a human
being may have up to 3 x 10° nucleotides and a typical pattern sequence may have
a few hundreds to thousands nucleotides. In such cases, m + n > mlogn, the time
needed by our new algorithm to answer a query.

The new algorithm finds the longest prefix of each of the suffixes of the pattern P
in the text S. Note that P has m suffixes and therefore there are at most m longest
prefixes (of the suffixes) that appear in T. The algorithm then simply choose the
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longest one from these prefixes found as an answer to the LCS problem. It requires
O(n logn) time and O(n) space to preprocess the text. After the preprocessing, a
query can be answered in O(m logn) time. An advantage of this approach is that in
cases where the text is large (e.g., n > m logn) and static for many queries, we only
have to preprocess the text once; after the text has been preprocessed, a query can
be answered quickly. It is a probabilistic algorithm and there is a small chance of
error. That is, the algorithm may claim that a substring of the pattern is equal to a
substring of the text while they are not equal at all (This is called a “false match”).
However, as will be seen later, the probability of a false match can be made arbitrarily
(inverse-polynomially) small.
The general structure of the algorithm is as follows:

e Preprocessing stage

— construct a suffix tree T for the text S

— construct a centroid tree U for the suffix tree T
e Searching stage

— search the centroid tree U for locations of the longest prefix of each of the
suffixes of the pattern P in the text T’

Now, we describe the algorithm in detail. Since algorithms for building suffix trees
in linear time and space are known in the literature [Wei73, McC76, Ukk95] and we
have already presented an algorithm for building the centroid tree (in Section 3), we
will concentrate on the searching stage of the algorithm.

Let the text be S = S[1]---S[n| and let the pattern be P = P[1]---P[m]. We
use a suffix tree to represent the text. Assuming that the suffix tree T" of the text S
and a centroid tree U of T' are already available, our search algorithm searches the
trees for the occurrences of the pattern in the text.

Let w be the end node of the path that the pattern P determines in T'. If P is
not a substring of S, then we define the end node w to be the node that corresponds
to the longest prefix of P that is a substring of S. Our goal is to find w.

We maintain the following variables:

e v, the current node in U; v is a centroid of some connected component C' of T

e u, the topmost node of C' (in T'); the substring corresponding to u is the longest
substring of S found so far that is a prefix of P.

e i, an index to P such that P[1],---, P[i] determines the path from the root to
u.

e j, the length of the substring determined by the path from u to v.

e k, a pointer to S that corresponds to the end position of the substring deter-
mined by the path from the root to v.

Furthermore, let x be any node of 7. We denote by x.length the length of the
substring determined by the path from the root to node x and denote by z.end an
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index to S that corresponds to the end position of this substring in S. Note that by
assumption, x.length and x.end are already stored in each node = on construction of
the suffix tree.

Given v and v computing j and k is easy:

j :=wv.length — u.length,;
k :=w.end. (15)

Initially, u := the root of T'; v := the root of U; ¢ := 0; and j and k are computed
by (15).

In order to find w efficiently we need to find a way to decide quickly which of
the connected components induced by removing v from 7T contains w. There are
two possibilities: w is in the component that is “above” v or w is in one of the
components that are “below” v. We notice that w is a descendant of v if and only
if S|k —j+1]---S[k] = Pli +1]---P[i + j]. If w is in the component “above” v,
we assign the centroid of that component to v and u is unchanged; if we know which
of the components “below” v contains w, we assign the root of that component to
u and assign the centroid of that component to v. The above ideas are precisely
presented in procedure search in Figure 1. procedure search finds and stores w
in its variable v and stores the index to P referring to the end position of the longest
prefix of P that is equal to a substring of .S in its variable ¢ when executed with u
being initialized to be the root of T', v being initialized to be the root of U and ¢
being initialized to be 0.

The question that is crucial to implement procedure search efficiently is: Given
a substring S[k|---S[k + j] of S and a substring P[i]--- P[i + j] of P, how can we
answer quickly whether they are equal or not? There is a probabilistic method [Nao91,
KRA&7] which, after preprocessing the strings S and P in linear time and space, can
test whether a substring of S is equal to a substring of P in constant time. There is a
probability of error (a false match) in any test. But the probability of a false match
can be made arbitrarily (inverse polynomially) small.

The method needs a prime ¢ which is chosen at random from a set of primes
smaller than M (to be stated soon). It is this prime ¢ that may lead to a false match.
By Theorem 3 of [KR87] the probability of a false match is less than m(n)/m(M)
where m(n) denotes the number of primes smaller than n. By Lemma 2 of [KR87]
e < om(u) < 1.255065%. Thus, for example, if we choose M to be n’logn, the
probability of a false match is (asymptotically) 1/n?logn.

We now look at the complexity of procedure search. Note that at each step v
is assigned to one of its children (in U). By Lemma 3.2 the height of U is O(logn).
So procedure search requires O(logn) steps. From the above discussion, each step
takes constant time. So procedure search needs O(logn) time to find the longest
prefix of P that appears in S.

To solve the whole LCS problem, for every suffix P, = P[i]---P[m] (i =1,---,m)
we find the longest prefix of P, that appears in S with procedure search. From
among all these (locally) longest prefixes found, we choose the (globally) longest one
as an answer to the LCS problem. All this takes O(mlogn) time.

To summarize, our algorithm for the LCS problem consists of:

e Preprocessing the text
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procedure search(node: u, v; integer: i);
integer: j, k;

begin
j = wv.length — u.length;
k := v.end;

if S|k —j+1]...S[k]=Pli+1]...Pli+ j] then /* j may be 0 */

if 1 + 5 = m then i := m; stop

/* P is equal to the substring of S corresponding to node v */

else

if there exists a child ¢ of v in T corresponding to the symbol
Pli+ j + 1] then

if the substring S[k + 1]...S[k + ] of S corresponding to the edge
(v,¢) is equal to a substring of P starting at P[i + j + 1] then

u =
v :=v’s child in U corresponding to the subtree rooted at c in T
=147+
search(u,v, 1)

else

/* Let L denote the maximal z in [1,[] such that
Slk+1]...S[k+z]=Pli+j+1]...Pli+j+z*/
find L with binary search supported with the substring equality
testing technique;
t:=1+j+ L; stop
/* P[1]...P[i] is the longest prefix of P that is equal to a
substring of S; this substring is the concatenation of the
substring corresponding to node v and S[k +1]...S[k + L] */
end
else
1 =1+ j; stop
/* P[1]...PJi] is the longest prefix of P that is equal to a
substring of S; this substring corresponds to node v */
end
end
else
if there exists a child of u in T corresponding to P[i + 1] then
v :=v’s child in U corresponding to the component “above” v;
search(u,v,1)
else
v 1= u; stop
/* P[1]...P[i] is the longest prefix of P that is equal to a
substring of S; this substring corresponds to node v */
end
end

Figure 1: Search for end node of path determined by pattern.



Centroid Trees with Application to String Processing

— construct a suffix tree T for the text S in O(n) time and space.

— construct a centroid tree U for the suffix tree T in O(nlogn) time and
using O(n) space.

— process the text S in order to be able to check quickly the substring equal-
ity. This takes O(n) time and space.

e Searching for the pattern

— process the pattern P in order to be able to check quickly the substring
equality. This takes O(m) time and space.

— search the centroid tree U for locations of the longest prefixes of all the
suffixes of the pattern P in the text S in O(mlogn) time and O(1) space.

That is, the preprocessing takes O(nlogn) time and O(n) space and the searching
takes O(mlogn) time and O(m) extra space.

To make this algorithm error free, we can add a step that checks whether a claimed
match is true or false. If the claimed longest match is false, we discard it and check the
second longest match, and so on, until we reach a true match. Since the probability
of a false match can be made arbitrarily (inverse-polynomially) small without asymp-
totically increasing the time and space requirements of the algorithm, the chance of
using this checking step can be made arbitrarily inverse-polynomially small as well.

5 Open questions

It is of considerable interest to either establish that there exists a non-linear lower
bound on the run time of all algorithms which construct a centroid tree for any given
tree, or to exhibit an algorithm whose run time is O(n).

It is also interesting, at least from a practical point of view, to find centroid tree
construction algorithms that run in linear time on the average and require linear space
even if their worst-case behavior could be much worse. Are there any deterministic
algorithms to do the search (as discussed in Section 4) using the same order of time
as the probabilistic one does?
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