Approximate Regular Expression Matching

Pavel Muzatko

Department of Computer Science and Engineering,
Faculty of Electrical Engineering,
Czech Technical University,
Karlovo nam. 13,
121 35 Prague 2,
Czech Republic

Abstract. We extend the definition of Hamming and Levenshtein distance
between two strings used in approximate string matching so that these two
distances can be used also in approximate regular expression matching. Next,
the methods of construction of nondeterministic finite automata for approx-
imate regular expression matching considering both mentioned distances are
presented.

Key words: regular expression, finite automata, approximate string matching

1 Introduction

The notions from the theory of approximate string matching will be used for describ-
ing the problem of approximate regular expression matching. Approximate string
matching is defined as follows: A text T', a pattern P, and an integer k are given.
All occurrences of a substring X should be found such that the distance D(P, X)
between the string X and the pattern P is less or equal to k.

There are two basic types of distances called Hamming distance and Levenshtein
distance. The Hamming distance (notation Dy) between two strings of equal length
is the number of positions with mismatching symbols in this two strings. The Leven-
shtein or edit distance (notation Dy,) between two strings P and X, not necessarily of
equal length, is the minimal number of editing operations insert, delete, and replace
needed to convert P into X.

If the Hamming distance is used then the approximate string matching is referred
as string matching with & mismatches. If the Levenshtein distance is used then
the approximate string matching is referred as string matching with k differences.
Similarly, the notions regular expression matching with k& mismatches and regular
expression matching with k differences will be used.

2 Definition of Regular Expressions

Definition 1
A regular expression V over an alphabet A is defined as follows:

37



Proceedings of the Prague Stringologic Club Workshop 96

1. @,¢,a are regular expressions for all a € A.
2. If x,y are regular expressions over A then:

(@) (2 +9) (union)
(b) (z.y) (concatenation)
(¢) (z)* (closure)

are regular expressions over A.

Definition 2
A wvalue h(z) of a regular expression x is defined as follows:

L. h(0) = 0,h(c) = {e}, h(a) = {a},
2. h(z +y) = h(x) Uh(y),

h(z.y) = h(z).h(y),

h(z*) = (h(x))".

The value of a regular expression is a regular language, a set of patterns. Un-
necessary parentheses in regular expressions can be avoided by the convection for
precedence of regular operations. The highest precedence has the closure operator,
the lowest precedence has the union operator.

3 Regular Expression Matching with £ Mis-
matches

The Hamming distance DI between a regular expression V' with a value h(V) and
a string X can be defined by using the Hamming distance Dy between two strings
as follows:

Df = mingenvyapuwl=x| D (w, X)

Now, the construction of a nondeterministic finite automaton accepting patterns
with the postfix generated by a given regular expression with & mismatches is pre-
sented.

Let a regular expression V over an alphabet A is given, and M = (Qo, A, qo, do, Fo)
is a nondeterministic finite automaton accepting the language L = h(V). Let the
automaton M has m states. The automaton ME = (Q, A, qo, §, I) accepting patterns
with the postfix from A(V') with k£ mismatches will be constructed by interconnecting
the k + 1 clones My, ..., M} of the automaton M.

Each state of the automaton M} is labeled by ¢; ;, where i is the number of the clone,
0 < i < k, jis the number of the state inside the clone M;, 0 < 7 < m — 1. The
mapping § of the automaton M% will be defined in the following way:

1. All transitions defined in the automata My, ..., My will be also included in the
automaton ME.

38



Approximate Regular Expression Matching

Figure 1: Nondeterministic automaton Hj.

2. Error transitions will be added. For each state ¢;; (0 < i < k—-1,0< 5 <
m — 1) and for each such a symbol a € A, for which §(¢; ;,a) is defined, define
0(qij,@) = 6(qip1,5, @), where @ denotes all symbols from the alphabet A except
the symbol a.

3. A self loop for all symbols from the alphabet A will be added for the state gg .

The initial state of the automaton Mﬁ is the state goo. The set of final states
F=FKUFU..UF;.

The number of states of the automaton Mﬁ is m(k +1).
Example 1
A transition diagram of a nondeterministic automaton H; accepting with 1 mismatch
patterns with the postfix described by the regular expression V' = ab*ab*a(bab*ab*a)*
over the alphabet A = {a,b,2} can be found in Fig. 1. This automaton accepts
all strings with a postfix X such that DE(V,X) < 1. The result of searching in
the text aabrabaa can be described as follows: aab(yz(1yayba(yae,). The number
in parentheses shows the number of mismatches occurred when a final state of the
automaton H; was reached.

4 Regular Expression Matching with k£ Differ-
ences

The Levenshtein distance D¥ between a regular expression V with a value h(V) and
a string X can be defined by using the Levenshtein distance Dy between two strings

39



Proceedings of the Prague Stringologic Club Workshop 96

as follows:
DE = min,epvy D (w, X)

Let V' be again a regular expression over an alphabet A and M is a nondetermin-
istic finite automaton accepting the language L = h(V). We will construct a non-
deterministic finite automaton M} accepting with k differences all patterns with the
postfix from A(V'). This automaton will be as in the previous case constructed by
interconnecting the k + 1 clones My, ..., M}, of the automaton M.

Each state of the automaton MF is again labeled by ¢ ;, where i is the number of
the clone, 0 < i < k, j is the number of the state inside the clone M;, 0 < j7 < m —1.
The mapping J of the automaton MF is defined in the following way:

1. All transitions defined in the automata My, ..., My will be also included in the
automaton ME.

2. Replace transitions will be added. For each state ¢;; (0 <7<k —1,0<j <
m — 1) and for each such a symbol a € A, for which §(¢; ;,a) is defined, define
0(qij,@) = 6(qip1,5, @), where @ denotes all symbols from the alphabet A except
the symbol a.

3. Delete transitions will be added. For each state ¢; ; and for each symbol ¢ € A
0<i<k—1,0<j<m—1)8q;c)=0(git1,a)

4. Insert transitions will be added. For each state ¢;; (0 <i<k—-1,0<j<m-—
1), and for each symbol a € A 6(¢;;,a) = git1,;. All replace transitions between
states, where insert transitions are also defined (e.g. the replace transitions
between the states ¢; ; and ¢;41,;), can be removed.

5. A self loop for all symbols from the alphabet A will be added for the state go .

The initial state of the automaton Mf is the state goo. The set of final states
F=FRUFU..UF;.
The number of states of the automaton Mf is m(k +1).
Example 2
A transition diagram of a nondeterministic automaton [y accepting with maxi-
maly 1 difference patterns with the postfix defined by the regular expression V =
ab*ab*a(bab*ab*a)* over the alphabet A = {a,b, 2} can be found in Fig. 2. Delete
transitions are depicted as dashed lines. This automaton accepts all strings with
a postfix X such that DE(V, P) < 1.
The result of searching in the text abraa can be described as follows:
abra(r)a(r,1)-
The symbol in parentheses determines the operation needed to convert some pattern
from h(V') to the string read when a final state was reached.
The notation (R, I) has the following meaning;:
The string abbaa € h(V) can be converted to the string abraa by using one replace
operation. The string abaa € h(V') can be converted to the string abraa by using one
insert operation.
Example 3
Let us consider the input text abbbabab. We are interested in finding all occurrences of

40



Approximate Regular Expression Matching

Figure 2: Nondeterministic automaton L.

strings with the postfix X such that DF(V, X) < 1, where V is the regular expression
from the previous example. The automaton L; will be used. The result can be
described as follows:

beba(R,D)b(R,D)G(O,R,D,I)b(R,D,I)-
The symbol 0 denotes the occurrence of a string from A(V).

5 Conclusion

Both the nondeterministic automata M% and MP have to be deterministicaly sim-
ulated for practical purpose. But during the process of creating of equivalent deter-
ministic finite automata the number of states can rise exponentialy, while the de-
terministic simulation of a nondeterministic automaton is of a high time complexity.
It seems that this problem can be solved by constructing of a hybrid deterministic-
nondeterministic finite automaton, but the problem is still open.

References

[1] Aho, A., Ullman, J.: The Theory of Parsing, Translation, and Compiling. Vol. I:
Parsing, Prentice Hall, Englewood Cliffs, New York 1992.

[2] Melichar, B.: Approximate string matching by finite automata. In: Computer
Analysis of Images and Patterns, LNCS 970, Springer 1995, pp. 132 — 137.

41



