
Reduced Nondeterministic Finite Automata for

Approximate String Matching

Jan Holub

Department of Computer Science and Engineering,

Faculty of Electrical Engineering,

Czech Technical University,

Karlovo n�am. 13,

121 35 Prague 2,

Czech Republic

e-mail: holub@cs.felk.cvut.cz

Abstract. We will show how to reduce the number of states of nondetermin-

istic �nite automata for approximate string matching with k mismatches and

nondeterministic �nite automata for approximate string matching with k dif-

ferences in the case when we do not need to know how many mismatches or

di�erences are in the found string. Also we will show impact of this reduction

on Shift-Or based algorithms.

Key words: �nite automata, approximate string matching

1 Introduction

Problem of approximate string matching can be described in the following way:

Given a text string T = t

1

t

2

� � � t

n

, a pattern P = p

1

p

2

� � � p

m

, and an integer k,

k � m � n, we are interested in �nding all occurrences of a substring X in the text

string T such that the distance D(P;X) between the pattern P and the string X is

less than or equal to k. In this article we will consider two types of distances called

Hamming distance and Levenshtein distance.

The Hamming distance, denoted by D

H

, between two strings P and X of equal

length is the number of positions with mismatching symbols in the two strings. We

will refer to approximate string matching as string matching with k mismatches when-

ever D is the Hamming distance. The Levenshtein distance, denoted by D

L

, or edit

distance, between two strings P and X, not necessarily of equal length, is the minimal

number of editing operations insert, delete and replace needed to convert P into X.

We will refer to approximate string matching as string matching with k di�erences

whenever D is the Levenshtein distance. Clearly the Hamming distance is a spe-

cial case of the Levenshtein distance in which we submit only replace as an editing

operation.

A nondeterministic �nite automaton (NFA) is a quintuple M = (Q;A; �; q

0

; F );

where Q is a �nite set of states, A is a �nite set of input symbols, � is a state transition

function from Q�(A[f"g) to the power set of Q, q

0

2 Q is the initial state, F � Q is

19



Proceedings of the Prague Stringologic Club Workshop '96

Figure 1: NFA for approximate string matching with k mismatches.

the set of �nal states. In the following, we will use the alphabet A = fs

1

; s

2

; � � � ; s

jAj

g.

If p 2 A then �p is the complement set A� fpg; in our case. A question mark ? will

represent any character of the alphabet.

2 String Matching with k Mismatches

2.1 Nondeterministic Finite Automaton

A NFA for string matching with k mismatches for pattern P , as it was presented

in [Me95] and [Da92], is shown in Figure 1. In this �gure m = 6 and k = 3. The

sequence of states of the level 0 of the NFA contains states that correspond to the

given pattern without any mismatch, the sequence of states of the level 1 contains

states that correspond to the given pattern with one mismatch, : : : etc. At the end

of each level there is a �nal state. This state says that the pattern was found with

0; 1; : : : etc. mismatches, respectively.

There are three kinds of transition:

A transition representing matching character in pattern P and character in the

text T , t

i

= p

j

. In Figure 1 this transition is marked by the arrow directed to the

right. It leads to a state with the same number of mismatches as the old state, to

a state of the same level.

A transition representing an editing operation replace, t

i

= p

j

. In Figure 1 this

transition is marked by the arrow directed to the right-down, it leads to a state with

a number of mismatches one greater than the former state, to a state on one level

lower.

A transition representing that theNFA always stays in the initial state. In Figure 1

this transition is marked by the self loop in the level 0.

This NFA accepts all strings having a post�x X such that D

H

(P;X) � k.

The number of states of NFA for string matching with k mismatches is

(k + 1)(m+ 1 �

k

2

).

20



Reduced Nondeterministic Finite Automata for Approximate String Matching

2.2 Reducing the number of states

There can be some situations in which we want to know all occurrences of the given

pattern in the input text with at most k mismatches but we are not interested in

knowing the number of mismatches in the found string. The states that are needed

only to recognize how many mismatches are in the found string, form a right angle

triangle in upper right corner of the NFA, as marked by the dotted line in Figure 1.

On the opposite side of the NFA there is the complement triangle of missing states. If

we omit these two triangles we obtain a simpli�ed NFA with (k+1)(m+1�k) states.

Now the �nal states have been changed. If the NFA is in the �nal state at the

end of level j it means that the pattern P can be found with at least j and at most

k mismatches. A problem appears at the end of the input text. If less than k � j

characters remain in the input text then the �nal state of level j in the NFA does not

mean that the pattern can be found with at least j and at most k mismatches, because

the transition for either mismatch or replace needs to read one input character. So

if the NFA is in �nal state at the end of level j and the position in input text i is at

most n� k+1 it means that the pattern P can be found with at least j and at most

k mismatches.

2.3 Shift-Or Algorithm

The initial version of this algorithm was presented in [BG92]. There are also modi�-

cations of this algorithm called Shift-Add [BG92] and Shift-And [WM92].

The Shift-Or algorithm uses m bit state vectors R

j

which represent rows of the

NFA, as it was presented in [Ho96], and a mask table D that for each character has an

m bit vector in which bits corresponding to positions of the character in the pattern

are set to 0 and other bits are set to 1. This table is used for operation matching. If

the NFA is in a state (i; j), where i, 0 � i � m, is a depth of state in the NFA and j,

0 � j � k, is a level of state, then i-th bit of the vector R

j

contains 0. If the NFA is

not in a state (i; j), i-th bit of the vector R

j

contains 1. The right angle triangle in

lower left corner of the NFA, as marked by the dotted line in Figure 1, can be de�ned

as the �rst j bits of each vector R

j

and in the vectors R

j

it is represented by 0s.

The vector R

0

is de�ned by formula R

0

i+1

= shl(R

0

i

)or(D[t

i+1

]), where R

0

i

is the

old value and R

0

i+1

is a new value of R

0

corresponding to position i in the text T ,

and represents exact string matching. or is bitwise operation OR and shl is bitwise

operation left shift, that moves bits of the vector to the left and �lls the last bit of the

vector with an 0. Vectors for approximate pattern matching with k mismatches are

de�ned by the formula R

j

i+1

= (shl(R

j

i

)or(D[t

i+1

]))and(shl(R

j�1

i

)), where j denotes

the number of substitutions. At the beginning of the search the vectors R

j

are �lled

up by 1s.

The fact, that the pattern has been found with at most j mismatches in position

i, is detected by appearing 0 at the end of the vector R

j

i

.

The Shift-Or algorithm computes new states of the NFA in a parallel way. It

computes whole sequence of states of one level at once. The bitwise operation shl(R

j

i

)

moves all the states of one level to the left and inserts 0 in �rst position. It represents

the transition of matching, each state moves to the state corresponding to the next

position in the pattern P . This operation is only for matching, so we have to eliminate

states that do not match. That is performed by the bitwise operation or(D[t

i+1

]),

21



Proceedings of the Prague Stringologic Club Workshop '96

that takes the mask vector corresponding to character t

i+1

in the text T and replaces

all 0s in mismatching positions by 1s. The result of this operation is that only states

in matching positions have been moved to the next states of the same level.

The second item of the above formula is shl(R

j�1

i

). The item represents the editing

operation replace. It takes the sequence of states of level j� 1 corresponding to j� 1

mismatches, moves it one position to the left and makes the bitwise operation and

between result of the �rst item of the formula and this sequence of states. Here, the

bitwise operation and(shl(R

j�1

i

)) adds states coming from the level corresponding to

one less mismatches than in level j. It is clear that this item has no meaning for the

states of the sequence of states without mismatches. Thus this item is present only

in formulae for computing vectors R

j

, where 0 < j � m. To make Shift-Or algorithm

faster this bitwise operation representing replace is performed even in the positions

matching the input character. It simpli�es the formula without change of behaviour

of Shift-Or algorithm.

2.4 Simpli�ed Shift-Or Algorithm

The reduced NFA can be described by vectors R

j

, that are k bit shorter than the

original ones. Of course, the formulae for computation of new vectorsR

j

have changed

too. The new formulae are R

0

i+1

= shl(R

0

i

)or(D

j

[t

i+1

]) for exact matching and R

j

i+1

=

(shl(R

0

i

)or(D

j

[t

i+1

]))and R

j�1

i

for j mismatches. The mask table D

j

is a part of mask

table D being m � k bit long and starting at position j in D. There are two ways

how to represent mask tables D

j

. The �rst way is to compute needed column of this

mask table by shifting the column of the original mask table D whenever it is needed

and another is to store shifted mask tables D

j

, 0 � j � k. The �rst way has higher

time complexity and the second has higher space complexity.

A problem similar to the problem that appears at the end of the input text

described above appears at the beginning of the input text. The previous problem

has appeared because of omitting states in a NFA and this problem has appeared

because of omitting �rst j bits of vector R

j

. If the input text starts with a string that

is equal to the last m � k characters of the pattern then the vector R

k

will report

found pattern with at most k mismatches after reading m� k input character, but it

is clear that the pattern can be found after reading at least m input characters.

Because of the problems at the beginning of the input text and at the end of the

input text we can say that the vector R

j

i

can report that the pattern can be found

with at most k mismatches only if m� k + j � i � n� k + j.

This simpli�cation reduces the length of the state vectors R

j

and simpli�es the

formula for computation of the state vectors with one or more mismatches. One

operation shl is omitted, but on the other hand a new operation appears. This

operation is shift of one column of the mask table D. This operation can be omitted

too, if we accept higher space complexity of characteristic vector representation.

3 String Matching with k Di�erences

In string matching with k di�erences there are two new editing operations. The new

editing operations are insert and delete. The operation insert puts some character in

a text and the operation delete removes some character from a text. It is clear that

22



Reduced Nondeterministic Finite Automata for Approximate String Matching

Figure 2: NFA for approximate string matching with k di�erences.

after adding these two editing operations into the set of editing operations, the string

found with k di�erences need not be of the same length as the pattern P .

3.1 Nondeterministic Finite Automaton

A NFA for string matching with k di�erences for the pattern P = p

1

p

2

� � � p

m

, as it

was presented in [Me96-1], is shown in Figure 2. In this �gure m = 6 and k = 3.

The sequence of states of level 0 of the NFA contains states that correspond to the

given pattern without any di�erences, the sequence of states of level 1 contains states

that correspond to the given pattern with one di�erence, : : : etc. At the end of each

level there is a �nal state. This state says that the pattern was found with 0,1,: : : etc.

di�erences, respectively. There are two new arrows. The �rst is directed to the down

and represents editing operation insert. The second one is directed to the right-down

and represents " transition of editing operation delete. This NFA accepts all strings

having a post�x X such that D

L

(P;X) � k.

The number of states of the NFA for string matching with k di�erences is

m � (k + 1) + 1.

The initial state of NFA in Figure 2 is state 0, but also, as presented in [HU79],

all states to which NFA can move from the initial state without reading any input

character are also initial states. So initial state includes all states that are located

on the diagonal starting from the state 0. Since NFA is all the time also in initial

state it is in states 0, 7, 14 and 21. At the beginning of the NFA there are several

states bordered by the dotted line. The NFA moves to all these states after reading

the �rst k � 1 input characters. Then the NFA stays all the time also in these states

but the NFA can move from these states only in initial states and so these states are

redundant.

The NFA can move to these states by transitions representing editing operation

insert. So these states represent situations that at most k�1 characters were inserted

before the string and we do not care how many characters were inserted before the

string.

If we denote editing operation replace r, insert i, delete d and matching m we can

23



Proceedings of the Prague Stringologic Club Workshop '96

Figure 3: The transitions in NFA for approximate string matching with k di�erences.

describe ways how to move to these states by these four characters. For example we

can move to the state numbered by 13 by following sequences of operations: d+ i or

r + i or m+ i+ i as it is shown in Figure 3.

The sequence of operations delete and insert has the same result as operation

replace so we can write d + i = r. The sequence of operations replace and insert

has the same result as sequence of operations insert and replace so we can write

r + i = i + r. The sequence of operations matching and insert leading from some

of initial states has the same result as operations insert and replace so we can write

m+ i = i+ r.

Now we can rewrite the sequences of operations how to move to state numbered

by 13: d + i = r, r + i = i + r, m + i + i = i + r + i = i + i + r. If we look at

these sequences of operations we can see that all the sequences of operations needed

to move to the state numbered by 13 can be replaced by operation replace because

we do not care about the characters inserted before the string so we do not need the

state numbered by 13.

Such replacing of sequences of operations can be done for all states bordered by the

dotted line so all states inside the bordered area are redundant and can be omitted.

The NFA for approximate string matching with k di�erences reduced by the way

described above has the same number of states as the NFA for approximate string

matching with k mismatches and it is (k+1)(m+1�

k

2

) states, as shown in section 2.1.

It is clear that only reduced NFA for approximate string matching with k di�erences,

that have k > 1, have less states then nonreduced NFA.

The NFA for approximate string matching with k di�erences reduced as described

above is shown in Figure 4.

3.2 Reducing the number of states

The simpli�cation described in section 2.2 for approximate string matching with

k mismatches can be applied to approximate string matching with k di�erences as

well.

The states that are needed only to recognize how many di�erences are in a found

string, form also a right angle triangle in upper right corner of the NFA, as marked by

the dotted line in Figure 4. On the opposite side of the NFA there is the complement

triangle of states omitted because of the reduction. If we omit these two triangles we

obtain a simpli�ed NFA with (k + 1)(m+ 1� k) states.

Now �nal states have also been changed. If the NFA is in �nal state at the end

24



Reduced Nondeterministic Finite Automata for Approximate String Matching

Figure 4: Reduced NFA for approximate string matching with k di�erences.

of level j it means that the pattern can be found with at least j and at most with

k di�erences. The problem that appears at the end and at the beginning of the input

text in approximate string matching with k mismatches does not exist in the case of

approximate string matching with k di�erences. It is due to " transitions that the

NFA, to move from one state to another, does not need to read any input character.

" transitions represent editing operation delete so we can delete the �rst k characters

or the last k characters of the pattern. That is why this simpli�cation does not need

the limits used in case of approximate string matching with k mismatches.

3.3 Shift-Or Algorithm

The Shift-Or algorithm for string matching with k di�erences has two new items

in formulae for computing vectors R

j

. The new items of the formula are shl(R

j�1

i+1

),

representing a transition of the editing operation delete, and R

j�1

i

, representing a tran-

sition of editing operation insert. The formula for string matching with k di�erences

is R

j

i+1

= (shl(R

j

i

)or(D[t

i+1

]))and(shl(R

j�1

i

))and(shl(R

j�1

i+1

))and(R

j�1

i

). It can be

reduced to R

j

i+1

= (shl(R

j

i

)or(D[t

i+1

]))and(shl(R

j�1

i

and R

j�1

i+1

))and(R

j�1

i

). At the

beginning of searching the vectors R

j

are �lled up in such a way, that �rst j bits from

the left contain 0s and other bits contain 1s.

In the case of approximate string matching with k di�erences we do not omit any

0s at the beginning of the table as in the case of approximate string matching with k

mismatches.

The third item, shl(R

j�1

i+1

), represents the editing operation delete. If there is some

character deleted, we have to skip it and continue behind it. In the NFA in Figure 4,

the skipping of the deleted character is marked by " transition and continuation is

marked by transition representing matching. In the Shift-Or algorithm there are those

two operations in an inverted order. At �rst the operation representing matching is

executed. It was already executed in computing of the vector R

j�1

i+1

. By that we got

to the next character in the pattern P . The following operation is " transition. It

is represented by operation shl that gets us to the next character in the pattern P

and to the level of the states corresponding to di�erences one higher. It seems the

25



Proceedings of the Prague Stringologic Club Workshop '96

case of deleting the �rst character in the pattern P was not involved. But that is

only an illusion. Such a case is covered by an initial setting of the vectors R

j

. At the

beginning of searching the vectors R

j

are �lled up in such a way that the �rst j bits

from the left contain 0s and other bits contain 1s. The initial �lling up by 0s is given

by the " transitions coming from the initial state with a self loop. It means that at

the beginning of searching there are j deleted characters, 0 � j � k.

The fourth item in the formula is R

j�1

i

, that represents the editing operation

insert. In Figure 4, the transition representing operation insert is marked by an

arrow directed down. It means that the state in the NFA stays in the same depth

but moves to the level of the states corresponding to one more di�erences.

3.4 Simpli�ed Shift-Or Algorithm

The new NFA can be described also by vectors R

j

, that are k bit shorter then the

original ones. The new formulae are R

0

i+1

= shl(R

j

i

)or(D

j

[t

i+1

]) for exact matching

and R

j

i+1

= (shl(R

j

i

)or(D

j

[t

i+1

]))and R

j�1

i

and R

j�1

i+1

and(shr R

j�1

i

) for j di�erences,

where shr is bitwise operation right shift. The mask table D

j

is also a part of

mask table D being m � k bit long and starting at position j in D. The ways how

to represent mask tables D

j

are the same as for approximate string matching with

k mismatches.

This simpli�cation reduces the length of the state vectors R

j

but does not simplify

the formula for computation of the state vectors with one or more di�erences as in

previous section.

Conclusions

In this article we have shown that in the case that we are not interested in knowing the

number of errors in the found string we can reduce NFA for aproximate string match-

ing. In the case of approximate string matching with k mismatches this reduction

not only reduces length of vectors of Shift-Or based algorithms but also simpli�es

formulae for computing these vectors. In the case of approximate string matching

with k di�erences it only reduces length of the vectors.

Another way how to use NFA is to transform it into deterministic �nite automaton.

Decrease of states in reduced deterministic �nite automata is described in [Me96-2].

References

[BG92] Baeza-Yates, R., Gonnet, G. H.: A new approach to text searching. Com-

munications of the ACM, October 1992, Vol. 35, No. 10, pp. 74 { 82.

[Da92] Darabont, T.: Approximate string matching with k mismatches. Master's

thesis, Czech Technical University, 1992.

[Ho96] Holub, J.: Approximate string matching in text. Master's thesis, Czech

Technical University, 1996.

[HU79] Hopcroft, J. E., Ullman, J. D.: Introduction to automata theory, lan-

guages, and computation. Addison-Wesley, Reading, Massachusetts.

26



Reduced Nondeterministic Finite Automata for Approximate String Matching

[Me95] Melichar, B.: Approximate string matching by �nite automata. Computer

Analysis of Images and Patterns, LNCS 970, Springer, Berlin 1995, pp.

342 { 349.

[Me96-1] Melichar, B.: String matching with k di�erences by �nite automata. Pro-

ceedings of the 13th ICPR, Vol. II, August 1996, pp. 256 { 260.

[Me96-2] Melichar, B.: Space Complexity of Linear Time Approximate String

Matching. In this volume.

[WM92] Wu, S., Manber, U.: Fast text searching allowing errors. Communications

of the ACM, October 1992, Vol. 35, No. 10, pp. 83 { 91.

27


