
E�ciency of AC-Machine and SNFA in Practical

String Matching

Martin Bloch

Department of Computer Science and Engineering,

Faculty of Electrical Engineering,

Czech Technical University,

Karlovo n�am. 13,

121 35 Prague 2,

Czech Republic

e-mail: bloch@cslab.felk.cvut.cz

Abstract. A note on practical experience with on Aho-Corasick-machine and

SNFA (Searching NFA) estimating the construction aspects and run cost. It is

shown that SNFA can be more practical than AC-machine.

Key words: string matching, AC algorithm, nondeterministic �nite automa-

ton, practical text searching

1 Introduction

Let P be �nite set of pattern character strings of the �nite length and let T be

a text, i.e. string of characters of length t. The task is to �nd all occurrences of

all patterns in the text using an abstract matching machine. We can use di�erent

machines optimizing space or time or cost = space�time of their run phase. All these

machines are de�ned by P completely. We can recognize two cases of P or pattern

machines: static or dynamic. In static case set P is constant. In dynamic case

patterns can be included into or deleted from the set P . Let us pay attention to two

machines SNFA (Searching Nondeterministic Finite Automaton) and AC-machine

(Aho-Corasick [AC75]) only.

Both these machines include G-trie as their basic structure. The G-trie is root

! leaf oriented tree, in which every node is uniquely labeled by pre�x 2 Pre�x(P )

and trajectory from root to the node is also labeled by this pre�x. The G-depth of

a node is length of trajectory from root to the node. Pre�x(P ) is set of all pre�xes

of all patterns in P . The G-trie represents goto function.

Undoubtedly, AC-machine represents great theoretical leap in stringology proving

linear run time depending just on t and not depending on P . (AC-machine is speci�c

case of implementation of DFA (Deterministic Finite Automaton) and makes less

than 2t transitions after reading text T ). This lovely miracle was obtained by two

ingenious tricks:

15



Proceedings of the Prague Stringologic Club Workshop '96

� The G-trie is overlaid by leaf ! root oriented fail F-tree containing nonlabeled

fail arrows. (G and F have the same set of nodes and common root.) Each

node (except common root) is equipped by fail arrow which points to the node

which is labelled by longest su�x of label of the node. The F-tree represents

failure function. The F-depth of a node is length of trajectory to the root.

� The root contains labeled loops for all characters in given alphabet which do

not label any arrows going from the root to another node.

The space complexity of the AC-machine is linear dependent on the number of

nodes in the trie. It can be implemented in di�erent ways (saving the linearity) but

practically requiring more space (say, linked list or direct access table implementa-

tion). Very good practical method designed by [AYS88] is based on the interspersed

direct access tables. (Imagine a set of combs with missing teeth to be somehow as-

sembled in line overlaying such a way that no tooth would mask another one and the

length of this assembly is almost minimal).

This method preserves fast unit time state transition and space linearity with little

space overhead caused by unused slots. The overhead under 5% can be easily reached

in large practical cases [Hla96]. The only severe problem in the implementation of

AC/Aoe is necessity of solving the \teeth conict" by moving one comb to another

place. Aoe et al. solve this task by moving the smaller comb having smaller number

of teeth (that sounds somehow logically). Hladík moves the newer comb what spares

the time necessary for counting teeth in both combs and allows to use the memory

in a better way. It is not known whether Hladík's method has higher overhead than

Aoe's method.

The construction of the goto function, ie. G-trie, is rather simple problem and

moreover it can be created dynamically. The construction of fail function is not di�-

cult for static case when the trie is scanned width-�rst. It is di�cult to maintain the

dynamic AC-machine because after addition or deletion of any pattern the fail func-

tion should be recalculated completely. In order to avoid this tedious recalculation,

inverse arrow for every fail arrows should be implemented but it increases memory

requirements further. The machine equipped with such inverse arrows is denoted as

ACi-machine.

2 Comparison of AC-machine and SNFA

SNFA is a very speci�c case of NFA and its construction is simpler than AC-machine

but its run is principally slower. SNFA is just the G-trie amended by set of labelled

loops for all characters in given alphabet in its root. Therefore the root is the only

source of nondeterminism.

Let us imagine that the general NFA is a sort of a playboard and its run is a sort

of a game played by team of pawns or dwarfs. At most one pawn can stay at one node

each time. After reading of an input character every pawn goes via all goto arrows

labelled by the read character. If there is no such an arrow the pawn is removed.

When more pawns are encountered in one node they join into one pawn. The game

is over when there is no pawn on the playboard or when the input is exhausted.

SNFA starts with just one pawn in the root node. This root pawn permanently

stays in the root because of the set of root loops and plays the role of a bee queen

16



E�ciency of AC-Machine and SNFA in Practical String Matching

yielding other pawns. Pawns cannot encounter each other at one node (the playboard

is a trie) and therefore no problem arise with the joining operation. Two pawns never

stay at the nodes with the same G-depth. The maximum number of pawns is the

length of the longest pattern in P plus one.

AC-machine is a DFA and therefore just one pawn plays the game starting in the

root node, too. This pawn cannot be removed because he uses the fail arrow to save

his life when the input character does not match any goto arrow. In the worst case

the pawn falls down into the root and the root node provides his immortality.

There is a certain remarkable similarity between SNFA and AC-machine. AC-

machine pawn determines where pawns would stay in equivalent SNFA (having iden-

tical G-trie). This is given by the fail arrow trajectory from any node to the root

which shows where all pawns would stay in SNFA. The number of pawns is given by

the F-depth of such node (plus one for permanent pawn in the root). The maximum

number of pawns is therefore limited by the depth of the F-tree.

3 Experiments

Several tests have been performed on two large practical pattern sets:

CA Queries for SDI retrieval in the Chemical Abstracts data base. Pattern are

chemical terms mainly.

WN Word Net thesaurus of the English language prepared at Princeton University

containing nouns, verbs, adjectives and adverbs.

The following table shows main characteristics of pattern sets, G-tries and F-trees.

Pattern set CA WN

Chem. Abstracts WordNet

SDI queries thesaurus

no. of patterns 13872 174678

no. of nodes 70315 882831

avg. G-depth 10.8 10.2

max. G-depth 47 63

avg. F-depth 4.3

max. F-depth 8 9

The following table shows typical branching of the G-trie that can be useful for

its implementation.

Node type output degree percentage

fork >1 8

single 1 77

leaf 0 15

In order to estimate the run e�ciency of the AC-machine and the SNFA, following

characteristics have been introduced:

17



Proceedings of the Prague Stringologic Club Workshop '96

RSR is a relative space requirement given by the ratio of number of arrows to the

number of nodes. For the G-trie is RSR=1, for the AC-machine is RSR=2, for

the ACi-machine RSR=3.

ATC is the arrow transition coe�cient de�ned as the average number of transitions

via G-arrows or F-arrows caused by one input character.

ANP is an average number of pawns taking part in the game.

RRT is a relative run time consumed. RRT = ATC � ANP.

RRC is a relative run cost where RRC = RSR � ATC � ANP.

The following table shows these run characteristics:

Pattern set CA WN

Machine SNFA AC SNFA AC

RSR 1 2 1 2

ATC 1 1.42 1 1.56

ANP 3.3 1 2.8 1

RRT=ATC�ANP 3.3 1.42 2.8 1.56

RRC=RSR�ATC�ANP 3.3 2.84 2.8 3.12

4 Conclusions

It follows from previous table that time ratio RRT

SNFA

=RRT

AC

is 2.32 or 1.79 and

therefore AC is about twice faster. Nevertheless, the cost ratio RRC

SNFA

=RRC

AC

varies from 1.16 to 0.90 and therefore SNFA run can be sometimes cheaper than AC

run. This intimates that for some practical cases the SNFA is not so bad. Taking

into account its simpler construction, the lower storage requirements and the dynamic

ability it can be preferred in practical cases where time requirements have not the

absolute priority.

References

[AC75] Aho, A. V. - Corasick, J. M.: E�cient string matching: An aid to biblio-

graphic search, CACM, 18, June 1975, no. 6, pp. 333-340.

[AYS88] Aoe, J. - Yasutome, S. - Sato, T.: An e�cient digital search algorithm by

using a double-array structure, IEEE 1988, pp. 472-479.

[Blo89] Bloch, M.: Optimalizace vyhledávání vzorku v textových øetìzech (Op-

timization of pattern retrieval in text strings), Doctoral thesis, Dept. of

Comp. Sci. and Eng., Fac. of Electrical Eng., Czech Tech. Univ., Prague

1989, p. 79, (in Czech).

[Hla96] Hladík, J.: Vyhledávací stroj AC/Aoe (Retrieval machine AC/Aoe.),

Diploma thesis, Dept. of Comp. Sci. and Eng., Fac. of Electrical Eng.,

Czech Tech. Univ., Prague 1996, p.136, (in Czech).

18


