
A New Family of String Pattern Matching

Algorithms

Bruce W. Watson, Richard E. Watson

Ribbit Software Systems Inc.

(IST Technologies Research Group)

Box 24040, 297 Bernard Ave.

Kelowna, B.C., V1Y 9P9, Canada

e-mail: fwatson, rwatsong@RibbitSoft.com

Abstract. Even though the �eld of pattern matching has been well studied,

there are still many interesting algorithms to be discovered. In this paper, we

present a new family of single keyword pattern matching algorithms. We begin

by deriving a common ancestor algorithm, which na��vely solves the problem.

Through a series of correctness preserving predicate strengthenings, and imple-

mentation choices, we derive e�cient variants of this algorithm. This paper

also presents one of the �rst algorithms which could be used to do a minimal

number of match attempts within the input string (by maintaining as much

information as possible from each match attempt).

Key words: single keyword pattern matching, shift distances, match attempts,

reusing match information, predicate strengthening and weakening.

1 Introduction and related work

In this paper, we present a new family of algorithms solving the single keyword

string pattern matching problem. This particular pattern matching problem can be

described as follows: given an input string S and a keyword p, �nd all occurrences of p

as a continuous substring of S. The �eld of string pattern matching is generally well-

studied, however, it continues to yield new and exciting algorithms, as was seen in

Watson's Ph.D. dissertation [Wats95], the recent book by Crochemore and Rytter [2],

the more classic paper by Hume and Sunday [7] and book by Gonnet and Baeza-Yates

[4]. In the dissertation [Wats95], a taxonomy of existing algorithms was presented,

along with a number of new algorithms. Any given algorithmmay have more than one

possible derivation, leading to di�erent classi�cations of the algorithm in a taxonomy

1

.

Many of the new derivations can prove to be more than just an educational curiosity,

possibly leading to interesting new families of algorithms. This paper presents one

such family | with some new algorithms and also some alternative derivations of

existing ones. While a few of the derivation steps are shared with the presentation

1

This is precisely what happened with the Boyer-Moore type algorithms as presented in the

dissertation [Wats95].

12

A New Family of String Pattern Matching Algorithms

in [Wats95], this paper takes a substantially di�erent approach overall and arrives at

some completely new algorithms.

The algorithms presented in this paper can be extended to handle some more

complex pattern matching problems, including multiple keyword pattern matching,

regular pattern matching and multi-dimensional pattern matching.

Our derivation begins with a description of the problem, followed by a na��ve

�rst algorithm. We then make incremental (correctness preserving) improvements to

these algorithms, eventually yielding e�cient variants. Throughout the paper, we

�rst precede each de�nition with some intuitive background. Before presenting the

derivation, we give the mathematical preliminaries necessary to read this paper.

2 Mathematical preliminaries

While most of the mathematical notation and de�nitions used in this paper are is

described in detail in [5], here we present some more speci�c notations. Indexing

within strings begins at 0, as in the C and C++ programming languages. We use

ranges of integers throughout the paper which are de�ned by (for integers i and j):

[i; j) = kji � k < j

(i; j] = kji < k � j

[i; j] = [i; j) [(i; j]

(i; j) = [i; j) \ (i; j]

In addition, we de�ne a permutation of a set of integers to be a bijective mapping of

those integers onto themselves.

3 The problem and a �rst algorithm

Before giving the problem speci�cation (in the form of a postcondition to the algo-

rithms), we de�ne a predicate which will make the postcondition and algorithms easier

to read. Keyword p (with the restriction that p 6= ", where " is the empty string) is

said to match at position j in input string S if p = S

j���j+jpj�1

; this is restated in the

following predicate:

De�nition 3.1 (Predicate Matches): We de�ne predicate Matches as

Matches(S; p; j) � p = S

j���j+jpj�1

2

The pattern matching problem requires us to compute the set of all matches of key-

word p in input string S. We register the matches as the set O of all indices j (in S)

such that Matches(S; p; j) holds.

13

Proceedings of the Prague Stringology Club Workshop '97

De�nition 3.2 (Single keyword pattern matching problem): Given a com-

mon alphabet V , input string S, and pattern keyword p, the problem is de�ned using

postcondition PM :

O = f j j j 2 [0; jSj) ^ Matches(S; p; j) g

Note that this postcondition implicitly depends upon S and p. 2

We can now present a nondeterministic algorithm which keeps track of the set of

possible indices (in S) at which a match might still be found (indices at which we

have not yet checked for a match). This set is known as the live zone. Those indices

not in the live zone are said to be in the dead zone. This give us our �rst algorithm

(presented in the guarded command language of Dijkstra [3, 1]).

Algorithm 3.3:

live ; dead := [0; jSj);�;

O := �;

f invariant: live [dead = [0; jSj) ^ live \ dead = �

^ O = f j j j 2 dead ^ Matches(S; p; j) g g

do live 6= � !

let j : j 2 live ;

live ; dead := live n fjg; dead [fjg;

if Matches(S; p; j)! O := O [fjg

[] :Matches(S; p; j)! skip

fi

odf postcondition: PM g

2

The invariant speci�es that live and dead are disjoint and account for all indices in S;

additionally, any match at an element of dead has already been registered. Thanks to

this relationship between live and dead, we could have written the repetition condition

live 6= � as dead 6= [0; jSj), and the j selection condition j 2 live as j 62 dead . It

should be easy to see that the invariant and the termination condition of the repetition

implies the postcondition | yielding a correct algorithm. Note that this algorithm

is highly over-speci�ed by keeping both variables live and dead to represent the live

and dead zones, respectively. For e�ciency, only one of these sets would normally be

kept.

Some of the rightmost positions in S cannot possibly accommodate matches

| no match can be found at any point j 2 [jSj � jpj + 1; jSj) since jS

j���jSj�1

j �

jS

jSj�jpj+1���jSj�1

j < jpj (the match attempt begins too close to the end of S for p to

�t). For this reason, we safely change the initializations of live and dead to

live ; dead := [0; jSj � jpj]; [jSj � jpj+ 1; jSj)

In the next section, give a deterministic (more realistically implemented) version

of the last algorithm.

14

A New Family of String Pattern Matching Algorithms

4 A more deterministic algorithm

In the last algorithm, our comparison of p with S

j���j+jpj�1

is embedded within the

evaluation of predicate Matches . In this section, we make this comparison explicit.

We begin by noting that p = S

j���j+jpj�1

is equivalent to comparing the individual

symbols p

k

of p with the corresponding symbols S

j+k

of S (for k 2 [0; jpj)). In fact,

we can consider the symbols in any order whatsoever. To determine the order in

which they will be considered, we introduce match orders:

De�nition 4.1 (Match order): We de�ne a match order mo as a permutation on

[0; jpj). 2

Using mo, we can restate our match predicate.

Property 4.2 (Predicate Matches): Predicate Matches is restated as

Matches(S; p; j) � (8 i : i 2 [0; jpj) : p

mo(i)

= S

j+mo(i)

)

2

This rendition of the predicate will be evaluated by a repetition which uses a new

integer variable i to step from 0 to jpj � 1, comparing p

mo(i)

to the corresponding

symbol of S. As i increases, the repetition has the following invariant:

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

)

and terminates as early as possible.

In the following algorithm, we use the match order mo, the new repetition and

our previous optimization to the initializations of dead and live .

Algorithm 4.3:

live ; dead := [0; jSj � jpj]; [jSj � jpj+ 1; jSj);

O := �;

f invariant: live [dead = [0; jSj) ^ live \ dead = �

^ O = f j j j 2 dead ^ Matches(S; p; j) g g

do live 6= �!

let j : j 2 live ;

live ; dead := live n fjg; dead [fjg;

i := 0;

f invariant: (8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) g

do i < jpj cand p

mo(i)

= S

j+mo(i)

!

i := i+ 1

od;

f postcondition: (8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

)

^ (i < jpj) p

mo(i)

6= S

j+mo(i)

) g

if i = jpj ! O := O [fjg

[] i < jpj ! skip

fi

odf postcondition: PM g

2

15

Proceedings of the Prague Stringology Club Workshop '97

The operator P cand Q appears in the guard of the inner loop of the above algo-

rithm. This operator is similar to conjunction P ^ Q except that if the �rst conjunct

evaluates to false then the second conjunct is not even evaluated. This proves to be

a useful property in cases such as the loop guard since, if the �rst conjunct (i < jpj)

is false (hence i >= jpj, and indeed i = jpj), then the term mo(i) appearing in the

second conjunct is not even de�ned. Note that the implication within the second

conjunct of the loop postcondition is derived from the loop guard, forcing the impli-

cation operator to be conditional as well (that is, if i < jpj is determined to be false ,

then p

mo(i)

6= S

j+mo(i)

is not even evaluated).

As we will see in the next section, the particular choice for mo can make a dif-

ference in the performance of the algorithm. Some possible match orders include

`forward' (mo is the identity permutation) and `reverse' (mo(i) = jpj � i � 1). The

permutation chosen could even be devised according to some theoretical expecta-

tions or statistical analysis for a particular application. For instance, if p contained

a subsequence of characters which are known to appear very rarely within the type

of input string, then the permutation would be chosen in order to check for a match

within that subsequence �rst (since this may result in discovering a mismatch sooner).

This approach is standard fare, and is used to �nd fast variants of the Boyer-Moore

algorithms (as described in [7]).

Yet another possibility which could prove interesting is that mo is chosen on-the-

y, that is, mo(i) could be allowed to depend upon mo(i� 1), mo(i� 2), : : : , mo(0)

and even upon other factors such as how much of the input string we have already

processed. Such an choice of permutation would be highly specialized to a particular

instance of this problem and we do not explore it any further in this paper. In the

next section, we outline some precomputation on p which speeds up the algorithm

tremendously but also depends upon the choice of mo, meaning that if we devised the

permutation on-the-
y, we would be forced to perform the precomputation for each

of the possible unique permutations that our algorithm could produce (a maximum

of jpj!).

5 Reusing match information

On each iteration of the outer repetition, index j is chosen and eliminated from the

live zone in the statement:

live ; dead := live n fjg; dead [fjg

The performance of the algorithm can be improved if we remove more than just j in

some of the iterations. To do this, we can use some of the match information, such as

i, which indicates how far through mo the match attempt proceeded before �nding

a mismatching symbol. The information most readily available is the postcondition

of the inner repetition:

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) ^ (i < jpj) p

mo(i)

6= S

j+mo(i)

)

We denote this postcondition by Result(S; p; i; j). Since this postcondition holds, we

may be able to deduce that certain indices in S cannot possibly be the site of a match.

16

A New Family of String Pattern Matching Algorithms

It is such indices which we could also remove from the live zone. They are formally

characterized as:

fx j x 2 [0; jSj) ^ (Result(S; p; i; j)) :Matches(S; p; x)) g

Determining this set at pattern matching time is ine�cient and not easily imple-

mented. We wish to derive a safe approximation of this set which can be precomputed,

tabulated and indexed (at pattern matching time) by i. In order to precompute it,

the approximation must be independent of j and S. We wish to �nd a strengthening

of the range predicate since this will allow us to still remove a safe set of elements

from set live, thanks to the property that, if P) Q (P is a strengthening of Q, and

Q is a weakening of P), then

fx j P (x) g � fx j Q(x) g

As a �rst step towards this approximation, we can normalize the ideal set (above), by

subtracting j from each element. The resulting characterization will be more useful

for precomputation reasons:

fx j x 2 [�j; jSj � j) ^ (Result(S; p; i; j)) :Matches(S; p; j + x)) g

Note that this still depends upon j, however, it will make some of the derivation steps

shown shortly in Section 5.1 easier. Because those steps are rather detailed, they are

presented in isolation. Condensed, the derivation appears as:

(Result(S; p; i; j)) :Matches(S; p; j + x))

(fSection 5.1 g

:((8 k : k 2 [0; i) ^ mo(k) 2 [x; jpj+ x) : p

mo(k)

= p

mo(k)�x

)

^ (i < jpj ^ mo(i) 2 [x; jpj+ x)) p

mo(i)

6= p

mo(i)�x

))

� fde�ne the predicate Approximation(p; i; x) g

Approximation(p; i; x)

Note that we de�ne the predicate Approximation(p; i; x) which depends only on p

and i and hence can be precomputed and tabulated. It should be mentioned that

this is one of several possible useful strengthenings which could be derived. We could

even have used the strongest predicate, false , instead of Approximation(p; i; x). This

would yield the empty set, �, to be removed form live in addition to j (as in the

previous algorithm).

We can derive a smaller range predicate of x for which we have to check if

Approximation(p; i; x) holds. Notice that choosing and x such that [x; jpj + x) \

[0; jpj) = � has two important consequences:

� The range of the quanti�cation in �rst conjunct of Approximation(p; i; x) is

empty (hence this conjunct is true, by the de�nition of universal quanti�cation

with an empty range).

� The range condition of the second conjunct (the `implicator') is false | hence

the whole of the second conjunct is true since false) P for all predicates P .

17

Proceedings of the Prague Stringology Club Workshop '97

With this choice of x, we see that predicate Approximation(p; i; x) always evaluates

to false , in which case we need not even consider values of x such that [x; jpj+ x) \

[0; jpj) = �. This simpli�cation can be seen in the following algorithm where we have

solved the above range equation for x, yielding the restriction that x 2 [1�jpj; jpj�1).

Intuitively we know that there must be such a range restriction since we can not

possibly know from a current match attempt whether or not we will �nd a match of

p in S more than jpj symbols away.

Finally we have the following algorithm (in which we have added the additional

update of live and dead below the inner repetition). Note that we introduce the set

nogood to accumulate the indices for which Approximation(p; i; x) holds. Also note

that we renormalize the set nogood by adding j to each of its members and ensuring

that it is within the valid range of indices, [0; jSj).

Algorithm 5.1:

live ; dead := [0; jSj � jpj]; [jSj � jpj+ 1; jSj);

O := �;

f invariant: live [dead = [0; jSj) ^ live \ dead = �

^ O = f l j l 2 dead ^ Matches(S; p; l) g g

do live 6= � !

let j : j 2 live ;

live ; dead := live n fjg; dead [fjg;

i := 0;

f invariant: (8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) g

do i < jpj cand p

mo(i)

= S

j+mo(i)

!

i := i+ 1

od;

f postcondition: Result(S; p; i; j) g

if i = jpj ! O := O [fjg

[] i < jpj ! skip

fi;

nogood := (fx j x 2 [1� jpj; jpj � 1) ^ Approximation(p; i ; x) g+ j)

\ [0; jSj);

live := live n nogood ;

dead := dead [nogood

odf postcondition: PM g

2

5.1 Range predicate strengthening

Here, we present the derivation of a strengthening of the range predicate

Result(S; p; i; j)) :Matches(S; p; j + x)

Being more comfortable with weakening steps, we begin with the negation of part of

the above range predicate, and proceed by weakening:

18

A New Family of String Pattern Matching Algorithms

:(Result(S; p; i; j)) :Matches(S; p; j + x))

� fde�nition of)g

:(:Result(S; p; i; j) _ :Matches(S; p; j + x))

� fDe Morgan g

Result(S; p; i; j) ^ Matches(S; p; j + x))

� fde�nition of Result and Matches g

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) ^ (i < jpj) p

mo(i)

6= S

j+mo(i)

)

^ (8 k : k 2 [0; jpj) : p

mo(k)

= S

mo(k)+j+x

)

� f change range predicate in second quanti�cation and de�nition of mo g

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) ^ (i < jpj) p

mo(i)

6= S

j+mo(i)

)

^ (8 k : mo(k) 2 [0; jpj) : p

mo(k)

= S

mo(k)+j+x

)

) f change dummy (mo(k

0

) = mo(k) + x), restrict range g

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) ^ (i < jpj) p

mo(i)

6= S

j+mo(i)

)

^ (8 k

0

: mo(k

0

)� x 2 [0; jpj) : p

mo(k

0

)�x

= S

mo(k

0

)+j

)

� f simplify range predicate of second quanti�cation g

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) ^ (i < jpj) p

mo(i)

6= S

j+mo(i)

)

^ (8 k

0

: mo(k

0

) 2 [x; jpj+ x) : p

mo(k

0

)�x

= S

mo(k

0

)+j

)

) f one-point rule: second conjunct and second quanti�cation g

(8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

)

^ ((i < jpj ^ mo(i) 2 [x; jpj+ x))) p

mo(i)

6= p

mo(i)�x

)

^ (8 k

0

: mo(k

0

) 2 [x; jpj+ x) : p

mo(k

0

)�x

= S

mo(k

0

)+j

)

) f combine two quanti�cations and remove dependency on S

and transitivity of = g

(8 k : k 2 [0; i) ^ mo(k) 2 [x; jpj+ x) : p

mo(k)

= p

mo(k)�x

)

^ ((i < jpj ^ mo(i) 2 [x; jpj+ x))) p

mo(i)

6= p

mo(i)�x

)

6 Choosing j from the live zone

In this section, we discuss strategies for choosing the index j (from the live zone) at

which to make a match attempt. In the last algorithm, the way in which j is chosen

from set live is nondeterministic. This leads to the situation that live (and, of course,

dead) is fragmented, meaning that an implementation of the algorithm would have

to maintain a set of indices for live. If we can ensure that live is contiguous, then an

implementation would only need to keep track of the (one or two) boundary points

between live and dead . There are several ways to do this, and we discuss some of

them in the following subsections section. Each of these represents a particular policy

to be used in the selection of j.

6.1 Minimal element

We could use the policy of always taking the minimal element of live . In that case,

we can make some simpli�cations to the algorithm (which, in turn, improve the

19

Proceedings of the Prague Stringology Club Workshop '97

algorithm's performance):

� We need only store the minimal element of live , instead of sets live and dead .

We use

d

live to denote the minimal element.

� The dead zone update could be modi�ed as follows: we will have considered all

of the positions to the left of j and so we can ignore the negative elements of

the update set:

fx j x 2 [1� jpj; 0) ^ Approximation(p; i; x) g

Indeed, we can just add the maximal element (which is still contiguously in the

update set and greater than j) of the update set to

d

live for the new version of

our new update of live and dead.

Depending upon the choice of weakening, and the choice of match order, the above

policy yields variants of the classical Boyer-Moore algorithm (see [Wats95, 2, 7]):

Algorithm 6.1:

d

live := 0;

O := �;

do

d

live � jSj � jpj !

j :=

d

live ;

d

live :=

d

live + 1;

i := 0;

f invariant: (8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) g

do i < jpj cand p

mo(i)

= S

j+mo(i)

!

i := i+ 1

od;

f postcondition: Result(S; p; i; j) g

if i = jpj ! O := O [fjg

[] i < jpj ! skip

fi;

d

nogood := (MAX x : x 2 [0; jpj � 1)

^ (8 h : h 2 [0; x] : Approximation(p; i; x)) : x);

d

live :=

d

live +

d

nogood

odf postcondition: PM g

2

6.2 Maximal element

We could always choose the maximal element of live . This would yield the dual of

the previous algorithm.

20

A New Family of String Pattern Matching Algorithms

6.3 Randomization

We could randomize the choice of j. Given the computational cost of most reasonable

quality pseudo-random number generators, it is not clear yet that this would yield an

interesting or e�cient algorithm. It is conceivable that there exist instances of the

problem which could bene�t from randomly selected match attempts.

6.4 Recursion

We could also devise a recursive version of the algorithm as a procedure. This pro-

cedure receives a contiguous range of live indices (live) | initially consisting of the

range [0; jSj � jpj].

If the set it receives is empty, the procedure immediately returns. If the set

is non-empty, j is chosen so that the resulting dead zone would appear reasonably

close to the middle of the current live zone

2

. This ensures that we discard as little

information as possible from the nogood index set. After the match attempt, the

procedure recursively invokes itself twice, with the two reduced live zones on either

side of the new dead zone. This yields the following procedure:

Algorithm 6.2:

proc mat(S; p; live ; dead)!

f live is contiguous g

if live = �! skip

[] live 6= �!

live low := (MIN k : k 2 live : k);

live high := (MAX k : k 2 live : k);

j := b(live low + live high � jpj)=2c;

i := 0;

f invariant: (8 k : k 2 [0; i) : p

mo(k)

= S

j+mo(k)

) g

do i < jpj cand p

mo(i)

= S

j+mo(i)

!

i := i+ 1

od;

f postcondition: Result(S; p; i; j) g

if i = jpj ! O := O [fjg

[] i < jpj ! skip

fi;

new dead := (fx j x 2 [1� jpj; jpj � 1) ^ Approximation(p; i; x) g+ j)

\ [0; jSj);

dead := dead [new dead;

mat(S; p; [live low ; (MIN k : k 2 new dead : k)); dead);

mat(S; p; ((MAX k : k 2 new dead : k); live high]; dead)

f i

corp

2

2

The algorithm given in this section makes a simple approximation by taking the middle of the

live zone it receives, and subtracting bjpj=2c.

21

Proceedings of the Prague Stringology Club Workshop '97

This procedure is used in the algorithm:

Algorithm 6.3:

O := �;

mat(S; p; [0; jSj � jpj]; [jSj � jpj+ 1; jSj))

f postcondition: PM g

2

Naturally, for e�ciency reasons, the set live can be represented by its minimal

and maximal elements (since it is contiguous).

7 Further work

The family of algorithms presented in this paper can easily be extended to multiple

pattern matching and to regular pattern matching (using regular expressions or regu-

lar grammars). In each of these cases, various strengthenings of the update predicate

could be explored and specialized methods for choosing the index of the next match

attempt determined.

Another branch in this family tree of algorithms could be derived by removing

the conjunct p

mo(i)

= S

j+mo(i)

from the guard of the inner repetition (that is, do

not terminate the match attempt as soon as we encounter a mismatch). This would

allow us to accumulate more mismatch information and possibly provide a weaker

strengthening than Approximation(p; i; x) (and hence a larger set nogood). It is not

yet clear that this would lead to an interesting family of algorithms.

Few of the algorithms presented here have been implemented in practice. Some

of the algorithms presented here can be manipulated to yield the well-known Boyer-

Moore variants, and we can therefore speculate that their running time is excellent,

based upon the results presented in [Wats95]. It would be interesting to see how the

new algorithms perform against the existing variants.

8 Conclusions

We have shown that there are still many interesting algorithms to be derived within

the �eld of single keyword pattern matching. The correctness preserving derivation

of am entirely new family of such algorithms demonstrates the use of formal methods

and the use of predicates, invariants, postconditions and preconditions. It is unlikely

that such a family of algorithms could have be devised without the use of formal

methods.

Historically, keyword pattern matching algorithms have restricted themselves to

processing the input string from left to right, thus discarding half of the useful infor-

mation which can be determined from previous match attempts. As a new starting

point for pattern matching algorithms, this paper proposes pattern matching in the

more general manner of making match attempts in a less restricting order within the

input string. With the advent of both hardware and software which enable near-

constant-time lookup of a random character in a �le stream (using memory mapped

22

A New Family of String Pattern Matching Algorithms

�les, as are available in most newer operating systems), such algorithms will prove

useful for typical single keyword pattern matching applications (ones which have a �-

nite input string which can be randomly accessed).

The derivation also yielded a recursive algorithm which appears to be particu-

larly e�cient. The algorithm has been implemented, and benchmarking results will

be presented in the �nal paper, comparing the algorithm to the other extensively

benchmarked algorithms in [7, Wats95].

9 Acknowledgements

We would like to thank Nanette Saes and Mervin Watson for proofreading this paper,

Ricardo Baeza-Yates for serving as a sounding board, and Ribbit Software Systems

Inc. for allowing us to pursue some of our pure research interests.

References

[1] Cohen, E. Programming in the 1990s, (Springer-Verlag, New York, NY, 1990).

[2] Crochemore, M. andW. Rytter. Text Algorithms, (Oxford University Press,

Oxford, England, 1994).

[3] Dijkstra, E.W. A discipline of programming, (Prentice Hall, Englewood Cli�s,

NJ, 1976).

[4] Gonnet, G.H. and R. Baeza-Yates. Handbook of Algorithms and Data Struc-

tures (In Pascal and C), (Addison-Wesley, Reading, MA, 2nd edition, 1991).

[5] Gries, D. and F.B. Schneider. A Logical Approach to Discrete Math,

(Springer-Verlag, New York, NT, 1993).

[6] Gries, D. The Science of Programming, (Springer-Verlag, New York, NY, 1981).

[7] Hume, S.C. and D. Sunday. \Fast string searching," Software | Practice &

Experience, 21(11) 1221{1248.

[8] Watson, B.W. Taxonomies and Toolkits of Regular Language Algorithms, Ph.D

dissertation, Faculty of Mathematics and Computing Science, Eindhoven Univer-

sity of Technology, Eindhoven, The Netherlands, September 1995, ISBN 90-386-

0396-7.

23

