
A Highly Parallel Finite State Automaton

Processor for Biological Pattern Matching

Glen Herrmannsfeldt

Department of Molecular Biotechnology

University of Washington

Box 357730

Seattle, WA 98195-7730

USA

e-mail: gah@mbt.washington.edu

Abstract. Finite State Automata are useful for string searching problems

mostly because they are fast. For very large problems, a software implemen-

tation will not be fast enough. I describe here a parallel implementation of a

hardware Deterministic Finite State Automaton processor. It can rapidly search

a large database for approximately matching strings, as a �lter for more detailed

processing later. As the most important parts, large Random Access Memory

chips, are continually getting cheaper, it should be possible and a�ordable to

make large arrays of such processors.

Key words: �nite automata, approximate string matching, high-speed search-

ing, deterministic �nite automata, massive parallelism

1 Finite State Automata for Biology

An important problem in contemporary molecular biology is sequence comparison.

One would like to compare DNA or protein sequences against other DNA or protein

sequences and �nd ones that are most similar. As the database of known DNA and

protein sequences is growing exponentially, this problem is continually getting harder.

It is useful to have a machine to rapidly compare a group of sequences against a large

disk �le of sequences and indicate which ones match most closely.

All the examples will be done using a DNA alphabet size of four. The DNA

database is much larger than the protein database, and so the larger, faster, processors

are needed here �rst. The processors should be designed to also handle the protein

20 character alphabet.

This paper describes the design of hardware implementations of Finite State Au-

tomata [HU79][W87] for processing biological sequences. In all cases described here,

the Finite State Automata are Deterministic, though sometimes the acronym FSA

will be used instead of DFSA or DFA.

58



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

2 The Problem with Insertions and Deletions

The preferred method for approximate sequence comparison is dynamic programming

[NW70]. Preferred, that is, unless you are in a hurry. Heuristic methods, based on

hashing or �nite state automata are faster than dynamic programming, but are not as

good at separating the biologically related sequences from statistically insigni�cant,

but similar looking sequences.

While �nding an exact match fast is relatively easy, biological problems usually

don't work that way. Both natural genetic mutations and errors in sequencing can

cause inserted, deleted or substituted bases. Dynamic programming is well suited

to doing comparisons with a supplied similarity matrix, giving the score for aligning

any database character with any query character, and with speci�ed insertion and

deletion penalty values.[G82] Applying a dynamic programming algorithm will give a

score for each database sequence aligned with the query sequence, and one can select

the highest scoring sequences. The limitation is that dynamic programming is slow.

A modern RISC superscalar processor can do over 100,000,000 mathematical op-

erations (additions or comparisons) per second. Using a dynamic programming algo-

rithm with 10 operations per matrix element, where the number of matrix elements

needed is the product of the query length and database length, we can calculate over

10,000,000 matrix elements per second. With a 1,000,000,000 base DNA database,

and typical 1000 base query, one search requires 100,000 seconds, or about one day.

To compare the entire 10

9

base GenBank against itself would require evaluating 10

18

matrix elements in 10

11

seconds. This is over 3000 years, clearly not practical.

One way to speed up the calculation is with special purpose hardware. Systolic

array processors work very well for dynamic programming algorithms, [LL85][CH91]

and are certainly the way to go to for fast dynamic programming. With an array of

10

3

processors, each evaluating 10

7

cells per second, the GenBank comparison can be

done in 10

8

seconds, or about three years. But a large fraction of the sequences being

compared will have no relation to the query sequence. If one could do an even faster

comparison, as a �lter before running the dynamic programming algorithm, it might

be possible to speed up the whole process. It should at least be possible to �nd the

interesting results sooner.

3 Finite State Automata for Biological Searching

The BLAST program is the most popular Finite State Automata implementation for

biology.[AG90][KA90][KA93] It is probably the most popular overall. BLAST can

rapidly scan a database to �nd possible matches, and then spend more time trying to

extend those matches. With the default parameters, and some luck with the choice of

query, BLAST may be within a factor of two of the speed that the data can be read

o� the disk. BLAST is very good at �nding close matches, though its performance

falls of for less exact matches. There are adjustable parameters which can be used to

tune the search strategy. With parameters that do a better job at �nding less exact

matches, BLAST will slow down.

59



Proceedings of the Prague Stringology Club Workshop '98

4 A Hardware Implementation of a Finite State

Automaton

Searching with a Deterministic Finite State Automaton is very simple. The new state

is obtained through a lookup table from the current state and the incoming database

character. In hardware, this is not much more than a large RAM array and a register.

One could imagine a single printed circuit board with a large number of processor

elements, each consisting of a few RAM chips and a simple programmable logic chip,

each processor implementing a DFSA. With the currently popular 64 Megabit RAM

chips, and more recently available 256 Megabit chips, a lookup table with 8 million

entries, and running with a 10 MHz clock should be very feasible. If one or more query

sequence can be compiled into an 8 million state FSA, then we could get hundreds of

queries on a system at one time, and search at near the disk streaming transfer rate.

That is the motivation for this paper.

If we assume a 10 million character per second streaming rate, that a 1000 char-

acter query can be compiled into a single FSA processor, with 100 processors our

comparison rate is 10

12

per second. We can complete the GenBank against itself

comparison in 10

6

seconds, about twelve days. This would be fast enough to al-

low multiple passes, to adjust parameters, and select sequences to feed to a slower,

dynamic programming processor.

5 Finite State Automaton Size

A critical parameter is the size of the FSA necessary. Finite State Automata are very

good at �nding an exact match, as this requires relatively few states. For biological

problems, it is necessary to include some substitution data, and usually also some

insertions and deletions in the comparison. This is the reason we need such large

FSAs. With dynamic programming, the scoring and gap penalties are part of the

algorithm, and are used to calculate the score. With an FSA, it is necessary to

predetermine all the sequences we will match, including sequences with substitutions,

insertions, or deletions. We need a balance between the ability to �nd less exact

matches, and the size of the FSA needed.

If we take a typical query of 1000 characters, and we search for an exact match,

we need a 1000 state FSA. (Like BLAST, we trigger on transitions and not states,

reducing the required state memory.) If we want to �nd any 16 character substring,

we have 985 substrings of 16 characters each, for 15760 states.

At this point, it will be assumed that the number of states is equal to the total

number of characters in the query substrings. Fewer states will be required, because

of degeneracy at the beginning of the tree. Each state requires one table entry for

each character in the alphabet. For now, we calculate just the total query size, and

assume this is close to the number of states needed.

If we want to �nd any of the 16 character substrings with one of three possible

substitutions from the DNA alphabet, in any one of the 16 positions, have to search for

the exact match plus 48 possible mismatched strings, for each of the 985 substrings.

Thus 49 � 985 = 48265 strings of 16 characters each, requiring 772240 states in the

FSA. If we add all the single insertion and single deletion strings to the list, we

60



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

increase by nearly a factor of three, approaching two million states.

This could be implemented as a two million entry look-up table, with each entry

large enough to address the entire table, and in addition, to indicate the required

result information. It takes 21 bits to address the two million entries, plus at least

one bit to indicate a hit. In matching the �nal character, we indicate a hit and return

to a lower state, the longest su�x of the matching state. In all cases where a match

fails, the transition is to the longest su�x of what has been matched.

In the case of DNA, with an alphabet size of four, it is also possible to store the

database with four bases per byte, for a 256 character alphabet. This increases the

data transfer rate by a factor of four, but it also changes the FSA size. We reduce

the length of the query subsequences by a factor of nearly four, but we still increase

the number of table entries per database character by a factor of 64. For small FSA

on a slow processor, like BLAST uses, this makes sense. If our query substrings

were randomly distributed, it would not. However, our query substrings are not

statistically independent, and in fact, the substitution/insertion/deletion model gives

us many query substrings that di�er in only one position. This reduces the number

of states required, so it may turn out to be useful. In a hardware implementation,

we do better by including more processors. If the processor can run faster than the

disk transfer rate, we can unpack the data after it comes o� the disk. This would, for

example, allow us to use the signi�cantly faster cycle time of static RAM relative to

dynamic RAM to our advantage.

6 Finite State Automata as Filters

We consider the Dynamic Programming calculation as the preferred way to score

sequence matches. The goal now is to separate likely candidates from unlikely ones. A

�lter that would reduce the number of comparisons by a factor of ten in the following

stage would seem useful, yet practical. If we allow random strings through with

a 10% probability, and assume that the real signal is well below this, we should

nearly achieve this goal. If we assume DNA with an alphabet size of four, and also

assume that the base usage is randomly distributed, we can calculate statistically

how many hits we should get with di�erent query substring lengths and numbers

of substitutions/insertions/deletions. For the example, each of the 48265 length 16

strings should randomly match one in 4

16

positions in the database. With a 10

9

database size, or nearly 4

15

, each of the query strings has about one in four chance

of matching. We would like an entire 1000 base sequence to have about a one in ten

match rate. One possibility is to increase the length of our query substrings.

Table 1 shows the results if we allow up to one substitution, insertion, or deletion

in di�erent length (l) substrings of a 1000 character query. The �nal column shows

the expected number of matches of a random string in a four character alphabet

matching against a 10

9

character database.

We can see that 10% is somewhere between 25 and 26 character query substrings,

and nearly six million states needed in the FSA. With strings this long, though, one

error in 26 may not be enough. If we increase the allowed number of errors, then we

need even longer query substrings to maintain the 10% hit rate.

As an additional complication, we should remember that our query strings are

not necessarily statistically independent. With the one error allowance, many strings

61



Proceedings of the Prague Stringology Club Workshop '98

l n e t f x

10 991 91 90181 901810 86003303.53

11 990 100 99000 1089000 23603439.33

12 989 109 107801 1293612 6425440.31

13 988 118 116584 1515592 1737236.98

14 987 127 125349 1754886 466961.41

15 986 136 134096 2011440 124886.63

16 985 145 142825 2285200 33254.04

17 984 154 151536 2576112 8820.56

18 983 163 160229 2884122 2331.64

19 982 172 168904 3209176 614.47

20 981 181 177561 3551220 161.49

21 980 190 186200 3910200 42.34

22 979 199 194821 4286062 11.07

23 978 208 203424 4678752 2.89

24 977 217 212009 5088216 0.75

25 976 226 220576 5514400 0.20

26 975 235 229125 5957250 0.05

27 974 244 237656 6416712 0.01

28 973 253 246169 6892732 0.00

29 972 262 254664 7385256 0.00

The required FSA size is approximately proportional to the total number of characters

in the query substrings. We tabulate for di�erent lengths (l) the number of substrings

in a 1000 character query (n), the number of cases of each with no errors, or a single

substitution, insertion, or deletion using an alphabet size of four (e). Also, the total

number of query substrings (t), and total number of characters in those substrings (f).

The �nal column (x) is the expected number of times one of the query subsequences

should match in a 10

9

character database, assuming they are statisically independent.

Table 1

62



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

are very similar. In any case, to make a useful �lter, we must do better than match

a single substring with up to one error.

7 A Two Level Finite State Automaton

In order to implement approximate string matching in a Finite State Automaton, we

need a vary large number of states. However, many of the states end in a similar

result. One possible way to get around this, and allow for a more reasonable memory

size, is to drive a second FSA from the output of the �rst. Suppose we want to match

all substrings of length 24 with up to three mismatches. We could generate a FSA to

match all substrings of length six with up to three mismatches, and to output a value

indicating how many mismatches it found. Then a second FSA matches the patterns

in the output of the �rst. If we have an exact match, the �rst FSA will generate a

series of exact match states. We now have to match four exact match states each

six positions apart. There are still a large number of states to match, but the large

number of strings with a given number of mismatches will all map into the same state

in the output of the �rst stage.

To see how the number come out, we calculate the case just described. For a DNA

alphabet size of four, strings of length six, and up to three substitutions, insertions,

or deletions, including the �rst and last characters when appropriate, the results are

shown in table 2. A total of 21065 strings of length six are needed for the �rst FSA.

For the second FSA we have an alphabet size of 21, the states tallied, plus the

\none of the above" state, and strings of length up to 22. We need up to 19 for the

exact match, and up to 22 to �nd the three insertions case. We need to distinguish

substitutions, insertions, and deletions to match up the di�erent sub-matches. The

result, though, will be that the second FSA is even larger than a single FSA would

be.

If we really need to detect all such matches, and only such matches, that is what

would be required. But for our �lter application, we can use a more statistical method.

An FSA that �nds six or eight character substrings will �nd many more of them in a

reasonably similar sequence. In a region of a long exact match, it will continuously �nd

matching substrings. In a long approximate match, we will have many consecutive

single error matches. We need, then, a way to statistically recognize a good match

from the output of a FSA matching smaller substrings. We implement the �rst FSA

to output only the number of errors, zero, one, two, three, or \more", where \more"

is too many to be useful.

We implement the second FSA similar to an accumulator, where its state would

rise in high match regions, and fall in low match regions, accumulating match scores.

If it reached a su�ciently high state, either due to an exact match, or a longer, but

less exact match, it would signal the hit. This is a little similar to the way dynamic

programming algorithms accumulate scores, though more statistical. It is di�erent

than dynamic programming in a special way: at each position it does not destinguish

which query substring matched, only that one did. While this would be a disadvantage

to dynamic programming, it may be an advantage to us. There are many sequences

of marginal similarity that we would otherwise miss. If the query substrings are

long enough, they should represent biological features, even if we wouldn't otherwise

recognize them. Doing this well implies understanding the details of the sequence

63



Proceedings of the Prague Stringology Club Workshop '98

Match condition Cases Strings

Exact match 1 1

One substitution 6 18

One deletion 6 6

One insertion 5 20

Two substitutions 30 90

Two deletions 30 30

Two insertions 20 320

Three substitutions 120 3240

Three deletions 120 120

Substitution and Insertion 30 360

Substitution and Deletion 30 90

Substitution and Insertion 30 360

Substitution and two deletions 120 360

Two substititions and deletion 120 1080

Substitution and two insertions 120 5760

Two substitution and insertion 120 4320

Insertion and deletion 30 120

Insertion and two deletions 100 400

Two insertions and deletion 80 1280

Insertion substutution deletion 125 3000

For a six character string, we tabulate the number of cases of substitutions, insertions,

deletions, and combinations. The numbers get large very fast, and FSA for these cases

must be considered carefully. These numbers are approximate, as they don't include

degeneracy in the original sequence, but give an idea about how the query space

increases with increasing allowable errors.

Table 2

64



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

better than I have described here. The important point, though, is that for longer

queries we can use a more statistical approach to the scoring, and still �lter what we

need to �lter.

The biology of approximate matches is a little di�cult to describe, but maybe

another example will make it more obvious. Imagine an FSA to recognize english

words. For an exact answer, one should include an entire dictionary, but realizing the

non-uniform distribution of letters and letter groups, one could score based on these

groups. Using digraph (two letter) or trigraph (three letter) frequencies in a FSA

would recognize possible english words with a high probability. Protein sequences

can be similarly recognized by groups of amino acids, even if the groups are in a

di�erent order. It is this feature that FSA can �nd though dynamic programming

cannot.

8 Counting FSA States

Until this point, only the total query size was used as a measure of FSA size. Here,

the calculation gets more detailed. With a large number of query substrings, the

lower FSA states will be well populated. With an alphabet size of four, and the FSA

expanding like a tree, the �rst level will have four states, the second level 16, and

the third will have 64. In the terminal branches, the number of states will equal the

number of query substrings, each one indicating a hit. In between, it transitions from

the saturated lower states, to the sparse terminal states. It is these transition states

where the FSA spends most of the time during a search.

For di�erent levels of the tree, a four character alphabet and 10000 query sub-

strings, the numbers are shown in table 3.

The table shows, for each level i of the tree, l the number of states at that level,

r the probability of that string matching a random string of that length, and p the

probability of matching a string of that length and not matching a longer string. This

last column gives the probability that the FSA will be at this level of the tree, at an

average point during the search.

For an alphabet size of a, the number of possible states at level i is a

i

, and there

won't be more than the number of query subsequences. If statistically independent,

the fraction not used is (1�a

�1

)

j

Where j is number of query subsequences per state

at the previous level. That is, at each branch of the tree at level i we have j query

subsequences to divide up among a new branches. Then l is this fraction multiplied

be a multiplied by the number of states at the previous level. Next, the probability

p of being at or past level i is la

�i

, the number of states divided by the number of

possible states. The incremental probability, �p is p

i

� p

i+1

, the probability of being

at least at level i minus the probablility of being higher than level i.

9 Scaling Laws for FSA Processors

With the ability to put multiple processors on one board, the balance between the

size of each processor and the number of processors becomes important. For a �xed

board size or �xed cost, we would like to know how many of what sized processors to

use. High overall processing speed is achieved by having many processors all running

65



Proceedings of the Prague Stringology Club Workshop '98

i l p �p

1 4 1 0

2 16 1 0

3 64 1 0

4 256 1 1.32e-05

5 1024 0.999987 0.060238

6 3849 0.939748 0.445070

7 8105 0.494678 0.346872

8 9687 0.147806 0.109828

9 9956 0.037978 0.028448

10 9994 0.009531 0.007147

11 9999 0.002384 0.001788

12 10000 0.000596 0.000447

13 10000 0.000149 0.000112

14 10000 3.73e-05 2.79e-05

15 10000 9.31e-06 6.98e-06

16 10000 2.33e-06 1.75e-06

17 10000 5.82e-07 4.37e-07

18 10000 1.46e-07 1.09e-07

19 10000 3.64e-08 2.73e-08

20 10000 9.09e-09 6.82e-09

21 10000 2.27e-09 1.71e-09

22 10000 5.68e-10 4.26e-10

23 10000 1.42e-10 1.07e-10

24 10000 3.55e-11 2.66e-11

25 10000 8.88e-12 6.66e-12

26 10000 2.22e-12 1.67e-12

For each level (i) of the FSA tree for alphabet size four,

and 10000 query substrings, the number (l) of states there

are likely to be, and the probability of being at least at

this level. The �nal column, �p, indicates the

probability of being at this level and not a higher level.

Table 3

66



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

at the same time. Making one large processor, is inconvenient. Some parts, including

addressing logic, get bigger as the logarithm of processor size. For result collection

reasons, it is more convenient to have the processor size close to the size for a single

query sequence, of approximately 1000 bases.

If we make the processor too small, we are limited by the number we can get

on a board, and the overhead in board area and cost per processor. The control

logic should be done using programmable logic[X96]. Though a simple PAL may be

enough, though something a little more complex would probably be useful. In any

case, the control logic should be a single chip, and the board area that this takes up

will be the most important parameter determining the overall logic density.

Toshiba makes a 64k by 32 bit synchronous static RAM with a 15ns cycle time

[TOS98]. This could be clocked at 66 MHz, and hold a 65,536 state FSA. The

package itself is 22mm by 16mm. If the control logic was a similar size, and the

necessary space between chips added, we need about 10cm

2

of board area.

Samsung makes 128k by 36 bit and 256k by 18 bit synchronous static RAMs

with a 6ns cycle time.[SAM98] The access time, the time between the address being

clocked in and the data being clocked out is about one half the cycle time, so some

time is available for the control logic. Though it will be very di�cult to keep up with

a 166 MHz clock.

Samsung also makes a 16M by 16 bit synchronous dynamic RAM, with a 72ns

read cycle time. (A read cycle requires 9 cycles of a 125 MHz clock.) While the cycle

time is much slower than the static RAM, it is closer to the rate we are likely to get

data into the processor array. The much larger FSA size will allow overall a greater

throughput. As this RAM is only 16 bits wide, two will be required to be able to

address all the states. The package size of 10mm by 22mm, a little more than half

the SRAM sizes, allows again for about a 10cm

2

processor unit. The processor runs

12 times slower than the SRAM processor, but allows 64 or 128 times the number of

states. Except for the extra di�culty of designing for DRAM, this is certainly worth

using.

The physical size of a RAM package depends very little on the number of bits

stored. Packaging technology is keeping up with current RAM densities, and the

silicon size is growing very slowly, approximately logarithmically with the number of

bits. With a given size for the control logic and RAM package, what is the optimal

number of RAM units to use per control unit?

If the control chip area and RAM chip area are about equal, and we use this size

as our unit area, we want to maximize the number of query sequences multiplied by

the number of states (input characters) per second we can process. The required

number of states is about equal to the number of query sequences per processor. The

area for the control logic increases with the required number of address bits, again

logarithmically with RAM size.

With the size and speed of the RAM factored out, the number of states per

unit area is proportional to n=(1 + n), increases asymptotically with increasing n.

The number of address lines, and things proportional to the number of address lines

increase as log n, so that n=((1+n) log n) is a better measure, which still increases with

increasing n. However, generating the FSA also gets more di�cult with increasing

n. It is because of this, and simplifying result collection, that we size the RAM to

the largest RAM we can get with the smallest number of chips with su�cient data

67



Proceedings of the Prague Stringology Club Workshop '98

output lines.

10 Result Collection

One of the easiest details to overlook is the collection and storage of result data. If

this becomes a bottleneck, it will limit the speed of the entire system. In this case, we

need to at minimum know which query sequence matched which database sequence.

Optionally, we would know where in the query or database the match was found. As

a �lter, this additional information is less important.

To �nd query and database sequence information, we must have an indication

of sequence boundaries stored in the database. If we allow only one query per FSA

processor, we only need to know which processor detected the hit. We should then

latch this state until the next database sequence, avoiding multiple records of the

same match.

While the goal is that 10% of the sequences will have hits, in some cases it could

approach 100%, and hit collection should be designed to tolerate this case. We could,

then, require millions of hits per query per search. Most economical, is to have a

small number of hit processors for the entire array. We then have to either bu�er

hits, or store the entire hit record on each cycle. Bu�ering requires FIFO (First In

First Out) memory in the result path. Storing the entire record, with only one bit

per processor, means storing a bit vector at each hit signal. If we allow only one hit

per sequence per processor, then we can store the bit vector, one bit per processor,

at the end of each database sequence for which we have at least one hit, along with

the database sequence number. This is a reasonable compromise in memory required

for storing hits.

11 An Implementation Detail

While many implementation details should be left up to the system designer, there is

one very interesting one that I describe here. In any technology, dynamic RAMs are

much larger in bits stored, than static RAMs, for a similar silicon area and price. In

the RAM array, it takes six transistors for a traditional static RAM cell, but only one

for a dynamic RAM cell, so it is interesting to consider a design with dynamic RAM.

To keep a dynamic RAM refreshed, it is necessary that every value of some of the low

order bits be accessed every few milliseconds. RAM is normally implemented as a

square array of data cells. In a DRAM read cycle, a row of bits are destructively read

out, then stored back into the array. The column address then selects the appropriate

bit from the row. It is the read and write back that refreshes the stored charge in the

entire row, which happens on any read or write cycle. Normally, processors cannot be

depended on to generate addresses su�ciently randomly to rely upon this to refresh

the data. Dynamic RAM controllers will add special refresh cycles to guarantee that

the data is refreshed in time. But in a processor that naturally cycles through the

array, video displays being a common example, this is not necessary.

In designing a Finite State Automaton, it is possible to cycle the low order bits,

assuming a little randomness to the input stream. To use real numbers, a certain 256

Megabit DRAM requires each of 8192 rows to be refreshed every 64ms.[SAM98B] If

68



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

the cycle time is close to 64ns, that means that each row must be accessed every one

million cycles. A FSA search processor will normally have some states that it spends

much of its time in. Table 3 shows this for a speci�c combination of parameters. If

we take this small number of states, and arrange a succession of equivalent states for

them, which cycle the appropriate address bits, it should work. For the case in Table

3, there are 3849 states that together represent 47% of the cycles. If we replace each

of these states by ten or more equivalent states, and distribute the addresses among

these states, it should be possible to cover the 8192 states needed for the refresh

condition.

It may take a fair number of states to do this, but with an 8 million state machine,

there should be states to spare.

If this can't be depended upon, it would also be possible to add extra data to the

database to insure randomness at the appropriate point. Of course, one could always

implement standard refresh logic in the controller.

12 Generating the Finite State Automaton

The ability to process large FSA fast requires the ability to generate them fast.

Once we have a list of query sequence fragments, including ones with substitutions,

insertions or deletions, a single FSA is generated from them.

With the four character DNA alphabet, we generate a quaternary (base 4) tree for

the FSA. To do this, we read in the query sequences and follow through the states of

the current FSA. When we try to take a branch with no successor state, we generate

a new state and �ll all entries with zero, add the branch from the previous state to

the new state, and continue on through the sequence.

After we have generated the tree, there will be many states left still with no

successor.[W87] It is necessary to back �ll these states, to point to the state that the

automaton would be in if that state didn't exist. Consider the FSA to match only

the query ACGTACGC: The states, in succession, will have matched A, AT, ACG, ACGT,

ACGTA, ACGTAC, ACGTACG, before reaching the �nal tt ACGTACGC. Now, consider the

input ACGTACGT. Before the �nal T the FSA will be in the ACGTACG state, attempting

to match the �nal C. When the T is read, it must return to the ACGT state, the state

matching the longest su�x of the current input.

To do this, an algorithm devised by Gish[Gish] for use in BLAST[AG90] is used.

This algorithm starts from the root state and considers every branch that leaves the

root state. Each adds onto a circular queue of from and to states, the branch from

the root state to its successor state. Then the queue of from and to states is then

processed. For each branch out of the to state that is still zero, we replace it with

the corresponding branch out of the from state. This does exactly what is needed: it

branches to the same place we would have gone if the current state didn't exist. The

FIFO (�rst in �rst out) queue is important here. The next state must be the state

representing the longest match to the input stream. As the tree is traversed, deeper

states, representing longer matches, get �lled �rst. The scan and �ll process is very

fast and executes in time linear in FSA size.

If we are generating a two million state FSA from an input stream, we should

consider how fast this process is. With current size machines, we should be able to �t

the whole table in processor real memory. In the tree building phase, for each input

69



Proceedings of the Prague Stringology Club Workshop '98

character, we need to check the current table entry, add a new state if it doesn't exist,

and then move to the next state. For the back�ll process, we need to progress through

the tree as states are added to and removed from the FIFO queue. The queue depth

could approach the number of states in the FSA, and each queue entry needs two

state pointers.

The generate and back�ll algorithm should be fast enough to keep the system

running. During a search, the processor should be able to stream data at 16 million

characters per second. The time needed to generate and load the FSA should be

less than the search time. With upcoming genome projects expected to generate 30

gigabase data sets within three years, there should be enough data to keep the system

running.

If our search time is on the order of hours and we need hundreds of FSA's generated

in that time, we must generate them in minutes. We should be able to generate two

million states in times the order of seconds on 100 MHz processors. Writing the

generated FSA out to disk is the slowest part.

For the dynamic RAM version using statistical refresh, we want multiple copies

of the more commonly occupied states. If we generate a complete tree for the �rst

levels, with multiple identical copies of the level common states distributed through

the low order address bits, and then add new states onto this, we should have a good

start.

13 Conclusion

A large array of Finite State Automaton processors can be built for a reasonable price.

This array can be used to rapidly search a database for some set of query sequences,

and to store information related to the query sequences found. In some cases, this

may be enough, otherwise, it can be used as input to a more detailed search. It should

increase the value of the more detailed search by concentrating the useful sequences.

70



A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

C code fragment to back�ll states in a FSA

q=0;

for(i=0;i<ALPHABET;i++) f

j=fsa[i];

j &= ACCEPT;

if(j==0) continue;

fifo[q].from=0;

fifo[q].to=j;

q++;

g

head=q-1;

tail=0;

while(q>0) f

from=fifo[tail].from;

to=fifo[tail].to;

tail=(tail+1)%(state+1);

q--;

for(i=0;i<ALPHABET;i++) f

j=fsa[from+i];

k=fsa[to+i];

if(!k) f

fsa[to+i]=j;

continue;

g

if(k & ACCEPT) f

fsa[to+i]=j | ACCEPT;

continue;

g

if(!(j & ACCEPT)) f

head=(head+1)%(state+1);

q++;

fifo[head].from=j;

fifo[head].to=k;

g

g

g

Figure 1: After all the query sequences are added to the FSA it is necessary to back�ll

it. Each link that is not part of a query sequence must point back to the state that

the FSA would be in with the same input if the current state did not exist. The

signi�cant feature of this algorithm is the FIFO queue of states to be done.

71



Proceedings of the Prague Stringology Club Workshop '98

References

[AG90] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., J. Mol.

Biol. 215, 403-410 (1990).

[CH91] Chow E.T., Hunkapiller T., Peterson J.C., Zimmerman B.A., Waterman

M.S., A systolic array processor for Biological Information Signal Process-

ing. Proc. of International Conference on Supercomputing (ICS-91) June

17-21, 1991.

[Gish] Personal communication.

[G82] Gotoh, O., An improved algorithm for matching biological sequences, J.

Theor. Biol., 162, 705-708 (1982).

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages,

and computation. Addison-Wesley, Reading, Massachusetts.

[KA90] Karlin, S., Altschul, S.F., Proc. Natl. Acad. Sci. USA 87 2264-68 (1990).

[KA93] Karlin, S., Altschul, S.F., Proc. Natl. Acad. Sci. USA 90 5873-7 (1993).

[LL85] Lipton, R.S., Lopresti, D., A Systolic Array for Rapid String Comparison,

1985 Chapel Hill Conference on VLSI (1985)

[NW70] Needleman, S.B., Wunch, C.D., A general method applicable to the search

for similarities in the amino acid sequence of proteins, J. Mol. Biol.,

48:443-453 (1970).

[SAM98] 256K x 18 bit Synchronous Pipelined Burst SRAM, KM718V889, Samsung

Electronics, (1997).

[SAM98B] 4M x 16bit x 4 Banks Synchronous DRAM, KM416S16230A, Samsung

Electronics, (1997).

[TOS98] 65,536 word by 32 bit Synchronous Pipelined Burst Static RAM,

TC55V2325FF-7, Toshiba Corporation (1998).

[W87] Wood, Derick: Theory of Computation. Harper & Row, New York, New

York.

[X96] Xilinx, Inc., The Programmable Logic Data Book, Xilinx, Inc., 1996

72


