
Algebra of Pattern Matching Automata

V�aclav Sn�a�sel, Tom�a�s Koutn�y

Department of Computer Science

Palacky University

Tomkova 40

771 00 Olomouc

Czech Republic

e-mail: fVaclav.Snasel, Tomas.Koutnyg@upol.cz

Abstract. In this paper we classify pattern matching problems using algebraic

means. We construct an algebra of pattern matching automata in which �nite

automata are the elements and operations applied to them correspond to the

creation of new pattern matching problems. We present several such operations

and describe some identi�ed properties of the algebra de�ned in this way.

Key words: pattern matching, �nite automata, algebra

1 Introduction

In this paper we will classify pattern matching problems using algebraic means. We

will de�ne an algebra of pattern matching automata. Elements of this algebra will be

automata and de�ned operations will correspond to the creation of pattern matching

problems.

Melichar and Holub also deal with pattern matching problems classi�cation in

their work [MH97]. However, their approach is di�erent. They describe pattern

matching problems using 6 criteria and therefore they can locate them in 6D space.

They show how to construct a �nite automaton for each point of the space. It

is possible to start from a simple automaton which performs an exact match and

transform it into a more sophisticated one. This inspired us to create an algebra

of �nite automata and to de�ne operations with them which would correspond to

transformations resulting in di�erent points of the 6D space. This may provide an

answer to an interesting question: will the number of obtained points be �nite after

a multiple application of such operations or not?

We wanted to construct operations for each of the six axes of the space which

would generate automata corresponding to the points already identi�ed. Then we

could apply these operations several times and identify the properties of the algebra

de�ned by the set of �nite automata and these operations. In this paper we present

up-to-date results of our work. We created an algebra of pattern matching automata

in which only several of the intended operations are de�ned. To support our theory, we

created a program in which we implemented operations identi�ed on the automata so

far. Using the program we obtained experimental data which was useful for us when

constructing proofs for our statements.

61

Proceedings of the Prague Stringology Club Workshop '97

In the next part we will give a precise de�nition of the algebra of pattern matching

automata. Following that, we will characterize the algebra using identities discovered.

In chapter 3 we will describe the program used during our experiment. To conclude

with, we will mention other possible implementations of �nite automata which are

more suitable for practical application and outline our further research goals.

2 De�nition of the algebra of pattern matching

automata

2.1 Notation

Notation not listed directly in this paper can be found in [MI91].

De�nition: Nondeterministic automaton is the quantiple M de�ned as M =

(�; Q; �; q

0

; F), where

� is a �nite alphabet

Q is a �nite set of states

q

0

2 Q is the start state

F � Q is a set of �nal states

�, a transition relation, is a �nite subset of Q� �

�

�Q.

In the remaining part of the text we will use an extended alphabet �

0

, which is

derived from � as follows:

Let � be a �nite set. Then we can use �

�

to denote the set f�xj�x = ��fxg8x 2 �g.

Let's use � to denote the symbol corresponding to the whole set and " to denote the

symbol corresponding to an empty transition. Then we can de�ne the extended

alphabet �

0

over the set � as � [�

�

[f"g [f�g.

For the de�nition of the algebra of pattern matching automata we will need to

de�ne an operation �: merger of automata.

De�nition: Let A be a set of automata using the same alphabet � and the

same start state q

0

. Then for the automata X = (�; Q

X

; �

X

; q

0

; F

X

) 2 A and Y =

(�; Q

Y

; �

Y

; q

0

; F

Y

) 2 A we will de�ne the automaton X � Y in the following way:

X � Y = (�; Q

Y

[Q

X

; �

X

[�

Y

; q

0

; F

X

[F

Y

)

Note: �

X

[�

Y

for our purposes means a union of relations.

In the following we will assume that set A is closed with respect to construction

�. Then (A;�) is an algebra with a binary operation.

Theorem 1. Algebra (A;�) satis�es the following identities:

a� a = a

a� b = b� a

(a� b)� c = a � (b� c)

8a; b; c 2 A

P r o o f.

The proof is obvious and ensues directly from the construction of operation �. 2

62

Algebra of Pattern Matching Automata

2.2 De�nition of operations R; I;D

[MH97] introduced constructions R(X; k) and DIR(X; k).

These constructions correspond to the creation of a nondeterministic automaton X

0

from the automaton X which accepts a string P = p

1

p

2

: : : p

n

. Automaton X

0

accepts

only those strings P

0

with the value of P to P

0

distance equivalent to k while using

distance R or DIR. Distance R(P;P

0

) is called Hamming distance and is de�ned

as the minimum number of symbol replacement operations in string P required for

the conversion of string P into string P

0

. Distance DIR(P;P

0

) is called Levenshtein

distance and is de�ned as the minimumnumber of operations of symbol deletion (D),

insertion (I) or replacement (R) in P required for the conversion of string P into

string P

0

.

Automaton X

0

is called R�trellis or DIR�trellis as the case may be. Their construc-

tion is described, for example, in [MH97] or [HO96] (see Fig. 1).

0

�

t

�

t

A

5

�

t

�

t

A

10

t

1

�

e

�e

A

6

�

e

�e

A

11

e

2

�

x

�x

A

7

�

x

�x

A

12

x

3

�

t

�

t

A

8

�

t

�

t

A

13

t

4

A

9

A

14

Figure 1: DIR�trellis for string \text", k = 2.

When de�ning the operations in our algebra we are not restricted to the set of

automata which perform an exact match but we de�ne operations R and DIR for

any �nite automaton X in a similar way as Mu�z�atko in his generalization of regular

expression matching automata in [MU96]. Since distance DIR corresponds to any

combination of operations of deletion D, insertion I, or replacement R, it is possible

to de�ne each of these operations independently.

De�nition: Let X = (�; Q; �; q

0

; F) be a �nite automaton and let k 2 N . The

result of operations D(X; k), I(X; k) or R(X; k) is an automaton X

0

which will be

derived from automaton X through the following steps:

1. Automaton X

0

will contain k + 1 clones of automaton X.

2. The states of automaton X

0

will be labelled q

i;j

where i is the sequence num-

ber of the clone and j is the sequence number of the state inside the original

automaton X.

3. All transitions de�ned in the original automaton X will remain included in all

its clones.

63

Proceedings of the Prague Stringology Club Workshop '97

4. Error transitions will be added into automaton X

0

according to one of the

following operations:

Operation R: �(q

i;j

; �a) = �(q

i+1;j

; a) shall be de�ned for each state q

i;j

(0 �

i � k � 1; 0 � j � m� 1) and for each symbol a 2 � for which transition

�(q

i;j

; a) is de�ned. The symbol �a 2 �

�

represents all symbols from

alphabet � not equal to symbol a; or

Operation D: �(q

i;j

; ") = �(q

i+1;j

; a) shall be de�ned for each state q

i;j

and for

each symbol a 2 �; (0 � i � k � 1; 0 � j � m� 1); or

Operation I: �(q

i;j

;�) = q

i+1;j

shall be de�ned for each state q

i;j

; (0 � i �

k � 1; 0 � j � m� 1).

5. Start state of automaton X

0

is state q

0;0

. The alphabet of the automaton is the

extended alphabet �

0

. The set of �nal states is the union of �nal states in all

the clones: F = F

0

[F

1

[: : : F [F

k

.

De�nition: Operations D(X); R(X) and I(X) correspond to operations

D(X; 1); R(X; 1) and I(X; 1) respectively.

Now we are ready to de�ne the algebra of pattern matching automata.

De�nition: The algebra of pattern matching automata is the algebra A =

(A;D; I;R; �;+; �;�), where

A is a set of �nite automata

� is an operation of merger

D is an operation of deletion

I is an operation of insertion

R is an operation of replacement

� is an operation of closure

+ is an operation of union

� is an operation of concatenation

2.3 Properties of the algebra of pattern matching automata

Theorem 2. Let A be an algebra of pattern matching automata. Then for each

automaton X 2 A it holds that

R(X; k) = R

k

(X)

where R

k

(X) means R(R(R(:::R(X)):::)))

| {z }

k times

.

P r o o f.

We will prove the theorem using mathematical induction.

1. According to the de�nition it holds: R(X; 1) = R(X).

64

Algebra of Pattern Matching Automata

2. Let's assume that R(X; k) = R

k

(X) holds.

3. If string w

0

r

0

w

1

r

1

: : : w

k

r

k

w

k+1

is accepted by automaton X, then automaton

R(X; k + 1) accepts the string w = w

0

r

0

0

w

1

r

0

1

: : : w

k

r

0

k

w

k+1

, where r

0

i

2 f�r

i

; r

i

g.

According to induction hypothesis, automaton R

k

accepts string

w

0

r

0

0

w

1

r

0

1

: : :w

k

r

k

w

k+1

. After reading string w

0

r

0

0

w

1

r

0

1

: : :w

k

, automaton R

k

(X)

is in a state q

w

0

r

0

0

w

1

r

0

1

:::w

k

. It is obvious from the construction of automaton

R(R

k

(X)) that if r

0

k

= �r

k

, then there is a transition from state q

w

0

r

0

0

w

1

r

0

1

:::w

k

;0

into state q

w

0

r

0

0

w

1

r

0

1

:::w

k

r

0

k

;1

and hence automaton R(R

k

(X)) = R

k+1

(X) accepts

string w. If r

0

k

= r

k

, it is obvious that automaton R(R

k

(X)) = R

k+1

(X) accepts

string w.

In reverse, let's assume that automaton R

k+1

(X) accepts string

w = w

0

r

0

0

w

1

r

0

1

: : :w

k

r

0

k

w

k+1

. Then again according induction hypothesis it holds

that R

k+1

(X) = R(R(X; k)). Automaton R(X; k) accepts string

w

0

r

0

0

w

1

r

0

1

: : :w

k

r

k

w

k+1

. It is obvious from the construction of the trellis that

automaton R(R(X; k)) accepts string w

0

r

0

0

w

1

r

0

1

: : : w

k

r

0

k

w

k+1

and hence the lan-

guages accepted by both automata, R

k+1

(X) and R(X; k + 1), are equal. 2

Similar proofs can be provided for the remaining operations, D and I. Figure 2

shows an example of an automaton for operation D and k = 2.

We have not de�ned an equivalent of the DIR construction in our algebra. It

is not really necessary. The corresponding DIR operation in our algebra will result

from suitable application of operation � to automata D(X); I(X) and R(X):

DIR(X) = D(X) � I(X)�R(X)

The correctness of such a de�nition ensues from the behaviour of operation �.

It is also possible to de�ne the following in a similar way:

DI(X) = D(X) � I(X)

DR(X) = D(X) �R(X)

RI(X) = R(X) � I(X)

Theorem 3. For any automaton X = (�; Q; �; q

0

; F) it holds that

DIR(X; k) = D

k

(X)� I

k

(X)�R

k

(X)

P r o o f.

Let �

0

be an extended alphabet over alphabet �.

DIR(X; 1) = D(X) � I(X) � R(X) ensues directly from the de�nition of the con-

struction.

If string w = w

0

r

0

w

1

r

1

: : : w

k

r

k

w

k+1

, where r

i

2 �, is accepted by automaton X,

then automaton DIR(X; k) accepts string w = w

0

r

0

0

w

1

r

0

1

: : : w

k

r

0

k

w

k+1

, where r

0

i

2 �

0

.

If r

0

0

= �, then having read string w

0

r

0

0

using transitions from automaton I

k

(X), au-

tomaton DIR(X; k) reaches state q

w

0

r

0

0

which corresponds to the state of automaton

X after the acceptance of word w

0

r

0

. Similarly, it is possible to demonstrate that

for any segment of string w

0

, automaton D

k

(X) � I

k

(X) � R

k

(X) reaches the state

65

Proceedings of the Prague Stringology Club Workshop '97

corresponding to the equivalent segment of string w.

It means that string w

0

transfers the automaton into a �nal state.

Let's suppose that string w is accepted by automaton X. The string accepted by au-

tomaton D

k

(X)� I

k

(X)�R

k

(X) will contain k + 1 segments separated by symbols

from set �

0

. It means that this string will be accepted by automaton DIR(X; k) too.

2

3 Program

During the phase of building the hypotheses we carried out some experiments using

our own program written in Microsoft Visual Basic 5.0. In this program we imple-

mented nondeterministic �nite automata and operations with such automata.

We used the method of simulation of the nondeterministic �nite automaton in

a deterministic way. The usage of symbols from the extended alphabet over the

original alphabet prevented the rapid increase of states and transitions which would

otherwise become inevitable during multiple application of the operation to the orig-

inal string searching automaton.

The aim of the implementation was to verify our hypotheses and which was why we

didn't pay any special attention to the e�ectiveness of the implementation. In case

where the speed of the algorithm is one of the main criteria, it is possible to use

a di�erent type of implementation as described, for example by Mohri in [MM95].

In the following we give an example of pseudocode which demonstrates the algo-

rithm of determination of active states after reading a terminal from input.

EpsilonPath(states)

1 i <- 1

2 While <= states.Count Do

3 For Each trans In m_Transitions[states[i],Epsilon]

4 Union (states,trans)

5 i <- i + 1

NewStates(old_states, t)

1 new_states <- EmptySet

2 For Each index In t

3 For Each or_state In old_states

4 For Each trans In m_Transitions[or_state,index]

5 If trans <> EmptyState And trans <> PreStartState Then

6 Union (new_states,trans)

7 EpsilonPath (new_states)

8 NewStates <- new_states

Go(t)

1 t_col <- m_TableOfTerminals.TermToIndexes(t)

2 m_ActiveStates <- NewStates (m_ActiveStates, t_col)

66

Algebra of Pattern Matching Automata

0

�

�

t

5

�

�

t

10

�

t

15

�

�

t

20

�

�

t

25

�

t

30

�

t

35

�

t

40

t

1

�

�

e

6

�

�

e

11

�

e

16

�

�

e

21

�

�

e

26

�

e

31

�

e

36

�

e

41

e

2

�

�

x

7

�

�

x

12

�

x

17

�

�

x

22

�

�

x

27

�

x

32

�

x

37

�

x

42

x

3

�

�

t

8

�

�

t

13

�

t

18

�

�

t

23

�

�

t

28

�

t

33

�

t

38

�

t

43

t

4

9

14

19

24

29

34

39

44

Figure 2: Double application of operation D on automaton performing exact match

of string \text".

67

Proceedings of the Prague Stringology Club Workshop '97

4 Conclusion

As we mentioned in the introduction we still �nd ourselves in the middle of the work.

Our target is to create a description of pattern matching problems on an algebraic

basis. This could be achieved by gradual addition of other operations which would

correspond to the axes of the 6D space not included in our work yet. A further step

of our research could be extension of the computing power of nondeterministic �nite

automata through the application of other models, such as multitape automata, and

�nding out whether they are suitable for pattern matching.

Another problem is the construction of an e�ective automaton (see [CR94]). As

mentioned in the previous part of the paper, a construction scheme of the determin-

istic automaton for a regular expression can be found in [MM95]. We think that this

scheme could be applicable for our purposes too.

References

[CR94] M. Crochemore, W. Rytter. Text Algorithms. Oxford University Press, 1994.

[HO96] J. Holub. Reduced Nondeterministic Finite Automata for Approximate

String Matching. Proceedings of the Prague Stringology Club Workshop '96.

[LP81] H. R. Lewis, C. H. Papadimitriou. Elements of the Theory of Computation.

Prentice Hall 1981.

[MH97] B. Melichar, J. Holub. 6D Classi�cation of Pattern Matching Problems. In

this volume.

[MI91] B. Mikolajczak ed. Algebraic and Structural Automata Theory. North Hol-

land 1991.

[MM95] M. Mohri. Matching Patterns of an Automaton. Combinatorial Pattern

Matching, 6th Annual Symposium, CPM 95, Espoo, Finland, Springer Ver-

lag 1995.

[MU96] P. Mu�z�atko. Approximate Regular Expression Matching. Proceedings of the

Prague Stringology Club Workshop '96.

[DP90] D. Perrin. Finite Automata. Handbook of Theoretical Computer Science.

Elsevier Science Publishers 1990.

68

