
A Fast Morphological Analysis Using the

Extended AC Machine for Oriental Languages

1

Kazuaki Ando, Kimihiro Iwasaki, Masao Fuketa and Jun-ichi Aoe

Department of Information Science & Intelligent Systems

University of Tokushima

2-1 Minami-Josanjima-Cho

Tokushima-Shi 770-8506

Japan

e-mail: fando,aoeg@is.tokushima-u.ac.jp

Abstract. This paper presents a fast morphological analysis for oriental lan-

guages by extending an Aho and Corasick's pattern matching machine. Our

method is a simple and e�cient algorithm to �nd all possible morphemes in an

input sentence and in a single pass, and it stores the relations of grammatical

connectivity of adjacent morphemes into the output functions. Therefore, the

costs of checking connections between the adjacent morphemes can be reduced

by using the connectivity relations. Furthermore, the construction method of

the relations of grammatical connectivity is described. Finally, the proposed

method is veri�ed by a theoretical analysis, and an experimental estimation is

supported by the computer simulation with a 100,267 words dictionary. From

the simulation results, it turns out that the proposed method was 49.9% faster

(CPU time) than the traditional trie approach. As for the number of candidates

for checking connections, it was 25.5% less than that of the original morpholog-

ical analysis.

Key words: morphological analysis, oriental language, dictionary lookup, trie

structure, AC machine, grammatical connectivity

1 Introduction

An intelligent natural language interfaces enable users to communicate with the

computer in English, Japanese or other human languages. Morphological analysis

[ABE86, AKI94, KUR94, LEE97, MAR94, MOR96, SAN94] is the �rst step of natural

language processing in the applications of natural language interfaces such as Infor-

mation Retrieval [AOE91], Database Queries [KAP84], Expert Systems and so on. In

general, the morphological analysis means segmentations of the input sentence into

words (morphemes) and attachments of part-of-speech to them. Therefore, although

morphological analysis for European languages, especially for English, plays only a mi-

nor role in a natural language processing system, in the analysis of oriental languages

1

This work was supported by the Grant-in-Aid of the Ministry of Education, Science and Culture,

Japan.

1

Proceedings of the Prague Stringology Club Workshop '98

such as Japanese, Chinese and Korean it plays an important role because oriental

languages are agglutinative languages, that is the language do not have explicit word

boundaries between the words [ABE86, AKI94, KUR94, MAR94, MOR96, SAN94].

The procedure of morphological analysis of oriental languages consists of two

steps. The �rst is to detect all possible morphemes, which are the smallest meaning-

ful units, in a given input sentence. The second is to �nd the possible connections

between adjacent morphemes by using a connection cost or probability based on the

grammaticality [ABE86, AKI94, SAN94]. In the �rst step, the morphological analy-

sis involves a large number of dictionary lookup. In general, a well-known technique

for dictionary lookup is to use a trie structure [AOE91, AOE96, KUR94]. The trie

is a tree structure in which each transition corresponds to a key character in the

given keys set and common pre�xes of keys can be shared. Therefore, the trie can

search all keys made up from pre�xes in an input string without the need of scanning

the structure more than once. However, it is not so e�ective to use the trie for the

morphological analysis [KUR94, MAR94, MOR96]. In order to detect all possible

substrings in a given input sentence, the dictionary access must be tried repeatedly

at each character position in the input sentence. Therefore, some characters may be

scanned more than once for di�erent starting positions and the number of dictionary

accesses is increased. In the second step, the morphological analysis checks gram-

matical connectivity between adjacent words in order to �nd all possible connections

[ABE86, SAN94]. This grammatical connectivity can be easily checked by using a

grammatical table [ABE86]. However, this process requires considerable cost to check

the grammatical connectivity, because it includes some checks of unnecessary connec-

tions, for example, checking connection between NOUN and CONJUGATION, since

many words as part of speech have di�erent grammatical interpretations. In order to

achieve a fast morphological analysis, the mentioned problems should be solved.

This paper proposes a high speed morphological analysis of oriental languages by

extending a pattern matching machine based on Aho and Corasick machine (called

AC machine) [AHO75]. The proposed method is a simple and fast algorithm to �nd

all possible substrings in an input sentence, and during only a single scan. Moreover,

since the proposed method stores relations of grammatical connectivity of adjacent

words into the output functions, the cost of checking connections between the adjacent

words can be reduced by using the connectivity relations.

In the following sections, our ideas are described in detail. In Section 2, we

describe the dictionary lookup method using a trie structure for the morphological

analysis. Section 3 presents the high speed morphological analysis by extending

the AC machine. Section 4 shows the theoretical analysis, and the experimental

evaluations veri�ed by the computer simulations with a 100,267 words dictionary.

Finally, the results are summarized and the future research is discussed.

2 Dictionary Lookup Method using Trie in the

Morphological Analysis

Morphological analysis of oriental languages is very di�erent from that of English

[ABE86, AKI94, KUR94, MAR94, MOR96, SAN94], because the languages do not

have explicit word boundaries between the words as shown Fig. 1. Therefore, in order

2

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

to �nd the most suitable word boundary, the morphological analysis must detect all

possible substrings in a given input sentence in the �rst place. This process is one of

the most important tasks of morphological analysis of oriental languages, since the

wrong segmentation causes serious errors in the later analysis such as syntactic and

semantic analysis [AKI94].

 English : How lucky you are.

 How / lucky / you / are / . /

 Japanese : anatahanantekouunnanda = How lucky you are.

 (a-na-ta-ha-na-n-te-ko-u-u-n-na-n-da)

 a / na / ta / ha / na / n / te / ko / u / u / n / na / n / da /

 ana / ta / ha / na / n / te / ko / u / u / n / na / n / da /

 anata / ha / na / n / te / ko / u / u / n / na / n / da /

 anata / ha / nante / kouun / na / n / da /

Figure 1: Di�erence in word boundary between English and Japanese.

In this process, the morphological analysis involves a large number of dictionary

accesses. In general, a well-known method for dictionary lookup is to use a trie struc-

ture [AOE91, AOE96, KUR94]. The trie is a tree structure in which each transition

corresponds to a character of the keys in the presented key set K. In the trie, a path

from the root (initial state) to a leaf corresponds to one key in K. This way, the states

of the trie correspond to the pre�xes of keys in K.

The following is introduced for formal discussions:

1) S is a �nite set of states, represented as a positive number.

2) I is a �nite set of input symbols, or characters.

3) goto is a function from S � I to S [ffailg, called a goto function.

4) output is a function from S to morphological information, called an output function.

5) The state number of the trie is represented as a positive number, where the initial

state in S is represented by the number 0.

A transition labeled with `a' (in I) from r to n indicates that goto(r, `a') = n.

The absence of a transition indicates failure (fail). Fig. 2 shows an example of a

trie for the set K = f\ana", \anata", \na", \nata", \nante", \nanda", \n", \ko",

\kouu", \kouun", \u", \un", \da", \dai", \daiku"g. In this paper, for convenience of

explanation, Japanese characters are described roman letters and a transition label is

represented by the characters corresponding to the Japanese syllables. For example,

retrieval of key \anata" is performed by traversing transitions goto(0, `a') = 1, goto(1,

`na') = 2 and goto(2, `ta') = 3, sequentially, and this time the key \ana"(=output(2))

and \anata"(=output(3)) are obtained.

In the morphological analysis, all possible substrings must be detected in order

to �nd the most suitable word boundary. The following shows a dictionary lookup

algorithm using a trie structure.

3

Proceedings of the Prague Stringology Club Workshop '98

 s output(s)

 2 {ana} (hole)

 3 {anata} (you)

 4 {na}(name)

 5 {nata}(hatchet)

 7 {nante}(how)

 8 {nanda}(what)

 9 {n}(auxiliary verb)

 10 {ko}(arc)

 12 {kouu}(rainfall)

 13 {kouun}(luck)

 14 {u}(auxiliary verb)

 15 {un}(destiny)

 16 {da}(auxiliary verb)

 17 {dai}(stand)

 18 {daiku}(carpenter)

(b) The output function.

0 321
a

na

na ta

(a) The goto function.

54
ta

6
n

7
te

8
da

10 131211
u u nko

1514
nu

9
n

16
da

1817
i ku

j

Figure 2: An example of TRIE.

Algorithm 1 : A dictionary lookup algorithm using a trie structure.

Input : A sentence TEXT = c

1

c

2

:::c

n

, where each c

i

, for 1 � i � n, is an input

character, a goto function goto and output function output.

Output : The morphological information of all possible substrings in a given input

sentence TEXT.

Method :

Step 1-1 : f Initialization g

i 1;

Step 1-2 : f Change of the starting position g

state 0; j i;

Step 1-3 : f State transitions g

state goto(state, c

j

);

if state = fail then goto Step 1-5;

if output(state) 6= � then print output(state);

Step 1-4 : f Operation control g

j j + 1;

if j � n then goto Step 1-3;

Step 1-5 : f Operation control g

i i+ 1;

if i � n then goto Step 1-2;

The trie is a very common structure for dictionary access. However, it is not so

e�ective to use the trie for morphological analysis of oriental languages, because the

dictionary access must be tried from every character position in the input sentence,

in order to detect all possible substrings in a given input sentence. Therefore, some

characters may be scanned more than once for di�erent starting positions and the

number of unnecessary dictionary accesses is increased.

Consider the following input sentence (see Fig.2).

4

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

TEXT = \kouunnanda (ko-u-u-n-na-n-da)" (It is lucky for me.)

The morphological analysis tries to �nd all possible words starting with \ko"(i=1).

Then, the starting position is advanced to the second character in TEXT and the

dictionary access is repeated. The dictionary access is executed repeatedly until the

end of input.

Step 1 : i = 1(\ko"); The goto function fails at the character \na"; Keys \ko", \kouu"

and \kouun" are found.

Step 2 : i = 2(\u"); The goto function fails at the next character \u"; A key \u" is

found.

Step 3 : i = 3(\u"); The goto function fails at the character \na". Keys \u" and

\un" are found.

Step 4 : i = 4(\n"); The goto function fails at the character \na". A key \n" is found.

Step 5 : i = 5(\na"); Keys \na" and "nanda\ are found.

Step 6 : i = 6(\n"); The goto function fails at the next character \da". A key \n" is

found.

Step 7 : i = 7(\da"); A key \da" is found and the process is �nished.

As shown above, the character \u"(i=2), \u"(i=3), \n"(i=4), \na"(i=5), \n"(i=6)

and \da"(i=7) were scanned two, three, three, four, two and three times, respectively,

that is, the dictionary lookup was repeated 7 times.

3 Morphological Analysis Using the AC Machine

3.1 Dictionary Lookup

It was observed in the preceding section that morphological analysis using the trie

involves a large number of dictionary accesses. In this section, in order to solve this

problem, an e�cient string pattern matching machine is used. Here a �nite state

string pattern matching machine based on the AC machine [AHO75, MAR94] locates

all occurrences of any of a �nite number of keywords in a text string.

Let KEY = fk

1

; k

2

; :::; k

k

g be a �nite set of strings which we shall call key and let

TEXT be an arbitrary string which we shall call the text string. The AC machine is

a program which takes as input the text string TEXT and produces as output the

morphological information and the locations in TEXT at which keys of KEY appear

as substrings. The AC machine is constructed as a �nite set of states S . Each state

is represented by a number. One state (usually 0) is designated as the initial state.

The behavior of the AC machine is de�ned by the next three functions:

goto function goto : S � I ! S [ffailg,

failure function f : S ! S,

output function output : S ! A, morphological information.

The function goto maps a set consisting of a state and a character into a state or

the message fail. The function f maps a state into a state. The failure function is

constructed whenever the goto function reports the message fail. Certain states are

designated as output states which indicate that a set of keys has been found. The

function output formalizes this concept by associating a set of keys (possible empty)

with each state.

5

Proceedings of the Prague Stringology Club Workshop '98

Fig. 3 shows the functions used by the ACmachine for the set of keysK = f\ana",

\anata", \na", \nata", \nante", \nanda", \n", \ko", \kouu", \kouun", \u", \un",

\da", \dai", \daiku"g. Here, : f`a',`na',`n',`ko',`u',`da'g denotes all input characters

other than `a',`na',`n',`ko',`u',`da'. The directed graph in Fig. 3(a) represents the

goto function and the dotted line represents the failure function. For example, the

transition labeled `a' from state 0 to state 1 indicates that goto(0, `a') = 1. The

absence of transition indicates fail . The AC machine has the property that goto(0,

`�') 6= fail for all input symbols �. A dictionary lookup algorithm using the AC

machine is summarized below.

 s output(s)

 2 {ana, na} (hole, name)

 3 {anata} (you)

 4 {na}(name)

 5 {nata}(hatchet)

 6 {n}(auxiliary verb)

 7 {nante}(how)

 8 {nanda,da}(what,auxiliary verb)

 9 {n}(auxiliary verb)

 10 {ko}(arc)

 11 {u}(auxiliary verb)

 12 {kouu,u}(rainfall,auxiliary verb)

 13 {kouun,un}(luck,destiny)

 14 {u}(auxiliary verb)

 15 {un,n}(destiny,auxiliary verb)

 16 {da}(auxiliary verb)

 17 {dai}(stand)

 18 {daiku}(carpenter)

(b) The output function.

0 321
a

na

na ta

(a) The goto function.

54
ta

6
n

7
te

8
da

10 131211
u u nko

1514
nu

9
n

16
da

1817
i ku

j

f(2)=4, f(6)=9, f(8)=16, f(11)=14, f(12)=14, f(13)=15, f(15)=9,

f(0)=f(1)=f(3)=f(5)=f(7)=f(9)=f(10)=f(14)=f(16)=f(17)=f(18)=0;

(c) The failre function.

{‘
a’
, ‘
na’
, ‘
n’
, ‘
ko’
, ‘
u’
, ‘
da’
}

Figure 3: An example of the AC machine.

Algorithm 2 : A dictionary lookup algorithm using the AC machine.

Input : A sentence TEXT = c

1

c

2

:::c

n

, where each c

i

, for 1 � i � n, is an input

character, an AC machine with goto function goto, failure function f, and output

function output.

Output : The morphological information of all possible substrings in a given input

sentence TEXT .

Method :

Step 2-1 : f Initialization g

state 0;

i 1;

Step 2-2 : f State transitions g

if goto(state, c

i

) 6= fail then goto Step 2-3;

state f(state);

goto Step 2-2;

Step 2-3 : f Output operation g

6

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

state goto(state, c

i

);

if output(state) 6= � then print output(state);

Step 2-4 : f Operation control g

i i+ 1;

if i � n then goto Step 2-2;

Consider the behavior of the AC machine that uses the functions in Fig. 3 to pro-

cess the text string \kouun"(lucky). Since goto(0, `ko') = 10, the AC machine enters

state 10, advances to the next input symbol and emits output(10), indicating that it

has found the key \ko". Similarly, since goto(10, `u') = 11, goto(11, `u') = 12, and

goto(12, `n') = 13, the AC machine �nds the output(11)(=\u"), output(12)(=\kouu"

and \u") and output(13)(\kouuni" and \un") respectively and enters state 13.

As shown above, the AC machine can �nd all possible substrings in an input

sentence, scanned only once. Therefore, the AC machine is the most advantageous

method for the morphological analysis.

3.2 Connection Check

In the second step of morphological analysis for oriental languages, the grammatical

connectivities between adjacent words which were obtained by the dictionary lookup

are checked in order to �nd the most suitable word boundary [ABE86, SAN94]. This

grammatical connectivity can be easily checked by using a grammatical table which

is described in a matrix of the connectivity between two words. However, this process

requires considerable cost, because it must check the relation of all parts of speech

which the preceding word and the following word have, and the unnecessary checks

are included in those checks since many words have di�erent kinds of parts of speech.

Let us now consider the Japanese words written in the syllabic alphabet called

Hiragana. For example, suppose that Hiragana character `ka' has 14 kinds of parts of

speech and `i' has 19 kinds of parts of speech in our dictionary for the morphological

analysis as shown Figure 4. As for checks of grammatical connectivities between

the preceding character `ka' and the following character `i' (\kai" means a shell�sh,

a
oor etc.), it involves 266 (=14 � 19) kinds of checks. However, these checks

includes 126 (=14 � 9) kinds of unnecessary checks such as checking a grammatical

connectivity between NOUN and CONJUGATION. Such kinds of parts of speech,

represented as bold types in Fig. 4, are called unconnection candidates. In other

words, the unconnection candidate is a part of speech of the following word which is

not connectable to all parts of speech of the preceding word. The problem of how to

reduce the number of unnecessary checks should be solved in order to achieve a fast

morphological analysis.

Thus, we extend one of the features of the AC machine in which information of

substring are stored in one pass from initial state to terminal state by the failure

function. By using this feature, the grammatical connectivities between the adjacent

substrings which are included in one pass can be checked in advance, and the results

can be stored into each output function as the unconnection candidate when the

dictionary of morphological analysis is constructed. Therefore, if the unconnection

candidate is available throughout the execution of the morphological analysis, the

number of checking unnecessary connections can be reduced. For example, concerning

7

Proceedings of the Prague Stringology Club Workshop '98

‘
ka’ (a preceding word)

Meisi (noun)

Fuku-Syuu Jyosi (inflection)

SettoGo (prefix)

SetubiGo (suffix)

SetubiJyosu (suffix)

SagyoGodan / Gokan (verb stem)

KagyoGodan / Mizen1 (conjugation)

KagyoGodan / Gokan (verb stem)

KagyoTokubetu / Mizen1 (conjugation)

AwagyoGodan / Gokan (verb stem)

TagyoGodan / Gokan (verb stem)

RagyoGodan / Gokan (verb stem)

GagyoGodan / Gokan (verb stem)

MagyoGodan / Gokan (verb stem)

‘
i’ (a following word’)

Meisi (noun)

HojyoIchidan / Gokan1 (support verb stem)

HojyoKatoku / Gokan (support verb stem)

Jyodousi(Keiyou) / Syuusi (auxiliary verb inflection)

Jyodousi(Keiyou) / Rentai (auxiliary verb inflection)

SetubiJyosu (suffix)

KagyoGodan / Renyo2 (conjugation)

AwagyoGodan / Renyou1 (conjugation)

Ratoku / Meirei (conjugation)

Ratoku / Renyou3 (conjugation)

AwagyoGodan / Gokan (verb stem)

RagyoGodan / Gokan (verb stem)

KagyoTokubetu /Gokan (verb stem)

GagyoGodan / Renyou2 (conjugation)

MagyoGodan / Gokan (verb stem)

Itidan / Gokan (verb stem)

Keiyou /Syuusi (adjective inflection)

Keiyou / Rentai (adjective inflection)

Keiyou / Gokan (adjective inflection)

Success

Failure

Figure 4: The connection checking between `ka' and `i'.

a pass \ta-be-su-gi" in Fig. 5, the relation between `ta' and `be', `tabe' and `su', and

`tabe' and `sugi' can be checked in advance.

Consider the approaches using Directed Acyclic Word Graph (DAWG) or Finite

State Automaton (FSA). In general, the DAWG and FSA have states with more

than one outgoing transition after a state with two or more incoming transitions.

Thus, there is no guarantee that there exists a subset of states in them with a one-

to-one correspondence between the outputs and the states in that subset. Therefore,

the DAWG and FSA cannot keep information of unconnection candidates correctly

[AOE96]. But, by using the AC machine, information of unconnection candidates can

be attached to the corresponding output state uniquely.

0 4321
ta be su gi

¬
{ta, ...}

output(1)

output(2)

output(3)

output(4)

(a) The goto function and the output function.

ta

(10)

(0)

be

(2)

(2)

tabe

(1)

(0)

su

(11)

(11)

gi

(5)

(5)

sugi

(6)

(6)

tabesugi

(1)

(0)

notation

(part of speech)

(unconnection candidates)

output(i)

Figure 5: The connection checking for the pass \tabesugi".

Algorithm 3 summarizes the method for checking all unconnection candidates in

8

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

one pass, and the following variables and functions are utilized:

Variable queue : stores the states;

Variable candidate : stores a set of unconnection candidates returned by a function

CCheck();

Function CCheck(state1, state2) : checks the grammatical connectivity between the

adjacent words in output(state1) and output(state2) and it returns a set of unconnec-

tion candidates;

Function Update(state, candidate) : updates the output(state) on the basis of the

candidate;

Algorithm 3 : Algorithm for checking all unconnection candidates in one pass.

Input : A key KEY = c

1

c

2

:::c

n

registered in the AC machine, where each c

i

, for

1 � i � n, is an input character and the AC machine.

Output : All unconnection candidates in one pass.

Method :

Step 3-1 : f Initialization g

state 0; queue empty; i 1;

Step 3-2 : f Storing states g

state goto(state, c

i

);

if output(state) 6= empty then queue queue [state;

Step 3-3 : f Operation control g

i i+ 1;

if i � n then goto Step 3-2;

Step 3-4 : f Getting a state g

if queue = empty then the process is terminated.

let pre state be the next state in the queue;

queue queue - fpre stateg;

tmp queue;

Step 3-5 : f Connection checking g

if tmp = empty then goto Step 3-6

let next state be the next state in the tmp;

tmp tmp - fnext stateg;

Un-Cand ConnectionCheck(pre state, next state);

UpdateOutput(next state, Un-Cand);

goto Step 3-5;

Step 3-6 : f Operation control g

goto Step 3-4;

Since all unconnection candidates in the dictionary can be checked by repeating

the Algorithm 3 after the dictionary based on the AC machine is constructed, the

number of checking unnecessary connections can be reduced by using the unconnec-

tion candidates.

In the example of the pass \ta-be-su-gi" in Fig. 5, when checking connections

between the word starting with `ta' and the following words, it involves 37(= 10(ta)

� 2(be) + 1(tabe) � 11(su) + 1(tabe) � 6(sugi)) kinds of checking by using our

grammatical table. On the other hand, if the unconnection candidates are available,

it is not necessary to check the grammatical connectivity, because all parts of speech

9

Proceedings of the Prague Stringology Club Workshop '98

of `be', `su' and `sugi' are unconnection candidates, that is, it is 0(=10�0+1�0+1�0).

Therefore, the most suitable word boundary for the \tabesugi" is the only last position

of the word, that is, \tabesugi/".

As shown the above, in some cases, the word boundary can be detected by using

the unconnection candidate without checking the grammatical connectivity during

the execution of the morphological analysis.

4 Evaluation

4.1 Theoretical Evaluation

Let n be the length of key. The precise complexity of algorithms presented depends

on the data structures, so theoretical analysis is �rst discussed under the following

assumptions:

1) The time complexity of con�rming one transition, that is, a goto function is O(1).

2) The time complexity of a failure function is O(1).

3) The time complexity of a output function is O(1).

Consider the time complexity of dictionary lookup. As for a trie, it is clear that the

time complexity of retrieving a key is O(n) [AOE91, AOE96]. However, in morpholog-

ical analysis, since it must detect all possible substrings in a given input sentence, the

number of the dictionary access depends on the length of the input sentence. There-

fore, the time complexity becomes O(n

2

+n)(=O((n+1)n/2). On the other hand, the

time complexity for dictionary lookup of the proposed method is O(n)(=O(2n-1))

[AHO75].

Next, consider the time complexity of construction. Suppose that k is the total

number of length of the keys. Concerning the trie, the time complexity isO(k) because

it is proportional to the total length of keys. The time complexity for construction

of the AC machine is O(k) [AHO75]. The cost of the algorithm 3 depends on the

function ConnectionCheck and the length of key. Let p be the average number of

parts of speech of preceding words and let f be the average number of parts of speech

of following words. Then, since the time complexity of the ConnectionCheck is O(pf),

the time complexity of the algorithm 3 becomes O(n+pf(n

2

-n)) in the worst case,

because the cost of for-loop in algorithm 3 is O(n) and the cost of while-loop is

O((pf)(n-1)n/2). From above observation, the time complexity for constructing the

proposed method becomes O(s(l+pf(l

2

-l))), where s is the total number of keys and

l is the average length of keys.

Consider the e�ectiveness of the unconnection candidate. By using this candidate

during the execution of the morphological analysis, the time complexity of the Con-

nectionCheck becomes O(p(f -c)), where c is the average number of the unconnection

candidates which are stored in the output functions.

4.2 Experimental Evaluation

For experimental evaluation the following methods have been implemented on DELL

OptiPlex XMT5120 (Pentium 120MHz) and they have been written in the C language.

(1) The dictionary lookup using a trie represented by a list structure.

(2) The proposed dictionary lookup method represented by a list structure.

10

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

In order to observe the e�ect of the proposed method, the following materials were

used:

Dictionary : A 100,267 words dictionary of a Kana-to-Kanji translation system;

The maximum length of keys is 19 and the average length of keys is 4.2. Note that

Hiragana character in the Dictionary Source and the Input Text requires two bytes.

Inputs : News papers articles (2.7MByte); The total number of sentences is 39,339

and the average number of characters of the sentences is 72.6.

Table 1 shows the obtained simulation results. From these results, it turns out

that the number of state transitions of the proposed method is 45.5% less than that

of the trie method, and the proposed method is 49.9% faster (CPU time) than the

trie one. However, the dictionary size of the proposed method is larger than that of

a trie approach.

As for the candidates for checking connections, the total number of candidates is

reduced from 5,637,007 to 4,014,625 by the unconnection candidates. This is 25.5%

less than that of common morphological analysis. This means that the number of

checking unnecessary connections can be reduced.

From the whole experimental observations, we can say that the proposed method

is more practical than that of the trie. Although it requires more memory spaces, a

fast morphological analysis can be achieved by using the proposed method.

Table 1: Simulation Results.

Trie method Our method

Dictionary Size (Mbyte) 8.3 32.5

State Transtions 14.444,170 8,016,514

Retrieval Time (sec.) 43.34 21.95

Conclusions

This paper has proposed a high speed morphological analysis by the AC machine.

The proposed method is a simple and fast algorithm to �nd all possible substrings in

an input sentence, and during a single scan, and it stores the connectivity relation of

adjacent words into the output functions as the unconnection candidates. Therefore,

if the unconnection candidates are available during the execution of the morphological

analysis, the number of checking unnecessary connections can be reduced. Since these

features depends on the passes, the proposed method have a good e�ect if there are

a large number of long words in input text.

The e�ciency of the proposed algorithm has been algorithm by the theoretical

analysis, and the experimental evaluation was supported by the computer simulation

with a 100,267 words dictionary. From the results, it turns out that the proposed

method was 49.9% faster (CPU time) than the traditional trie approach. As for the

number of candidates for checking connections, it was 28.8% less than that of the

original morphological analysis by using the unconnection candidates.

11

Proceedings of the Prague Stringology Club Workshop '98

As a future extension to this work, we are considering an implementation of mor-

phological analysis system using the Multi-attribute AC machine [AND96] and the

proposed method based on Double-Array Structure.

References

[ABE86] Abe, M. Ooshima, Y., Yuura, K., and Takeichi, N.: A Kana-Kanji Trans-

lation System for Non-Segmented Input Sentences Based on Syntactic and

Semantic Analysis, Proceedings of the 10th International Conference on

Computational Linguistics, 1986, pp.280-pp.285.

[AHO75] Aho, A.V., and Corasick, M.J.: E�cient String Matching : An Aid to

Bibliographic Search, Communications of the ACM, Vol.18, No.6, 1975,

pp.333-340.

[AKI94] Akiba, T., Tokunaga, T., and Tanaka, H.: An Extension of LangLAB for

Japanese Morphological Analysis, Proceedings of the International Work-

shop on Sharable Natural Language Resources, 1994, pp.36-42.

[AND96] Ando, K., Shishibori, M., and Aoe, J.: An E�cient Multi-Attribute Pat-

tern Matching Machine, Proceedings of the Prague Stringology Club Work-

shop'96, 1996, pp.1-14.

[AOE91] Aoe, J.: Computer Algorithms: Key Search Strategies, IEEE Computer

Society Press, 1991.

[AOE96] Aoe, J., Morimoto, K., Shishibori, M., and Park, K.H.: A Trie Compaction

Algorithm for a Large Set of Keys, IEEE Transactions of Knowledge and

Date Engineering, Vol.8, No.3, June. 1996, pp.476-491.

[KAP84] Kaplan, S.J.: Designing a Portable Natural Language Database Query

System, ACMTransactions on Database Systems, Vol.9, No.1, March.1984,

pp.1-29.

[KUR94] Kurohashi, S., Nakamura, T., Matsumoto, Y., and Nagao, M.: Improve-

ments of Japanese Morphological Analyzer JUMAN, Proceedings of the

International Workshop on Sharable Natural Language Resources, 1994,

pp.22-28.

[LEE97] Lee, G., Lee, J.H., B.-C., Kim, B.C., and Lee, Y.: A Viterbi-based morpho-

logical analysis for speech and natural language integration, Proceedings

of the 17th International Conference on Computer Processing of Oriental

Languages, Vol.1, 1997, pp.133-138.

[MAR94] Maruyama, H.: Backtracking-Free Dictionary Access Method for Japanese

Morphological Analysis, Proceedings of the 15th International Conference

on Computational Linguistics, 1994, pp.208-213.

[MOR96] Mori, S.: High Speed Morphological Analysis using DFA, Technical report

of IEICE of Japan, NLC96-23, 1996, pp.17-23. (in Japanese)

12

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

[SAN94] Sano, H., Kawada, R., and Hasimoto, M.: Morphological Grammar Rules

: An Implementation for JUMAN, Proceedings of the International Work-

shop on Sharable Natural Language Resources, 1994, pp.29-35.

13

