
Exact String Matching Animation in Java

1

Christian Charras and Thierry Lecroq

LIR (Laboratoire d'Informatique de Rouen) and

ABISS (Atelier Biologie Informatique Statistiques Socio-linguistique)

Facult�e des Sciences et des Techniques

Universit�e de Rouen

76128 Mont Saint-Aignan Cedex, France

e-mail: fChristian.Charras,Thierry.Lecroqg@dir.univ-rouen.fr

Abstract. We present an animation in Java for exact string matching algo-

rithms [4]. This system provides a framework to animate in a very straight-

forward way any string matching algorithm which uses characters comparisons.

Already 27 string matching algorithms have been animated with this system.

It is a good tool to understand all these algorithms.

Key words: Exact string matching, animation, Java

1 Introduction

Pattern matching is a very important �eld in computer science as much from a the-

oretical viewpoint as from a practical one. It occurs for instance in text processing,

speech recognition, information retrieval, and computational biology. It also provides

challenging theoretical problems. For a large number of programs, the techniques

used to match a pattern constitute a high percentage of their total work. It is then

important to design very e�cient algorithms. Understanding the existing algorithms

is helpful to achieve this goal. It seemed to us very interesting to o�er a tool to

visualize easily string matching algorithms.

String matching is a special case of pattern matching where the pattern is set up

by a �nite sequence of characters. It consists in �nding one, or more generally, all the

occurrences of a word x of length m in a text y of length n. Both x and y are built

over the same alphabet �.

The best way to understand how a string matching algorithm works is to imagine

that there is a window on the text. This window has the same length as the word x.

It is �rst aligned with the left end of the text y, then the string matching algorithm

scans if the symbols of the window match the symbols of the word (this speci�c work

is called an attempt). After each attempt, the window (and the word) is shifted to

the right over the text until it goes beyond the end of the text. A string matching

algorithm is then a succession of attempts and shifts. The aim of an e�cient algorithm

is to minimize the work done during each attempt and to maximize the length of the

1

This work was partially supported by the project \Informatique et G�enomes" of the french

CNRS.

36

Exact String Matching Animation in Java

shifts. To achieve this, most of the string matching algorithms preprocess the word

before the searching phase. All the di�erent string matchings algorithms di�er both

in the way they compute the attempts (from left to right, from right to left or from

other speci�c orders) and in the way they compute the shifts.

Numerous solutions to the string matching problem have been designed (see [6] and

[11]). The two most famous are the Knuth-Morris-Pratt algorithm [9] and the Boyer-

Moore [2]. There exist then a large number of algorithms using various methods. It

is interesting to have a tool to understand them. There exist some general-purpose

visualization systems (see [10] and [3]). These systems have been developed for X

Window. Such a system, running for X Window and dedicated to string matching,

has been developed by Baeza-Yates and Fuentes [1]. Some specialized systems are

accessible directly through the World Wide Web (see [7], [8], [12] and [13]). All of

these systems enable only to visualize the very classical string matching algorithms

and usually they do not permit to keep trace of the history of the search phase. Our

system o�ers to the users the possibility to follow the running of a large choice of

string matching algorithms very easily through the World Wide Web.

This article is organized as follows: Section 2 described how the system operates

and Section 3 described how the system is written and how to animate a new string

matching algorithm.

2 The environment

The user can choose among the 27 string matching algorithms already implemented.

For each algorithms there is a button (see Figure 1). If one clicks on a button, a

window appears (see Figure 2). In that window the user can then enter a text and

a word (default text is gcatcgcagagagtatacagtacg and default word is gcagagag).

The text and the word alphabet is restricted to the lower case letters. A button

enables then the user to start the search and another button to stop it at any time.

The search phase is then shown attempt by attempt: for one attempt the text is

displayed and the word, which all characters are materialized by a dot, is aligned with

the relevant position in the text. In each attempt the di�erent character comparisons

are shown in the following way:

� matches are shown by displaying the word letter in upper case;

� mismatches are shown by displaying the word letter in lower case.

An occurrence of the word in the text is shown by displaying the corresponding text

characters in upper case. At the end of the search phase, the system gives the number

of attempts and the number of character comparisons performed during the search

phase (see Figure 2).

3 The model

The system is written in Java. It is dedicated mainly to exact string matching al-

gorithms but is easily extensible to a large family of algorithms. Moreover it is

completely straightforward to implement any string matching algorithms providing

that it is written in a speci�c way.

37

Proceedings of the Prague Stringology Club Workshop '98

Figure 1: The visualization button for the Brute Force algorithm.

Let us �rst describe the di�erent structures used by the system. The di�erent

buttons for each string matching algorithms are dealt by a class called AppletButton2

which inheritance graph is shown Figure 3 (AppletButtoni is an applet with i inputs

for 0 � i � 3).

The windows displaying the search phases are dealt by a class which name is

ProgramTextWindow2 which inheritance graph is shown Figure 4.

All the di�erent string matching algorithms inherit of a class which name is

ProgramSPM which inheritance graph is given Figure 5.

In ProgramSPM the di�erent following methods are declared:

� showAttemptAt(i): this method displays m dots below the position i in the

text;

� EqCharsAt(i,j): this method tests, and displays the word character accord-

ingly, if there is a match between characters y

i

and x

j

;

� NotEqCharsAt(i,j): this method tests, and displays the word character ac-

cordingly, if there is a mismatch between characters y

i

and x

j

;

� showMatch(i): this method displays a full match of the word at position i in

the text;

� showComparisons(): this method displays the number of attempts and the

number of character comparisons at the end of the search phase.

The word x, its length m, the text y and its length n are all attributes of the class

programSPM.

38

Exact String Matching Animation in Java

Figure 2: The window for the Brute Force algorithm after a run.

Applet

AppletButton

AppletButton0 AppletButton1 AppletButton2 AppletButton3

Figure 3: Inheritance graph of the button class.

The animation of a string matching algorithm is very easy if the begin of each

attempt (showAttemptAt), the character comparisons (EqCharsAt or NotEqCharsAt)

and the report of a full occurrence (showMatch) are clearly identi�ed and separated

from any other instruction.

Thus the translation of the Brute Force string matching algorithm (see Figure 6)

is very straightforward (see Figure 7).

And for a more complicated algorithm as for the Colussi algorithm [5] it is as

simple (see Figure 8 and 9).

4 Concluding Remarks

We have presented a system which is able to animate exact string matching algo-

rithms. A demo package is available at the following address:

39

Proceedings of the Prague Stringology Club Workshop '98

Frame

ProgramWindow

ProgramTextWindow ProgramSortWindow

ProgramTextWindow2

Figure 4: Inheritance graph of the window class.

Thread

ProgramCode

� � � ProgramText ProgramSort

Fibo ProgramSPM ProgramBubbleSort

� � � string � � �

matching

algorithms

Figure 5: Graph inheritance for the string matching algorithms.

void BF(char *y, char *x, int n, int m) {

int i, j;

for (i=0; i <= n-m; i++) {

j=0;

while (j < m && y[i+j] == x[j]) j++;

if (j >= m) OUTPUT(i);

}

}

Figure 6: Brute Force string matching algorithm in C.

40

Exact String Matching Animation in Java

import lirdir.aptk.InterruptionException;

import lirdir.progtext.ProgramSPM;

public final class ProgramBruteForce extends ProgramSPM {

public void MAIN() throws InterruptionException{

int i, j;

for (i=0; i <= n-m; i++) {

showAttemptAt(i);

j = 0;

while (j < m && EqCharsAt(i+j,j)) j++;

if (j >= m) showMatch(i);

}

showComparisons();

}

}

Figure 7: Brute Force string matching algorithm in Java.

void COLUSSI(char *y, char *x, int n, int m)

{

int i, j, right, last, nd, h[XSIZE], next[XSIZE], shift[XSIZE];

PRE_COLUSSI(x, m, h, next, shift, &nd);

/* Searching */

i=0;

right=0;

last=-1;

while (i <= n-m) {

j=right;

while (j < m && last < i+h[j] && y[i+h[j]] == x[h[j]]) j++;

if (j >= m || last >= i+h[j]) {

OUTPUT(i);

j=m;

}

if (j > nd) last=i+m-1;

i+=shift[j];

right=next[j];

}

}

Figure 8: Colussi string matching algorithm in C.

41

Proceedings of the Prague Stringology Club Workshop '98

import lirdir.aptk.InterruptionException;

import lirdir.progtext.ProgramSPM;

public final class ProgramColussi extends ProgramSPM {

public void MAIN() throws InterruptionException {

int i, j, right, last, nd;

int h[] = new int[m+1];

int next[] = new int[m+1];

int shift[] = new int[m+1];

nd = PRE_COLUSSI(h, next, shift);

/* Searching */

i=0;

right=0;

last=-1;

while (i <= n-m) {

showAttemptAt(i);

j=right;

while (j < m && last < i+h[j] && EqCharsAt(i+h[j],h[j])) j++;

if (j >= m || last >= i+h[j]) {

showMatch(i);

j=m;

}

if (j > nd) last=i+m-1;

i+=shift[j];

right=next[j];

}

showComparisons();

}

}

Figure 9: Colussi string matching algorithm in Java.

42

Exact String Matching Animation in Java

ftp.dir.univ-rouen.fr/pub/ESMAJ/esmaj.zip

and can be consulted at

http://www.dir.univ-rouen.fr/~charras/esmaj/.

We have shown how it is easily possible to animate new string matching algorithms

providing that they are written in a given form. This system can easily be extended to

animate other class of algorithms. It seems quite obvious that animating approximate

string matching algorithms would just need a few e�orts. Some sort algorithms and

some graph algorithms have already been animated with the same principles.

References

[1] R.A. Baeza-Yates and L.O. Fuentes. A framework to animate string algorithms.

Inform. Process. Lett., 59(5):241{244, 1996.

[2] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. ACM,

20(10):762{772, 1977.

[3] M.H. Brown. Zeus: A system for algorithm animation and multi-view editing.

In Proceedings of the IEEE Workshop on Visual Languages, 1991.

[4] C. Charras and T. Lecroq. Exact string matching algorithms, 1996.

URL:http://www.dir.univ-rouen.fr/~charras/string/

[5] L. Colussi. Correctness and e�ciency of the pattern matching algorithms. Inform.

Comput., 95(2):225{251, 1991.

[6] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[7] A. C�assia Rossi de Almeida. Smaa: string matching algorithm animation.

URL:http://www.dcc.ufmg.br/~cassia/english_version_smaa.html

[8] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John

Wiley & Sons, 1998.

URL:http://www.cgc.cs.jhu.edu/~goodrich/dsa/11strings/demos/pattern/

[9] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.

SIAM J. Comput., 6(1):323{350, 1977.

[10] J. T. Stasko. Tango: A framework and system for algorithm animation. IEEE Trans.

Comput., 23(9):27{39, 1990.

[11] G. A. Stephen. String searching algorithms. World Scienti�c Press, 1994.

[12] M. Takeda. Demonstration of naive, KMP, and BM pattern matching algorithms, and

their variations.

URL:http://www.i.kyushu-u.ac.jp/~takeda/PM_DEMO/e.html

[13] K. A. Zaman. Illustrated pattern matching.

URL:http://www.cs.columbia.edu/~zkazi/proj.html

43

