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Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2019 (PSC 2019) held on August 26–28, 2019 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences, and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The eleven papers in this proceedings made the cut and were
selected for regular presentation at the conference. In addition, this volume contains
an abstract of the invited talk “Pattern Matching on Weighted Strings” by Jakub
Radoszewski.

The Prague Stringology Conference has a long tradition. PSC 2019 is the twenty-
third PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2018
preceded this conference. The proceedings of these workshops and conferences have
been published by the Czech Technical University in Prague and are available on web
pages of the Prague Stringology Club. Selected contributions have been regularity
published in special issues of journals the Kybernetika, the Nordic Journal of Com-
puting, the Journal of Automata, Languages and Combinatorics, the International
Journal of Foundations of Computer Science, and the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2019 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2019. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2019

Jan Holub and Gabriela Andrejková
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Pattern Matching on Weighted Strings

(Abstract)

Jakub Radoszewski⋆

Institute of Informatics, University of Warsaw, Warsaw, Poland
Banacha 2, 02-097 Warszawa, Poland

jrad@mimuw.edu.pl

Keywords: weighted string, weighted sequence, uncertain string, Position-Weight Ma-
trix (PWM), pattern matching

A weighted string is a sequence of probability distributions over a given finite
alphabet Σ. A weighted string represents many standard strings, each with the prob-
ability of occurrence equal to the product of probabilities of its letters at subsequent
positions of the weighted string. Usually a threshold 1/z > 0 is specified and one
considers as matches only the strings for which the probability of occurrence is at
least 1/z.

Weighted strings, also known as position weight matrices or uncertain strings,
arise naturally in many applications. In molecular biology, position weight matrices
were introduced as an alternative to consensus sequences and may appear due to
flexible sequence modeling, such as binding profiles of molecular sequences. Weighted
strings are also present in mining applications due to imprecise data measurements
or when observations are private and thus sequences of observations may have arti-
ficial uncertainty introduced deliberately. Weighted strings can also be viewed as a
generalization of indeterminate strings (i.e., degenerate strings).

This talk will focus on the solutions to Weighted Pattern Matching problem, in
which we are to find all positions of the given weighted text where a given string pat-
tern occurs with probability above the threshold, and its indexing variant. We will also
survey other algorithmic results on weighted strings, including a variant of Weighted
Pattern Matching in which both the text and the pattern are weighted, practical ap-
proaches to Weighted Pattern Matching, and differences between the longest common
subsequence and shortest common supersequence problems on weighted strings.

⋆ The author was supported by the “Algorithms for text processing with errors and uncertainties”
project carried out within the HOMING programme of the Foundation for Polish Science co-
financed by the European Union under the European Regional Development Fund.
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Computing Maximal Palindromes and

Distinct Palindromes in a Trie

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
{mitsuru.funakoshi, yuto.nakashima, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. It is known that all maximal palindromes of a given string T of length
n can be computed in O(n) time by Manacher’s algorithm [J. ACM ’75]. Also, all
distinct palindromes in T can be computed in O(n) time [Groult et al., Inf. Process.
Lett. 2010]. In this paper, we consider the problem of computing maximal palindromes
and distinct palindromes of a given trie T (i.e. rooted edge-labeled tree). A trie is a
natural generalization of a string which can be seen as a single path tree. We propose
algorithms to compute all maximal palindromes and all distinct palindromes in T in
O(N log h) time and O(N) space, where N is the number of edges in T and h is the
height of T . To our knowledge these are the first sub-quadratic time solutions to these
problems.

Keywords: palindromes, string and tree algorithms, periodicity, suffix arrays

1 Introduction

Palindromes are strings that read the same forward and backward. Finding palin-
dromic structures in a given string is a fundamental task in string processing, and
thus it has extensively been studied (e.g., see [2,27,17,25,33,23,32,14] and references
therein).

Consider a set C = {1, 1.5, 2, . . . , n} of 2n − 1 half-integer and integer positions
in a string T of length n. The maximal palindrome for a position c ∈ C in T is
a non-extensible palindrome whose center lies on c. It is easy to store all maximal
palindromes withO(n) total space; e.g., simply store their lengths in an array of length
2n− 1 together with the input string T . If P = T [i..j] is a maximal palindrome with
center c = i+j

2
, then clearly any substrings P ′ = T [i + d..j − d] with 0 ≤ d ≤ j−i

2
are also palindromes. Hence, by computing and storing all maximal palindromes in
T , we can obtain a compact representation of all palindromes in T . Manacher [26]
gave an elegant O(n)-time algorithm to compute all maximal palindromes in T . This
algorithm works for a general alphabet. For the case where the input string is drawn
from a constant size alphabet or an integer alphabet of size polynomial in n, there
is an alternative suffix tree [38] based algorithm which takes O(n) time [18]. In this
method, the suffix tree of T#TR$ is constructed, where TR is the reversed string of
T , and # and $ are special characters not occurring in T . By enhancing the suffix tree
with a lowest common ancestor (LCA) data structure [10], outward longest common
extension (LCE) queries from a given c ∈ C can be answered in O(1) time after an
O(n)-time preprocessing.

Another central question regarding substring palindromes is distinct palindromes.
Droubay et al. [9] showed that any string of length n can contain at most n + 1
distinct palindromes (including the empty string). Strings of length n that contain
exactly n+1 distinct palindromes are called rich strings in the literature [16,7]. Groult

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Computing Maximal Palindromes and Distinct Palindromes in a
Trie, pp. 3–15.
Proceedings of PSC 2019, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06618-8 c© Czech Technical University in Prague, Czech Republic
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et al. [17] proposed an O(n)-time algorithm for computing all distinct palindromes
in a string of length n over a constant-size alphabet or an integer alphabet of size
polynomial in n.

A trie is a rooted tree where each edge is labeled by a single character and the
out-going edges of each node are labeled by mutually distinct characters. A trie is a
natural extension to a string, and is a compact representation of a set of strings. There
are a number of works for efficient algorithms on tries, such as indexing a (reversed)
trie [5,24,35,21,29,11,31,20] for exact pattern matching, parameterized pattern match-
ing on a trie [1,12], order preserving pattern matching on a trie [30], and finding all
maximal repetitions (a.k.a. runs) in a trie [37].

In this paper, we tackle the problems of computing all maximal palindromes and
all distinct palindromes in a given trie T . Näıve methods for solving these problems
would be to apply Manacher’s algorithm [26] or Groult et al.’s algorithm [17] for each
string in T , but this requires Ω(N2) time in the worst case since there exists a trie
with N edges that can represent Θ(N) strings of length Θ(N) each. We also remark
that a direct application of Manacher’s algorithm to a trie does not seem to solve our
problem efficiently, since the amortization argument in the case of a single string does
not hold in our case of a trie. The aforementioned suffix tree approach [18] cannot
be applied to our trie case either; while the number of suffixes in the reversed leaf-
to-root direction of the trie T is N , the number of suffixes in the forward root-to-leaf
direction can be Θ(N2) in the worst case. Thus one cannot afford to construct the
suffix tree that contains all suffixes of the forward paths of T .

In this paper, we first show that the number of maximal palindromes in a trie
T with N edges and L leaves is exactly 2N − L and that the number of distinct
palindromes in T is at most N + 1. These generalize the known bounds for a single
string. Then, we present two algorithms to compute all maximal palindromes both of
which run in O(N log h) time and O(N) space in the worst case, where h is the height
of the trie T . We then present how to compute all distinct palindromes in a given
trie T in O(N log h) time with O(N) space. The key tools we use are periodicities of
suffix palindromes and string data structures that are built on the (reversed) trie. To
the best of our knowledge, these are the first algorithms for finding maximal/distinct
palindromes from a given trie in sub-quadratic time.

Related work

There are a few combinatorial results for palindromes in an unrooted edge-labeled
tree. Brlek et al. [6] showed an Ω(M3/2) lower bound on the maximum number of
distinct palindromes in an unrooted tree withM edges. Later Gawrychowski et al. [15]
showed a matching upper bound O(M3/2) on the maximum number of distinct palin-
dromes in an unrooted tree with M edges. Note that these previous works consider
an unrooted tree, and, to the best of our knowledge, palindromes of a trie (rooted
edge-labeled tree) have previously not been studied. Concerning repetitive structures
in tries, Sugahara et al. [37] proved that any trie with N edges can contain less than
N maximal repetitions (or runs), and showed that all runs in a given trie can be
found in O(N(log logN)2) time with O(N) space. Our paper can be considered as
computing palindromes, instead of runs, given the same input.
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2 Preliminaries

2.1 String notation

Let Σ be the alphabet. An element of Σ∗ is called a string. The length of a string T is
denoted by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = xyz, x, y and z are called a prefix, substring, and suffix of T , respectively. For
two strings X and Y , let lcp(X, Y ) denote the length of the longest common prefix
of X and Y .

For a string T and an integer 1 ≤ i ≤ |T |, T [i] denotes the ith character of T ,
and for two integers 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins
at position i and ends at position j. For convenience, let T [i..j] = ε when i > j. An
integer p ≥ 1 is said to be a period of a string T iff T [i] = T [i+p] for all 1 ≤ i ≤ |T |−p.

Let TR denote the reversed string of T , i.e., TR = T [|T |] · · ·T [1]. A string T is
called a palindrome if T = TR. We remark that the empty string ε is also considered to
be a palindrome. For any non-empty substring palindrome T [i..j] in T , i+j

2
is called its

center. A non-empty substring palindrome T [i..j] is said to be a maximal palindrome
centered at i+j

2
in T if T [i− 1] 6= T [j + 1], i = 1, or j = |T |. It is clear that for each

center c = 1, 1.5, . . . , n−0.5, n, we can identify the maximal palindrome T [i..j] whose
center is c (namely, c = i+j

2
). Thus, there are exactly 2n − 1 maximal palindromes

in a string of length n. In particular, maximal palindromes T [1..i] and T [i..|T |] for
1 ≤ i ≤ n are respectively called a prefix palindrome and a suffix palindrome of T .

2.2 Tries and algorithmic tools

A trie T = (V,E) is a rooted tree where each edge in E is labeled by a single character
from Σ and the out-going edges of a node are labeled by pairwise distinct characters.
For any non-root node u in T , let parent(u) denote the parent of u. For any node v
in T , let children(v) denote the set of children of v. For any node u and its arbitrary
descendant v, we denote by str(u, v) the substring of T that begins at u and ends
at v.

A trie can be seen as a representation of a set of strings which are root-to-leaf
path labels. Note that for a trie with N edges, the total length of such strings can be
quadratic in N . An example can be given by the set of strings X = {xc1, xc2, · · · xcN}
where x ∈ ΣN−1 is an arbitrary string and c1, . . . , cN ∈ Σ are pairwise distinct
characters. Here, the size of the trie is Θ(N), while the total length of strings is
Θ(N2). Also notice that the total number of distinct suffixes of strings in X is also
Θ(N2). However if we consider the strings in the reverse direction, i.e., consider edges
of the trie to be directed toward the root, the number of distinct suffixes is linear in
the size N of the trie. We call it a reversed trie.

Consider a trie with N edges such that the root has a single out-edge labeled with
a special character $ that does not appear elsewhere in the trie and is lexicographically
the smallest. We consider the reversed trie of this trie. The suffix array of this reversed
trie can be constructed in O(N) time [36,11]. Also, the longest common prefix array
(LCP array) for this suffix array can also be constructed in O(N) time [22].

2.3 Computing palindromes in a string

Manacher [26] showed an elegant online algorithm which computes all maximal palin-
dromes of a given string T of length n in O(n) time. An alternative offline approach is
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caaabaaabaaabaaabaaacaaabaaabaaabaaabaaacaaabaaabaaabaaabaaa

G1

G2

G3

Figure 1. Examples of arithmetic progressions representing the suffix palindromes of a string. The
first group G1 is represented by 〈1, 1, 3〉, the second group G2 by 〈7, 4, 4〉, and the third group G3

by 〈39, 20, 2〉.

to use outward LCE queries for 2n−1 pairs of positions in T . Using the suffix tree [38]
for string T$TR# enhanced with a lowest common ancestor data structure [19,34,3],
where $ and # are special characters which do not appear in T , each outward LCE
query can be answered in O(1) time. For any integer alphabet of size polynomial in
n, preprocessing for this approach takes O(n) time and space [10,18].

Let T be a string of length n. For each 1 ≤ i ≤ n, let MaxPalEndT (i) denote the
set of maximal palindromes of T that end at position i. Let Si = s1, . . . , sg be the
sequence of lengths of maximal palindromes in MaxPalEndT (i) sorted in increasing
order, where g = |MaxPalEndT (i)|. Let dj be the progression difference for sj, i.e.,
dj = sj−sj−1 for 2 ≤ j ≤ g. In particular, let d1 = s1−|ε| = s1. We use the following
lemma which is based on periodic properties of maximal palindromes ending at the
same position.

Lemma 1 (Lemma 2 of [13]).

(i) For any 1 ≤ j < g, dj+1 ≥ dj.
(ii) For any 1 < j < g, if dj+1 6= dj, then dj+1 ≥ dj + dj−1.
(iii) Si can be represented by O(log i) arithmetic progressions, where each arithmetic

progression is a tuple 〈s, d, t〉 representing the sequence s, s + d, . . . , s + (t − 1)d
with common difference d.

(iv) If t ≥ 2, then the common difference d is a period of every maximal palindrome
which ends at position i in T and whose length belongs to the arithmetic progression
〈s, d, t〉.

Each arithmetic progression 〈s, d, t〉 is called a group of maximal palindromes. See
also Figure 1 for a concrete example.

Since each arithmetic progression can be stored in O(1) space, and since there are
only O(log i) arithmetic progressions for each position i, we can represent all maximal
palindromes ending at position i in O(log i) space.

For all 1 ≤ i ≤ n we can compute MaxPalEndT (i) in total O(n) time: After
computing all maximal palindromes of T in O(n) time, we can bucket sort all the
maximal palindromes with their ending positions in O(n) time.

Since suffix palindromes are also maximal palindromes, MaxPalEndT (n) is the set
of suffix palindromes of T , where n = |T |. Thus Lemma 1 holds for suffix palindromes
in T . This particular case of Lemma 1 was shown in the literature [2,28].

Our algorithms will make a heavy use of periodicity of maximal/suffix palindromes
of a string stated in Lemma 1.
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3 Maximal/distinct palindromes in a trie

Consider a trie T with N edges. A substring palindrome P = str(u, v) in T can be
represented by the pair (|P |, v) of its length and the ending point v. Since the reversed
path from v to u is unique and since P is a palindrome, one can retrieved P from T
in O(|P |) time from this pair (|P |, v).

A substring palindrome str(u, v) is called a maximal palindrome in T if

(1) str(parent(u), v′) is not a palindrome with any child v′ of v,
(2) u is the root, or
(3) v is a leaf.

Lemma 2. There are exactly 2N − L maximal palindromes in any trie T with N
edges and L leaves.

Proof. Let r be the root of T and u any internal node of T . Because the reversed
path from u to r is unique, and because the out-going edges of u are labeled by
pairwise distinct characters, there is a unique longest palindrome of even length (or
length zero) that is centered at u. Since there are N +1 nodes in T , there are exactly
(N + 1)− L− 1 = N − L maximal palindromes of even length in T .

Let e = (u, v) be any edge in T . From the same argument as above, there is a
unique longest palindrome of odd length that is centered at e. Thus there are exactly
N maximal palindromes of odd length in T . ⊓⊔

For any trie T , let PT ⊂ Σ∗ be the set of all strings such that each P ∈ PT is a
substring palindrome in T . We call the elements of P as distinct palindromes in T .
Lemma 3. There are at most N+1 distinct palindromes in any trie T with N edges.

Proof. We follow the proof from [9] which shows that the number of distinct palin-
dromes in a string of length n is at most n+ 1.

We consider a top-down traversal on T . The proof works with any top-down
traversal but for consistency with our algorithm to follow, let us consider a breadth
first traversal. Let r be the root of T and let T0 be the trie consisting only of the root
r. For each 1 ≤ i ≤ n, let ei = (ui, vi) denote the ith visited edge in the traversal,
and let Ti denote the subgraph of Ti consisting of the already visited edges when we
have just arrived at ei. Since we have just added ei to Ti−1, it suffices to consider
only suffix palindromes of str(r, vi) since any other palindromes in str(r, vi) already
appeared in Ti−1. Moreover, only the longest suffix palindrome Si of str(r, vi) can be a
new palindrome in Ti which does not exist in Ti−1, since any shorter suffix palindrome
S ′ is a suffix of Si and hence is a prefix of Si, which appears in Ti−1. Thus there can
be at most N + 1 distinct palindromes in T (including the empty string). ⊓⊔

See Figure 2 for examples of maximal palindromes and distinct palindromes in a
trie.

In the next sections, we will present our algorithms to compute maximal/distinct
palindromes from a given trie.

4 Computing maximal palindromes in a trie

In this section, we present two algorithms that compute all maximal palindromes in
a given trie.
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Figure 2. The maximal palindrome centered at (i) is aba and the maximal palindrome centered at
(ii) is babaabab. The set of distinct palindromes in this trie is {ε, a, b, c, aa, bb, aaa, aba, aca, bab,
bbb, abba, baab, aabaa, ababa, abbba, baaab, abaaba, baabaab, babaabab}.

4.1 O(N log h)-time O(h)-space algorithm

In this section, we present an algorithm that compute all maximal palindromes in a
given trie T in O(N log h) time and O(h) working space, where N is the number of
edges in T and h ≤ N is the height of T .

The basic strategy of our algorithm is as follows. We perform a depth-first traversal
on T . Let r be the root of T . We use Lemma 1 in our algorithm. When visiting a node
u during the depth-first traversal on trie T , we maintain the arithmetic progressions
for the maximal palindromes in the path string str(r, u). In each node x in the path
from r to u, the arithmetic progressions representing the maximal palindromes ending
at x are sorted in the increasing order of the lengths of the corresponding maximal
palindromes. Since str(r, u) is a single string, and since |str(r, u)| is bounded by the
height h of T , we can store all these arithmetic progressions in O(h) total space
during the traversal. Suppose that u has two or more children, and let v, v′ be two
distinct children of u. Notice that some of the maximal palindromes ending at u could
be extended by the edge label from u to v. Furthermore, since the edge label between
u and v differs from the edge label between u and v′, those palindromes that are
not extended with v could still be extended with v′. This in turn means that when
we backtrack to u after visiting v, then we can use the maximal palindromes in the
path string str(r, v) that ends at the parent u of v, for finding the palindromes ending
at another child v′. In the sequel, we will describe how to efficiently maintain these
maximal palindromes during the traversal.

Suppose that now we are to process non-leaf node u in the traversal. For each
1 ≤ i ≤ |children(u)|, let vi be the ith visited child of u in the tree traversal, and let
ai be the label of the edge (u, vi). The task here is to check if the suffix palindromes
ending at u extends with ai. We will process the groups of suffix palindromes ending
at u in increasing order of their lengths. Let 〈s, d, t〉 be the arithmetic progression
representing a given group of suffix palindromes ending at u, where s is the length
of the shortest suffix palindrome in the group, d is a common period of the suffix
palindromes and t is the number of suffix palindromes in this group. The cases where
t = 1 and t = 2 are trivial, so we consider the case where t ≥ 3. Let P be any suffix
palindrome in the group that is not the longest one (i.e, s ≤ |P | ≤ s + (t − 2)d).
Due to the periodicity (Claim (iv) of Lemma 1), every P is immediately preceded
by a unique string P [1..d] of length d. Let b = P [d] and c be the character that
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immediately precedes the longest suffix palindrome in the group. There are four cases
to consider:

1. ai = b and ai = c (namely ai = b = c): In this case, all the suffix palindromes in
the group extend with ai and become suffix palindromes of str(r, vi). We update
s← s+ 2. The values of d and t stay unchanged.

2. ai = b and ai 6= c. In this case, all the suffix palindromes but the longest one in
the group extend with ai and become suffix palindromes of str(r, vi). We update
s← s+ 2 and t← t− 1. The value of d stays unchanged.

3. ai 6= b and ai = c. In this case, only the longest suffix palindromes in the group
extends with ai and becomes a suffix palindrome of str(r, vi). We first update
s ← s + (t − 1)d + 2 and then t ← 1. The new value of d is easily calculated
from the length of the longest suffix palindrome in the previous group (recall the
definition of d just above Lemma 1).

4. ai 6= b and ai 6= c. In this case, none of the members in the group extends with ai.
Then, we do nothing.

In each of the above cases, we store all these extended palindromes in vi as the set
of maximal palindromes ending at vi in str(r, vi), and exclude all these extended
palindromes from the set of maximal palindromes ending at u.

See Figure 1 for concrete examples of the above cases. Let ai be the next character
that is appended to the string in Figure 1. Case 1 occurs to group G3 when ai = c.
Case 2 occurs to group G1 when ai = a, and to group G2 when ai = b. Case 3 occurs
to group G1 when ai = b, and to group G2 when ai = c. Case 4 occurs to all the
groups when ai = d.

Suppose that we have finished traversing the subtree rooted at u, namely, we have
performed the above procedures for all characters ai with 1 ≤ i ≤ |children(k)|. Then,
we output, as the maximal palindromes ending at u, all suffix palindromes of u that
did not extend with any ai. Also, each time we reach a leaf in the traversal, we simply
output all suffix palindromes ending at the leaf as the maximal palindromes ending
at the leaf.

In each of the above four cases, we can check if the palindromes in a given group
extends with ai by at most two character comparisons. Since there are O(log h) arith-
metic progressions representing the suffix palindromes ending at node u, for each
child vi of u, it takes O(log h) time to compute the suffix palindromes ending at vi.
The total cost to output the maximal palindromes is less than 2N (Lemma 2).

There is one more issue remaining. When only one or two members from a
group extend with ai, then we may need to merge these suffix palindromes into a
single arithmetic progression with the suffix palindromes from the previous group.
However, this can easily be done in a total of O(log h) time per node vi, since
the suffix palindromes ending at u was given as O(log h) arithmetic progressions
(groups). See Figure 1 for a concrete example of this merging process. When ai = c,
c is a suffix palindrome and forms a single arithmetic progression 〈1, 0, 1〉. All the
palindromes in G1 are not extended. The longest suffix palindrome in group G2 is
extended to caaabaaabaaabaaabaac forming an arithmetic progression 〈21, 20, 1〉,
where 20 = |caaabaaabaaabaaabaac| − |c|, but all the other suffix palindromes in
group G2 are not extended. Finally all the suffix palindromes in group G3 are ex-
tended and are represented by an arithmetic progression 〈41, 20, 2〉. Since the three
suffix palindromes of lengths 21, 41, and 61 share the common difference 20, the two
arithmetic progressions are merged into a single arithmetic progression 〈21, 20, 3〉.
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We have shown the following:

Theorem 1. We can compute all maximal palindromes in a given trie T in O(N log h)
time and O(h) working space, where N and h respectively denote the number of edges
in T and the height of T .
Remark 1. Note that for a balanced trie with h = Θ(logσ N), our algorithm runs in
O(N log logσ N) time with O(logσ N) working space. In the worst case where h =
Θ(N), our algorithm still runs in O(N logN) time with O(N) space.

4.2 Alternative algorithm based on Manacher’s algorithm

In this subsection, we present an alternative algorithm for computing all maximal
palindromes in a given trie T that is based on Manacher’s algorithm [26] that is
originally designed for computing maximal palindromes in a single string.

For ease of explanation, we consider the path-contracted trie T ′ that can be ob-
tained by contracting every unary path of the original trie T into a single edge that
is labeled by a non-empty string. Let r denote the root of T ′. Throughout this sub-
section, for any node u in T ′, parent(u) and children(u) respectively denote the parent
of u and the set of children of u in the path-contracted trie T ′.

The basic strategy of our alternative algorithm is as follows. We perform a depth
first traversal on T ′, where only the root, branching internal nodes, and leaves are
explicitly visited. Let u be any branching node visited in the traversal. As was done
in the algorithm of Section 4.1, for each branching node v in the path from the root
r to u, we maintain the arithmetic progressions representing the suffix palindromes
ending at v, which will be used when the traversal traces back to these branching
nodes.

Now we are processing node u to extend the suffix palindromes. For this sake, we
use the idea of Manacher’s algorithm [26]. Let Σu be the set of the first characters
of the out-edges of u in T ′. For each a ∈ Σu, ea = (u, va) denote the out-edge of u
in T ′ whose label begins with a. For each a ∈ Σu (in any order), we search for the
groups of the suffix palindromes of str(r, u) that are immediately preceded by a, since
these will be the only groups that will extend with the edge ea. Let Pa be the set
of suffix palindromes extended with a (which are represented by O(log h) arithmetic
progressions). For each 1 ≤ i ≤ |Pa|, let Pi denote the ith longest suffix palindrome
in Pa. While we move forward on the edge ea, we keep two invariants ℓ and f such
that Pℓ denotes the longest suffix palindrome whose extension ends with the currently
processed character on ea, and Pf denotes the suffix palindrome whose extension is
to be determined by symmetry of Pℓ. We process the suffix palindromes in Pa in
decreasing order of their lengths, by picking up their lengths from the arithmetic
progressions. Namely, we initially set ℓ ← 1 and f ← 2 and increase the values of ℓ
and f accordingly while reading the characters on the edge ea. In any following step
ℓ ≤ f will hold.

When ℓ = 1, as a initial step, we extend the left arm of Pℓ on the reversed path
and the right arm of Pℓ on the path from u to va with näıve character comparisons.
Now suppose we are processing Pℓ. Let s = |Pℓ|, c be the center of Pℓ in the path
string from the root, and τ be the length of the extension of Pℓ, namely, Pℓ has been
extended to a maximal palindrome of length s+2τ for center c. This means that the
maximal palindromes for any centers less than c in the path from the root to u have
already been computed. Then we process Pf . Let s

′ = |Pf | and c′ be the center for
Pf . There are three possible cases:
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Figure 3. Illustration for our alternative algorithm that computes maximal palindromes in a given
trie, that is based on Manacher’s algorithm.

(1) The depth of the left-end of the maximal palindrome for center 2c− c′ in the path
from the root is lager than |str(r, u)| − s− τ .

(2) The depth of the left-end of the maximal palindrome for center 2c− c′ in the path
from the root is less than |str(r, u)| − s− τ .

(3) The depth of the left-end of the maximal palindrome for center 2c− c′ is equal to
|str(r, u)| − s− τ .

See Figure 3 for illustration of the above three cases.
In Case(1), by symmetry Pf is extended exactly to the same length as the maximal

palindrome for center 2c − c′. We keep ℓ = 1 and update f ← f + 1. In Case (2),
Pf is extended exactly to length s′ + 2τ , because of the mismatching characters
str(r, u)[|str(r, u)| − s− τ ] and str(u, va)[τ +1]. We keep ℓ = 1 and update f ← f +1.
In Case (3), Pf is extended at least to length s′ + 2τ . Now we update ℓ ← f and
then f ← f + 1. To check if this palindrome is further extended, we perform näıve
character comparisons until we find the final value of the extension.

We perform the above procedure until we read all characters on the edge ea, or
we finish extending all palindromes from Pa. This gives us the maximal palindromes
whose centers are in the path spelling out str(r, u). Then we store all these extended
maximal palindromes at va as O(log h) arithmetic progressions, and exclude all these
maximal palindromes from the set of maximal palindromes ending at u. This ensures
that, as in the previous subsection, the number of maximal palindromes stored at
the nodes in the current path string is bounded by the height h of the original trie.
Note that all maximal palindromes whose centers are on ea need to be additionally
computed. This can be done in linear time in the length of the label of ea, by running
Manacher’s algorithm on this edge label.

Suppose that we have performed the above procedures for all out-edges of u in
T ′. Then, we output, as the maximal palindromes ending at u, all suffix palindromes
of u that did not extend with any out-edges. Also, each time we reach a leaf in the
traversal, we simply output all suffix palindromes ending at the leaf as the maximal
palindromes ending at the leaf.

Let us analyze the complexities of this method. Consider each branching node u
in T ′. For each a ∈ Σa, we can find the arithmetic progressions representing Pa in
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O(log h) time as in the previous subsection. Each character in edge ea is involved
in exactly one character comparison. To perform each character comparison on the
trie in O(1) time, we preprocess the original trie T with N edges in O(N) time and
space so that level ancestor queries on the trie can be answered in O(1) time each [4].
Hence, if N ′ is the number of edges in the path-contracted trie T ′, then our algorithm
of this section runs in O(N ′ log h+N) time and O(N) space.

Theorem 2. We can compute all maximal palindromes in a given trie T in O(N ′ log h
+ N) time and O(N) working space, where N and h respectively denote the number
of edges in T and the height of T , and N ′ denotes the number of edges in the path-
contracted trie T ′.

Remark 2. Note that N ′ ≤ N always holds, and therefore the algorithm of Theorem 2
is at least as fast as the algorithm of Theorem 1. Moreover, in case where N ′ =
O(N/ log h) (which happens when the average length of the unary paths in T is
Ω(log h)), then the algorithm of Theorem 2 runs in O(N) time.

5 Computing distinct palindromes in a trie

In this section we present our algorithm that computes all distinct palindromes in a
given trie.

Our algorithm is based on Groult et al.’s [17] that finds distinct palindromes in a
single string. Recall the proof of Lemma 3 in Section 3. There we showed that for each
node u in a trie T , only the longest suffix palindrome of str(r, u) can be accounted
for as a distinct palindrome, where r is the root of T . Let N and h be the number of
edges in T and the height of T . In this section, we assume that the root has a single
out-edge labeled with a special character $ that does not appear elsewhere in the trie
and is lexicographically the smallest.

Lemma 4. For each node u in a given trie T , we can compute the longest suffix
palindrome of str(r, u) in a total of O(N ′ log h + N) time with O(N) working space,
where N ′ denotes the number of edges in the path-contracted trie T ′.

Proof. Clear from our algorithm to compute maximal palindromes in T which was
presented in Section 4. ⊓⊔

Now, we consider the reversed trie T R. For any reversed path from u to u′ in T R

in the leaf-to-root direction, let (u, u′) = str(u′, u)R. Observe that a suffix of str(r, u)
is a prefix of rev str(u, r). Therefore, a suffix palindrome of str(r, u) that ends at node
u in T is a prefix palindrome of rev str(u, r) that begins at node u in the reversed trie
T R. For each 1 ≤ j ≤ N , let ej denote the (N−j+1)th visited edge in a breadth-first
traversal on the original trie T . The id of edge ej is j. See Figure 4 for examples of
a reversed trie and the associated integers to its edges.

For each edge id j, let ej = (vj, uj) be the corresponding reversed edge. Let
LPrePal be an array of length N such that for each 1 ≤ j ≤ N LPrePal [j] stores the
length of the longest prefix palindrome in the reversed path string beginning with
ej (namely rev str(vj, r)). Also, let LFF be an array of length N called the longest
following factor array, such that for each 1 ≤ i ≤ N LFF [j] stores the length of the
longest prefix of rev str(vj, r) that occurs as a prefix of rev str(vk, r) with k > j. See
Figure 4 for examples of LPrePal and LFF arrays.
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$

root root

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SA[j] 24 23 9 2 17 12 21 10 18 4 13 15 6 22 8 1 11 20 5 19 16 7 3 14
LCP [j] - 0 1 2 4 3 1 3 3 5 2 3 1 0 2 3 5 2 4 1 2 0 4 3
LFF [j] 0 0 2 4 1 3 1 3 3 5 3 2 1 0 3 5 2 2 4 1 2 3 4 0

LPrePal [j] 1 1 3 5 2 2 3 6 5 10 4 5 3 1 5 4 4 3 8 2 3 1 1 1

Figure 4. Upper left: An example of a reversed trie. Upper right: The edge id’s based on a breadth-
first traversal. Lower: SA, LCP , LFF and LPrePal arrays built on the reversed trie shown above.

We design an algorithm that reports a shallowest occurrence of each distinct palin-
drome in the (reversed) trie. If there are multiple occurrences of the same palindrome
beginning at nodes on the same depth, then we report the occurrence that begins with
the edge with the largest id. Now we can see that for each j, the occurrence of the
longest prefix palindrome of rev str(vj, r) should be reported iff LFF [j] < LPrePal [j].
Hence, we can report all distinct palindromes in the trie in O(N) time by simply
scanning the two arrays LFF and LPrePal from left to right. The LFF array can be
computed in O(N) time from the LCP array for the trie, by using the same technique
for the longest previous factor array (LPF array) for a single string [8]. Together with
Theorem 2, we obtain the following:

Theorem 3. We can compute all distinct palindromes in a given trie T in
O(N ′ log h + N) time and O(N) working space, where N and h respectively denote
the number of edges in T and the height of T , and N ′ denotes the number of edges
in the path-contracted trie T ′.

Remark 3. The suffix array of the reversed trie with N edges can be constructed in
O(N) time and space if the edge labels are drawn from a constant-size alphabet or an
integer alphabet of polynomial size in N [36]. In the case of a general ordered alphabet
of size σ, the suffix array of the reversed trie can be constructed in O(N log σ) time
and space [5]. The other arrays can be constructed in O(N) time after the suffix array
has been built. In summary, our algorithm runs in O(N ′ log h + N log σ) time and
O(N log σ) working space in the case of a general ordered alphabet.
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Abstract. The motivation for having an efficient algorithm for identifying all maximal
Lyndon substrings of a string comes from the work of Bannai et al. on the Runs Con-
jecture. In 2015, they resolved the conjecture by considering Lyndon roots of runs and
they also presented a unique linear algorithm for computing all runs. The uniqueness
of the algorithm lies in the fact that it relies on the knowledge of all maximal Lyndon
substrings, while all other linear algorithms for runs rely on Lempel-Ziv factorization
of the input string. A Lyndon array is a data structure that encodes the information
of all maximal Lyndon substrings of a string. In a 2016 Prague Stringology Conference
paper, Franek et al. discussed various known algorithms for computing the Lyndon ar-
ray. In 2015, in his Masters’ thesis, Baier designed a linear algorithm for suffix sorting.
Inspired by Phase II of Baier’s algorithm, in a 2017 Prague Stringology Conference
paper, Franek et al. discussed the linear co-equivalency of sorting suffixes and sorting
maximal Lyndon substrings. As noticed by C. Diegelmann, the first phase of Baier’s
algorithm identifies and sorts all maximal Lyndon substrings of the input string. Based
on Phase I of Baier’s algorithm, in a 2018 Prague Stringology Conference paper, Franek
et. al presented an elementary (in the sense of not relying on a pre-processed global data
structure) linear algorithm for identifying and sorting all maximal Lyndon substrings.
This paper revisits the subject of algorithms for the Lyndon array and closes off the
series of our Prague Stringology Conference contributions on the topic – it provides
a simple overview of all currently known algorithms including the new development
since 2016. In particular, it presents a detailed analysis of a new algorithm TRLA, and
comparative measurements of three of the algorithms.

Keywords: string, suffix, suffix array, Lyndon array, Lyndon string, maximal Lyndon
substring

1 Introduction

There are at least two reasons for having an efficient algorithm for identifying all maxi-
mal Lyndon substrings in a string: firstly, Bannai et al. introduced in 2015 (arXiv, [3]),
and published in 2017, [4], a linear algorithm to compute all runs in a string that
relies on knowing all maximal Lyndon substrings of the string, and secondly, in 2017,
Franek et al. in [13] showed a linear co-equivalence of sorting suffixes and sorting
maximal Lyndon substrings, based on a novel suffix sorting algorithm introduced by
Baier in 2015 (Master’s thesis, [1]), and published in 2016, [2].

The most significant feature of the runs algorithm presented in [4] is that it relies
on knowing all maximal Lyndon substrings of the input string for some order of the
alphabet and for the inverse of that order, while all other linear algorithms for runs
rely on Lempel-Ziv factorization of the input string. Thus, computing runs became
yet another application of Lyndon words. It also raised the issue which approach
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may be more efficient: to compute the Lempel-Ziv factorization or to compute all
maximal Lyndon substrings. Interestingly, Kosolobov argues that computing Lempel-
Ziv factorization may be harder than computing all runs, however his archive paper
[17] was not followed up with. There are several efficient linear algorithms for Lempel-
Ziv factorization; for example see [5,7] and the references therein.

Baier introduced in [1], and published in [2], a new algorithm for suffix sorting.
Though Lyndon strings are never mentioned there, it was noticed by Cristoph Diegel-
mann in a personal communication, [8], that Phase I of Baier’s suffix sort identifies
and sorts all maximal Lyndon substrings.

The maximal Lyndon substrings of a string x = x[1..n] can be best encoded in
the so-called Lyndon array introduced in [14]: an integer array L[1..n] so that for
any i ∈ 1..n, L[i] = the length of the maximal Lyndon substring starting at position i.

Our research group has presented in the Prague Stringology Conference a series
of three papers on the topic of maximal Lyndon substrings:

(1) In 2016, [14] presented an overview of then-current algorithms for computing the
Lyndon array.

(2) In 2017, [13] presented the linear co-equivalency of sorting suffixes and sorting
maximal Lyndon substrings.

(3) In 2018, [12] presented an elementary1 linear algorithm to identify and sort all
maximal Lyndon substrings, inspired by Phase I of Baier’s algorithm.

This paper completes the series and briefly recapitulates the algorithms presented in
[14] and then presents the development since 2016 not described in [14], in particular
a novel algorithm TRLA for computing the Lyndon array based on τ -reduction, and
empirical comparisons of three of the algorithms: IDLA, BSLA, and TRLA.

The structure of the paper is as follows. In Section 2, the basic notations and
notions are presented. Section 3 contains a brief recapitulation of IDLA, the Iterated
Duval algorithm for Lyndon array. Section 4 contains a brief recapitulation of RDLA,
the Recursive Duval algorithm for Lyndon array. Section 5 contains a brief recapitula-
tion of SSLA, the algorithmic scheme of suffix sorting followed by Next Smaller Value.
Section 6 introduces BWLA, the 2018 algorithmic scheme for computing the Lyndon
array via inversion of Burrows-Wheeler transform. Section 7 contains a brief recapit-
ulation of RGLA, the ranges based algorithm for Lyndon array. Section 8 contains a
brief recapitulation of BSLA, the Baier’s sort Phase I inspired algorithm. Section 9
contains a detailed description and analysis of TRLA, the recursive algorithm based
on τ -reduction. In Section 10, the empirical measurements of the performance of
IDLA, BSLA, and TRLA are presented on various datasets with random strings of
various lengths and over various alphabets. The results are presented in a graphical
form. In Section 11, the conclusion of the research is presented, and the necessary
future work described.

2 Basic notation and terminology

For two integers i ≤ j, the range i..j = {k integer : i ≤ k ≤ j}. An alpha-
bet is a finite or infinite set of symbols (equivalently called letters). We assume

1 not needing a pre-processed global structure such as suffix array
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that a sentinel symbol $ is not in the alphabet and is always assumed to be lex-
icographically the smallest. A string over an alphabet A is a finite sequence of
symbols from A. A $-terminated string over A is a string over A terminated
by $. We use the array notation indexing from 1 for strings, thus x[1..n] indicates a
string of length n, the first symbol is the symbol with index 1, i.e. x[1], the second
symbol is the symbol with index 2, i.e. x[2], etc. Thus, x[1..n] = x[1]x[2] · · ·x[n].
For a $-terminated string x of length n, x[n+1] = $. The alphabet of string
x, denoted as Ax, is the set of all distinct alphabet symbols occurring in x. By a
constant alphabet we mean a fixed finite alphabet. A string x is over an integer
alphabet if Ax ⊆ {0, 1, . . . , |x|}. Thus, the class of strings over integer alpha-
bets = {x | x is a string over {0, 1, . . . , |x|}}. A string x over an integer alphabet
is tight if Ax = {0, 1, . . . , k} for some k ≤ |x|. Thus, for instance x = 010 is tight
as Ax = {0, 1}, while y = 020 is not as Ay = {0, 2} – i.e. 1 is missing from Ay .

We use a bold font to denote strings, thus x denotes a string, while x denotes
some other mathematical entity such as an integer. The empty string is denoted
by ε and has length 0. The length or size of string x = x[1..n] is n. The length
of a string x is denoted by |x|. For two strings x = x[1..n] and y = y[1..m], the

concatenation xy is a string u where u[i] =

{
x[i] for i ≤ n,

y[i− n] for n < i ≤ n+m.

If x = uvw, then u is a prefix, v a substring, andw a suffix of x. If u (respectively
v, w) is empty, then it is called a trivial prefix (respectivly trivial substring,
trivial suffix ), if |u| < |x| (respectively |v| < |x|, |w| < |x|) then it is called a
proper prefix (respectively proper substring, proper suffix ). If x = uv, then
vu is called a rotation or a conjugate of x; if either u = ε or v = ε, then the
rotation is called trivial. A non-empty string x is primitive if there is no string y
and no integer k ≥ 2 so that x = yk = yy · · ·y︸ ︷︷ ︸

k times

.

A non-empty string x has a non-trivial border u if u is both a non-trivial proper
prefix and a non-trivial proper suffix of x. Thus, both ε and x are trivial borders of
x. A string without a non-trivial border is called unbordered.

Let ≺ be a total order of an alphabet A. The order is extended to all finite strings
over the alphabet A: for x = x[1..n] and y = y[1..n], x ≺ y if either x is a proper
prefix of y, or there is a j ≤ min{n,m} so that x[1] = y[1], . . . , x[j−1] = y[j−1]
and x[j] ≺ y[j]. This total order induced by the order of the alphabet is called the
lexicographic order of all non-empty strings over A. We write x � y if either x ≺ y
or x = y. A string x over A is Lyndon for a given order ≺ of A if x is strictly
lexicographically smaller than any non-trivial rotation of x. A substring x[i..j] of
x[1..n], 1 ≤ i ≤ j ≤ n is a maximal Lyndon substring of x if it is Lyndon
and either j = n or for any k > j, x[i..k] is not Lyndon. The Lyndon array of a
string x = x[1..n] is an integer array L[1..n] so that L[i] = j where j ≤ n−i is a
maximal integer such that x[i..i+j−1] is Lyndon. Alternatively, we can define it as
an integer array L′[1..n] so that L′[i] = j when x[i..j] is a maximal Lyndon substring.
The relationship between those two definitions is straightforward: L′[i] = L[i]+i−1,
or L[i] = L′[i]−i+1.
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3 Iterated Duval algorithm - IDLA

This algorithm was presented in [14]. The algorithm is based on Duval’s work on
Lyndon factorization, [9]. The procedure maxLyn(x) returns the length of the max-
imal Lyndon prefix of the string x. In Duval’s factorization algorithm, maxLyn is
then applied to the position immediately after the maximal Lyndon prefix. Here, we
apply maxLyn iteratively to every suffix of x. Why and how maxLyn works, and its
complexity can be found in [14], including the pseudo-code. The C++ implementation
can be found in the file lynarr.hpp, [6]. Note that IDLA is referred to as Iterated
MaxLyn in [14]. The worst-case complexity of IDLA(x) is O(|x|2). The algorithm
works in-place, so the storage requirements are just the storage for the string and the
storage for the Lyndon array. The alphabet of the input string need not be sorted, but
must be ordered. The alphabet is sorted if the alphabet is in the form of an ordered
list, so that for each letter you can access in constant time the immediately preceding
letter and the immediately succeeding letter. The alphabet is ordered if there is a
partial order on the alphabet so that comparison of any two letters can be computed
in constant time.

4 Recursive Duval algorithm - RDLA

This algorithm was presented in [14]. The algorithm is also based on Duval’s algorithm
for Lyndon factorization which is applied recursively: if x[1..i1]x[i1+1..i2] · · ·x[ik+1..n]
is a Lyndon factorization of x, the algorithm is recursively applied to x[2..i1], to
x[i1+2..i2], . . . , to x[ik+2..n], and so on. The correctness of the algorithm follows
from the correctness of Duval’s algorithm. The alphabet of the input string need not
be sorted, but must be ordered. The algorithm works in the worst-case complexity of
O(|x|2), and in the special case of the binary alphabet of x, it is O(|x| log(|x|)), see
[14]. Storage requirements are the same as for IDLA, plus the additional storage for
the stack controlling the recursion.

5 Algorithmic scheme based on suffix sorting - SSLA

This scheme was presented in [14]. It is based on Lemma 1 which follows from Hohlweg
and Reutenauer’s work [14,15]. The lemma characterizes maximal Lyndon substrings
in terms of the relationships of the suffixes.

Lemma 1. Consider a string x[1..n] over an alphabet ordered by ≺. The substring
x[i..j] is Lyndon if x[i..n] ≺ x[k..n] for any i < k ≤ j, and is maximal Lyndon if it
is Lyndon and either j = n or x[j+1..n] ≺ x[i..n].

Therefore, the Lyndon array of x is the NSV (Next Smaller Value) array of the
inverse suffix array. The scheme is as follows: sort the suffixes, from the resulting
suffix array compute the inverse suffix array, and then apply NSV to the inverse
suffix array. Computing the inverse suffix array and applying NSV are “naturally”
linear and computing the suffix array can be implemented to be linear, see [14,20] and
the references therein. The time and space characteristics of the whole scheme are
dominated by the time and space characteristics of the first step – the computation
of the suffix array. For linear suffix sorting, the input strings must be over constant
or integer alphabets.
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6 Algorithmic scheme based on Burrows-Wheeler transform
– BWLA

This scheme was not presented in [14] as it was introduced in 2018, see [18]. The
algorithm is linear and computes the Lyndon array from a given Burrows-Wheeler
transform of the input string. Since the Burrows-Wheeler transform is computed in
linear time from the suffix array, it is yet another scheme of how to obtain the Lyn-
don array via suffix sorting: compute the suffix array, from the suffix array compute
the Burrows-Wheeler transform, and then compute the Lyndon array during the in-
version of the Burrows-Wheeler transform. As for SSLA, the execution and space
characteristics of the scheme are dominated by the computation of the suffix array.

7 An algorithm based on ranges – RGLA

This algorithm was discussed in [14] where it was referred to as NSV*.
In case of a constant alphabet, ranges can be compared in constant time if the Parikh
vector for each range is pre-computed, which can be done in linear time. An increasing
range is a maximal substring x[i..j] so that x[�«�] � x[ℓ] for every i ≤ �«� < ℓ ≤ j,
while a decreasing range is a maximal substring x[i..j] so that x[�«�] ≻ x[ℓ] for every
i ≤ �«� < ℓ ≤ j. The algorithm emulates the classic stack implementation of NSV.
The time and space complexity of the algorithm was not given in [14], but the time
complexity is at worst O(n2), though it was indicated in the paper it could possibly
be O(n log(n)), where n is the length of the input string. An informal analysis of the
correctness of the algorithm was provided.

8 Baier’s suffix sort Phase I inspired algorithm – BSLA

Introduced in 2018, this algorithm was not discussed in [14], however, it was presented
in [12]. There it was referred to as Baier’s sort and the code was available as bls, see
[6]. For the interested reader, a simpler and more elegant description and analysis of
the correctness of the algorithm can be found in [11]. Our C++ implementation can
be found at [6] as BSLA, though based on the ideas of Phase I of Baier’s suffix sort,
our implementation necessarily differs from Baier’s.

The input strings for BSLA are tight strings over integer alphabets. Note that
this requirement does not significantly detract from the applicability of the algorithm
as any string over an integer alphabet can easily be transformed in O(|x|) time to
a tight string so that the original string and the transformed string have the same
Lyndon array. Thus, computing the Lyndon array for the transformed tight string
also gives the Lyndon array for the original string.

The algorithm is based on a refinement of a list of groups of indices of the input
string x. The refinement is driven by a group that is already complete and the re-
finement process makes the immediately preceding group complete, too. In turn, this
newly completed group is used as the driver of the next round of the refinement. In
this fashion, the refinement proceeds from right to left until all the groups in the list
are complete. The initial list of groups consists of the groups of indices with the same
alphabet symbol; it will be shown that the group for the largest alphabet symbol is
complete, so it is a proper start for the refinement process.



Frantisek Franek and Michael Liut: Algorithms to Compute the Lyndon Array Revisited 21

Each group is assigned a specific substring of the input string referred to as the
context of the group; it has the property that for every i in the group, the group’s
context occurs at the position i. Throughout the process, the list of the groups is
maintained in an increasing lexicographic order by their contexts. Moreover, at every
stage, the contexts of all the groups are Lyndon substrings of x with the additional
property that the contexts of complete groups are maximal occurrences in x. Hence,
when the refinement is complete, the contexts of all the groups in the list represent
all maximal Lyndon substrings of x.

The process of refinement is rather technical and we refer the interested reader
to the original presentation in [12], or a better presentation in [11]. The complexity
of the algorithm is linear in the length of the input string. The space requirements
are relatively high; our C++ implementation, see [6], uses 12n integers of working
memory. We refer to the algorithm as elementary, as no global data structure needs
to be pre-processed, as is the case for SSLA and BWLA.

9 τ -reduction algorithm – TRLA

Introduced in 2017, this algorithm was not presented in [14]. The first idea of the
algorithm was proposed in Paracha’s 2017 Ph.D. thesis [21]. It follows Farach’s ap-
proach used in his remarkable linear algorithm for suffix tree construction [10], and
reproduced very successfully in all linear algorithms for suffix sorting, see for in-
stance [19,20] and the references therein. The scheme for computing the Lyndon
array works as follows:

(1) reduce the input string x to y,
(2) by recursion compute the Lyndon array of y,
(3) from the Lyndon array of y compute the Lyndon array of x.

The input strings are $-terminated strings over integer alphabets. The reduction
computed in (1) is important. All linear algorithms for suffix array computations
use the proximity property of suffixes: comparing x[i..n] and x[j..n] can be done
by comparing x[i] and x[j], and if they are the same, comparing x[i+1..n] with
x[j+1..n]. For instance, in the first linear algorithm for suffix array by Kärkkäinen
and Sanders, [16], obtaining the sorted suffixes for positions i ≡ 0 (mod 3) and
i ≡ 1 (mod 3) via the recursive call is sufficient to determine the order of suffixes for
i ≡ 2 (mod 3) positions, and then to merge both lists together. However, there is no
such proximity property for maximal Lyndon substrings, so the reduction itself must
have a property that helps determine some of the values of the Lyndon array of x
from the Lyndon array of y and compute the rest. We present such a reduction that
we call τ -reduction, and it may be of some general interest as it preserves order of
some suffixes and hence, by Lemma 1, some maximal Lyndon substrings.

The algorithm computes y as a τ -reduction of x in step (1) in linear time and
in step (3) it expands the Lyndon array of the reduced string computed by step (2)
to an incomplete Lyndon array of the original string also in linear time. However,
it computes the missing values of the incomplete Lyndon array in Θ(n log(n)) time
resulting in the overall worst-case complexity of Θ(n log(n)). If the missing values of
the incomplete Lyndon array of x were computed in linear time, the overall algorithm
would be linear as well. Since for τ -reduction, the size of τ(x) is at most 2

3
|x|, we

eventually obtain, through the recursion of step (2) applied to τ(x), a partially filled
Lyndon array of the input string; the array is about 1

2
to 2

3
full and for every position
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i with an unknown value, the values at positions i− 1 and i+1 are known and
x[i− 1] � x[i]. In particular, the value at position 1 and position n are both known.
So, a lot of information is provided by the recursive step. For instance, given the string
00011001, via the recursive call we would identify the maximal Lyndon substrings that
are underlined in 00011 001 and would need to compute the missing maximal Lyndon

substrings that are underlined in 00011001 . It is possible that in the future we may
come up with a linear procedure to compute the missing values making the whole
algorithm linear. We describe the τ -reduction in several steps: first the τ -pairing, then
choosing the τ -alphabet, and finally the computation of the τ -reduction of x.

9.1 τ -pairing

Consider a $-terminated string x = x[1..n] whose alphabet Ax is ordered by ≺ with
x[n+1] = $ and $ ≺ a for any a ∈ Ax. A τ -pair consists of a pair of adjacent
positions from the range 1..n+1. The τ -pairs are computed by induction:

• the initial τ -pair is (1, 2);
• if (i−1, i) is the last τ -pair computed, then:

if i = n−1 then
the next τ -pair is set to (n, n+1)
stop

elseif i ≥ n then
stop

elseif x[i−1] ≻ x[i] and x[i] � x[i+1] then
the next τ -pair is set to (i, i+1)

else
the next τ -pair is set to (i+1, i+2)

Every position of the input string that occurs in some τ -pair as the first element
is labeled black, all others are labeled white. Note that most of the τ -pairs do not
overlap; if two τ -pairs overlap, they overlap in a position i such that 1 < i < n and
x[i−1] ≻ x[i] and x[i] � x[i+1]. Moreover, a τ -pair can be involved in at most one
overlap; for illustration see Fig. 1, for formal proof see Lemma 2.

1    2   3    4   5   6   7   8    9  10

Figure 1. Illustration of τ -reduction of a string 011023122
The rounded rectangles indicate symbol τ-pairs, the ovals indicate the τ-pairs
below are the colour labels of positions, at the bottom is the τ-reduction
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Lemma 2. Let (i1, i1+1) · · · (ik, ik+1) be the τ -pairs of a strings x = x[1..n]. Then
for any j, ℓ ∈ 1..k

(1) if |(ij, ij+1)∩(iℓ, iℓ+1)| = 1, then for any m 6= j, ℓ, |(ij , ij+1)∩(im, im+1)| = 0,
(2) |(ij, ij+1) ∩ (iℓ, iℓ+1)| ≤ 1.

Proof. For the proof, please see the online report [11], Observation 3 and Lemma 3.
⊓⊔

9.2 τ -reduction

For each τ -pair (i, i+1), we consider the pair of alphabet symbols (x[i],x[i+1]). We call
them symbol τ -pairs. They are in a total order ✁ induced by ≺ :
(x[ij ],x[ij+1])✁ (x[iℓ],x[iℓ+1]) if either x[ij ] ≺ x[iℓ], or x[ij ] = x[iℓ] and x[ij+1] ≺
x[iℓ+1]. They are sorted using radix sort, with keys of size 2, and assigned letters
from a chosen τ -alphabet that is a subset of {0, 1, . . . , |τ(x)|} so that the assignment
preserves the order. Because the input string was over an integer alphabet, the radix
sort is linear.

In the example, Fig. 1, the τ -pairs are (1, 2)(3, 4)(4, 5)(6, 7)(7, 8)(9, 10) and so
the symbol τ -pairs are (0, 1)(1, 0)(0, 2)(3, 1)(1, 2)(2, $). The sorted symbol τ -pairs are
(0, 1)(0, 2)(1, 0)(1, 2)(2, $)(3, 2). Thus we chose as our τ -alphabet {0, 1, 2, 3, 4, 5} and
so the symbol τ -pairs are assigned these letters: (0, 1) → 0, (0, 2) → 1, (1, 0) → 2,
(1, 2)→ 3, (2, $)→ 4 and (3, 1)→ 5. Note that the assignments respect the order ✁
of the symbols τ -pairs, and the natural order < of {0, 1, 2, 3, 4, 5}.

The τ -letters are substituted for the symbol τ -pairs and the resulting string is
terminated with $. This string is called the τ -reduction of x and denoted τ (x),
and it is a $-terminated string over an integer alphabet. For our running example from
Fig. 1, τ(x) = 021534. The next lemma justifies calling the above transformation a
reduction.

Lemma 3. For any string x, 1
2
|x| ≤ |τ(x)| ≤ 2

3
|x|.

Proof. One extreme case is when all the τ -pairs do not overlap at all, then |τ(x)| =
1
2
|x|. The other extreme case is when all the τ -pairs overlap, then |τ(x)| = 2

3
|x|. Any

other case must be in between.
⊓⊔

Let B(x) denote the set of all black positions of x. For any i ∈ 1..|τ(x)|, b(i) = j
where j is a black position in x of the τ -pair corresponding to the new symbol in
τ(x) at position i, while t(j) assigns each black position of x the position in τ(x)
where the corresponding new symbol is, i.e. b(t(j)) = j and t(b(i)) = i. Thus,

1..|τ(x)|
b

⇄
t
B(x)

In addition, we define p as the mapping of the τ -pairs to the τ -alphabet.
In our running example from Fig. 1, t(1) = 1, t(3) = 2, t(4) = 3, t(6) = 4, t(7) = 5,

and t(9) = 6, while b(1) = 1, b(2) = 3, b(3) = 4, b(4) = 6, b(5) = 7, and b(6) = 9. For
the letter mapping, we get p(1, 2) = 0, p(3, 4) = 2, p(4, 5) = 1, p(6, 7) = 5, p(7, 8) = 3,
and p(9, 10) = 4.
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9.3 Properties preserved by τ -reduction

The most important property of τ -reduction is the preservation of maximal Lyndon
substrings of x that start at black positions. By that we mean the fact there is a
closed formula that gives for every maximal Lyndon substring of τ(x) a corresponding
maximal Lyndon substring of x. Moreover, the formula for any black position can
be computed in constant time. It is simpler to present the following results using L′,
the alternative form of Lyndon array, the one where the end positions of maximal
Lyndon substrings are stored rather than their lengths. More formally:

Theorem 4. Let x = x[1..n], let L′
τ(x)[1..m] be the Lyndon array of τ(x), and let

L′
x[1..n] be the Lyndon array of x.

Then for any black i ∈ 1..n, L′
x[i] =

{
b
(
L′

τ(x)[t(i)]
)

if x[b
(
L′

τ(x)[t(i)]
)
+1] � x[i]

b
(
L′

τ(x)[t(i)]
)
+1 otherwise.

The proof of the theorem requires a series of lemmas that are presented below.
First we show that τ -reduction preserves relationships of certain suffixes of x.

Lemma 5. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i, j ≤ n. If i and j
are both black positions, then x[i..n] ≺ x[j..n] implies τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

Proof. For the proof, please see the online report [11], Lemma 6. ⊓⊔

Lemma 6 shows that τ -reduction preserves the Lyndon property of certain Lyndon
substrings.

Lemma 6. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n. Let x[i..j]
be a Lyndon susbtsring of x, and let i be a black position.

Then

{
τ(x)[t(i)..t(j)] is Lyndon if j is black

τ(x)[t(i)..t(j−1)] is Lyndon if j is white.

Proof. For the proof, please see the online report [11], Lemma 7. ⊓⊔

Now we can show that τ -reduction preserves some maximal Lyndon substrings.

Lemma 7. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n. Let x[i..j]
be a maximal Lyndon substring, and let i be a black position.

Then

{
τ(x)[t(i)..t(j)] is a maximal Lyndon substring if j is black

τ(x)[t(i)..t(j−1)] is a maximal Lyndon substring if j is white.

Proof. For the proof, please see the online report [11], Lemma 8. ⊓⊔

Now we are ready to tackle the proof Theorem 4 as we promised; please, see the
online report [11] for the proof.
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for i← 1 to n
if i = 1 or

(
x[i−1] ≻ x[i] and x[i] � x[i+1]

)
then

if x
[
b
(
L′τ(x)[t(i)]

)
+1

]
� x[i] then

L′x[i]← b
(
L′τ(x)[t(i)]

)

else
L′x[i]← b

(
L′τ(x)[t(i)]

)
+1

else
L′x[i]← nil

Figure 2. Computing partial Lyndon array of the input string

9.4 Computing L′
x from L′

τ(x).

Theorem 4 indicates how to compute the partial L′
x from L′

τ(x). The procedure is
given in Fig. 2.

How to compute the missing values? The partial array is processed from right to
left. When a missing value at position i is encountered (note that it is recognized by
L′
x[i] = nil), the Lyndon array L′

x[i+1..n] is completely filled and also L′
x[i−1] is

known. Note that L′
x[i+1] is the ending position of the maximal Lyndon substring

starting at the position i+1. If x[i] ≻ x[i+1], then the maximal Lyndon substring
from position i+1 cannot be extended to the left, and hence the maximal Lyndon
substring at the position i has length 1 and so ends in i. Otherwise, x

[
i..L′

x[i+1]
]
is

Lyndon, and we have to test if we can extend the maximal Lyndon substring right
after, and so on. But of course, this is all happening inside the maximal Lyndon
substring starting at i−1 and ending at L′

x[i−1] due to Monge property2 of the
maximal Lyndon substrings.

This is thewhile loop in the procedure given in Fig. 3 that gives it theO(n log(n))
complexity as we will show later. At the first, it may seem that it might actually give it
O(n2) complexity, but the “doubling of size” trims it effectively down to O(n log(n));
see Section 9.5.

L′x[n]← n
for i← n−1 downto 2
if L′[i] = nil then
if x[i] ≻ x[i+1] then
L′[i]← i

else
if L′[i−1] = i−1 then
stop← n

else
stop← L′[i−1]
L′[i]← L′[i+1]
while L′[i] < stop do
if x[i..L′[i]] ≺ x[L′[i]+1..L′[L′[i]+1]] then
L′[i]← L′[L′[i]+1]

else
break

Figure 3. Computing missing values of the Lyndon array of the input string

Consider our running example from Fig. 1. Since τ(x) = 021534, we have
L′

τ(x)[1..6] = 6, 2, 6, 4, 6, 6 giving L′
x[1..9] = 9, •, 3, 9, •, 6, 9, •, 9. Computing L′

x[8]

2 two maximal Lyndon susbtrings are either disjoint or one completely includes the other
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is easy as x[8] = x[9] and so L′
x[8] = 8. L′

x[5] is more complicated: we can ex-
tend the maximal Lyndon substring from L′

x[6] to the left to 23, but no more, so
L′
x[5] = 6. Computing L′

x[2] is again easy as x[2] = x[3] and so L′
x[2] = 2. Thus

L′
x[1..9] = 9, 2, 3, 9, 6, 6, 9, 8, 9.

9.5 The complexity of TRLA

The complexity of TRLA is Θ(n log(n)) for a string of length n. The detailed analysis
can be found in the online report [11], Section 3.5. The analysis involves two steps:
the first step is showing that the complexity is O(n log(n)), and the second steps
gives a scheme (F) of generating binary strings that force Θ(n log(n)) execution.

The space complexity of our C++ implementation is bounded by 9n integers. This
upper bound is derived from the fact that a Tau object (see Tau.hpp, [6]) requires 3n
integers of space for a string of length n. So the first call to TRLA requires 3n, the next
recursive call requires at most 32

3
n, the next recursive call requires at most 3(2

3
)2n,

. . . , thus, 3n+ 32
3
n+ 3(2

3
)2n+ 3(2

3
)3n+ . . . = 3n(1 + 2

3
+ (2

3
)2 + (2

3
)3 + (2

3
)4 + . . .) =

3n 1
1− 2

3

= 9n.

10 Measurements

All the measurements were performed on the moore server of McMaster University’s
Department of Computing and Software; Memory: 32GB (DDR4 @ 2400 MHz), CPU:
8 of the Intel Xeon E5-2687W v4 @ 3.00GHz, OS: Linux version 2.6.18-419.el5 (gcc
version 4.1.2) (Red Hat 4.1.2-55), further, all the programs were compiled without
any additional level of optimization3. The CPU time was measured for each of the
programs in seconds with a precision of 3 decimal places (i.e. milliseconds). Since the
execution time was negligible for short strings, the processing of the same string was
repeated several times (the repeat factor varied from 106, for strings of length 10, to
1, for strings of length 106), resulting in a higher precision (of up to 7 decimal places).
Thus, for graphing, the logarithmic scale was used for both, the x-axis representing
the length of the strings, and the y-axis representing the time.

There were 4 categories of datasets: random tight binary strings over the alphabet
{0, 1}, random tight 4-ary strings (kind of random DNA) over the alphabet {0, 1, 2, 3},
random tight 26-ary strings (kind of random English) over the alphabet {0, 1, . . . , 25},
and random tight strings over integer alphabets. Each of the dataset contained 500
randomly generated strings of the same length. For each category, there were datasets
for length 10, 50, 102, 5·102, . . . , 105, 5·105, and 106. The average time for each dataset
was computed and used in the following graphs.

As the graphs clearly indicate, the performance of the three algorithms is virtu-
ally indistinguishable. We expected IDLA and TRLA to exhibit linear behaviour on
random strings as such strings tend to have almost all maximal Lyndon substrings
short with respect the length of the strings. However, we did not expect the results
to be so close.

We also tested all three algorithms on datasates containing a single string
01234 . . . n referred to as an extreme idla string, which, of course makes IDLA
exhibit its quadratic complexity, and indeed the results show it; see Fig. 8. The
extreme trla strings were generated according to the scheme (F) used in the analysis

3 i.e. neither -O1, nor -O2, nor -O3 flag were specified for the compilation
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Figure 4. Binary strings
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Figure 5. 4-ary strings
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Figure 6. 26-ary strings
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Figure 7. Strings over integer alphabets

of the complexity of TRLA in section 9.5. These strings force worst-case execution
for TRLA. However, even log(106) is too small to really highlight the difference, so
the results were again very close, see Fig. 9.
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Figure 8. extreme idla strings
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Figure 9. extreme trla strings

11 Conclusion and Future Work

We presented an overview of current algorithms for computing maximal Lyndon sub-
strings, including new development since the publication of [14]:

• the algorithmic scheme based on the computation of the inverse Burrows-Wheeler
transform, BWLA, [18];
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• the linear algorithm inspired by Phase I of Baier’s algorithm, BSLA, [11,12]; and
• the novel algorithm based on τ -reduction, TRLA.

Then performance of three of the presented algorithms, IDLA, BSLA, and TRLA was
compared on various datasets of random strings. The algorithm TRLA is mostly of
theoretical interest since it has the worst-case complexity Θ(n log(n)) for strings of
length n. Interestingly, on random strings it slightly outperformed BSLA, which is
linear. Additional effort will go into improving TRLA’s complexity in the computation
of the missing values. It is imperative that the three algorithms be compared to some
efficient SSLA or BWLA implementation.
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Abstract. Two strings of equal length are called k-Abelian equivalent, if they share
the same multi-set of factors of length at most k. Ehlers et al. [JDA, 2015] considered
the k-Abelian pattern matching problem, where the task is to find all factors in a text
T that are k-Abelian equivalent to a pattern P . They claimed a number of algorithmic
results for the off-line and on-line versions of the k-Abelian pattern matching problem.
In this paper, we first argue that some of the claimed results by Ehlers et al. [JDA,
2015] contain major errors, and then we present a new algorithm that correctly solves
the offline version of the problem within the same bounds claimed by Ehlers et al., in
O(n + m) time and O(m) space, where n = |T | and m = |P |. We also show how to
correct errors in their online algorithm, and errors in their real-time algorithms for a
slightly different problem called the extended k-Abelian pattern matching problem.

Keywords: Abelian equivalence, pattern matching, suffix trees, suffix arrays

1 Introduction

Two strings X and Y of equal length are said to be Abelian equivalent if the numbers
of occurrences of each letter are equal in X and Y . For instance, strings ababaac

and caaabba are Abelian equivalent. Since the seminal paper by Erdős [14] published
in 1961, the study of Abelian equivalence on strings has attracted much attention,
both in word combinatorics and string algorithmics. One good example is the Abelian
version of pattern matching problem, where the task is to locate all factors of a given
text T that are Abelian equivalent to a given pattern P (reporting version), or to
test whether there is such a factor in T (existence version). This problem is called the
jumbled pattern matching problem, and a number of algorithms have been proposed
for this problem; see the subsection for related work below.

k-Abelian equivalence is a natural generalization of Abelian equivalence: For a
positive integer k, two strings X and Y of equal length are said to be k-Abelian
equivalent if the numbers of occurrences of each string of length at most k are equal
in X and Y . The notion of k-Abelian equivalence of strings was first introduced
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by Huova et al. [20], and then has extensively been studied in the context of word
combinatorics such as k-Abelian repetitions [20,19,21], k-Abelian periodicities [23],
k-Abelian equivalence classes [22,10,25], just to mention a few.

The first (and only, to our knowledge) algorithmic results concerning k-Abelian
equivalence of strings were given by Ehlers et al. [13] for the k-Abelian pattern match-
ing problem. Here the task is, given a text T and pattern P , to locate all factors of T
that are k-Abelian equivalent to P . Ehlers et al. [13] considered the offline and online
versions of the k-Abelian pattern matching problem, and claimed a number of results
with different bounds.

In this paper, we first argue that some of those claimed results by Ehlers et al. [13]
contain major errors. These errors are due to the abuse of the van Emde Boas data
structure [7] that uses space linear in the size of the universe of the integers, no
matter how many elements are stored in the data structure. There are also other
major issues such as carelessness on the size of the integer alphabet from which the
text is drawn, unknown construction time of the weighted ancestor data structure
on suffix trees [17], and so on. We then present a new algorithm that actually solves
the offline version of the problem within the same bounds claimed by Ehlers et al.,
namely in O(n+m) time and O(m) space, where n = |T | and m = |P |.

Ehlers et al. [13] also considered a slightly different variant of the k-Abelian pattern
matching problem called the extended k-Abelian pattern matching problem. Here, two
strings X and Y of equal length are said to be extended k-Abelian equivalent if the
numbers of occurrences of each string of length exactly k are equal in X and Y . We
point out the major errors in their solutions to extended k-Abelian pattern matching,
and show how to obtain alternative solutions.

Related work

For jumbled pattern matching (i.e. 1-Abelian pattern matching), there is a simple
algorithm that compares the number of occurrences of all letters a ∈ Σ of the pattern
P and a sliding window of length m over the text T . In case P is over an integer
alphabet of size linear in m, shifting the window takes O(1) time per text letter and
hence this algorithm runs in O(n +m) time and O(m) working space, where n and
m are the lengths of T and P , respectively. Butman et al. [9] considered how to
solve this problem on run-length encoded strings. When n′ and m′ are respectively
the sizes of the run-length encoded text and pattern, then their algorithm runs in
O(n′ +m′) time with O(m′) working space, given that the pattern is over an integer
alphabet of size linear in m′. The essentially same algorithm was later rediscovered
by Sugimoto et al. [35] and was used as a sub-routine in their algorithms to compute
Abelian regularities from run-length encoded strings.

The indexing version of the jumbled pattern matching is more challenging and has
attracted much attention. Amir et al. [1] proposed an indexing structure of O(n1+ǫ)
space that can be constructed in O(n1+ǫ log σ) time and can decide whether there

is an occurrence of the pattern in O(m
1
ǫ + log σ) time, where σ is the alphabet

size and 0 < ǫ < 1 is any constant. Their algorithm works for any alphabets. For
any constant-size alphabets, Kociumaka et al. [29] proposed an O(n2/L)-space data
structure which can be constructed in O(n2(log log n)2)/ log n) time and can report
the left-most occurrence in O(L2σ−1) time, where n is the length of a given text t
and L is a trade-off parameter ranging from 1 to n. For alphabets of size σ = ω(1),
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Amir et al. [2] showed that jumbled indexing requires Ω(n2−λ) preprocessing time or
Ω(n1−δ) query time for every λ, δ > 0, under the famous 3SUM-hardness assumption.

There have been several indexing structures for binary jumbled pattern matching
(BJPM). Cicalese et al. [12] gave an index for BJPM that uses O(n) space, can be
constructed in O(n2) time and can decide the existence of occurrences in O(1) time.
Improved O(n2/ log n)-time construction of the BJPM indexing was independently
proposed by Burcsi et al. [8] and by Moosa and Rahman [31]. Later, construction
time was further improved to O(n2/(log n)2) by Moosa and Rahman [32]. Hermelin et
al. [18] showed how to reduce the BJPM problem to the all-pairs shortest paths prob-

lem and presented an O(n2/2Ω(log n/ log logn)0.5) preprocessing scheme for the BJPM
problem. Chan and Lewenstein [11] presented a breakthrough solution for the BJPM
problem that takes O(n1.864) time for preprocessing and requires O(1) time for queries.
Their solution can also be extended to larger constant-size alphabets, with strongly
sub-quadratic preprocessing time and strongly sub-linear query time.

2 Preliminaries

Let Σ be an ordered alphabet of size σ. An element of Σ∗ is called a string. Let ε
denote the empty string of length 0. For a non-negative integer k, let Σk denote the
set of strings of length k. For a string u = xyz, x, y, and z are called a prefix, factor,
and suffix of u, respectively. For a string u of length n, let u[i] denote the ith letter
in u for 1 ≤ i ≤ n, and u[i..j] denote the factor of u that begins at position i and
ends at position j for 1 ≤ i ≤ j ≤ n. For a non-negative integer k, a factor of length
k in a string u is called a k-gram in u. For a positive integer n, let [1..n] denote the
set of n positive integers from 1 to n.

For any string u ∈ Σ∗ and letter a ∈ Σ, |u|a denotes the number of occurrences
of a in u. Two strings u and v are said to be Abelian equivalent if |u|a = |v|a for all
letters a ∈ Σ. To simplify the argument, let us identify each letter a ∈ Σ with its
lexicographical rank in Σ.

Now, we extend the aforementioned notion from occurrences of letters to those of
strings. Namely, for a string t, let |u|t denote the number of occurrences of t in u.

Definition 1 (k-Abelian equivalence). For a positive integer k, two strings u and
v of equal length n are said to be k-Abelian equivalent if either

(1) u = v or
(2) all the following conditions hold:

(a) |u|, |v| ≥ k;
(b) |u|t = |v|t for all strings t ∈ Σk;
(c) u[1..k − 1] = v[1..k − 1];
(d) u[n− k + 2..n] = v[n− k + 2..n].

According to [24], the last condition (2)-(d) for having the same suffix of length k− 1
can actually be dropped.

We denote u ≡k v when u and v are k-Abelian equivalent. It is known that u ≡k v
iff |u|s = |v|s for every string s of length at most k.

Example 1. Let x = abaababbaab and y = abbaabaabab. For k = 3, x and y are k-
Abelian equivalent, since they satisfy |x| = |y| = 11 ≥ 3, |x|t = |y|t for all strings
t ∈ Σ3 i.e. |x|aaa = |y|aaa = 0, |x|aab = |y|aab = 2, |x|aba = |y|aba = 2, |x|abb = |y|abb =
1, |x|baa = |y|baa = 2, |x|bab = |y|bab = 1, |x|bba = |y|bba = 1, |x|bbb = |y|bbb = 0, and their
prefixes of length k − 1 = 2 are equal i.e. x[1..2] = y[1..2] = ab.
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In this paper, we consider the following problem.

Problem 1. Given a text T and a pattern P over an alphabet Σ and a positive integer
k, locate all factors of T that are k-Abelian equivalent to P .

For simplicity, suppose that a string u terminates with a special letter that does
not appear elsewhere in u. The suffix tree of string u of length n is a rooted edge-
labeled tree such that (1) each internal node is branching, (2) each edge is labeled
with a non-empty substring of u, (3) the labels of out-going edges of each node are
mutually distinct, and (4) there is a one-to-one correspondence between suffixes of u
and the leaves of the tree. The locus of a substring x of u in the suffix tree of u is
the ending position of the path that spells out x from the root. When there is a node
such that the path from the root to this node spells out x, then the locus of x is on
that node. When there is no such node, then the locus of x is on an edge.

The suffix array of string u of length n, denoted SAu, is an array of length n such
that, for 1 ≤ i ≤ n, SAu[i] = j iff u[j..n] is the ith lexicographically smallest suffix of
u. SAu can be seen as an array of the leaves of the suffix tree for u where the out-going
edges are sorted in lexicographical order. The LCP array of string u, denoted LCPu,
is an array of length n such that LCPu[1] = −1 and, for 2 ≤ r ≤ n, LCPu[r] stores
the length of the longest common prefix of the suffixes stored at positions r − 1 and
r in the suffix array i.e., u[SAu[r − 1]..n] and u[SAu[r]..n].

3 Online and offline k-Abelian pattern matching

In this section, we point out some errors in the claims from the previous work of Ehlers
et al. [13]. They considered Problem 1 in two settings, the offline version where the
whole text and pattern are given together as input, and the online version where the
pattern is given first to preprocess and the text letters are given in an online manner,
one by one from left to right. In the online version, each time a new text letter arrives,
a new k-Abelian equivalent occurrence of the pattern in the text must be reported
(if it exists).

3.1 Offline k-Abelian pattern matching problem

In this subsection, we consider the offline version of Problem 1.

Errors in the previous work. Ehlers et al. [13] stated the following claim.

Claim (Remark 2 of [13] in conjunction with Theorem 2 of [13]). The offline version
of Problem 1 can be solved in O(n +m) time and O(m) space for integer alphabet
Σ = [1..n]1.

Below, we show that Ehlers et al.’s approach [13] does not fulfill the above claim
and uses more space than O(m). To see why, let us briefly describe their approach
from Theorem 2 of their paper [13]. For a string u ∈ Σn, consider the k-encoded
string #(u, k) of length n− k + 1 such that for each i (1 ≤ i ≤ n− k + 1), #(u, k)[i]
stores the lexicographical rank of the k-gram u[i..i+ k− 1] in the set {u[i..i+ k− 1] |
1 ≤ i ≤ n− k + 1} of all k-grams in T . Given a text T and pattern P , they consider
a concatenated string w = T$P where $ is a special letter not appearing in T or P ,

1 This assumption of the integer alphabet is given in Section 2 (Preliminaries) in [13].
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and compute #(w, k). Let T ′ = w[1..n− k + 1] and P ′ = w[n+ 1..n+m− k + 2] =
P [1..m − k + 1]. Then, a key observation is that for each i (1 ≤ i ≤ n − m + 1),
T [i..i+m− 1] and P are k-Abelian equivalent iff T ′[i..i+m− k] and P ′ are Abelian
equivalent, and T [i..i+ k− 2] = P [1..k− 1]. To compute #(w, k) and to test whether
T ′[i..i+m− k] and P ′ are Abelian equivalent or not, they build the suffix array SAw

for the concatenated string w together with the LCP array LCPw enhanced with a
constant-time range minimum query data structure [5].

While the aforementioned approach works in O(n + m) time for the integer al-
phabet Σ = [1..n], it also requires O(n + m) space. As an attempt to reduce the
space requirement to O(m), they chose the following approach: For ease of explana-
tion, suppose that n is divisible by m. For each 0 ≤ t ≤ n

m
− 2, they pick the factor

T [tm+1..(t+2)m] of length 2m, and built the suffix array of wt = T [tm+1..(t+2)m]$P
and apply the above method to wt, namely construct the suffix array SAwt and LCP
array LCPwt for each t.

However, this approach indeed takes O(n + m) time and O(n) space for each t.
This is because, regardless of its length, any factor of the text T over the integer
alphabet [1..n] can contain letters (i.e. integers) up to n. In other words, any factor
of such text T is still a string over the integer alphabet [1..n]. The above argument
implies that the universe of the letters in T [tm+1..(t+2)m] is [1..n] in the worst case.
Recall that any existing linear-time suffix array construction algorithms for the integer
alphabet [1..n] use bucket sort [28,27,26,33,3], and that any suffix array construction
with comparison-based sorting must take Ω(n log n) time for any ordered alphabet of
size O(n) [15]. In general, bucket sort for a set of s integers over the integer universe
[1..u] requires O(s+ u) time and O(u) space, since it uses an integer array of length
u. Therefore, Ehlers et al.’s method (Remark 2 of [13]) must use O(n+m) time and
O(n) space for each t. Moreover, this leads to O(n(n +m)/m) total time for all t’s,
which is super-linear in reasonably common cases where m = o(n).

New offline algorithm. Now we present a new algorithm for the offline version of
Problem 1 that indeed uses only O(m) space. To achieve this goal, we introduce a
reasonable assumption that the pattern P of length m is over an integer alphabet of
size [1..cm] with any positive constant c such that cm is a positive integer. Then we
show the following:

Theorem 1. Let P be a pattern of length m over an integer alphabet [1..cm] with
any positive constant c, and T be a text of length n over an arbitrary integer alphabet.
Then, for a given integer k > 0, we can solve Problem 1 in O(n + m) time using
O(m) space.

Proof. Our proposed algorithm uses suffix trees. Namely, for each t (0 ≤ t ≤ n
m
− 2),

we construct the suffix tree of wt = T [tm+ 1..(t+ 2)m]$P . For each occurrence of a
k-gram in P , we construct a bucket that is associated to the locus of the k-gram in
the suffix tree. The locus is an implicit or explicit node of string depth k. If a k-gram
occurs z times in P , then there will be z buckets in its corresponding locus. Initially,
all the buckets are empty.

Now, we check whether each factor of T of length m fulfill all the buckets. For each
x = 0, . . . , t− 1 in increasing order, we map the factor T [tm+ 1+ x..tm+ k + x] the
(implicit or explicit) node of string depth k representing T [tm+1+x..tm+k+x], and
if there is a bucket there, we fulfill it with position tm+1+x. This can easily be done
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in O(1) time per x after an O(m)-time preprocessing – for every leaf in the suffix tree,
we can compute its ancestor of string depth k in O(m) total time with a standard tree
traversal. We keep track of a sliding window of length m over T [tm+1..(t+2)m], and
the positions in the buckets are removed as soon as they are out of the window. This
can easily be done by implementing the set of buckets in each node by a queue. Each
time all the buckets are fulfilled, then we additionally check if the (k−1)-gram of the
text beginning with the current smallest position j in the buckets satisfies Condition
(2)-(c) of Definition 1 with P [1..k−1]. This additional step can easily be done in O(1)
time by marking the locus of the suffix tree representing P [1..k−1]. If the condition is
satisfied, then we output the beginning position j of the text factor that is k-Abelian
equivalent to P . Then, we delete the position j from the corresponding bucket, and
proceed to the next position by increasing x.

What remains is how to reduce the alphabet size of T . For this sake we replace any
letter in T that exceeds cm with cm+1, where cm is the largest letter appearing in P .
The resulting new text T̂ is now a string of length n over the integer alphabet [1..cm+

1]. For each t, the suffix tree of T̂ [tm + 1..(t + 2)m]$P can be constructed in O(m)
time and space, by the suffix tree construction algorithm for integer alphabets [15],
or via any linear-time suffix array construction algorithm for integer alphabets and
the LCP array. Note that all k-Abelian equivalent occurrences of P in the text are
preserved in the new text T̂ . Thus, our algorithm runs in O(n+m) time with O(m)
space. ⊓⊔

3.2 Online k-Abelian pattern matching problem

In this subsection, we consider the online version of Problem 1. In this variant of the
problem, the authors assume that Σ = [1..σ] with σ ∈ O(m) [13]2.

The key idea of their algorithm is to use the following list L: Let Dk−1(P ) and
Dk(P ) be the set of (k − 1)-grams and k-grams that occur in P , respectively. Let
f1 be an array of length |Dk−1(P )| such that f1[i] stores an occurrence of the lex-
icographically ith (k − 1)-gram in Dk−1(P ). Similarly, let f2 be an array of length
|Dk(P )| such that f2[j] stores an occurrence of the lexicographically jth k-gram in
Dk(P ). Now the list L is defined as follows.

L = {(i, a, j) | 1 ≤ i ≤ |Dk−1(P )|, 1 ≤ j ≤ |Dk(P )|, a ∈ Σ, f1[i]a = f2[j]}.

While the original online algorithm by Ehlers et al. uses the suffix array and lcp
array for P to implement L, in our explanation we use the suffix tree for P since
it seems more intuitive and easier to follow3. Also, recall our offline algorithm of
Theorem 1 as the method to follow can be seen as its online version. Let STree(P )
denote the suffix tree for P .

Now one can regard L as the set of the edges of STree(P ) that connect the (implicit
or explicit) nodes of string depth k− 1 to the nodes of string depth k. Now the basic
strategy is the following. Let T ′ be the current text, a the next letter to be appended
to T ′, and T = T ′a. Suppose that we know the locus in STree(P ) that represents the

2 Ehlers et al. deal with the offline version of the problem in Section 3 and the online version
in Section 4 in their paper [13]. While they write “As before, we assume that Σ = [1..σ] with
σ ∈ O(m).” in the beginning of Section 4, we cannot find such assumption in Section 3 or earlier
in their paper.

3 This variant of algorithm with suffix trees is also used by Ehlers et al. for online extended k-Abelian
pattern matching (Section 5 of [13]).
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suffix of T ′ of length (k − 1), which is the rightmost (k − 1)-gram in T ′ (if it exists
in the tree). Then, the task is to quickly find the out-going edge labeled a from this
locus, since there we can find the locus of the suffix of T of length k in STree(P ).
This is a classical problem of implementing the set of out-going edges of a node of
labeled trees, and a number of data structures can be used for this purpose. Ehlers
et al. stated the following claim:

Claim (The 4th bound of Theorem 4 of [13]). Given a static pattern P ∈ Σm over the
integer alphabet [1..σ], and a positive integer k, the online version of Problem 1 can
be solved in O(m) preprocessing time, O(m) working space, and O(log log σ) time
per text letter.

The idea of the above claim is to use the van Emde Boas data structure [7].
However, it is well known that for an integer universe U = [1..u] of size u, the van
Emde Boas data structure of a set S ⊆ U requires Θ(u) space regardless of the
cardinality of S. In the above context, u = σ since the universe here is the integer
alphabet [1..σ]. This implies that this approach by Ehlers et al.’s must use O(σm)
space, since there can be O(m) nodes of string depth k − 1 in the suffix tree. Thus
the above claim does not hold.

Indeed, Ehlers et al. also proposed a simple array-based implementation of the
branching edges (the 1st variant of Theorem 4 of [13]). When one can afford to using
O(σm) space, then this simple array-based approach is faster since each edge can be
accessed in O(1) time. By the way, the 1st variant of Theorem 4 of [13] states that
their preprocessing requires only O(m) time. This is not the case, since this variant
must use O(σm) time to construct all the arrays.

4 Extended k-Abelian pattern matching

Ehlers et al. also considered a slightly different notion of k-Abelian equivalence, called
extended k-Abelian equivalence.

Definition 2 (extended k-Abelian equivalence). For a positive integer k, two
strings u and v of equal length said to be extended k-Abelian equivalent if their
multi-sets of factors of length k coincide, i.e., both of the last two conditions (2)-(c)
and (2)-(d) of having the same prefixes and suffixes are dropped from Definition 1.

Example 2. Let x = abaababbaab and y = baabaabbaba. For k = 3, x and y are not k-
Abelian equivalent but extended k-Abelian equivalent, since they satisfy |x| = |y| =
11 ≥ 3, |x|t = |y|t for all strings t ∈ Σ3 i.e. |x|aaa = |y|aaa = 0, |x|aab = |y|aab =
2, |x|aba = |y|aba = 2, |x|abb = |y|abb = 1, |x|baa = |y|baa = 2, |x|bab = |y|bab = 1, |x|bba =
|y|bba = 1, |x|bbb = |y|bbb = 0, but their prefixes of length k − 1 = 2 are not equal i.e.
x[1..2] = ab 6= ba = y[1..2].

Problem 2. Given a text T and a pattern P over an alphabet Σ and a positive integer
k, locate all factors of T that are extended k-Abelian equivalent to P .

4.1 Errors in the previous work

They considered the online version of Problem 2 and claimed the following real-time
bounds. Here, an online algorithm is called real-time if an O(1) worst-case time is
guaranteed per text symbol.
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Claim (Theorem 6 of [13]). Given a static pattern P ∈ Σm over the integer alphabet
[1..σ], and a positive integer k, the online version of Problem 2 can be solved in:

– O(m log k) preprocessing time, O(σm) working space, and O(1) worst-case time
per text letter;

– O(m(log logm+log k)) preprocessing time, O(m) working space, and O(1) worst-
case time per text letter;

– O(m log k) expected preprocessing time, O(m) working space, and O(1) worst-case
time per text letter;

– O(m log k) preprocessing time, O(m) working space, and O(log log σ) worst-case
time per text letter.

We note that the 4th variant is based on the same flawed argument with the van
Emde Boas data structure as in Section 3.2, and thus it indeed requires O(σm) space.
Hence the 1st variant is better, and we will ignore the 4th variant in the sequel. Also,
since the 1st variant uses O(σm) space for preprocessing, there should be an additive
σm term in the preprocessing time.

The m log k term that are common in the preprocessing time of the above claim
comes from the next statement from [13]:

Claim (Lemma 5 of [13]). One can preprocess pattern P of length m in O(m log k)
time and linear space such that, for each i and j with j − i ≤ k, one can return
in constant time the (explicit or implicit) node of STree(P ) that corresponds to the
factor P [i..j].

Their claim relies on the result of Gawrychowski et al. [17] for the constant-time
weighted ancestor queries on suffix trees.

A weighted tree is a rooted tree where an integer weight is assigned to each node,
so that the weight of any node is strictly greater than the weight of its parent. A
weighted ancestor query is, given a node V and an integer g, find the highest ancestor
of V that has a weight at least g. In the context of suffix trees, the weight of a node
is its string depth. Namely, Ehlers et al.’s approach [13] is to apply Gawrychowski
et al.’s algorithm to the truncated suffix tree for P that consists only of the paths of
string depths at most k. However, Gawrychowski et al.’s paper [17] does not consider
construction time of their constant-time weighted ancestor data structure on suffix
trees. Even on the (non-truncated) suffix tree for a string of length m, it seems
rather challenging to construct the constant-time weighted ancestor data structure
in O(m logm) time4. Hence, it is not known whether there exists an algorithm that
satisfies the above claim (Lemma 5 of [13]), nor whether there exist algorithms that
satisfy the other claim (Theorem 6 of [13]).

4.2 New real-time algorithms for extended k-Abelian matching

Here we propose some solutions for the online (and real-time) version of the extended
k-Abelian pattern matching problem.

The basic framework of the approach by Ehlers et al. [13] is to compute the k-
gram matching statistics for T against P , defined as follows: The k-gram matching
statistics of T against P is the sequence of |T | − k + 1 integers ℓ1, . . . , ℓ|T | such that
for each 1 ≤ j ≤ |T | − k + 1 each ℓj is the length of the longest prefix of the k-gram

4 One of the authors from [17] wondered that O(m log3 m) or O(m log4 m) construction time might
be plausible [16], but any non-trivial construction algorithm is not known to date.
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T [j..j + k− 1] that occurs in P . A k-gram T [h..h+m− 1] occurring at position h in
T is extended k-Abelian equivalent to P iff ℓh = ℓh+1 = · · · = ℓh+m−1 = k. For each
text position 1 ≤ j ≤ |T | − k + 1, ℓj can be computed in O(1) amortized time per
text letter, using a similar technique to Ukkonen’s online suffix tree construction [36],
where traversals of “virtual” suffix links of implicit nodes are simulated by the suffix
links of their explicit parents. The number of nodes that are visited in the simulation
of each suffix link in STree(P ) (and hence for each text letter) can be amortized
constant [36], and this is basically what Theorem 5 of their paper [13] for non real-
time solutions achieves.

To de-amortize the cost, Ehlers et al. [13] considered to use a weighted ancestor
data structure instead of virtual suffix links. The idea is that one can find the locus
pointed by a (virtual) suffix link with a weighted ancestor query from a corresponding
leaf in the truncated suffix tree for P .

Instead of using the data structure by Gawrychowski et al. [17] whose construction
time is unknown, one could use level ancestor queries on a limited class of weighted
trees where the weight of each node is its node depth (not string depth). It is known
that one can preprocess a tree with m nodes in O(m) time so that level ancestor
queries can be answered in O(1) worst-case time [6]. We build this data structure
on the full suffix tree STree(P ). We also preprocess STree(P ) such that for each
1 ≤ i ≤ m−k+1 the leaf representing the suffix P [i..m] has a pointer to its (implicit
or explicit) ancestor of string depth k. These pointers can easily be precomputed in
O(m) time by a standard tree traversal, as was done in Section 3.1. Now suppose
that we have just computed ℓj for T [j..j + k − 1] against P , and let i be one of the
positions in P such that P [i..i + ℓj] = T [j..j + ℓj]. Then, for the weight ℓj − 1 that
represents the string depth we wish to jump up for the next text position j+1 in the
text, we first take the pointer from the next leaf for P [i + 1..m], and from this leaf
we binary search the nearest ancestor with weight ℓj − 1 by level ancestor queries.
Recall that this simulates the (virtual) suffix link traversal. If we can traverse with
letter T [j + ℓj + 1] from this locus of weight (i.e. string depth) ℓj − 1, we are done
for position j + 1. Otherwise, we move to the next leaf for P [i + 2..m] and perform
binary search for weight ℓj − 2, and so forth. Since we need level ancestor queries
only from nodes of string depth at most k (and hence node depth at most k), we can
binary search the weighted ancestor with O(log k) level ancestor queries, in O(log k)
worst-case time for each text letter.

Alternatively, we can use a weighted ancestor data structure that is designed for
arbitrary weighted trees (i.e., not specialized for suffix trees). Kopelowitz and Lewen-
stein [30] showed that weighted ancestor queries on a weighted tree with m nodes
can be reduced to a constant number of predecessor queries on a collection of pre-
decessor data structures that maintain a total of O(m) elements, where the number
of elements in each predecessor data structure is bounded by the height of the tree.
Insertions of new nodes can also be supported by a constant number of updates (in-
sertions/deletions) in the collection of predecessor data structures. Therefore, if there
is a dynamic predecessor data structure for a set of m integers over the universe [1..u],
that allows for queries/updates in pred(m,u) time and O(m) space, then weighted
ancestor queries on a weighted tree with m nodes with weights from [1..u] can be
answered in O(pred(m,u)) time with O(m) space (see Theorem 7.1 of [30]). We can
plug-in the following linear-space dynamic predecessor data structures to the above
result.
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Lemma 1 ([4]). There is a dynamic predecessor data structure for a set of up to
m integers from the universe [1..u] that uses O(m) space and supports updates and

queries in O
(
min

{
(log logm)(log log u)

log log log u
,
√

logm
log logm

})
worst-case time.

Lemma 2 (y-fast trie [37] in conjunction with cuckoo hashing [34]). There
is a dynamic predecessor data structure for a set of up to m integers from the universe
[1..u] that uses O(m) space and supports updates in O(log log u) expected amortized
time and predecessor queries in O(log log u) worst-case time.

In the current context we have u = m, since any node in STree(P ) has string

depth at most m. Note that min
{

(log logm)2

log log logm
,
√

logm
log logm

}
= (log logm)2

log log logm
.

Plugging these bounds where appropriate, we obtain the following:

Theorem 2 (Near real-time extended k-Abelian pattern matching). Given
a static pattern P of length m over the integer alphabet [1..σ], and a positive integer
k, the online version of Problem 2 can be solved in:

– O(mσ) preprocessing time, O(mσ) working space, and O(log k) worst case per text
letter;

– O(m log logm) preprocessing time, O(m) working space, and O(log k) worst case
per text letter;

– O
(
m (log logm)2

log log logm

)
preprocessing time, O(m) working space, and O

(
(log logm)2

log log logm

)
worst-

case time per text letter;
– O(m log logm) expected preprocessing time, O(m) working space, and O(log logm)
worst-case time per text letter.

5 Conclusions and future work

In this paper, we pointed out some errors in the previous work by Ehlers et al. [13],
provided a rigorous analysis on the complexities of some of the proposed algorithms
by Ehlers et al. [13], and presented correct and alternative algorithms. For the offline
k-Abelian pattern matching problem, we described that the algorithm by Ehlers et
al. [13] indeed uses O(n+m) space, and proposed a new offline algorithm which woks
within O(m) space. For the online k-Abelian pattern matching problem, we pointed
out the abuse of the van Emde Boas data structure in Ehlers et al.’s algorithm and
explained that this approach indeed uses O(σm) space. Finally, we pointed out that
all the bounds claimed in [13] for the real-time extended k-Abelian pattern matching
seem difficult to achieve, as these are heavily dependent on Gawrychowski et al.’s
structure [17] of whose construction time is unknown. We proposed new alternative
real-time algorithms for extended k-Abelian pattern matching with other data struc-
tures.

An interesting future work is to consider an efficient indexing structure for (ex-
tended) k-Abelian pattern matching. In a restricted case where both the alphabet
size σ and k are fixed, then we can simply transform each k-gram in a given text T
into a meta-letter, and transform T to a meta-string of length roughly kn. Since we
have assumed that σ and k are fixed, kn = O(n) and this meta-string is a string over
an alphabet of size σk which can be seen as a constant as well. Thus we can use Amir
et al.’s jumbled matching index [1] that works for any alphabet, or Kociumaka et al.’s
jumbled matching index [29] that works for any constant-size alphabet. It would be
interesting to develop an indexing structure that is specially designed for (extended)
k-Abelian pattern matching with better complexities.
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Abstract. We study the online Parameterized Dictionary Matching with One Gap
problem (PDMOG) which is the following. Preprocess a dictionary D of d patterns,
where each pattern contains a special gap symbol that can match any string, so that
given a text that arrives online, a character at a time, we can report all of the patterns
from D that parameterized match to suffixes of the text that has arrived so far, before
the next character arrives. Two equal-length strings are a parameterized match if there
exists a bijection on the alphabets, such that one string matches the other under the
bijection. The gap symbols are associated with bounds determining the possible lengths
of matching strings. Online Dictionary Matching with One Gap (DMOG) captures the
difficulty in a bottleneck procedure for cyber-security, as many digital signatures of
viruses manifest themselves as patterns with a single gap. Parameterized match cap-
tures possible encryption of the patterns. We also define and study the strict PDMOG
problem, in which sub-patterns of the same dictionary pattern should be parameter-
ized matched via the same bijection. This captures situations where sub-patterns of a
dictionary pattern are encoded simultaneously.

Keywords: pattern matching, dictionary matching, online dictionary matching with
gaps, parameterized matching

1 Introduction

Cyber security is a critical modern concern. Network intrusion detection systems
(NIDS) perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear on several packets, hence the
need for gapped matching [25].

A gapped pattern P is one of the form lp {α, β} rp, where each sub-pattern lp, rp
is a string over alphabet Σ, and {α, β} matches any substring of length at least α
and at most β, which are called the gap bounds. Gapped patterns may contain more
than one gap, however, those considered in NIDS systems typically have at most one
gap, and are a serious bottleneck in such applications [8]. Consider for example the
SNORT software, which is a free open source network intrusion detection system and
intrusion prevention system. Analyzing the set of gapped patterns considered by the
SNORT software rules shows that 77% of the patterns have at most one gap, and
more than 44% of the patterns containing gaps have only one gap [7].

For this reason, Amir et al. [9,8] defined the Dictionary Matching with One Gap
problem (DMOG) as follows. Preprocess a dictionary D of total size D over alphabet
Σ consisting of d gapped patterns each containing a single gap, so that given a
query text T of length n over alphabet Σ, we can output all locations ℓ in T , where
any gapped pattern ends. Note that, D is the sum of lengths of all patterns in the
dictionary, not including the gaps sizes. For example, let D be {P1 = a b a {2, 4} d d,
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P2 = a b {2, 4} c d, P3 = b a {2, 4} c}. Then, the text T = c d a b a b e b c d a c
has occurrences of P2 ending at location 10 with gap length 4 and gap length 2, and
of P3 ending at location 9 with gap length 3.

We study an extension to the dictionary matching with one gap (DMOG) problem
suggested by Shalom [31], where every pattern in the dictionary has a single gap, in
which the gapped malware is encrypted in order to evade virus scanners. We consider
the situation where units of plain text are replaced with ciphertext according to
a fixed system, i.e., a parameterized mapping is used as a strategy of encryption.
Parameterized matching is a well-known problem in computer science [12]. Two equal-
length strings are a parameterized match if there exists a bijection on their alphabet
symbols under which one string matches the other.

The Parameterized Matching problem (PM) is formally defined as follows. Given
a Text T of length n and a pattern P of length m, both over alphabet Σ ′ ∪ Σ, s.t.
Σ ′ ∩ Σ = ∅, output all locations ℓ in T , where there exists a bijection f : Σ → Σ
and the following hold: (1) ∀P [i] ∈ Σ ′, P [i] = T [ℓ + i − 1], and (2) ∀P [i] ∈ Σ,
f(P [i]) = T [ℓ + i − 1]. For example, let Σ ′ = {a, b}, Σ = {x, y, z} for text T =
x x y b z y y x b z x and pattern P = z z x b there are two p-matches ending at
locations {4, 9}. The former implies mapping function f(z) = x, f(x) = y, while the
latter implies mapping function f(z) = y, f(x) = x. Throughout the paper we denote
a parameterized match by p-match.

We thus study the Parameterized Dictionary Matching with One Gap (PDMOG)
problem formally defined below. However, unlike Shalom [31], who studied the offline
scenario where all the text is given in advance, we focus on the online setting.

Definition 1. The Parameterized Dictionary Matching with One Gap problem
(PDMOG):
Preprocess: A dictionary D consisting of d gapped patterns {Pi} over alphabet Σ ′ ∪Σ,

s.t. Σ ′ ∩Σ = ∅, where every Pi is of the form lpi{αi, βi}rpi and αi, βi,
are Pi’s gap boundaries.

Query: A text T of length n over alphabet Σ ′ ∪Σ, Σ ′ ∩Σ = ∅
Output: All locations ℓ in T , where a p-match of gapped pattern Pi ∈ D ends, i.e.,

there exist bijections f1, f2 : Σ → Σ and the following hold for some
Pi and a gap length g ∈ [αi, βi]:
(1) ∀lpi[j] ∈ Σ ′, lpi[j] = T [ℓ− |rpi| − g − |lpi|+ j].
(2) ∀lpi[j] ∈ Σ, f1(lpi[j]) = T [ℓ− |rpi| − g − |lpi|+ j].
(3) ∀rpi[j] ∈ Σ ′, rpi[j] = T [ℓ− |rpi|+ j].
(4) ∀rpi[j] ∈ Σ, f2(rpi[j]) = T [ℓ− |rpi|+ j].

Note, that the gapped pattern parts lpi, rpi need to be p-matched separately,
hence, each can be matched using a different matching function. For example, let
Σ ′ = {a, b}, Σ = {q, u, v, w, z} for text T = a u v b u b a z w w z and D = {P1 =
z x b z{2, 4}u u q, P2 = u b q{1, 4}a u v}. We have two p-matches ending at locations
{11, 9}. The first p-matches P1 using matching function f(z) = u, f(x) = v for lp1,
a gap of length 3 and a matching function f(u) = w, f(q) = z for rp1. The second
p-matches P2 using f(u) = v, f(q) = u for matching lp2, a single character gap and
f(u) = z, f(v) = w for matching rp2. For simplicity, we assume that Σ ′ = ∅. Our
solutions can be easily adapted to Σ ′ 6= ∅ case.
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The Strict PDMOG Problem. In some situations it is more reasonable that the
encodings of both sub-patterns of the same dictionary pattern are done simultane-
ously and, therefore, equal. Hence, we suggest another formalization of the PDMOG
definition, which we call strict PDMOG, that enforces the requirement of both left
and right sub-patterns have the same parameterized matching function. The strict
PDMOG formal definition is identical to Definition 1, with the additional requirement
that f1 = f2, implying that both sub-patterns of a gapped pattern are parameterized
matched via the same bijection function.

In the above example, the parameterized occurrence of P1 in the text T ending at
location 11 is a strict parameterized occurrence, since the bijection f(z) = u, f(x) = v
for lp1, and the bijection f(u) = w, f(q) = z for rp1 do not contain collisions, i.e.,
matching of the same character to different characters. In contrary, the p-matching
of P2 ending at location 9 using a matching function f(u) = v, f(q) = u for lp2 and
a mapping function f(u) = z, f(v) = w for rp2 contains a collision matching the
character u to two different characters in lp2 and rp2, and therefore, is not a strict
parameterized occurrence.

Throughout the paper we use the following notations. LetD = {P1, . . . , Pd}, where
every Pi is a gapped pattern of the form lpi{αi, βi}rpi. We denote β∗ = maxi βi,
α∗ = mini αi. If D has uniform gap boundaries {α, β}, then ∀1 ≤ i ≤ d, αi = α,
βi = β.

1.1 Related Previous Work and the Current Work

Dictionary Matching with Gaps. Dictionary matching has been amply researched
(see e.g. [1,2,3,4,6,15]). The problem definition varies and many parameters affect the
complexity when patterns are gapped. [30] [14] and [13] solve the problem, yet their
solutions include a factor of socc – the total number of occurrences of the sub-patterns
in the text, which can be very large. Others [26,33] solve the problem of matching a
set of patterns with variable length of don’t cares, yet, they report only a leftmost
occurrence of a pattern if there exists one. In [21] an online algorithm for the problem
is given, however, at most one occurrence for each pattern at each text position is
reported.

The first results on the DMOG problem are due to [9], which solved the offline
DMOG problem for a single set of gap boundaries reporting all appearances of all
gapped patterns. They suggest an algorithm using range queries and an additional
algorithm using a look-up table. The solution is generalized to variable-length gaps
dictionaries achieving linear space in [22]. Finally, the online DMOG problem is con-
sidered in [8,7] and a connection to the 3SUM conjecture is shown. The conditional
lower bound (CLB) provides insight for the inherent difficulty in DMOG, and reveals
that the CLB from the 3SUM conjecture can be phrased in terms of a new parame-
ter of the problem – δ(GD), where GD is a graph representing the input dictionary.
δ(GD) turns out to be a small constant in some input instances considered by NIDS.
In fact, δ(GD) is not greater than 5 in the graph created using SNORT software
rules [7]. This leads to designing algorithms whose runtime can be expressed in terms
of δ(GD), and can therefore be helpful in such practical settings. Online Dictionary
Recognition with One Gap (DROG), where each gapped pattern is reported at most
once during the entire online text scan, is considered in [10].
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Parameterized Matching. The problem was initially defined as a tool for soft-
ware maintenance, motivated by the observation that programmers introduce du-
plicate code into large software systems when they add new features or fix bugs,
thus slightly modify the duplicated sections [12]. The problem has many application
in various fields, such as Image processing, where parameterized matching can help
searching an icon on the screen, or improving ergonomy of databases of URLS [28]
and extensive research followed (see [27,28]). Among the extensions are: suggesting
a parameterized version of KMP [5], studies of maximal p-matches over a threshold
length and a p-suffix tree [11,12], parameterized fixed and dynamic dictionary prob-
lems presented [23] and improved by [20], efficient parameterized text indexing [18],
p-suffix arrays [17], parameterized LCS [24], and many more.

Parameterized Dictionary Matching with One Gap (PDMOG). Shalom [31]
first formalized the extension of the dictionary matching with one gap (DMOG)
problem to parameterized dictionary matching with one gap (PDMOG), in which
the gapped malware is encrypted in order to evade virus scanners. [31] study the
offline scenario where all the text is given in advance, and give two solutions. The
first solves offline PDMOG for dictionaries with non-uniform gap boundaries with
O(n(β∗−α∗) log2 d+ occ) query time, where n is the size of the text, d is the number
of gapped patterns in the dictionary, β∗ − α∗ is the maximal gap size and occ is the
number of the gapped patterns reported as output. The second offline PDMOG so-
lution is for dictionaries with uniform gap boundaries with O(n(β − α) + occ) query
time, where n is the size of the text, β − α is the gap size and occ is the output size.

This Paper Contributions. In this paper, we focus on the online setting of PDMOG
and strict PDMOG, where the text arrives a character at a time, and the require-
ment is to report all gapped patterns that parameterize-match to suffixes of the text
that has arrived so far, before the next character arrives. This is the more realistic
situation in NIDS applications. The main contributions of this paper are:

– Formalizing the online PDMOG and strict PDMOG problems, which are natural
extensions to the online DMOG problem.

– Obtaining algorithms for online PDMOG that are fast for some practical inputs.
A basic property of suffixes of any dictionary pattern is that they form a chain
where each is a proper suffix of the other. This property, that was crucial in the
online DMOG solutions [8,7], no longer holds for parameterized suffixes. Never-
theless, we show that it is possible to by-pass this difficulty.

– Obtaining algorithms for online strict PDMOG that are fast for some practical
inputs where dictionary sub-patterns contain the same alphabet symbols. Enforc-
ing the requirement that both left and right sub-patterns of a dictionary pattern
are p-matched using the same parameterized matching function necessitates rep-
resentation and maintenance of these functions.

Paper Organization. The paper is organized as follows. Section 2 describes our
results for the online PDMOG problem. Section 3 details the algorithms for solving
online strict PDMOG problem. Section 4 concludes the paper and poses some open
questions.
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2 Solving Online PDMOG

In this section we describe the online PDMOG solution. We detail the changes and
modifications that should be made to the basic scheme of [8,7] in order to adapt it
to our problem.

The Bipartite Graph GD. We use [8,7] dictionary representation as a graph
GD = (V,E): sub-patterns are represented by vertices and there is an edge (u, v) ∈ E
if and only if there is a pattern Pi ∈ D, where lpi is associated with node u and rpi
is associated with v. The graph GD = (V,E) is converted to a bipartite graph by
creating two copies of V called L (left vertices) and R (right vertices) as follows.
For every edge (u, v) ∈ E, an edge is added to the bipartite graph from uL ∈ L to
vR ∈ R, where uL is a copy of u and vR is a copy of v.

P-Matches Detection. Parameterized matching does not require exact matches
between the characters, but rather to capture the characters order. Therefore, Baker
[12] defined a p-string over a string S = s1, s2 · · · using the prev function, where
prev(si) = si in case si ∈ Σ ′, but for si ∈ Σ, prev(si) = 0 if si is the leftmost position
in S of si, and prev(si) = i − k if k is the previous position to the left at which si
occurs. For example, let Σ ′ = {a, b}, Σ = {u, v} and S = a b u v a b u v u, then the
p-string of S is prev(S) = a b 0 0 a b 4 4 2.

Lemma 2. [12] Strings S1, S2 have prev(S1) = prev(S2) if and only if they are p-
matched.

[23] construct a modified Aho-Corasick automaton (AC) [1] suitable for p-strings
similarly to the original AC construction, with modifications to goto and fail
links adapting it to work with p-strings. Their automaton is constructed in time
O(D log |Σ|), takes O(m logm) = O(D logD) bits, where m is the number of
automaton states, and reports all p-matches of dictionary D patterns in text T in
O(|T | log |Σ| + occ) time, where occ is the number of reported occurrences. If only
the longest pattern located for each text location is reported, the query is answered
in O(|T | log |Σ|).1

In the preprocessing, we calculate in linear time the p-string, prev(lpi), prev(rpj)
for every lpi, rpj of some Pi, Pj ∈ D, and construct a parameterized AC automaton
upon them, denoted by pAC. Using a standard binary encoding technique each char-
acter costs O(log |Σ|) worst-case time. However, for simplicity of exposition, |Σ| is as-
sumed to be constant, whenever this assumption is not critical, i.e, if |Σ| only appears
as a logarithmic factor due to this binary encoding. Note that, the prev function does
not preserve the suffix relation of the strings it is applied to. Consider sub-patterns
x, y, where x is a suffix of y, then, prev(x) is not necessarily a suffix of prev(y). For
example, consider lpi = uuua and its suffix uua. It holds that prev(lpi) = 011a, yet
prev(uua) = 01a, which is not a suffix of 011a. Nevertheless, p-suffixes of all dictionary
sub-patterns can be traced using fail links of pAC automaton.

The pAC automaton consists of states representing p-strings of prefixes of dictio-
nary sub-patterns. A state representing prev function of a sub-pattern lpi or rpj is
called an accepting state. An arriving character may correspond to several arriving

1 [19] suggest a space efficient data structure for the parameterized dictionary matching, improving
the pAC automaton of [23] by using sparsification technique. Due to our cyber security motivation,
we prefer the data structure of [23] for its faster query time.
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parameterized sub-patterns, since prev function of a sub-pattern could be a proper
p-suffix of prev function of another sub-pattern. We therefore, phrase complexities in
terms of plsc – the maximum number of sub-patterns that their prev functions are
p-suffixes of each other, implying vertices in the bipartite graph that arrive due to
a character arrival. A similar (probably smaller) lsc factor was used in [8,7] DMOG
solutions, and even for simplified DMOG relaxations [21]. While lsc (and plsc) could
theoretically be as large as d, in many practical situations it is very small. A graph
created using SNORT software rules has lsc not greater than 5 [7]. In natural lan-
guages dictionaries such as the English dictionary lsc is also a small constant. While
it is possible to find a suffix chain of English words with length 7, it is difficult (if
possible) to find chains of greater length.

At each time unit, at most plsc vertices are handled, as follows. A vertex u ∈ L,
representing a longest sub-pattern associated with the current accepting pAC automa-
ton state, is handled. Other (not necessarily proper) p-suffixes of that sub-pattern are
also handled. The preprocessing enabling this procedure uses a p-graph structure.

The P-Graph Structure. We construct a graph pG among the sub-patterns associ-
ated with vertices of GD, where an edge (u′, u) ∈ E(pG) if and only if the sub-pattern
associated with u′ is a p-suffix of the sub-pattern associated with u. An additional
end vertex corresponding to the empty string is added to the graph pG, since it is a
p-suffix of every sub-pattern. The graph pG can be constructed in linear time while
constructing the pAC automaton of D. The bipartite graph GD vertices arriving due
to a text character arrival correspond to vertices on a BFS scan of pG from a vertex u
associated with the pAC accepting state (one of the longest sub-patterns having the
same p-suffix recognized by this state), creating a BFS-tree rooted at u, not including
the end leaves of the BFS-tree.

Text Scan. This phase online detects p-matching sub-patterns in the text, while
saving in adequate data structures occurrences of sub-patterns represented by u ∈ L
nodes that where located during the proper bounds of time units ago (which are calcu-
lated differently for the uniform/non-uniform gap bounds cases). When a sub-pattern
represented by a v ∈ R node is p-matched, parameterized occurrences of all gapped
patterns Pi where rpi is represented by v ∈ R and lpi is represented by u ∈ L saved
in the data structures, are reported. During text scan phase, prev(T ) is calculated
online using a |Σ|-sized array preserving for each σ ∈ Σ its last occurrence. Scanning
prev(T ) using pAC enables finding all sub-patterns p-matching T [1..ℓ] ending at ℓ.
Note, that even for non-fixed alphabets, calculating prev(T ) requires O(|T |) time by
using perfect hash tables for latest occurrence position of a character in T . Due to
synchronization reasons described in [8], removal from the data structures of vertices
u that become non-relevant is delayed by M − 1 time units, where M is the length
of the longest sub-pattern corresponding to a vertex in R.

2.1 PDMOG via Graph Orientations

Graph Orientation. As in [8,7], the graph GD is preprocessed using linear time
greedy algorithm suggested by Chiba and Nishizeki [16] to obtain a δ(GD)-orientation
of the graph GD, where every vertex has out-degree at most δ(GD) ≥ 1. Orientation
is viewed as assigning “responsibility” for data transfers occurring on an edge to one
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of its endpoints, depending on the direction of the edge in the orientation. If an edge
e = (u, v) is oriented from u to v, the vertex u is called a responsible-neighbour of v
and v an assigned-neighbour of u. The notion of graph degeneracy δ(GD) is defined
as follows. The degeneracy of a graph G = (V,E) is δ(G) = maxU⊆V minu∈U dGU

(u),
where dGU

is the degree of u in the subgraph ofG induced by U . Hence, the degeneracy
of G is the largest minimum degree of any subgraph of G. A non-multi graph G with
m edges has δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a

multi-graph can be much higher.
The construction and use of the data structures in the algorithms is done as

in [8,7], except for the use of the auxiliary pG for recognizing the actual arriving
vertices when an accepting state of pAC is reached. This gives Theorem 3.

Theorem 3. 1. The online PDMOG problem with uniformly bounded gap borders
can be solved in: O(D log |Σ|) preprocessing time, O(δ(GD) · plsc+ pocc) time per
text character, where pocc is the number of parameterized patterns reported due to
character arrival, and O(D+ plsc · (β +M)) space.

2. The online PDMOG problem with non-uniformly bounded gap borders can be solved
in: O(D log |Σ|) preprocessing time, Õ(plsc · δ(GD) + pocc) time per text charac-
ter, where pocc is the number of parameterized patterns reported due to character
arrival, and O(D log |Σ|+ plsc · δ(GD)(β

∗ − α∗ +M) + plsc · α∗) space.

2.2 PDMOG via Threshold Orientations

Subsection 2.1 focuses on orientations whose out-degree is bounded by δ(GD). Thus,

when δ(GD) =
√
d the PDMOG algorithms basically take O(plsc ·

√
d) time. In the

non-uniform case the degeneracy can be much larger, since the same sub-patterns can
represent different gapped patterns if they have different gaps boundaries, thus two
vertices can be connected by more than one edge. Moreover, the plsc factor maybe
larger than the lsc factor used in DMOG solutions. Therefore, in this subsection we
reduce the factor of plsc · δ(GD) to

√
plsc · d, by using a different graph orientation

method, referred to as a threshold orientation.

Definition 4. A vertex in GD is heavy if it has more than
√
d/plsc neighbors, and

light otherwise.

Two key properties are used: light vertices have at most
√
d/plsc neighbors, and

the number of heavy vertices is less than
√
plsc · d. We orient all edges that touch a

light vertex to leave that vertex, breaking ties arbitrarily if both vertices are light.
Thus, every edge e connecting a light vertex with a light/heavy vertex, the light ver-
tex is the responsible-neighbor, and the heavy vertex, if exists in e, is the assigned-
neighbor. We handle differently edges with at most one heavy vertex as an endpoint
and edges connecting two heavy vertices.

Edges Connecting at Most One Heavy Vertex. Data structures used for dealing
with edges where at most one of its endpoints is heavy when considering uniformly
bounded gaps, are as in Subsection 2.1 in uniformly bounded gaps (ordered report-
ing lists Lv for each v ∈ R, ordered lists τu of the time stamps for each u ∈ L and
the list Lβ of the last β +M vertices u ∈ L). Data structures used for dealing with
edges where at most one of their endpoints is heavy when considering non-uniformly
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bounded gaps, are as in Subsection 2.1 in non-uniformly bounded gaps (Range query
data structures Sv for each v ∈ R, ordered lists τu of the time stamps for each u ∈ L
and the list Lβ∗ of the last β +M vertices u ∈ L).

Edges Connecting two Heavy vertices. The set of heavy vertices is less than√
plsc · d, and so even if the number of vertices from L arriving at the same time

can be as large as plsc and the set of their neighbors can be very large, the number
of vertices in R is still less than

√
plsc · d. Thus, using a batched scan on all of R

keeps the time cost low, after some preprocessing. In addition, at each time unit, we
handle only a single u ∈ L currently arriving, one representing a longest sub-pattern
found by the pAC automaton at that time, which is a sub-pattern associated with
the current accepting state. Other sub-patterns, which are (not necessarily proper)
p-suffixes of that sub-pattern are handled implicitly, without increasing the time com-
plexity unless they are reported. The preprocessing that enables this procedure uses
a p-heavy-graph structure phG (replacing the tree-structure T used in [8,7]).

The p-heavy-Graph Structure. A graph phG among the sub-patterns associated
with heavy vertices from L is constructed, where an edge (u′, u) ∈ E(phG) if and only
if the sub-pattern associated with u′ is a p-suffix of the sub-pattern associated with
u. An additional end vertex corresponding to the empty string is added to the graph
phG, since it is a p-suffix of every sub-pattern. The graph phG can be constructed
in linear time during the construction of pG. The bipartite graph GD heavy vertices
arriving due to a text character arrival correspond to vertices on a BFS scan of phG
from some vertex u, creating an O(plsc)-size BFS-tree rooted at u, not including the
end leaves of the BFS-tree.

The construction and use of the data structures in the algorithms is done as
in [8,7] except for the replacement of T by phG and the use of the auxiliary pG for
recognizing the actual arriving vertices when an accepting state of pAC is reached.
This gives Theorem 5.

Theorem 5. 1. The online PDMOG problem with uniform gap borders can be solved
in O(D log |Σ|) preprocessing time, O(plsc+

√
plsc · d+ pocc) time per text char-

acter, and O(D+ plsc(β +M)) space.
2. The online PDMOG problem with non-uniform gap borders can be solved in Õ(D+

d(β∗ − α∗)) preprocessing time, Õ(plsc+
√
plsc · d(β∗ − α∗ +M) + pocc) time per

text character, and O(D log |Σ|+ d(β∗ − α∗) +
√
plsc · d(β∗ +M)) space.

3 Solving Online Strict PDMOG

In this section we study online strict PDMOG problem, requiring both sub-patterns
of a gapped pattern to be p-matched via the same function. We solve the problem
for dictionaries where every sub-pattern contains all characters of Σ. The basic al-
gorithmic scheme is as Section 2, however, there are now additional issues to handle
due to the new requirement.

The Matching Permutation. The pAC automaton reports an occurrence of pa-
rameterized match of sub-patterns in the text, yet it does not report the matching
function used. We define the matching permutation, πu,t, via which the current p-
matching of sub-pattern represented by node u to the suffix ending at time t in the
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text occurred. πu,t can be represented as a |Σ|-length array, where entry i contains
σ′ if f(σi) = σ′ for the current p-match. Hence, we can save at every step the last M
symbols of the text, where M is the length of the longest sub-pattern in the dictio-
nary. πlpi,t of a sub-pattern lpi can be calculated in |Σlpi | time, where Σlpi contains
all distinct symbols that appear in lpi.

3.1 Uniformly Bounded Gaps

The Permutation Tree. Matching permutations are saved in a permutation tree
data structure. The permutation tree Tu maintains a set S of permutations of Σ used
to p-match occurrences of sub-pattern associated with node u. A permutation tree
can be basically maintained as a y-fast trie [32] with additional linked lists in its
leaves.

The data structures used in this case are:

1. For each u ∈ L we save a y-fast trie Tu containing all matching permutations
πu,t via which the sub-pattern represented by u was p-matched to the text ending
at location t, at least α and at most β time units ago. For every node l in Tu,
representing the matching permutation πl, we save an ordered list τu,πl

of time
stamps of the occurrences of u p-matching the text via πl.

2. For each vertex v ∈ R, we save a y-fast trie Tv containing all matching per-
mutations πu,t via which the sub-pattern represented by u was matched to the
text ending at location t, at least α and at most β time units ago, where u is a
responsible-neighbours of v. For every node l′ in Tv, representing a permuta-
tion πl′ , we save an ordered list Lv,π′

l
of links to the nodes representing permutation

πl′ in trees Tu, where u is a responsible neighbour of v.
3. The list Lβ of delayed vertices u ∈ L for at least α time units before they are

considered. To each node u in Lβ we attach the matching permutation πu,t via
which the sub-pattern represented by u was p-matched to the text ending at time
stamp t.

The details of the construction and use of the data structures in the algorithms
are as follows.

When the pAC automaton reaches state s in time t, the data structures of the
vertices are updated accordingly, as follows.
For every vertex v associated with a sub-pattern that its prev function is a p-suffix
of the prev function of the sub-pattern represented by state s,

1. If the arrived vertex is v ∈ R that was p-matched to the text via πv,t,
(a) Search the matching permutation πv,t in Tv.
(b) if πv,t appears in Tv at node l′,

Let l∗ = Lv,πl′ .f irst (a link to a node l ∈ Tu, where πl = πl′).
i. Let t′ = τu,πl

.f irst
ii. while t′ ≥ t−mv − β − 1

A. Report edge (u, v) with matching permutation πv,t, where the nodes u,
v appearances are at locations t′, t.

B. If all appearances of the gapped pattern associated with edge (u, v) are
required, continue the scan of t′ elements of τu,πl

while t′ ≥ t−mv−β−1.
C. Let l∗ be the next link in the list Lv,πl′ .

(c) For every vertex u which v is its responsible-neighbour.
i. If Tu contains a node l where πl = πv,t, let t

′ = τu,πl
.f irst
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ii. If t − mv − β − 1 ≤ t′, report edge (u, v) with matching permutation πv,t

where the nodes u, v appearances are at locations t′, t.
iii. If all appearances of the gapped pattern associated with edge (u, v) are

required, continue the scan of the elements of τu,πl
while t−mv−β−1 ≤ t′

where t′ is the next element in τu,πl
.

2. If the arrived vertex is u ∈ L, (u, πu,t) is inserted into Lβ.

In addition, the data structures are updated by perviously arrived nodes u ∈ L
saved in Lβ that have become relevant.
For vertices u ∈ L, where (u, πu,t−α−1) was inserted into Lβ, α + 1 time units before
time t,

1. Search for node l, representing the matching permutation πu,t−α−1 in Tu.
2. If πu,t−α−1 is not saved in Tu, insert a new node l representing πu,t−α−1 to Tu.
3. For every v ∈ R that is an assigned neighbour of u,
(a) Search for node l′, representing the matching permutation πu,t−α−1 in Tv,
(b) If πu,t−α−1 is not saved in Tv, insert a new node l′ representing πu,t−α−1 to Tv.
(c) Add to the beginning of Lv,πl′ a link to the node l in Tu, where πl = πl′ .
(d) If τu,πl

is not empty, remove the previous link to node l of Tu, from Lv,πl′ .
4. The time stamp t− α− 1 is added to the beginning of τu,πl

saved for the node l
in Tu.

For vertices u ∈ L,where (u, πu,t−β−M−1) was inserted into Lβ, exactly β +M + 1
time units before time t,

1. (u, πu,t−β−M−1) is removed from Lβ.
2. Search Tu for node l representing the matching permutation πu,t−β−M−1.
3. The time stamp t− β −M − 1 is removed from the end of the listτu,πl

, attached
to node l.

4. If τu,πl
becomes empty,

(a) The node l is deleted from Tu.
(b) For every Tv, where v is an assigned neighbour of u, the link to node l ∈ Tu

(for πl = πu,t−β−M−1), is removed from the end of Lv,πl′ where l′ ∈ Tv and
πl′ = πu,t−β−M−1.

This gives Theorem 6.

Theorem 6. The online strict PDMOG problem with uniformly bounded gap borders
can be solved in: O(D log |Σ|) preprocessing time, O(plsc·δ(GD) log(|Σ| log |Σ|)+pocc)
time per text character, and O(D logD + δ(GD) · plsc · |Σ|(β − α + M) + plsc · α)
space.

Proof. In preprocessing, the pAC automaton is built in time O(D log |Σ|). The query
algorithm scans the text prev function using pAC in O(|T | log |Σ|). At time/location
t, the vertex representing the sub-pattern prev function is recognized by pAC, and
all its possible O(plsc) vertices representing p-suffixes sub-patterns in the dictionary.
Every such vertex requires O(δ(GD)) operations on y-fast trie (search - when πv,t of
v ∈ R is searched in Tv as well as in all the Tu of its assigned neighbours u ∈ L, insert
- when πu,t of u ∈ L is inserted into Tu as well as a link to the node representing πu,t

inserted to all the Tv of its assigned neighbours v ∈ R, delete - when πu,t of u ∈ L
is deleted from all the Tv of its assigned neighbours v ∈ R, and from Tu when the
p-matches of u become irrelevant.) Search, insert and delete operations applied to a
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y-fast trie, require O(log(|Σ| log |Σ|)) time each, as the number of possible matching
permutations is O(|Σ||Σ|) and each operation on a y-fast trie costs O(log logU), where
U is the maximum value of an element [32].

Reporting the output: A vertex v ∈ R that was p-matched via permutation πv,t

scans the list Lv,πl′ of node l
′ ∈ Tv representing permutation πv,t, where each element

in the list is a link to a node l ∈ Tu, representing permutation πv,t for some responsible
neighbour u of v. If τu,πl

of node l is scanned, each time stamp represents additional
parameterized occurrence of u. Lv,πl′ scan terminates when a link to τu,πl

is reached,
where the gap between the newest time stamp of τu,πl

and t−mv + 1 (the current v
occurrence beginning) is larger than β, as the rest of the elements of Lv,πl′ are older.
Hence, each considered element in Lv,πl′ , except the last one, is a parameterized
occurrence. In addition, each scanned element in the τu,πl

lists of nodes in Tu trees,
where u is an assigned-neighbor of v and πl = πv,t, is reported.

Regarding space: The pAC automaton requires O(D logD) space. Each Tu main-
tains distinct permutations of all p-matches of u in T at the last β−α+M locations.
Since at every time there are at most plsc p-matches of sub-patterns simultaneously,
all Tu for u ∈ L have at most plsc · (β − α + M) nodes and the same total time
stamps number. For each Tu node, the saved matching permutations represented by
it require |Σ| space. Hence, the total Tu trees size is O(plsc · |Σ| · (β − α+M)). The
space of all permutation trees Tv, v ∈ R, is O(δ(GD) · plsc · |Σ|(β − α+M)), since a
single l ∈ Tu can be linked to δ(GD) leaves of Tv, where u is a responsible-neighbor
of v. Additional O(plsc · α) is required for the u ∈ L vertices maintained by Lβ for α
time units until they are considered as arrived.

3.2 Non-Uniformly Bounded Gaps

Non-uniformly bounded gapped patterns yield a multi-graph, where each edge e =
(u, v) has its own boundaries {αe, βe}, as (u, v) with boundaries [3, 5] is a distinct edge
from (u, v) with boundaries [4, 10]. A framework similar to Subsection 3.1 is used, yet
using permutation trees is not efficient as the information saved at the leaves of the
trees should be checked and not necessarily be reported, due to the different bound-
aries of the edges. Fortunately, we can overcome this by exploiting an alphabetical
ordering of the permutations which maps each permutation π into a unique number
num(π) in O(|Σ|) time. Thus, a fully dynamic data structure Sv supporting 6-sided
3-dimensional orthogonal range reporting queries, is used (instead of the 4-sided 2-
dimensional Sv in Subsection 2.1) for saving occurrences of responsible neighbour of
v. Similar structures for 2-dimensional orthogonal range reporting queries are used
for the time stamps of the occurrences of u ∈ L nodes.

The data structures used in this case are:

1. For each vertex v ∈ R, a data structure Sv maintaining points from R3, rep-
resenting all time intervals in which an occurrence of v implies a gapped pattern
occurrence due to a previous occurrence of u, a responsible-neighbour of v, if the
matching permutations of u and v are the same.

2. For each u ∈ L we save a data structure Su maintaining points from R2 rep-
resenting time stamps t of the occurrences of u with the number of the matching
permutation πu,t.

3. The list Lβ∗ of the last β∗ +M vertices u ∈ L with their matching permutation.
They are delayed for at least α∗ time units before they are considered.
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The details of the construction and use of the data structures in the algorithms
are as follows.

When the pAC automaton reaches state s in time t, the data structures of the
vertices are updated accordingly, as follows.
For every vertex v associated with a sub-pattern that its prev function is a p-suffix
of the prev function of the sub-pattern represented by state s,

1. If the arrived vertex is v ∈ R, that was p-matched to the text via πv,t,
(a) A range query of [0, t −mv + 1] × [t −mv + 1,∞] × [num(πv,t), num(πv,t)] is

performed over Sv.
(b) The edges representing the range output are reported.
(c) For every vertex u which v is its responsible-neighbour, such that e = (u, v),

i. A range query of [t − mv − βe, t − mv − αe] × [num(πv,t), num(πv,t)] is
performed over Su.

ii. The edges representing the range output are reported.
2. If the arrived vertex is u ∈ L, (u, πu,t) is inserted into Lβ∗ .

In addition, the active window is maintained by updating Lβ∗ and acknowledging
arrived nodes u ∈ L that have become relevant.
For vertices u ∈ L where (u, πu,t−α∗−1) was inserted into Lβ∗ , exactly α∗ + 1 time
units before time t,

1. The point (t− α∗ − 1, num(πu,t−α∗−1) is inserted to Su.
2. For every v ∈ R that is an assigned neighbour of u, such that e = (u, v), the point

(t− α∗ + αe, t− α∗ + βe, num(πu,t−α∗−1)) is inserted to Sv.

For vertices u ∈ L, where (u, πu,t−β∗−M−1) was inserted into Lβ∗ , exactly β∗ +M + 1
time units before time t,

1. (u, πu,t−β−M−1) is removed from the end of Lβ∗ .
2. The point (t− β −M − 1, num(πu,t−β∗−M−1)) is removed from Su.
3. For every v that is an assigned neighbour of u, such that e = (u, v), the point

(t− β∗ −M + αe, t− β∗ −M + βe, num(πu,t−β−M−1)) is removed from Sv.

This gives Theorem 7.

Theorem 7. The online strict PDMOG problem with non-uniformly bounded gap
borders can be solved in: Õ(D) preprocessing time, Õ(plsc · δ(GD) + pocc) time per
text character, and Õ(D+ plsc · δ(GD)(β

∗ − α∗ +M) + plsc · α∗) space.

Proof. Preprocessing is similar to the uniformly bounded gaps case, detailed in 3.1.
The query algorithm scans the text prev function using pAC. At each time/location
t, the vertex representing the sub-pattern prev function recognized by pAC at t and
all its possible O(plsc) p-suffixes, are considered and their data structures are updates
or queried. To implement the data structures, we use Mortensen’s data structure [29]
supporting the set of |S| points from Rd with O(|S| logd−2+ǫ |S|) words of space,

insertion and deletion time of O(logd−2+ǫ |S|) and O(( log |S|
log log |S|)

d−1+op) time for range

reporting queries on S, where op is the output size.
When a vertex u ∈ L arrives, i.e., it was p-matched via the matching permutation

πu,t in time t, the point (t, num(pu,t)) is inserted to Su in O(logǫ |Su|) time. In addition,
for each assigned neighbour v of u, where e = (u, v), the point (t+ αe +mv, t+ βe +
mv, num(πu,t)), where mv is the length of the sub-pattern represented by node v, is
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inserted into Sv. This insertion requires O(log1+ǫ |Sv|) time, yielding the time requires
for the u ∈ L nodes is O(plsc·(logǫ plsc(β∗−α∗+M)+δ(GD) log

1+ǫ plsc(β∗−α∗+M))).
When a vertex v ∈ R arrives at time t, a range query [0, t] × [t,∞] ×

[num(πv,t), num(πv,t)] over Sv returns the points that have (x, y, p) coordinates in the
given range, thus a parameterized appearance. The range query is applied to Sv con-

taining at most plsc(β∗−α∗+M) points, thus requires O( log2(plsc·(β∗−α∗+M))

log log2(plsc(β∗−α∗+M))
+pocc)

time. Additional time is required for considering all the u assigned-neighbors of v
and applying range query [t − mv − βe, t − mv − αe] × [num(πv,t), num(πv,t)] on
the Su structures in order to report all occurrences sharing the same matching
permutations within the gaps boundaries. The total number of time stamps saved
in all Tu trees is O(plsc(β∗ − α∗ +M)), thus, the total time required for the v ∈ R

nodes is O(plsc · (δ(GD) · log plsc(β∗−α∗+M)
log log plsc(β∗−α∗+M)

+ log2 plsc(β∗−α∗+M)

log log2 plsc(β∗−α∗+M)
+ pocc).

Regarding space: The pAC requires O(D logD) space. Each Su maintains all ap-
pearances u in the text, at the last β∗ − α∗ +M locations in the text. Hence, all Su

for u ∈ L have at most plsc(β∗ −α∗ +M) points, thus the space required for them is
O(plsc(β∗−α∗+M) logǫ plsc(β∗−α∗+M)). Sv contains points only from its respon-
sible neighbor, thus, each of the plsc vertices that were located at each of the last
β∗−α∗+M locations in the text can be inserted to δ(GD) structures of Sv, yielding the
space of all the Sv lists is O(plsc·δ(GD)(β

∗−α∗+M) log1+ǫ plsc·δ(GD)(β
∗−α∗+M)).

The additional space usage is required for the O(plsc) vertices maintained for O(α∗)
time units by Lβ∗ until they can be considered as arrived.

4 Conclusion and Open Problems

We presented the online PDMOG and strict PDMOG problems and described effi-
cient algorithms for their solution in some practical inputs. As demonstrated in this
paper, online PDMOG and strict PDMOG pose additional challenges and difficulties
to overcome while designing algorithms for their solutions. It is an open question
whether there exist better solutions or efficient solutions for other practical inputs.
Additional open research direction is to consider other types of encryption instead of
parameterized mapping.
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dynamic dictionary matching. Inf. Comput., 119(2) 1995, pp. 258–282.

5. A. Amir, M. Farach, and S. Muthukrishnan: Alphabet dependence in parameterized match-
ing. Inf. Process. Lett., 49(3) 1994, pp. 111–115.

6. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M. Rodeh:
Text indexing and dictionary matching with one error. J. Algorithms, 37(2) 2000, pp. 309–325.

7. A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom: Mind the
gap! online dictionary matching with one gap. Algorithmica, 2019.



54 Proceedings of the Prague Stringology Conference 2019

8. A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom: Mind
the gap: Essentially optimal algorithms for online dictionary matching with one gap, in 27th In-
ternational Symposium on Algorithms and Computation, ISAAC, Sydney, Australia, December
12-14, 2016, pp. 12:1–12:12.

9. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Dictionary matching with a few gaps.
Theor. Comput. Sci., 589 2015, pp. 34–46.

10. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Online recognition of dictionary with
one gap, in Proceedings of the Prague Stringology Conference (PSC), Prague, Czech Republic,
August 28-30, 2017, pp. 3–17.

11. B. S. Baker: Parameterized duplication in strings: Algorithms and an application to software
maintenance. SIAM J. Comput., 26(5) 1997, pp. 1343–1362.

12. B. S. Baker: A theory of parameterized pattern matching: algorithms and applications, in
Proceedings of the 25th Annual ACM Symposium on Theory of Computing, San Diego, CA,
USA, May 16-18, 1993, pp. 71–80.

13. P. Bille, I. L. Gørtz, H. W. Vildhøj, and D. K. Wind: String matching with variable
length gaps. Theor. Comput. Sci., 443 2012, pp. 25–34.

14. P. Bille and M. Thorup: Regular expression matching with multi-strings and intervals, in
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, Austin,
Texas, USA, January 17-19, 2010, pp. 1297–1308.

15. G. S. Brodal and L. Gasieniec: Approximate dictionary queries, in 7th Annual Symposium
on Combinatorial Pattern Matching CPM, Laguna Beach, California, USA, June 10-12, 1996,
pp. 65–74.

16. N. Chiba and T. Nishizeki: Arboricity and subgraph listing algorithms. SIAM Journal on
Computing (SICOMP), 14(1) 1985, pp. 210–223.

17. S. Deguchi, F. Higashijima, H. Bannai, S. Inenaga, and M. Takeda: Parameterized
suffix arrays for binary strings, in Proceedings of the Prague Stringology Conference (PSC),
Prague, Czech Republic, September 1-3, 2008, pp. 84–94.

18. P. Ferragina and R. Grossi: The string b-tree: A new data structure for string search in
external memory and its applications. J. ACM, 46(2) 1999, pp. 236–280.

19. A. Ganguly, W. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang:
Space-efficient dictionaries for parameterized and order-preserving pattern matching, in 27th
Annual Symposium on Combinatorial Pattern Matching CPM, Tel Aviv, Israel, June 27-29,
2016, pp. 2:1–2:12.

20. A. Ganguly, W. Hon, and R. Shah: A framework for dynamic parameterized dictionary
matching, in 15th Scandinavian Symposium and Workshops on Algorithm Theory SWAT, Reyk-
javik, Iceland, June 22-24, 2016, pp. 10:1–10:14.

21. T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen: Online dictionary match-
ing with variable-length gaps, in 10th International Symposium on Experimental Algorithms
SEA, Kolimpari, Chania, Crete, Greece, May 5-7, 2011, pp. 76–87.

22. W. Hon, T. W. Lam, R. Shah, S. V. Thankachan, H. Ting, and Y. Yang: Dictionary
matching with a bounded gap in pattern or in text. Algorithmica, 80(2) 2018, pp. 698–713.
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Abstract. In this paper, we propose a new pattern matching algorithm based on the
Franek-Jennings-Smyth (FJS) algorithm. The FJS algorithm is a hybrid of the Knuth-
Morris-Pratt (KMP) and the Sunday algorithms. The worst case time complexity of the
KMP algorithm is linear time and the Sunday algorithm is quadratic time. However,
the Sunday algorithm is faster than the KMP algorithm in practice. Inheriting the
virtues of those algorithms, the FJS algorithm runs in linear time in the worst case and
fast in practice. We improve the FJS algorithm by further taking an idea inspired by
the Quite-Naive algorithm by Cantone and Faro. The experimental results show that
our algorithm is faster than the FJS algorithm in general except when a pattern is
extremely short.

Keywords: exact pattern matching, Knuth-Morris-Pratt algorithm, Sunday algorithm

1 Introduction

The pattern matching problem is a very fundamental problem in string processing.
Given a text T of length n and a pattern P of length m, the pattern matching prob-
lem is a task to find all occurrences of P in T . A naive solution of this problem is to
compare P with all the substrings of T of length m, which takes O(mn) time. One
approach to perform pattern matching more efficiently is to avoid comparing position
pairs of the pattern and the text as much as possible based on the property of the
pattern obtained by preprocessing it. Among the previously proposed pattern match-
ing algorithms in this approach, the Knuth-Morris-Pratt (KMP) algorithm [9] is well
known, which exploits the periodicity of prefixes of P to perform pattern matching
in O(n) time with O(m) preprocessing time. On the other hand, the Boyer-Moore
(BM) algorithm [2] is famous as an algorithm that can perform pattern matching fast
in practice while it has O(nm) worst case time complexity. The BM algorithm uses
occurrence positions of each symbol in P and periodicity of suffixes of P rather than
prefixes.

Many BM-type algorithms have been proposed. Typical BM-type algorithms are
the Horspool algorithm [8] and the Sunday algorithm [10]. The Horspool algorithm is
a simpler version of the BM algorithm. The Sunday algorithm is a slight improvement
of the Horspool algorithm and known to be practically fast. While the BM algorithm
checks characters from right to left of the pattern, the Sunday algorithm can check the
characters of the pattern in any order. Franek et al. [7] proposed a hybrid algorithm
of the KMP and the Sunday algorithms called the Franek-Jennings-Smyth (FJS)
algorithm. Inheriting the virtues of those algorithms, the FJS algorithm runs in linear
time in the worst case and fast in practice. A comprehensive survey of the exact online
string matching problem is written by Faro and Lecroq [5].
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In this paper, we propose a new pattern matching algorithm based on the FJS
algorithm. The FJS algorithm uses the shift functions of the KMP and Sunday algo-
rithms. Our algorithm additionally uses a new shift function inspired by the Quite-
Naive algorithm by Cantone and Faro [3]. The time complexity of the preprocessing
phase of our algorithm is O(m+ σ) and the search phase runs in O(n) time, where σ
denotes the alphabet size. Our algorithm is faster than the FJS algorithm in general
except when a pattern is extremely short. It is not faster than the state-of-the-art in
general, but it is effective when a pattern frequently appears in a text.

This paper is organized as follows. Section 2 briefly reviews the KMP, Sunday, and
FJS algorithms, which are the basis of the proposed algorithm. Section 3 proposes our
algorithm. Section 4 shows experimental results comparing the proposed algorithm
with several other algorithms using artificial and real data.

2 Preliminaries

2.1 Notation

Let Σ be a set of characters called an alphabet and σ = |Σ| be the size of the alphabet.
Σ∗ denotes the set of all strings over Σ. The length of a string w ∈ Σ∗ is denoted by
|w|. The empty string, denoted by ε, is the string of length zero. The i-th character
of w is denoted by w[i] for each 1 ≤ i ≤ |w|. The substring of w starting at i and
ending at j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i : j] = ε
if i > j. A string x = w[1 : i] is called a prefix of w and a string z = w[i : |w|] is
called a suffix of w. In particular, a prefix x (resp. suffix z) of w is a proper prefix
(resp. proper suffix ) of w when x 6= w (resp. z 6= w). A string v is a border of w if v is
both a prefix and a suffix of w. Note that the empty string is a border of any string.
Moreover, it is a proper border of w if v 6= w. The length of the longest proper border
of w[1 : i] for 1 ≤ i ≤ |w| is given by

Bordw[i] = max{ j | w[1 : j] = w[i− j + 1 : i] and 0 ≤ j < i } .

The exact pattern matching problem is defined as follows:

Input: A text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m,

Output: All positions i such that T [i : i+m− 1] = P for 1 ≤ i ≤ n−m+ 1.

We will use a text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m throughout
the paper.

Let us consider comparing T [i : i + m − 1] and P [1 : m]. The naive method
compares characters of the two strings from left to right. When a character mismatch
occurs, the pattern is shifted to the right by one character. That is, we compare
T [i + 1 : i + m] and P [1 : m]. This naive method takes O(nm) time for matching.
There are a number of ideas to shift the pattern more so that searching T for P
can be performed more quickly, using shift functions obtained by preprocessing the
pattern.

2.2 Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt (KMP) algorithm [9] is a pattern matching algorithm that
has linear worst case time complexity. When the KMP algorithm has confirmed that
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Algorithm 1: Calculating KMP Shift

1 Function PreKMPShift(P )
2 m← |P |;
3 i← 1; j ← 0;
4 KMP Shift [1] = 1;
5 while i ≤ m do
6 while j > 0 and P [i] 6= P [j] do
7 j ← j −KMP Shift [j];

8 i← i+ 1; j ← j + 1;
9 if i ≤ m and P [i] = P [j] then

10 KMP Shift [i]← i− (j −KMP Shift [j])

11 else
12 KMP Shift [i]← i− j

13 return KMP Shift

T [i : i + j − 2] = P [1 : j − 1] and T [i + j − 1] 6= P [j] for some j ≤ m, it shifts the
pattern so that a suffix of T [i : i+ j− 2] matches a prefix of P and we do not have to
re-scan any part of T [i : i+ j−2] again. Thus, the pattern can be shifted by j−k−1
for k = BordP [j − 1]. However, if P [k + 1] = P [j], the same mismatch occurs again
after the shift. In order to avoid this kind of mismatch, we use Strong Bord [1 : m+1]
given by

Strong BordP [j] =





−1 if j = 1,

Strong BordP [k] if j ≤ m and P [k + 1] = P [j],

k otherwise,

where k = BordP [j − 1]. The amount KMP Shift [j] of the shift is given by

KMP Shift [j] = j − Strong BordP [j]− 1.

Fact 1 If P [1 : j−1] = T [i : i+j−2] and P [j] 6= T [i+j−1], then P [1 : j−kj−1] =
T [i+kj : i+ j−2] holds for kj = KMP Shift [j]. Moreover, there is no positive integer
k < KMP Shift [j] such that P = T [i+ k : i+ k +m− 1].

Note that if the algorithm has confirmed T [i : i+m−1] = P , the shift is given by
KMP Shift [m + 1] after reporting the occurrence of the pattern. Algorithm 1 shows
pseudocode to compute the array KMP Shift . Clearly, it runs in O(m) time. By using
KMP Shift , the KMP algorithm finds all occurrences of P in T in O(n) time.

2.3 Sunday algorithm

In the Sunday algorithm [10], the amount of the shift when a mismatch occurs between
P and T [i : i+m− 1] depends on the character T [i+m] ∈ Σ. It shifts the pattern so
that the character T [i+m] will match the rightmost occurrence of the same character
in P . If T [i+m] does not occur in P , by skipping the position i+m of T , we check
whether T [i+m+1 : i+2m] = P . The preprocessing phase of the Sunday algorithm
calculates an array Sunday Shift of size σ given by

Sunday Shift [c] = m+ 1−max({ i | P [i] = c } ∪ {0})
for c ∈ Σ.
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Algorithm 2: Calculating Sunday Shift

1 Function PreSundayShift(P,Σ)
2 m← |P |;
3 for c in Σ do
4 Sunday Shift [c]← m+ 1;

5 for i← 1 to m do
6 Sunday Shift [P [i]]← m− i+ 1;

7 return Sunday Shift ;

Fact 2 For any i, then there is no positive integer k < Sunday Shift [T [i +m]] such
that P = T [i+ k : i+ k +m− 1].

In principle, the order of comparison of characters in P and T [i : i + m − 1] is
arbitrary. Wherever a mismatch is found, the Sunday algorithm shifts the pattern
by Sunday Shift [T [i + m]]. Algorithm 2 shows pseudocode to calculate the array
Sunday Shift , which runs in O(m + σ) time. Although the searching time is O(nm)
in the worst case, it is practically very fast for large alphabets.

2.4 Franek-Jennings-Smyth algorithm

The Franek-Jennings-Smyth (FJS) algorithm [7] (Algorithm 3) is a hybrid of the
KMP and Sunday algorithms. It computes both arrays KMP Shift and Sunday Shift
in the preprocessing phase. In the matching phase, it shifts a pattern using the better
array depending on the situation where a mismatch has been found. We call the shift
based on KMP Shift and Sunday Shift the KMP-shift and the Sunday-shift, respec-
tively. Practically using the Sunday-shift is very effective, but it does not guarantee
a linear time execution if we consistently use the Sunday-shift when we have found
some partial match between the pattern and a text substring, i.e., when it has been
confirmed that some nonempty prefixes of the pattern and the text substring match.
When a partial match has been found, the FJS algorithm uses the KMP-shift so that
it runs in linear time.

When comparing the pattern P with a text substring T [i : i + m − 1], the FJS
algorithm checks whether the last characters of the pattern and the substring match.
If P [m] 6= T [i + m − 1], it performs the Sunday-shift repeatedly until we find a
position in T that has the character P [m]. We call this procedure (while loop at
Line 8 in Algorithm 3) the Sunday-phase. Once we find a position j such that if
P [m] = T [j +m − 1], we go into the KMP-phase, where we use the KMP-shift. As
long as the algorithm sees a partial match between the pattern and a text substring,
it behaves just like the KMP algorithm. Otherwise, it goes back to the Sunday-phase.

The preprocessing time and the searching time of the algorithm are O(m+σ) and
O(n), respectively.

Example 1. The arrays KMP Shift and Sunday Shift for P = abaaca are calculated
as follows:

j 1 2 3 4 5 6 7

P [j] a b a a c a

KMP Shift [j] 1 1 3 2 3 6 5

c a b c

Sunday Shift [c] 1 5 2
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Algorithm 3: The FJS algorithm

1 Function FJS(P, T,Σ)
2 KMP Shift ← PreKMPShift(P );
3 Sunday Shift ← PreSundayShift(P,Σ);
4 n← |T |; m← |P |;
5 i← 1; j ← 1; ip ← m;
6 while ip ≤ n do
7 if j ≤ 1 then // No partial match

8 while P [m] 6= T [ip] do
9 ip← ip + Sunday Shift [T [ip + 1]];

10 if ip > n then
11 halt;

12 j ← 1; i← ip −m+ 1;
13 while j < m and P [j] = T [i] do
14 i← i+ 1; j ← j + 1;

15 if j = m then
16 i← i+ 1; j ← j + 1;
17 output i−m;

18 j ← j −KMP Shift [j];

19 else // Partial match is found

20 while j ≤ m and P [j] = T [i] do
21 i← i+ 1; j ← j + 1;

22 if j = m+ 1 then
23 output i−m;

24 j ← j −KMP Shift [j];

25 ip ← i+m− j;

Figure 1 illustrates an example run of the FJS algorithm for finding P in T =
abababcababbbca.

Attempt 1 The first attempt compares the character at the end of P with the
character at the corresponding position in T . Since P [6] 6= T [6], the pattern is
shifted by Sunday Shift [T [7]] = Sunday Shift [c] = 2

Attempt 2 Since P [6] = T [8], we compare the characters from left to right. The first
mismatch occurs at P [4] 6= T [6], so the pattern is shifted by KMP Shift [4] = 2.

Attempt 3 Because there is a partial match P [1 : 1] = T [5 : 5] due to KMP Shift of
Attempt 2, the character comparison is started from P [2]. A mismatch P [3] 6= T [7]
occurs, so the pattern is shifted by KMP Shift [3] = 3.

Attempt 4 Since there is no partial match, we compare the last character of the pat-
tern P [6] with T [13]. Since P [6] 6= T [13], the pattern is shifted by Sunday Shift [T [14]] =
Sunday Shift [c] = 2.

Attempt 5 Since P [6] = T [15], we compare the characters of the pattern from left
to right. A mismatch P [3] 6= T [12] occurs and the search ends.

3 Proposed algorithm

In this section, we propose to improve the FJS algorithm by introducing another shift
function. To make the shift amount bigger on Line 18 of Algorithm 3, we employ and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T : a b a b a b c a b a b b b c a

×1
(Attempt 1) P : a b a a c a

◦2 ◦3 ◦4 ×5 ◦1
(Attempt 2) P : a b a a c a

• ◦1 ×2
(Attempt 3) P : a b a a c a

×1
(Attempt 4) P : a b a a c a

◦2 ◦3 ×4 ◦1
(Attempt 5) P : a b a a c a

Figure 1. An example run of the FJS algorithm for a pattern P = abaaca and a text T =
abababcababbbca. For each alignment of the pattern, ◦ and × indicate a match and a mismatch
between the text and the pattern, respectively. The character with • is known to match the character
at the corresponding position in the text without comparison. Subscript numbers show the order of
character comparisons in each attempt.

modify the shift function used in Cantone and Faro’s Quite-Naive algorithm [3].
Their algorithm compares the pattern P and a text substring T [i : i +m − 1] from
right to left. When a mismatch has been found in the middle after at least it has
been confirmed that P [m] = T [i + m − 1],1 the pattern is shifted by δ so that
P [m−δ] = T [i+m−1] hold if P [m] occurs in P [1 : m−1]. The shift amount is given by
δ = min({ j | P [m − j] = P [m], 1 ≤ j < m } ∪ {m}), which is the distance between
the rightmost and the second rightmost occurrences of the rightmost character. If
P [m] does not occur in P [1 : m− 1], we shift δ = m to skip the position T [i+m− 1].

We generalize their idea to make the shift amount bigger by focusing on characters
as well as the last one in P . Define an array d of size m by

d[i] = min({ j | P [i− j] = P [i], 1 ≤ j < i } ∪ {i})

for 1 ≤ i ≤ m. Obviously d[m] is the shift amount used in the Quite-Naive algorithm.
We take the maximum value md and the position mdp that gives md by

md = max
1≤j≤m

d[j],

mdp = arg max
1≤j≤m

d[j].

If more than one position gives the maximum value md , we simply take the largest
index as mdp.

Fact 3 If P [mdp] = T [i + mdp − 1], then there is no positive integer k < md such
that P = T [i+ k : i+ k +m− 1].

While the FJS algorithm uses the rightmost character of P for triggering the
Sunday-shift, we use mdp in the Sunday-phase. That is, when comparing P and
T [i : i+m− 1], we first check whether P [mdp] = T [i+mdp − 1] holds. If P [mdp] 6=
T [i + mdp − 1], we perform the Sunday-shift like the FJS algorithm. This is not an
improvement from the FJS algorithm, since, as we have explained in Section 2.3, the
shift amount is always determined by the character T [i + m]. On the other hand,
when we have P [mdp] = T [i+mdp − 1], we compare the corresponding characters of

1 The Quite-Naive algorithm uses a different shift amount in other situations, which we refrain from
explaining in this paper.
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Algorithm 4: Calculating md and mdp

1 Function GetMdp(P,Σ)
2 md ← 0,mdp ← 1;
3 for c in Σ do
4 prevpos[c]← 0;

5 for j ← 1 to |P | do
6 if md ≤ j − prevpos [P [j]] then
7 md ← j − prevpos [P [j]];
8 mdp ← j;

9 prevpos[P [j]]← j;

10 return mdp, md ;

P and T [i : i+m−1] from left to right. When a mismatch is found in the middle, we
may perform the KMP-shift, just like the FJS algorithm does. Yet, it is also possible
to shift the pattern by md by taking the advantage of the knowledge P [mdp] =
T [i+mdp− 1], due to Fact 3. We take the bigger one between md and KMP Shift [j],
provided that the choice guarantees the theoretical linear time performance of the
algorithm. Recall that when the KMP algorithm finds that P [1 : j−1] = T [i : i+j−2]
and P [j] 6= T [i + j − 1], it resumes comparison from checking the match between
T [i + j − 1] and P [j − KMP Shift [j]] if KMP Shift [j] < j, and T [i + j] and P [1]
if KMP Shift [j] = j. On the other hand, if we shift the pattern by md , we simply
start matching T [i + md ] and P [1]. Therefore, we should use KMP Shift [j] rather
than md when either KMP Shift [j] < j and md < j − 1 or KMP Shift [j] = j > md .
Summarizing the discussion, we obtain the following shift function:

MAX Shift [j] =

{
md if md ≥ max{KMP Shift [j], j − 1},
KMP Shift [j] otherwise,

where 1 ≤ j ≤ m + 1. When the shift amount is MAX Shift [j] = md , we have
no partial match between P and the substring of T at the alignment obtained by
the shift and thus go to the Sunday-phase. If MAX Shift [j] = KMP Shift [j], our
algorithm behaves just like the FJS algorithm.

We replace KMP Shift on Line 18 of Algorithm 3 by our shift functionMAX Shift .
On the other hand, the other occurrence of KMP Shift on Line 24 of Algorithm 3
cannot be replaced by MAX Shift , where P [mdp] = T [i+mdp−1] is not guaranteed.
Algorithms 4 and 5 calculate the values mdp,md and the shift function MAX Shift in
O(m+ |Σ|) and O(m) time, respectively. Our proposed searching algorithm is shown
as Algorithm 6, where differences from Algorithm 3 are highlighted. The correctness
of our algorithm is supported by Facts 1, 2 and 3. Clearly it runs in linear in O(n)
time apart from the preprocessing phase.

Example 2. We use the same pattern and text as Example 1 for an example run of
our algorithm. The arrays KMP Shift , MAX Shift and Sunday Shift for P = abaaca

are calculated as follows. We have md = 5 and mdp = 5 for d[5] = max
1≤j≤6

d[j] = 5.
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Algorithm 5: Calculating MAX Shift

1 Function PreMaxShift(P,KMP Shift ,md)
2 for j ← 1 to |P |+ 1 do
3 if md ≥ j − 1 and md ≥ KMP Shift [j] then
4 MAX Shift [j]← md ;

5 else
6 MAX Shift [j]← KMP Shift [j];

7 return MAX Shift ;

Algorithm 6: The proposed algorithm

1 Function ImprovedFJS(P, T,Σ)
2 KMP Shift ← PreKMPShift(P );
3 mdp,md ← GetMdp(P,Σ);
4 MAX Shift ← PreMaxShift(P,KMP Shift ,md);
5 Sunday Shift ← PreSundayShift(P,Σ);
6 n← |T |; m← |P |;
7 i← 1; j ← 1; ip ← m;
8 while ip ≤ n do
9 if j ≤ 1 then // No partial match

10 while P [mdp] 6= T [ip − (m−mdp)] do
11 ip ← ip + Sunday Shift [T [ip + 1]];
12 if ip > n then
13 halt;

14 j ← 1; i← ip −m+ 1;
15 while j ≤ m and P [j] = T [i] do
16 i← i+ 1; j ← j + 1;

17 if j = m+ 1 then
18 output i−m;

19 j ← j −MAX Shift [j];

20 else // Partial match is found

21 while j ≤ m and P [j] = T [i] do
22 i← i+ 1; j ← j + 1;

23 if j = m+ 1 then
24 output i−m;

25 j ← j −KMP Shift [j];

26 ip ← i+m− j;

j 1 2 3 4 5 6 7

P [j] a b a a c a

d[j] 1 2 2 1 5 2

KMP Shift [j] 1 1 3 2 3 6 5

MAX Shift [j] 5 5 5 5 5 6 5

c a b c

Sunday Shift [c] 1 5 2

Figure 2 shows an example run of our algorithm finding P in T = abababcababbbca.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T : a b a b a b c a b a b b b c a

×1
(Attempt 1) P : a b a a c a

◦2 ◦3 ◦4 ×5 ◦1
(Attempt 2) P : a b a a c a

×1
(Attempt 3) P : a b a a c a

◦2 ◦3 ×4 ◦1
(Attempt 4) P : a b a a c a

Figure 2. Running our algorithm for P = abaaca and T = abababcababbbca

Table 1. Algorithms used for the experiment

Name Description

KMP Knuth-Morris-Pratt [9]
QS Quick-Search [10]
FJS Franek-Jennings-Smyth [7]
LWFR2 Linear-Weak-Factor-Recognition implemented with a 2-chained-loop [4]
Ours Proposed algorithm

Attempt 1 First we compare P [mdp] with the corresponding text character T [mdp].
Since P [5] 6= T [5], we shift the pattern by Sunday Shift [T [7]] = Sunday Shift [c] =
2.

Attempt 2 Again, P [mdp] is compared with the character at the corresponding
position of the text. Because P [5] = T [7], the letters of the pattern are compared
from left to right. Finding a mismatch P [4] 6= T [6], the pattern is shifted by
MAX Shift [4] = md = 5.

Attempt 3 Since we are aware of no partial match at this alignment, we com-
pare P [mdp] = P [5] with T [12]. By P [5] 6= T [12], the pattern is shifted by
Sunday Shift [T [14]] = Sunday Shift [c] = 2.

Attempt 4 We compare P [mdp] = P [5] and T [14]. For P [5] = T [14], we compare
the characters of the pattern from left to right and find a mismatch P [3] 6= T [12].
The shift amount lets the pattern go beyond the end of the text and thus the
algorithm halts.

4 Experiments

In this section, we compare the execution times of the proposed algorithm with sev-
eral other algorithms using various texts and patterns. Table 1 shows the algorithms
we used. The experiments were performed on AOBA [11], an integrated online plat-
form evaluating string processing algorithms, with a PC with Xeon E3-1220 V2, 8 GB
RAM, Ubuntu 16.04 and Docker 18.09.0. The evaluations are executed on a Docker
container, and resources provided by the sandbox are limited to 1 CPU and 1 GB
RAM. We used the implementations in SMART [6] for all algorithms except for our
and the FJS algorithms, with modification to conform to the AOBA execution format.
The implementation of the FJS algorithm we used is the original [7].2 All implemen-
tations are in the C language, compiled using GCC 5.4.0 with the optimization option
-O3. We used the best performance result among three trials for each experiment.

2 The SMART implementation of the FJS algorithm is in error.
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4.1 Random strings

We prepared a random text of length n = 1000000 and random patterns of lengthm =
2, 4, 8, 16, 32, 64, 128, 256 and 512 over alphabets of size σ = 2, 4, 8, 16, 32, 64 and 95.
We measured the total time of 100 runs. Table 2 compares the performance of our
algorithm with the ones in Table 1. Our algorithm runs faster than the FJS algorithm
in most cases due to the bigger shift on Line 19 of Algorithm 6 than that on Line 18
of Algorithm 3. The difference becomes quite significant when the alphabet is rather
small, since both algorithms easily exit the Sunday-phase and execute those lines
more often. Exceptional cases, where ours is a little slower than the FJS algorithm,
are when the pattern is extremely short. Recall that after the FJS algorithm confirms
P [m] = T [i+m−1] in the Sunday-phase, it does not compare P [m] and T [i+m−1]
any more in the succeeding KMP-phase, while our algorithm may compare the same
positions twice on Lines 10 and 15 in Algorithm 6. The redundancy will be relatively
large when the pattern is extremely short. On the other hand, LWFR2 is the fastest
for almost all random data.

4.2 Artificial strings

We also experimented with the following strings.

1. Fibonacci strings are generated by the following recurrence:

Fib1 = b, Fib2 = a and Fibn = Fibn−1 · Fibn−2 for n > 2.

The text is fixed to T = Fib32 of length n = 2178309, and the patterns are
randomly extracted from T of length m = 2, 4, 8, 16, 32, 64, 128 and 256. Fibonacci
strings are known to be highly repetitive. We measured the total time after 100
executions.

2. Texts with frequent pattern occurrences are generated by intentionally embedding
a lot of patterns. We embedded 32768 occurrences of a pattern of length m =
2, 4, 8, 16, 32 and 64 into a text of length n = 4000000 over an alphabet of size
σ = 8. More specifically, we first randomly generate a pattern and a provisional
text, which may contain the pattern. Then we randomly change characters of the
text until the pattern does not occur in the text. Finally we embed the pattern
at random positions without overlapping. We measured the total time after 25
executions.

Our proposed algorithm is the fastest for the Fibonacci string (Table 3). Since
patterns appear so frequently in a Fibonacci string, algorithms that perform verifica-
tion after hash-filtering, such as LWFR, could be slow. Ours performed the best for
texts with frequent occurrences of long patterns (Table 4). Therefore, our algorithm
seem to work efficiently when patterns frequently appear in the text.

4.3 Practical strings

We also made similar measurements on practical data. The total time of 25 runs was
measured. We used the following data as texts.

1. Genome sequence: the genome sequence of E. coli of length n = 4641652 with
σ = 4, from NCBI3.

3 https://www.ncbi.nlm.nih.gov/genome/167?genome assembly id=161521
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Table 2. The execution time of the algorithms in Table 1 using the random strings

σ = 2

m 2 4 8 16 32 64 128 256 512

KMP 815.84 816.46 813.49 814.84 817.05 815.29 816.96 817.65 816.14

QS 669.15 709.66 735.67 761.96 775.29 763.89 774.25 729.14 754.32

LWFR2 629.74 549.76 342.04 238.98 188.72 169.70 158.24 151.89 151.89

FJS 608.69 629.12 693.13 757.15 759.19 757.78 763.55 737.30 755.06

Ours 689.81 603.26 520.00 467.80 444.09 408.40 386.28 361.21 344.48

σ = 4

m 2 4 8 16 32 64 128 256 512

KMP 725.49 746.48 750.65 746.55 742.36 748.35 746.22 751.83 746.07

QS 544.44 441.19 376.97 343.46 350.00 341.49 353.08 360.16 344.43

LWFR2 329.47 273.56 239.52 193.17 162.70 153.32 148.54 146.78 144.95

FJS 532.69 477.87 445.55 418.53 425.92 417.98 431.15 439.43 420.17

Ours 547.44 408.54 329.00 275.47 255.39 241.96 233.55 227.61 220.60

σ = 8

m 2 4 8 16 32 64 128 256 512

KMP 591.71 589.70 588.05 588.54 585.03 589.40 589.90 590.50 588.08

QS 406.26 318.84 256.1 224.52 217.62 217.83 217.91 219.07 219.32

LWFR2 292.49 213.36 189.96 181.20 166.41 151.78 148.68 146.11 146.44

FJS 393.45 322.11 269.27 240.90 236.04 235.12 234.38 237.45 236.64

Ours 395.28 300.18 243.03 211.71 196.09 190.36 184.00 184.13 181.70

σ = 16

m 2 4 8 16 32 64 128 256 512

KMP 499.51 493.94 495.27 490.56 492.42 490.36 491.20 493.83 492.84

QS 345.50 269.98 219.15 190.88 178.53 174.37 173.40 174.93 174.68

LWFR2 260.03 193.25 172.27 164.07 160.09 153.35 146.72 144.97 144.88

FJS 327.49 263.10 217.15 192.90 182.34 178.80 177.77 178.92 178.82

Ours 327.14 256.38 211.15 185.85 174.03 168.53 165.59 165.38 163.69

σ = 32

m 2 4 8 16 32 64 128 256 512

KMP 440.08 436.27 435.02 433.58 436.51 434.87 433.98 435.30 435.02

QS 319.45 249.25 202.80 176.55 164.43 158.70 157.47 157.51 157.20

LWFR2 247.72 182.07 164.72 155.89 153.35 152.02 148.13 145.45 145.00

FJS 299.48 238.50 198.54 175.64 165.54 162.61 161.32 160.53 161.08

Ours 299.54 236.41 196.95 173.16 162.98 156.66 154.97 154.47 155.43

σ = 64

m 2 4 8 16 32 64 128 256 512

KMP 405.14 403.63 405.03 403.81 404.46 402.91 402.73 403.97 404.15

QS 307.45 239.90 197.00 171.20 158.06 153.09 149.10 148.35 148.46

LWFR2 243.00 177.85 158.95 151.39 148.76 147.38 147.05 146.53 145.62

FJS 282.46 229.53 190.89 169.34 157.98 155.70 153.75 153.41 151.86

Ours 284.43 226.99 188.94 167.47 157.18 152.22 149.44 148.78 149.27

σ = 95

m 2 4 8 16 32 64 128 256 512

KMP 394.58 394.42 392.13 394.58 393.01 392.00 394.32 395.56 393.35

QS 303.62 237.59 194.73 169.84 155.15 151.36 147.39 145.69 145.23

LWFR2 241.08 176.17 157.90 150.18 147.23 146.94 145.41 145.59 146.12

FJS 278.63 224.24 188.01 166.81 155.56 153.84 151.51 150.28 149.10

Ours 280.46 224.78 187.13 167.33 155.23 149.86 148.36 147.49 146.93
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Table 3. The execution time of the algorithms in Table 1 using the Fibonacci strings

m 2 4 8 16 32 64

KMP 806.02 782.25 771.26 783.94 733.25 656.00

QS 809.51 824.72 835.41 954.10 1119.16 1280.31

LWFR2 842.78 968.64 847.70 774.92 676.61 648.86

FJS 616.63 582.88 505.26 449.33 425.88 427.02

Ours 821.58 581.54 472.51 405.69 377.28 372.04

Table 4. The execution time of the algorithms in Table 1 using the texts with 32768 occurrences
of a pattern

m 2 4 8 16 32 64

KMP 578.23 609.99 605.00 591.71 554.09 476.73

QS 397.98 340.59 285.62 259.85 267.48 284.01

LWFR2 271.54 242.86 236.93 236.70 244.92 291.22

FJS 383.25 340.95 291.77 261.48 251.58 234.06

Ours 380.58 325.98 272.63 240.43 233.28 229.03

Table 5. The execution time of the algorithms in Table 1 using the genome sequences

m 2 4 8 16 32 64

KMP 841.13 860.16 836.45 869.12 869.73 847.45

QS 630.21 501.58 417.28 398.56 387.16 399.61

LWFR2 373.87 318.24 257.32 214.21 178.39 166.65

FJS 604.83 541.89 488.88 480.37 465.15 478.47

Ours 619.65 462.60 359.56 310.54 285.58 272.14

Table 6. The execution time of the algorithms in Table 1 using the English texts

m 2 4 8 16 32 64

KMP 528.59 516.48 534.79 514.70 515.38 533.08

QS 377.53 288.36 237.96 199.98 184.02 172.70

LWFR2 270.67 197.57 178.91 169.13 163.86 157.35

FJS 351.93 286.69 229.52 202.25 184.61 174.37

Ours 359.03 292.18 221.54 190.36 175.27 166.16

2. English text: the King James version of the Bible of length n = 4017009 with
σ = 62, from the Large Canterbury Corpus4 [1]. We removed the line break from
the text.

In both cases, the patterns are randomly extracted from the text of length m =
2, 4, 8, 16, 32, 64, 128 and 256.

Table 5 shows that our algorithm is faster than the FJS algorithm for genome
sequences. For English texts, Table 6 shows that our and the FJS algorithm have
almost the same speed, probably because the Sunday-shift is dominant. For both
texts, LWFR2 is the fastest for all pattern lengths.

4 http://corpus.canterbury.ac.nz/
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5 Conclusion

We propose a new algorithm modifying the FJS algorithm. Our experimental results
show that it runs faster than the FJS algorithm in general except when a pattern is
extremely short. Moreover, our algorithm outperformed representative existing algo-
rithms for data where patterns appear frequently in text.
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Abstract. We study h-lexicalized two-way restarting automata that can rewrite at
most i times per cycle for some i ≥ 1 (hRLWW(i)-automata). This model is con-
sidered useful for the study of lexical (syntactic) disambiguation, which is a concept
from linguistics. It is based on certain reduction patterns. We study lexical disam-
biguation through the formal notion of h-lexicalized syntactic analysis (hLSA). The
hLSA is composed of a basic language and the corresponding h-proper language, which
is obtained from the basic language by mapping all basic symbols to input symbols.
We stress the sensitivity of hLSA by hRLWW(i)-automata to the size of their win-
dows, the number of possible rewrites per cycle, and the degree of (non-)monotonicity.
We introduce the concepts of contextually transparent languages (CTL) and contextu-
ally transparent lexicalized analyses based on very special reduction patterns, and we
present two-dimensional hierarchies of their subclasses based on the size of windows and
on the degree of synchronization. The bottoms of these hierarchies correspond to the
context-free languages. CTL creates a proper subclass of context-sensitive languages
with syntactically natural properties.

1 Introduction

This paper is a continuation of conference paper [11]. The motivation for this pa-
per is to study lexical disambiguation, which is a basic concept of linguistic schools
working with lexicalized syntax. Let us note that traditional dependency syntaxes
are lexicalized in our sense.

In a lexicalized syntactical analysis of a sentence, at first all input words are
replaced by disambiguated word forms, i.e., original words are enhanced with, e.g.,
morphological and syntactic categories, like the input word ‘means’ can be extended
with a tag that it is a verb or a different tag that it is a noun which is further refined
with another tag distinguishing whether it plays the role of subject or object. After
such disambiguation, the lexicalized syntactic analysis checks whether the tagged
word forms constitute a (grammatically) correct sentence which is correctly tagged.

A model of the restarting automaton that formalizes lexicalized syntactic disam-
biguation in a similar way as categorial grammars (see, e.g., [1]) – the h-lexicalized
restarting automaton (hRLWW) – was introduced in [9]. This model is obtained from
the two-way restarting automaton of [8] by adding a letter-to-letter morphism h that
assigns an input symbol to each working symbol. This morphism models the (pure
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non-syntactic) lexical disambiguation. Now the basic language LC(M) of an hRLWW-
automaton M consists of all words over the working alphabet of M that are accepted
by M , and the h-proper language LhP(M) of M is obtained from LC(M) through the
morphism h.

The set of pairs { (h(w), w) | w ∈ LC(M) }, denoted as LA(M), is called the
h-lexicalized syntactic (sentence) analysis (hLSA) by M . Thus, in this setting the
auxiliary symbols themselves play the role of the tagged items. That is, each auxiliary
symbol b can be seen as a pair consisting of an input symbol h(b) and some additional
syntactico-semantic information (tags or categories).

In contrast to the original hRLWW-automaton that uses exactly one length-
reducing rewrite in a cycle, here we study h-lexicalized restarting automata that
allow up to i ≥ 1 length-reducing rewrites in a cycle (hRLWW(i)). Our first goal
is to show that these models are suited for a transparent and sufficiently flexible
modeling of the lexical analysis by analysis by reduction (compare to [6]).

Analysis by reduction is traditionally used to analyze sentences of natural lan-
guages with a higher degree of word-order freedom like, e.g., Czech, Latin, or Ger-
man (see, e.g., [6]). Usually, a human reader is supposed to understand the meaning
of a given sentence before he starts to analyze it; h-lexicalized syntactic analysis
(hLSA) based on the h-lexicalized analysis by reduction (ARh) simulates such a be-
havior by analyzing sentences, where morphological and syntactical tags have been
added to the word forms and punctuation marks (see, e.g., [6]). An important prop-
erty of analysis by reduction is the so-called correctness preserving property. Using
hRLWW(i)-automata the linguistic correctness preserving property is simulated by
the formal notion of basic correctness preserving property.

We stress here newly the constraint of strong cyclic form. It preserves the essen-
tial part of the power of hRLWW(i)-automata, and, additionally, it allows to extend
the complexity results obtained for classes of infinite languages and hLSAs also to
classes of finite languages and hLSAs. This is quite useful for the classification and
learning of individual phenomena in computational and corpus linguistics, where all
the (syntactic) observations are of a finite nature. It is also useful for the formulation
of techniques for the localization of syntactic errors (grammar-checking).

Finally, we introduce the concepts of contextually transparent languages (CTL)
and contextually transparent lexicalized analyses (CTLA), which create a formal basis
for an environment for lexical analysis and grammar-checking of natural languages.
We establish a two level and two-dimensional essential refinement of the Chomsky
hierarchy in the area of CTL. We transfer this refinement also to the area of CTLA.

In this paper we do not pay attention to input languages, which are the languages
usually studied in the automata theory, as they are not suitable for the modeling of
lexicalized sentence disambiguation (see [11]).

2 Definitions

By ⊆ and ⊂ we denote the subset and the proper subset relation, respectively.
Throughout the paper, λ will denote the empty word.

We start with the definition of the two-way restarting automaton as an extension
to the original definition from [8]. In contrast to [10], we do not consider general h-
lexicalized two-way restarting list automata which can rewrite arbitrary many times
during each cycle. Instead, we introduce two-way restarting automata which can
rewrite at most i times per cycle for an integer i ≥ 1.
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Definition 1. Let i be a positive integer. A two-way restarting automaton, an
RLWW(i)-automaton for short, is a machine with a flexible tape and a finite-state
control. It is defined through a 9-tuple M = (Q,Σ, Γ, ¢, $, q0, k, i, δ), where Q is a
finite set of states, Σ is a finite input alphabet, and Γ (⊇ Σ) is a finite working
alphabet. The symbols from Γ rΣ are called auxiliary symbols. Further, the symbols
¢, $ 6∈ Γ , called sentinels, are the markers for the left and the right border of the
workspace, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write
window, i ≥ 1 is the number of allowed rewrites in a cycle (see below), and

δ : Q× PC≤k → P( (Q× ({MVR,MVL} ∪ { SL(v) | v ∈ PC≤k−1 }))
∪{Restart,Accept,Reject})

is the transition relation. Here P(S) denotes the powerset of a set S and

PC≤k = ({¢} · Γ k−1) ∪ Γ k ∪ (Γ≤k−1 · {$}) ∪ ({¢} · Γ≤k−2 · {$})

is the set of possible contents of the read/write window of M .

Being in a state q ∈ Q and seeing a word u ∈ PC≤k in its window, the automaton
can perform six different types of transition steps (or instructions):

1. A move-right step (q, u) −→ (q′,MVR) assumes that (q′,MVR) ∈ δ(q, u), where
q′ ∈ Q and u /∈ {λ, ¢} · Γ≤k−1 · {$}. This move-right step causes M to shift the
window one position to the right and to enter state q′.

2. A move-left step (q, u) −→ (q′,MVL) assumes that (q′,MVL) ∈ δ(q, u), where
q′ ∈ Q and u 6∈ {¢} · Γ ∗ · {λ, $}. It causes M to shift the window one position to
the left and to enter state q′.

3. An SL-step (q, u) −→ (q′, SL(v)) assumes that (q′, SL(v)) ∈ δ(q, u), where q′ ∈ Q,
v ∈ PC≤k−1, v is shorter than u, and v contains all the sentinels that occur in u
(if any). It causes M to replace u by v, to enter state q′, and to shift the window
by |u|−|v| items to the left – but at most to the left sentinel ¢ (that is, the contents
of the window is ‘completed’ from the left, and so the distance to the left sentinel
decreases, if the window was not already at ¢).

4. A restart step (q, u) −→ Restart assumes that Restart ∈ δ(q, u). It causes M to
place its window at the left end of its tape, so that the first symbol it sees is the
left sentinel ¢, and to reenter the initial state q0.

5. An accept step (q, u) −→ Accept assumes that Accept ∈ δ(q, u). It causes M to
halt and accept.

6. A reject step (q, u) −→ Reject assumes that Reject ∈ δ(q, u). It causes M to halt
and reject.

A configuration of an RLWW(i)-automaton M is a word αqβ, where q ∈ Q, and
either α = λ and β ∈ {¢} ·Γ ∗ · {$} or α ∈ {¢} ·Γ ∗ and β ∈ Γ ∗ · {$}; here q represents
the current state, αβ is the current contents of the tape, and it is understood that the
read/write window contains the first k symbols of β or all of β if |β| < k. A restarting
configuration is of the form q0¢w$, where w ∈ Γ ∗; if w ∈ Σ∗, then q0¢w$ is an initial
configuration. We see that any initial configuration is also a restarting configuration,
and that any restart transfers M into a restarting configuration.

In general, an RLWW(i)-automaton M is nondeterministic, that is, there can be
two or more steps (instructions) with the same left-hand side (q, u), and thus, there
can be more than one computation that start from a given restarting configuration.
If this is not the case, the automaton is deterministic.
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A computation of M is a sequence C = C0, C1, . . . , Cj of configurations of M ,
where C0 is an initial or a restarting configuration and Cℓ+1 is obtained from Cℓ by
a step of M , for all 0 ≤ ℓ < j. In the following we only consider computations of
RLWW(i)-automata which are finite and end either by an accept or by a reject step.

Cycles and tails: Any finite computation of an RLWW(i)-automaton M consists
of certain phases. A phase, called a cycle, starts in a restarting configuration, the
window moves along the tape performing non-restarting steps until a restart step is
performed and thus a new restarting configuration is reached. If no further restart step
is performed, any finite computation necessarily finishes in a halting configuration –
such a phase is called a tail. It is required that in each cycle an RLWW(i)-automaton
executes at least one, but at most i SL-steps. Moreover, it must not execute any
SL-step in a tail.

This induces the following relation of cycle-rewriting by M : u ⇒c
M v iff there is a

cycle that begins with the restarting configuration q0¢u$ and ends with the restarting
configuration q0¢v$. The relation⇒c∗

M is the reflexive and transitive closure of⇒c
M . We

stress that the cycle-rewriting is a very important feature of an RLWW(i)-automaton.
As each SL-step is strictly length-reducing, we see that u ⇒c

M v implies that |u| > |v|.
Accordingly, u ⇒c

M v is also called a reduction by M .

An input word w ∈ Σ∗ is accepted by M , if there is a computation which starts
with the initial configuration q0¢w$ and ends by executing an accept step. By L(M)
we denote the language consisting of all input words accepted by M ; we say that M
recognizes (or accepts) the input language L(M).

A basic (or characteristic) word w ∈ Γ ∗ is accepted by M if there is a computation
which starts with the restarting configuration q0¢w$ and ends by executing an accept
step. By LC(M) we denote the set of all words from Γ ∗ that are accepted by M ; we
say that M recognizes (or accepts) the basic (or characteristic1) language LC.

Finally, we come to the definition of the h-lexicalized RLWW(i)-automaton.

Definition 2. Let i be a positive integer. An h-lexicalized RLWW(i)-automaton, or

an hRLWW(i)-automaton, is a pair M̂ = (M,h), where M = (Q,Σ, Γ, ¢, $, q0, k, i, δ)
is an RLWW(i)-automaton and h : Γ → Σ is a letter-to-letter morphism satisfying

h(a) = a for all input letters a ∈ Σ. The input language L(M̂) of M̂ is simply

the language L(M) and the basic language LC(M̂) of M̂ is the language LC(M).

Further, we take LhP(M̂) = h(LC(M)), and we say that M̂ recognizes (or accepts)

the h-proper language LhP(M̂).

Finally, the set LA(M̂) = { (h(w), w) | w ∈ LC(M) } is called the h-lexicalized

syntactic analysis (shortly hLSA) by M̂ .

We say that, for x ∈ Σ∗, LA(M̂, x) = { (x, y) | y ∈ LC(M), h(y) = x } is the

h-syntactic analysis (lexicalized syntactic (sentence) analysis) for x by M̂ . We see

that LA(M̂, x) is non-empty only for x from LhP(M̂).

Evidently, for an hRLWW(i)-automaton M̂ , L(M̂) ⊆ LhP(M̂) = h(LC(M̂)). Let
us note that h-syntactic analysis formalizes the linguistic notion of lexical sentence

disambiguation. Each auxiliary symbol x ∈ Γ r Σ of a word from LC(M̂) can be

1 Basic languages were also called characteristic languages in [9] and several other papers, therefore,
here we preserve the original notation with the subscript C.
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considered as a disambiguated form of the input symbol h(x). The following fact
ensures the transparency for computations of hRLWW(i)-automata.

Definition 3. (Basic Correctness Preserving Property)
Let M be an hRLWW(i)-automaton. If u ⇒c∗

M v and u ∈ LC(M) induce that
v ∈ LC(M), and therewith h(v) ∈ LhP(M) and (h(v), v) ∈ LA(M), then we say that
M is basically correctness preserving.

Fact 4. Let M be a deterministic hRLWW(i)-automaton. Then M is basically cor-
rectness preserving.

Notations. For brevity, the prefix det- will be used to denote the property of being
deterministic. For any class A of automata, L(A) will denote the class of input lan-
guages that are recognized by automata from A, LC(A) will denote the class of basic
languages that are recognized by automata from A, LhP(A) will denote the class of
h-proper languages that are recognized by automata from A, and LA(A) will denote
the class of hLSA (h-lexicalized syntactic analyses) that are defined by automata
from A.

For a natural number k ≥ 1, L(k-A), LC(k-A), LhP(k-A), LA(k-A) will denote
the classes of input, basic, h-proper languages, and hLSAs, respectively, that are
recognized by those automata from A that use a read/write window of size at most k.

2.1 Further Refinements, and Constraints on hRLWW(i)-Automata

Here we introduce some constrained types of rewrite steps which are motivated by
different types of linguistic reductions.

A delete-left step (q, u) → (q′,DL(v)) is a special type of an SL-step (q′, SL(v)) ∈
δ(q, u), where v is a proper (scattered) subsequence of u, containing all the sentinels
from u (if any). It causes M to replace u by v (by deleting excessive symbols), to
enter state q′, and to shift the window by |u| − |v| symbols to the left, but at most
to the left sentinel ¢.

A contextual-left step (q, u) → (q′,CL(v)) is a special type of DL-step (q′,DL(v)) ∈
δ(q, u), where u = v1u1v2u2v3, u1, u2 ∈ Γ ∗, |u1u2| ≥ 1, and v = v1v2v3, such that v
contains all the sentinels from u (if any). It causes M to replace u by v (by deleting
the factors u1 and u2 of u), to enter state q′, and to shift the window by |u| − |v|
symbols to the left, but at most to the left sentinel ¢.

An RLWW(i)-automaton is called an RLW(i)-automaton if its working alphabet
coincides with its input alphabet, that is, no auxiliary symbols are available for this
automaton. Note that in this situation, each restarting configuration is necessarily
an initial configuration. Within the denotation for types of automata, R denotes the
use of moves to the right, L denotes the use of moves to the left, WW denotes the
use of both input and working alphabets, and a single W denotes the use of an input
alphabet only (that is, the working alphabet coincides with the input alphabet).

Evidently, we need not distinguish between hRLW(i)-automata and RLW(i)-
automata, since for RLW(i)-automata the only possible morphism h is the
identity.

Fact 5. (Equalities of Languages for hRLW(i)-automata.)
For any RLW(i)-automaton M , L(M) = LC(M) = LhP(M).
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An RLW(i)-automaton is called an RLWD(i)-automaton if all its rewrite steps are
DL-steps, and it is an RLWC(i)-automaton if all its rewrite steps are CL-steps. Further,
an RLWW(i)-automaton is called an RLWWC(i)-automaton if all its rewrite steps are
CL-steps. Similarly, an RLWW(i)-automaton is called an RLWWD(i)-automaton if all
its rewrite steps are DL-steps. Observe that when concentrating on input languages,
DL- and CL-steps ensure that no auxiliary symbols can ever occur on the tape; if,
however, we are interested in basic or h-proper languages, then auxiliary symbols can
play an important role even though a given RLWW(i)-automaton uses only DL- or
CL-steps. Therefore, we distinguish between RLWWC(i)- and RLWC(i)-automata, and
between RLWWD(i)- and RLWD(i)-automata.

In the following we will use the corresponding notation also for subclasses of
RLWW(i)- and hRLWW(i)-automata. Additionally, prefix k- for a type X of RLWW(i)-
automata and an integer k ≥ 1 will denote the subclass of X of automata of window
size at most k. For example, 3-det-hRLWC(i) denotes the class of deterministic h-
lexicalized RLWC(i)-automata with window size at most 3.

We recall the notion of monotonicity (see e.g. [11]) as an important constraint
for computations of RLWW(i)-automata. Let M be an RLWW(i)-automaton, and
let C = Ck, Ck+1, . . . , Cj be a sequence of configurations of M , where Cℓ+1 is ob-
tained by a single transition step from Cℓ, k ≤ ℓ < j. We say that C is a sub-
computation of M . If Cℓ = ¢αqβ$, then |β$| is the right distance of Cℓ, which is
denoted by Dr(Cℓ). We say that a subsequence (Cℓ1 , Cℓ2 , . . . , Cℓn) of C is monotone
if Dr(Cℓ1) ≥ Dr(Cℓ2) ≥ · · · ≥ Dr(Cℓn). A computation of M is called monotone if
the corresponding subsequence of rewrite configurations is monotone. Here a config-
uration is called a rewrite configuration if in this configuration an SL-step is being
applied. Finally, M itself is called monotone if each of its computations is monotone.
We use the prefix mon- to denote monotone types of hRLWW(i)-automata. This no-
tion of monotonicity has already been considered in various papers (see [4]) similarly
as the following generalization of it.

A det-mon-hRLWW(i)-automaton can be used to model bottom-up, correctness
preserving, context-free parsers. In order to model also bottom-up, correctness pre-
serving, mildly context-sensitive parsers, a notion of j-monotonicity for restarting
automata is used here; j-monotonicity was introduced in [8]. For an integer j ≥ 1,
an hRLWW(i)-automaton is called j-monotone if, for each of its computations, the
corresponding sequence of rewriting configurations can be partitioned into at most j
(possibly noncontinuous) subsequences such that each of these subsequences is mono-
tone. We use the prefix mon(j)- to denote j-monotone types of hRLWW(i)-automata.

A restriction of the form of restarting automata called strong cyclic form (see [3])
can also be transferred to hRLWW(i)-automata. An hRLWW M is said to be in strong
cyclic form if |uv| ≤ k for each halting configuration ¢uqv$ ofM , where k is the size of
the read/write window of M . Thus, before M can halt, it must erase sufficiently many
letters from its tape. The prefix scf- will be used to denote restarting automata that
are in strong cyclic form. The concept of strong cyclic form is useful for techniques
of grammar-checking (localization of syntactic errors) by hRLWW(i)-automata.

Lemma 6. Let i ≥ 1, and let M be an RLWW(i)-automaton. Then there exists a
scf-RLWW(i)-automaton Mscf such that LC(M) = LC(Mscf) and, for all words u, v,
u ⇒c∗

M v implies u ⇒c∗
Mscf

v. Moreover, all reductions of Mscf that are not possible for
M are in contextual form. If M is deterministic and/or j-monotone for some j ≥ 1,
then Mscf is deterministic and/or j-monotone as well.
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Proof. Let M = (Q,Σ, Γ, ¢, $, q0, k, i, δ) be an RLWW(i)-automaton. It is easy to see
that the language La of words from Γ ∗ accepted byM in tail computations is a regular
sublanguage of LC(M). Therefore, there exists a deterministic finite automaton Aa

such that L(Aa) = {w ∈ La | |w| > k }. Similarly, the language Lr of words rejected
by M in tail computations is regular and there exists a deterministic finite automaton
Ar such that L(Ar) = {w ∈ Lr | |w| > k }. Assume that the automata Aa and Ar

have na and nr states, respectively.
Now we can transform M into an scf-RLWW(i)-automaton

Mscf = (Qscf , Σ, Γ, ¢, $, q0, kscf , i, δscf) of window size kscf = max{k, na + 1, nr + 1}.
The transition relation δscf contains all transitions of M with the following exception.
All accepting steps of M are replaced by MVL-steps into a new state ql,a. As M
cannot rewrite in tail computations, when Mscf enters the state ql,a, the contents of
its tape has not been changed since the last restart. In this case, Mscf moves to the
left sentinel and starts to simulate Aa. During this simulation:

– either Mscf detects that the current tape contents is of length at most kscf and it
accepts,

– or Mscf detects that the current tape contents w is of length greater than kscf ; in
this case, while moving to the right, it continues to simulate Aa until the right
sentinel $ appears in the window. From the pumping lemma for regular languages
we know that if w ∈ La, then there exists a factorization w = w′xyz such that
|y| > 0, |y|+|z| ≤ na, w

′xz ∈ La, and the word xyz$ of length kscf is the contents of
the read/write window of Mscf . Accordingly, Mscf deletes the factor y and restarts.
Even if there exist several such factorisations of w, for constructing Mscf we select
one such factor for any contents of the read/write window xyz$.

Finally, we must ensure that Mscf does not halt and reject for any word of length
greater than kscf . We can do that by adding new steps to the transition relation δscf .
If δ(q, u) contains Reject for some state q ∈ Q and some contents u of the read/write
window, then we replace this reject step by a MVL-step into a new state ql,r, in which
the automaton will move its window to the leftmost position, and then it starts to
move to the right while simulating Ar. Similarly as above for Aa, during the simulation
of Ar, the automaton either rejects if the current contents of the tape is not longer
than kscf , or it shortens the tape by applying the pumping lemma for Lr. Such a
simulation of Ar is possible, as when M enters a configuration with state q and u in
its read/write window, then it can halt, and hence, the tape contents has not been
rewritten since the last restart (as M cannot rewrite in tail computations).

From the construction above we immediately see that Mscf is in strong cyclic
form and that LC(Mscf) = LC(M). Moreover, if M is deterministic, then Mscf is
deterministic, too. Additionally, if M is j-monotone, then Mscf is j-monotone, too, as
the property of j-monotonicity is not disturbed by the delete operations at the very
right end of the tape that are executed at the end of a computation. Moreover, all
added reductions are in contextual form. ⊓⊔

3 On the Power and Sensitivity of Lexicalized Constructions

First we introduce the constraint of synchronization. We say that an hRLWW(i)-
automaton is synchronized if its degree of monotonicity is not higher than the num-
ber i of allowed rewrites per cycle. We denote the constraint of synchronization by the
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prefix syn-. In this paper we stress the relations of the degree of synchronization to
the levels of the Chomsky hierarchy and we show that it can also be used for building
a hierarchy within finite languages.

In this section we will study lexicalized constructions of scf-hRLWW(i)-automata.
By lexicalized constructions we mean the basic and h-proper languages and hLSAs.
We will see that with respect to lexicalized constructions, scf-hRLWW(i)-automata
(and their variants) are sensitive to several types of constraints, as, e.g., the window
size, the number of rewrites per cycle, and the degree of synchronization. Through
these constraints we essentially refine the Chomsky hierarchy, and we will do so in
two phases. In phase one we refine the context-sensitive languages by degrees of
synchronization. Then, by using the window size, we refine the individual areas of
lexicalized constructions that are given by the individual degrees of synchronization.

In order to present our results, we still have to introduce some additional notions.
For any type X of RLWW(i)-automaton and any integer j ≥ 0, we use fin(j)-X to
denote the subclass of X-automata that perform at most j reductions in any accepting
computation. Thus, for such an automaton, each accepting computation consists of
up to j cycles only and a tail. Finally, by fin-X, we denote those X-automata that are
of type fin(j)-X for some j ≥ 0.

3.1 Small Finite Separating Witness Languages

This subsection represents the technical core of this section. It establishes the sensi-
tivity of basic and h-proper languages of scf-hRLWW(i)-automata to the size of their
windows, to the number of deletions by a reduction, and to the degree of monotonic-
ity. This is achieved by constructions of small finite languages. In this way it is shown
that the sensitivity relies on small syntactic observations.

Proposition 7. Let k ≥ 2, let a be a letter, and let L1(k) = {ak}. Then the
following statements hold for L1(k):

(a) L1(k) ∈ LC(k-scf-fin(0)-det-mon-RLWC).
(b) L1(k) 6∈ LC((k − 1)-scf-hRLWW) ∪ LhP((k − 1)-scf-hRLWW).

This proposition shows that for the separation of language classes based on the
size of the read/write window it suffices to consider witness languages of cardinality
one.

Proof. (a) Let M1(k) be the deterministic RLWC-automaton with window size k that
proceeds as follows given a word w = an as input:

1. If n < k, then M1(k) rejects in a tail computation.
2. If n = k, then M1(k) accepts in a tail computation after moving its window to

the right sentinel.
3. If n = i · k for some i ≥ 2, then M1(k) deletes the last occurrence of the letter a

and restarts.
4. If n = i · k + j for some i ≥ 1 and some j ∈ {1, 2, . . . , k − 1}, then M1(k) deletes

the suffix ak and restarts.

It is now easily seen that L(M1(k)) = LC(M1(k)) = L1(k), that M1(k) is in strong
cyclic form, and that it is monotone (of degree 1). Further, as each accepting compu-
tation of M1(k) consists of just a tail, M1(k) is a fin(0)-RLWC-automaton.
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(b) For any (k − 1)-scf-hRLWW-automaton M , the language LC(M) (and therewith
the language LhP(M)) is either empty or it contains at least one word of length at
most k − 1. As L1(k) only contains a word of length k > k − 1, we see that L1(k)
is neither the basic language nor the h-proper language of any (k − 1)-scf-hRLWW-
automaton. ⊓⊔

Proposition 8. Let k, j ≥ 1, let a be a letter, and let L2(j, k) = {ak·(j+1), ak}. Then
the following statements hold for L2(j, k):

(a) L2(j, k) ∈ LC(k-scf-fin(1)-det-mon-RLWC(j)).
(b) L2(j, k) 6∈ LC(k-scf-hRLWW(j′)) ∪ LhP(k-scf-hRLWW(j′)) for any j′ < j.

This proposition shows that for the separation of language classes based on the
number of rewrites that can be executed during a cycle it suffices to consider witness
languages of cardinality two.

Proof. (a) Let M2(j, k) be the deterministic RLWC-automaton with window size k
that proceeds as follows given the word an as input:

1. If n < k, then M2(j, k) rejects in a tail computation.
2. If n = k, then M2(j, k) accepts in a tail computation.
3. If n = i · k for some 2 ≤ i ≤ j, then M2(j, k) rewrites the word an into the empty

word and restarts. Each of the rewrite steps deletes the suffix ak of the current
tape contents.

4. If n = (j+1) ·k, then M2(j, k) rewrites the word an into the word ak and restarts.
Each of the rewrite steps deletes the suffix ak of the current tape contents.

5. If n = i · k for some i ≥ j + 2, then M2(j, k) simply deletes the last occurrence of
the letter a and restarts.

6. If n = i · k + ℓ for some i ≥ 1 and ℓ ∈ {1, 2, . . . , k − 1}, then M2(j, k) simply
deletes the suffix ak and restarts.

It follows that L(M2(j, k)) = L2(j, k), that M2(j, k) is in strong cyclic form, and
monotone (of degree 1). Further, each accepting computation of M2(j, k) consists of
at most a single cycle and a tail, that is, M2(j, k) is a fin(1)-RLWC-automaton.

(b) Assume that M is a k-scf-hRLWW(j′)-automaton such that LC(M) = L2(j, k),
where j′ < j. As ak·(j+1) ∈ L2(j, k) and |ak·(j+1)| = k · (j + 1) > k, and as M is in
strong cyclic form, each accepting computation of M on input ak·(j+1) begins with a
cycle. As ak is the only other word in L2(j, k), this cycle must rewrite ak·(j+1) into
the word ak, for which j ·k letters must be deleted. However, as M has window size k
and can only execute j′ < j many rewrites per cycle, we see that it can delete at
most j′ · k < j · k many letters in a single cycle. This implies that LC(M) 6= L2(j, k).
Finally, as each word w ∈ LhP(M) corresponds to a word of the same length from
LC(M), the argument above also shows that LhP(M) 6= L2(j, k). ⊓⊔

Proposition 9. Let k, j ≥ 2, Σ = {a, b, c}, and let ui = ak for even i and ui = bk

for odd i. Finally, let

L3(j, k) = { (uiui+1 · · · ujc
k·j2)j | i = 1, 2, . . . , j } ∪ { ck·j·r | 0 ≤ r ≤ j2 }.

Then the following statements hold for L3(j, k):

(a) L3(j, k) ∈ LC(k-scf-fin(j + j2)-det-mon(j)-RLWC(j)).
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(b) L3(j, k) 6∈ LC(k-scf-mon(j′)-hRLWW(j)) ∪ LhP(k-scf-mon(j′)-hRLWW(j)) for any
j′ < j.

(c) L3(j, k) 6∈ LC(k-scf-hRLWW(j′)) ∪ LhP(k-scf-hRLWW(j′))) for any j′ < j.

This proposition shows that for the separation of language classes based on the
degree of monotonicity it suffices to consider finite witness languages.

Proof. To simplify the notation we introduce, for each i = 1, 2, . . . , j, the word wi =
(uiui+1 · · · ujc

k·j2)j and the word wj+1 = ck·j
2·j .

(a) Let M3(j, k) be the deterministic RLWC-automaton that proceeds as follows given
a word w as input. If |w| ≤ k, then M3(j, k) performs a tail computation in which
it accepts if w = λ and rejects otherwise. If |w| > k, then M3(j, k) performs a cycle
with the following rewrites completed by a restart step:

1. If w = wi for some i ∈ {1, 2, . . . , j}, then M3(j, k) executes j rewrite steps that
each delete a factor ui. In this way wi is rewritten into wi+1.

2. If w = ck·j·r for some r ∈ {1, 2, . . . , j2}, then M3(j, k) deletes the suffix ck·j by
executing j rewrite steps that each delete the suffix ck.

3. When w is not of any of the forms considered above, then M3(j, k) executes a
rewrite step which either

– deletes the last symbol of w, if |w| = k · ℓ, for some ℓ > 1, or

– deletes a k-letter suffix of w, if the length of w is not divisible by k.

Now it is easily seen that L(M3(j, k)) = L3(j, k), that M3(j, k) is in strong cyclic
form, and that each of its accepting computations consists of at most j + j2 cycles
and a tail. It remains to show that M3(j, k) is j-monotone.

If the input word w does not belong to the language L3(j, k), then in each cycle
just a suffix is deleted, that is, the resulting computation is monotone. If w = ck·j·r

for some r ∈ {1, 2, . . . , j2}, then the suffix ck·j is deleted by j rewrite steps that all
have right distance k + 1. Thus, the resulting accepting computation is monotone.

Hence, it remains to consider the first j cycles for the input w1 = (u1u2 · · · ujc
k·j2)j.

In the first cycle the j factors u1 are deleted, in the second cycle the j factors u2 are
deleted, and so forth. Now the leftmost rewrites in all these cycles yield a monotone
sequence, the leftmost but one rewrites in all these cycles yield another monotone
sequence, and so forth. Thus, we see that M3(j, k) is indeed j-monotone.

(b) Let M be a k-scf-hRLWW(j)-automaton such that LC(M) = L3(j, k). We claim
that M is not j′-monotone for any j′ < j. Assume to the contrary that M is j′-
monotone for some j′ < j. As w1 ∈ L3(j, k), M has an accepting computation
for w1 that is j′-monotone. In addition, as M is in strong cyclic form, this accepting
computation must rewrite w1 into a word of length at most k before it accepts. From
the definition of L3(j, k) we see that this computation must start with the following
sequence of cycles, as in each cycle M can delete at most k · j letters:

w1 ⇒c
M w2 ⇒c

M · · · ⇒c
M wj ⇒c

M wj+1.
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Thus, the rewrite (delete) steps that are executed in this sequence can be displayed
as follows:

cycle no. 1-st rewrite 2-nd rewrite · · · (j − 1)-st rewrite j-th rewrite
1 u1 u1 · · · u1 u1

2 u2 u2 · · · u2 u2

· · · · · · · · · · · · · · · · · ·
j − 1 uj−1 uj−1 · · · uj−1 uj−1

j uj uj · · · uj uj

The next table shows the corresponding right distances, where we disregard the right
sentinel:

cycle no. 1-st rewrite 2-nd rewrite · · · j-th rewrite
1 j · k · (j2 + j) (j − 1) · k · (j2 + j) · · · 1 · k · (j2 + j)
2 j · k · (j2 + j − 1) (j − 1) · k · (j2 + j − 1) · · · 1 · k · (j2 + j − 1)
· · · · · · · · · · · · · · ·
j − 1 j · k · (j2 + 2) (j − 1) · k · (j2 + 2) · · · 1 · k · (j2 + 2)
j j · k · (j2 + 1) (j − 1) · k · (j2 + 1) · · · 1 · k · (j2 + 1)

Now it can be checked easily that, for each i ∈ {1, 2, . . . , j − 1}, the right distance of
the i-th rewrite in cycle j, which is d1 = (j + 1 − i) · k · (j2 + 1), is larger than the
right distance of the (i + 1)-st rewrite in cycle 1, which is d2 = (j − i) · k · (j2 + j),
since

d1 = (j + 1− i) · k · (j2 + 1) = (j − i) · k · (j2 + 1) + k · (j2 + 1),

while

d2 = (j − i) · k · (j2 + j) = (j − i) · k · (j2 + 1) + (j − i) · k · (j − 1).

Hence,

1
k
· (d1 − d2) = j2 + 1− (j − i) · (j − 1) = j2 + 1− (j2 − j − i · j + i)

= 1 + j + i · j − i = 1 + j · (1 + i)− i > 0.

Hence, in order to arrange the j2-many rewrite steps in the above computation into
monotone subsequences, we need at least j such subsequences. This implies that the
above computation is not j′-monotone for any j′ < j. Thus, L3(j, k) is not the basic
language of a k-scf-mon(j′)-hRLWW(j)-automaton for any j′ < j. The same argument
also shows that L3(j, k) is not the h-proper language of such an automaton.

(c) Let M be a k-scf-hRLWW(j′)-automaton for some j′ < j. We will first show
that LC(M) cannot be the language L3(j, k). Assume to the contrary that LC(M) =
L3(j, k). As w1 ∈ L3(j, k), M has an accepting computation for w1. In addition, as
M is in strong cyclic form, this accepting computation must reduce w1 into a word
v ∈ L3(j, k). But this is impossible with window size k and less than j rewrites in a
cycle. The same argument also shows that L3(j, k) is not the h-proper language of
such an automaton. ⊓⊔

3.2 Sensitivity of scf-hRLWW(i)-Automata

Now we focus on results that are related to the sensitivity of scf-hRLWW(i)-automata.
In particular, we show the sensitivity of these automata to the size of the window, to
the number of rewrites in a cycle, and to the degree of monotonicity.
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Corollary 10. For all j, k ≥ 1, the following hold:

(1) LC(k-scf-fin(1)-det-syn-RLWC(j + 1))r LhP(k-scf-hRLWW(j)) 6= ∅.
(2) LC((k + 1)-scf-fin(0)-det-syn-RLWC(j))r LhP(k-scf-hRLWW(j)) 6= ∅.

Proof. The statement in (1) follows from Proposition 8, where L2(j, k) was shown
to belong to LC(k-scf-fin(1)-det-mon-RLWC(j)), but not to LC(k-scf-hRLWW(j′)) ∪
LhP(k-scf-hRLWW(j′))) for any j′ < j. Just observe that the automaton M2(j, k) for
the language L2(j, k) is synchronized and that each of its accepting computations
consists of at most one cycle and a tail.

The statement in (2) follows from Proposition 7, where L1(k) = {ak} was shown
to belong to LC(k-scf-fin(0)-det-mon-RLWC) and not to LC((k − 1)-scf-hRLWW) ∪
LhP((k − 1)-scf-hRLWW). Recall that the automaton M1(k) for L1(k) is synchronized
and that its only accepting computation consists just of a tail computation. ⊓⊔

Next we show a similar hierarchy with respect to the degree of monotonicity which
is related to the number of rewrites in a cycle.

Corollary 11. For all j, k ≥ 1, the following hold:

LC(k-scf-fin-det-syn-RLWC(j + 1))r LhP(k-scf-mon(j)-hRLWW(j + 1)) 6= ∅.

Proof. This result follows from Proposition 9. ⊓⊔

3.3 On Characterizations of Context-Free Constructions

In what follows we use LRR to denote the class of left-to-right regular languages.
Several characterizations of LRR in terms of restarting automata can be found in [7].

Theorem 12. Let X ∈ {hRLWW(1), hRLWWD(1), hRLWWC(1)}. Then
LRR = LC(scf-det-syn-X) and CFL = LhP(scf-det-syn-X).

Proof. An hRLWW(1)-automaton is synchronized if and only if it is monotone. It
is known that the basic languages of monotone hRLWW(1)-automata are context-
free [10]. As the class of context-free languages is closed under the application of
morphisms, it follows that LhP(syn-hRLWW(1)) only contains context-free languages.

On the other hand, it is shown in [10] that the class CFL coincides with the class
of h-proper languages of det-mon-hRLWWC(1)-automata. Now we can use Lemma 6
to complete the proof. ⊓⊔

Remark. This theorem presents the robustness of the constraint of synchronization
for several subclasses of hRLWW(1)-automata with respect to basic and h-proper
languages. It enhances the results about the robustness of context-free and LRR-
languages.

Notation. By CFLA we denote the class LA(scf-det-syn-hRLWW(1)). With this no-
tion we enhance the concept of context-freeness from formal languages to lexicalized
syntactic analyses.

Corollary 13. For all X ∈ {hRLWW(1), hRLWWD(1), hRLWWC(1)},
CFLA = LA(scf-det-syn-X).
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Proof. Let us first recall the definition of LA(X). For a class of restarting automataX,
a set of pairs L belongs to the class LA(X) if there are a restarting automaton M ∈ X
and a letter-to-letter homomorphism h such that L = { (h(w), w) | w ∈ LC(M) }. The
proof then follows from the Theorem 12. ⊓⊔
Remark. This corollary presents the robustness of the constraint of synchronization
for several subclasses of hRLWW(1)-automata with respect to the lexicalized syntactic
analysis.

4 On Contextually Transparent Constructions

In this section we introduce and study classes of contextually transparent (lexicalized
language) constructions (CTC) which are composed from infinitely many subclasses
given by degrees of synchronization.

Notations. For i ≥ 1, we denote by CTL(i) the class LhP(scf-det-syn-hRLWWC(i))
and by CTLA(i) the class LA(scf-det-syn-hRLWWC(i)). Taking the union over all pos-
itive integers we obtain the classes CTL =

⋃
i≥1 CTL(i) and CTLA =

⋃
i≥1 CTLA(i).

We say that CTL is the set of contextually transparent languages and that CTLA is
the set of contextually transparent lexicalized analyses.

Corollary 14. For all i ≥ 1, we have the following relations:

(1) CFL = CTL(1), CFLA = CTLA(1),
(2) CTL(i) ⊂ CTL(i+ 1) ⊂ CTL, CTLA(i) ⊂ CTLA(i+ 1) ⊂ CTLA,
(3) CTL ⊂ CSL.

Proof. We just give outlines of the proofs. With the definitions in mind, claim (1)
follows from Theorem 12 and Corollary 13, and claim (2) follows from Corollary 11.

Finally, the separation in (3) can be shown by using the context-sensitive language
Le = { a2n |n ≥ 1 }. It is easily seen that the languages in CTL have the constant
growth property, which is defined as follows (cf. [5]). Let X be an alphabet, let
L ⊆ X∗. The language L is said to have the constant growth property if there are a
constant c0 > 0 and a finite set of positive integers C such that, for all w ∈ L with
|w| > c0, there is a w′ ∈ L with |w| = |w′|+c for some c ∈ C. Obviously, the language
Le does not have the constant growth property, and hence, it does not belong to the
class CTL. ⊓⊔

The sensitivity of hRLWWC(i)-automata to the size of their windows can be uti-
lized to essentially refine the hierarchies of CTLA. These refined hierarchies yield a
fine classification of syntactic phenomena in lexicalized syntaxes of natural languages.

Recall that the prefix k- indicates the window size. So, k-CTL(i) is the class
LhP(k-scf-det-syn-hRLWWC(i)); analogously for k-CTLA(i), k-CTLA, and k-CTL. We
say that k-CTL(i) is the set of k-transparent context-sensitive languages of degree i,
k-CTLA(i) is the set of k-transparent context-sensitive lexicalized (sentence) analyses
of degree i, k-CTL is the set of k-contextually transparent languages, and k-CTLA is
the set of k-contextually transparent lexicalized analyses. The next corollary easily
follows from Corollary 10.

Corollary 15. For all i, k ≥ 1, the following relations hold:

(1) k-CTL(i) ⊂ k-CTL(i+ 1) ⊂ k-CTL, k-CTLA(i) ⊂ k-CTLA(i+ 1) ⊂ k-CTLA,
(2) k-CTL(i) ⊂ (k + 1)-CTL(i), k-CTLA(i) ⊂ (k + 1)-CTLA(i).
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For i, k ≥ 1, we denote the class LhP(k-scf-fin-det-syn-hRLWWC(i)) by k-
CTL(i)FIN and the class LA(k-scf-fin-det-syn-hRLWWC(i)) by k-CTLA(i)FIN. Further,
by k-CTLFIN we denote the union

⋃
i≥1 k-CTL(i)FIN and by k-CTLAFIN we denote

the union
⋃

i≥1 k-CTLA(i)FIN.

Corollary 16. For all i, k ≥ 1, the following relations hold:

(1) k-CTL(i)FIN ⊂ k-CTL(i+ 1)FIN ⊂ k-CTLFIN,
k-CTLA(i)FIN ⊂ k-CTLA(i+ 1)FIN ⊂ k-CTLAFIN,

(2) k-CTL(i)FIN ⊂ (k + 1)-CTL(i)FIN and k-CTLA(i)FIN ⊂ (k + 1)-CTLA(i)FIN.

Proof. These results also follow from Corollary 10. ⊓⊔

5 Conclusion

The hRLWW(i)-automata satisfy the reduction correctness preserving property with
respect to their basic and h-proper languages, and consequently also with respect to
their lexicalized syntactic analysis and analysis by reduction. The basic correctness
preserving property enforces the sensitivity to the degree of synchronization, number
of rewrites in a cycle, and to the size of the window.

Thanks to the long time study of the PDT (Prague Dependency Treebank) we
believe that class 12-CTLA(2) defined above is strong enough to model the lexicalized
surface syntax of Czech, that is, to model the lexicalized sentence analysis based on
PDT.

Our long term goal is to propose and support a formal (and possibly also software)
environment for a further study and development of Functional Generative Descrip-
tion (FGD) of Czech (see [6]). We believe that the lexicalized syntactic analysis of
full (four level) FGD can be described by tools very close to 24-CTLA(4).

We stress that our current efforts cover an important gap in theoretical tools sup-
porting computational and corpus linguistics. Chomsky’s and other types of phrase-
structure grammars and the corresponding types of automata do not support lexical
disambiguation, as these grammars work with categories bound to individual con-
stituents with respect to constituent syntactic analysis. They do not support syntac-
tic analysis with any kind of correctness preserving property, they do not support
any type of sensitivity to the size of individual grammar (automata) rules (see sev-
eral normal forms for context-free grammars, like Chomsky normal form [2]), and,
finally, they do not support any kind of classification of finite syntactic constructions
of (natural) languages.

On the other hand, in traditional and corpus linguistics, only finite language
phenomena can be directly observed. Now the basic and h-proper languages of
hRLWWC(i)-automata in strong cyclic form with constraints on the window size
allow common classifications of finite phenomena as well as classifications of their
infinite relaxations. All these classifications are based on the reduction correctness
preserving property and the strong cyclic form. Let us recall that for restarting and
list automata the monotonicity means a synonymy for context-freeness. Here we
are able to distinguish degrees of non-monotonicity of finite languages (syntactic
phenomena), too.

Finally, note that many practical problems in computational and corpus linguistic
become decidable when we only consider languages parametrized by the size of the
windows, or even easier when they are parametrized by a finite number of reductions.
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Abstract. Deduplication is a special case of data compression where repeated chunks
of data are stored only once. The input data is divided into chunks using a chunking
algorithm and a cryptographically strong hash is calculated on each chunk and used
as its unique identifier for further searching and duplicate elimination. As the input
stream is processed, a chunk boundary is declared at a byte address in the input
stream if some weak hash of a fixed number of preceding bytes (the “hash window”)
satisfies some criterion. Commonly, a rolling hash like Karp-Rabin [6] or some cyclic
polynomial [7] is used for the weak hash since these cheaply support moving the hash
window forward one byte in the input stream.
This work presents a way to calculate n weak rolling hashes at a time using single
instruction multiple data (SIMD) instructions available on today’s processors. Further-
more, it shows how to calculate chunk boundaries cheaply using other instructions also
available on these processors. Empirical results show that the proposed algorithm is
four times as fast as previous algorithms, and that these optimizations save up to 25%
of the computation required for deduplication.

Keywords: chunking algorithm, deduplication, rolling hash

1 Introduction

In todays world, growing quantities of data need to be stored and/or transported.
These enormous quantities of data present major costs and complexity challenges with
respect to storage space and network bandwidth. Often, the data contains duplicates
of data that is available elsewhere in some broader system. Data deduplication is a
technique for reducing the data volume by eliminating this repeated data, reducing
the storage and transportation requirements.

In the deduplication process of an input data stream, the input stream is divided
into chunks which are compressed and stored uniquely in storage. The chunks may
be entire files or objects, blocks of a block device, or content-aware variable length
chunks. In deduplication, only one unique chunk of a data stream is actually retained
while redundant data chunks (which are identical to an already retained data chunk)
are replaced with pointers to their respective retained data chunks.

Figure 1 shows an example of an input data stream with two versions of a text
file. A small insert or delete in the content of the file shifts the remainder of the file.
In the case of file deduplication, this results in the need to store the entire file. In the
case of block deduplication, all the blocks including the change and after it need to be
retained. By contrast, in the case of content aware deduplication, only the changed
chunk needs to be retained.

Content-aware deduplication usually provides the best results with respect to data
reduction. The problem with content-aware variable length deduplication is that it
is computationally expensive and adds latency to the process. This paper focuses on
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Figure 1. In this example we can see two nearly identical data streams. The second contains a
small portion of inserted data. By splitting the stream into chunks using a content aware chunking
algorithm, only the chunk containing the inserted data will be retained. The other chunks will be
replaced by pointers to the chunks of the first stream.

one of the steps in content-aware variable length deduplication, showing how to chunk
data approximately 4 times faster than accepted practice.

The process of content aware deduplication is composed of four CPU intensive
parts: chunking, hashing, searching, and compressing. First, the input data stream is
divided into chunks using a content aware chunking algorithm. Then a probabilisti-
cally unique hash value is generated for each chunk using a hash algorithm. Usually, a
cryptographical strength hash algorithm is used for this purpose, for example SHA-2,
mainly for its probabilistically unique properties and optimizations that CPU ven-
dors have implemented. Some kind of index data structure maps existing hashes to
their locations. This data structure is then searched using this hash value. If the hash
is found, the chunk is not retained but rather replaced by a pointer to the existing
chunk. If the hash is not found, then it is retained: the chunk is compressed to further
reduce storage efficiency, stored, and the hash and its location added to the index
data structure.

In this paper we present a chunking algorithm that exploits single instruction mul-
tiple data (SIMD) technology in order to process vectors of bytes rather than single
bytes, and other instructions to cheaply calculate the criteria for chunk boundaries.

The methods discussed here complements previous work [2,3,4,5] in the field by
one of the authors.

This paper is organized as follows. In Section 2, we survey previous algorithms.
In Section 3, we present our rolling hash function and an algorithm to calculate
it efficiently. In Section 4, we compare its performance with previous algorithms.
Conclusions are in Section 5.

2 Related Work

Throughout the paper we will make use of the following notation and terminology.
A string x of length |x| is represented as a finite array x1x2 · · · xn of characters from
a finite alphabet Σ of size σ. We refer to the i-th element in x as xi and use the
notation xi · · · xj to denote the subsequence of x from the element at position i to
the element at position j including both, where 1 ≤ i ≤ j ≤ |x|.

“Chunking” is a way to split a data stream on context sensitive boundaries. The
main goal of effectively chunking the data stream is to ensure that the chunk bound-
aries are affected as little as possible by changes to the chunks’ data contents. A chunk
boundary is designated when a (weak) hash of some n consecutive bytes complies with
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one or more predefined chunking criteria. In this way, only the last n consecutive bytes
affect the boundary, not changes within the chunk.

Calculating even a weak hash at every byte offset in a data stream is expensive. In
general, in the industry, rolling hash techniques are used for chunking data streams.
A rolling hash is a hash that can be calculated either as a function of a sequence
of n bytes xi · · · xi+n−1 or as a function of rolling hash of xi−1 · · · xi+n−2, and the
values xi−1 and xi+n−1. The latter is usually significantly cheaper to compute. The
term “rolling” is used to illustrate how the hash “rolls” from one byte window to the
next by removing the effect of the byte leaving the sequence and adding the effect
of the byte entering the sequence. As before, the calculated hash value is checked
for compliance with some predefined one or more chunking criteria and in case the
compliance is identified, the end of the respective rolling sequence is designated as a
chunk boundary.

Input: A string x = x1x2 · · · xl

Result: Chunk Boundary Positions[]
for i← w to l do

h← rolling hash of xi−w+1 · · · xi;
if criterion(h) then

Append i to Chunk Boundary Positions;
end

end
Algorithm 1: Content Aware Chunking

Algorithm 1 provides a brief implementation of a chunking algorithm using a
rolling hash [8], such as cyclic polynomial [7] or Karp-Rabin [6]. As an example, the
criterion function here could be true if h = 0 mod N and false otherwise, where N
is the average chunk size. An alternative criterion function could be accomplished by
comparing a bit masked version of the hash to a number, which will give 2n average
chunk size for mask with n bits.

The problem is that chunking in algorithm 1 is CPU-intensive because it iterates
over all the bytes. Also, at each byte, there is a certain amount of computation that
depends on results computed in the previous iteration. This forces the iteration to
rely on sequential execution of the algorithm. In fact, it is so expensive that it takes
significantly more time to chunk the data than to hash it using a cryptographic
strength hash algorithm (see Section 4.4). On paper, cryptographic strength hashes
do more work, but they were designed for parallel execution and modern CPUs have
further optimized hardware for them.

This problem exists in many of the proposed algorithms and optimizations, in-
cluding ones exploiting SIMD, SSE, and other modern CPU architectures.

3 A Fast Chunking Algorithm

This section is divided into two parts. The first is the description of the rolling hash
function, and the second is how to calculate it efficiently.

3.1 The Rolling Hash and Boundary Criteria

The hash function we are about to define is designed as a chunking algorithm. Let x
be the input data string over an alphabet Σ of size σ. Let k be the size of a vector we
use for calculations, l be the number of bits in each element, such that σ ≤ 2l, and
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w = kl be the window size of the rolling hash. We will use ⊕ to denote bitwise xor,
| to denote bitwise or, & for bitwise and, ≪ for bitwise shift left, and ≫ for bitwise
shift right.

The rotate n bits left of a l bits charecter c function could be written this way:

rol(c, n) =
(
(c≪ n) | (c≫ (l − n))

)
& (2l − 1)

We define an intermediate hash hi at a position i > w in the string x as following:

hi =
l⊕

j=1

rol(xi−k(l−j), l − j)

In the algorithm we discuss here, calculating the criterion function of a vector
of intermediate hashes is a two stage process. First, we calculate an intermediate
criterion vector of the intermediate hashes. Then the final criterion holds only when a
sequence of k intermediate criteria hold. The probability of a boundary to be declared
is then the probability of k intermediate criteria holding.

Some criterion function c operates on one intermediate hash value. We define a
intermediate criterion result ci at position i in string x as following:

ci =

{
0 if c(hi) holds
1 otherwise

The final criterion Ci for a chunk boundary at position i is a combination of all k
preceding intermediate criteria ci−k+1, ci−k+2, . . . , ci.

Ci =

{
true if

(∑i
j=i−k+1 ci

)
= 0

false otherwise

If Ci is true, a boundary is designated at position i.
Let’s show how Ci is calculated with an example. Suppose we have l = 4 bits,

and a vector of size k = 4, and window size of w = 16, and let’s use the criterion
function c = (b >= h), and hence ci = (b < hi) (using 0 as “false”). The following
four conditions show how to calculate c13 · · · c16:

b < h13 = rol(x1, 3) + rol(x5, 2) + rol(x9, 1) + rol(x13, 0)

b < h14 = rol(x2, 3) + rol(x6, 2) + rol(x10, 1) + rol(x14, 0)

b < h15 = rol(x3, 3) + rol(x7, 2) + rol(x11, 1) + rol(x15, 0)

b < h16 = rol(x4, 3) + rol(x8, 2) + rol(x12, 1) + rol(x16, 0)

Since k is 4, if all 4 c13 · · · c16 evaluate to 0, then C16 holds, designating a boundary
at position 16.

There are a couple of “tricks” here. Firstly, we use a single SIMD instruction to
convert a vector of hash values to bits in a computer word that represent whether or
not they meet the criterion function (for example mm256 cmpgt epi8[1]). Secondly,
we use instructions that count sequences of zero bits (for example tzcnt u32[1]).
In this way, we can count the number of consecutively satisfied conditions in O(1)
computer instructions. This combination makes this algorithm efficient.

Below, we discuss how to calculate k intermediate hashes at a time.



88 Proceedings of the Prague Stringology Conference 2019

3.2 Boundary Criteria Algorithm

Our algorithm is divided into three parts, the first initializes the intermediate hashes,
the second checks if there is a boundary at any position among the last intermediate
hashes calculated, and third calculates the next intermediate hashes by inserting and
omitting new and old vectors (the rolling part). The algorithm operates as following:

Input: A string x1x2 · · · xn

Result: Chunk Boundaries (Positions)

// Part 1 - Initialize hashes

H ← 0, 0, . . . , 0;
for i← 0 to l − 1 do

j ← ik;
V ← xjxj+1 · · · xj+k−1;
H ← rol(H, 1)⊕ V ;

end
i← lk;
p← 0;
// Iterate over the string

while i+ k ≤ n do
// Part 2 - Check for boundaries

B ← b, b, . . . , b;
C ← H ≤ B;
c← mask(C);
s← p+ count leading zeros(c);
if s ≥ k then

mark a boundary at i− p;
end
p← count trailing zeros(c);
// Part 3 - Calculate the next k hashes

N ← xixi+1 · · · xi+k−1;
O ← xi−klxi−kl+1 · · · xi−kl+k−1;
H ← rol(H, 1)⊕N ⊕O;
i← i+ k;

end
Algorithm 2: Generate Chunk Boundaries on an input String

The first part calculates the rolling hash value at the start.

The second part checks for boundaries. In the implemented version of the algo-
rithm we use 0 to denote passing of the criterion ci in order to count the leading
and trailing zeros of the resulting bitmask register. By counting two integers, k bits
of length, representing sequential 2k intermediate criteria results, we ensure finding
any k sequences of pass results. The second integer is saved to be used in the next
iteration after we calculate the next k criteria.

And in the third part, we move forward with rolling calculation of the intermediate
hashes of the next vector (of k bytes).



Y.Dude, M.Hirsch, Y.Toaff: A Fast SIMD-Based Chunking Algorithm 89

4 Results

This section focuses mainly on empirical results we obtained from benchmark tests
executed with an AVX version of the code. Our main goal was to produce an algorithm
comparable to that of Karp-Rabin in terms of its quality and usefulness for chunking
for deduplication, namely keeping the distribution of chunk size similar, but speeding
up the calculations.

All tests were performed using AVX instructions which are present in Intel CPUs
that are commonly found in today’s data center servers. If we had used the newer
AVX3 instructions and vector length, we would expect to get a further 3 to 4 factor
performance increase.

In this section, we present results from several aspects. The first is a table showing
the amortized cost of the different instructions when calculating Karp-Rabin and
SIMD chunking. Secondly, we show a simple speed comparison. Thirdly, we show
that the chunk sizes resulting from both algorithms on the same data sets are similar.
Lastly, we show the effect of this speedup on the overall system performance.

4.1 Workloads Comparison

Command Cyclic Polynomial SIMD Optimized
Shift 4 2/16
And 1 0
Or 2 1/16
Xor 2 2/16
Other 2 4/16
Total 11 9/16

Table 1. Number of CPU operations per byte comparison

Different arithmetic operations require different amounts of time. Division for
example takes more time than xor. However, for similar operations, the execution
time of regular arithmetic operations and that of SIMD arithmetic operations are
similar.

In table 1, we can see a comparison between Cyclic Polynomial and SIMD Op-
timized Chunking written using AVX instructions with a vector of 16 bytes, and a
window size of 64 bytes. Theoretically, the rolling part should be 20 times faster.

4.2 Chunk Size Distribution Results

As we noted before, one of the goals was to keep a similar chunk size distribution,
because it implicitly affects many aspects of the deduplication system.

For this test, we used a generated corpus of data that emulates the data we expect
to work with in a real storage system. We processed the data both with Karp-Rabin
and SIMD Optimized Chunking, and counted the number of chunks in each range of
sizes, consisting of 32 buckets of size ranges, each containing about 447 discrete sizes.

In figure 2, we see visually that the chunk size distribution is very similar. In fact,
they differ by less than 2%. The end result, that is the quality of the deduplication,
is unchanged.



90 Proceedings of the Prague Stringology Conference 2019

2000 4000 6000 8000 10000 12000 14000 16000
size of the chunks

0

10000

20000

30000

40000

50000
nu

m
be

r o
f c

hu
nk

s
SIMD Optimized
Cyclic Polynomial

Figure 2. Chunk Size Distribution Comparison

Algorithm Random Data Mixed Data
Karp-Rabin 975 MB/s 927 MB/s

Cyclic Polynomial 1675 MB/s 1676 MB/s
SIMD optimized 6715 MB/s 7136 MB/s

Table 2. Benchmark of the chunking algorithms

4.3 Chunking Performance Results

In table 2, we see the performance results from executing the chunking algorithms
alone. Karp-Rabin, Cyclic Polynomial, or SIMD Optimized Chunking are compared.
Each algorithm was run on two sets of data: random data, and the same corpus data
used previously to test the chunk size distribution.

4.4 Deduplication Performance Results

We also ran an emulation of an entire deduplication system, including chunking,
hashing, and compressing data. The process was limited to a single thread on a single
CPU core.

Chunking
MB/s

CPU Usage
Algorithm LZ-4 Sha-1 Other Chunking
Karp-Rabin 262 63.9% 4.1% 3.8% 28.1%

SIMD Optimized 345 84.5% 5.4% 5.1% 4.7%

Table 3. Benchmark of deduplication

In table 3, we see that the throughput of the deduplication system increased by
32% from 262MB/s to 345MB/s. We also show how the CPU usage is split between
the most CPU intensive parts.
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5 Conclusions

This paper has shown a new way to calculate a rolling hash. It shows a way to
“roll” the hash an entire vector at a time. The process of rolling a whole vector at
a time maps cleanly onto SIMD instructions available in today’s CPUs, making for
fast implementations. In this way, only a fraction of the time is needed to calculate
the hashes compared to previous methods. In a further step, this paper also shows
how to evaluate a criterion function a whole vector at a time, and in so doing, yet
more saving is made to the overall process.
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eds., Czech Technical University in Prague, Czech Republic, 2015, pp. 78–89.

5. M. Hirsch, S. T. Klein, and Y. Toaff: Improving deduplication techniques by accelerating
remainder calculations, in Proceedings of the Prague Stringology Conference 2011, J. Holub and
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Abstract. A new dynamic Huffman encoding has been proposed in earlier work, which
instead of basing itself on the information gathered from the already processed portion
of the file, as traditional adaptive codings do, uses rather the information that is still to
come. The current work extends this idea to bidirectional adaptive compression, taking
both past and future into account, and not only performs at least as good as static
Huffman, but also provably improves on the future-only based variant. We give both
theoretical and empirical results that support the enhancement of the new compression
algorithm.

1 Introduction

Data compression techniques are often classified according to various criteria. One of
the popular partitions is into static and adaptive variants. Alternatively, they can be
arranged by whether being statistical or dictionary based methods. We focus in this
paper on adaptive statistical compression such as Huffman [7] and arithmetic coding.

Research in data compression has evolved in several directions over the years,
e.g., compressed pattern matching in texts [1,19], in images [11,14] and in structured
files [12,3], compact data structures [8,18,15,2] and cryptosystems [16]. The current
paper is yet another research regarding the core of encoding such as [5,23,7,4,20,17,13].

The traditional approach to adaptive coding updates the model dynamically ac-
cording to what has already been seen in the file processed so far. The distribution
of the following item to be encoded at some current location in the file is determined
according to the distribution of the elements that have occurred up to that point. A
different adaptive approach is suggested in [9], assuming that the exact statistics of
the number of occurrences of each element in the entire file are known. For example,
these statistics could have been collected in a first, preprocessing, pass over the file.
In this approach, the dynamic model adapts itself while processing the file by using
its knowledge of what is still to come, i.e., it looks into the future, rather than what
is done by the traditional dynamic methods, which base their current model on what
has already been seen in the past .

This “looking into the future” paradigm has also been suggested in [10] for per-
forming stream compressed matching in LZSS [20], where instead of letting the Ziv-
Lempel type (offset, length) pairs point backward to reoccurring strings, the locations
of these pointers were moved and their direction was reversed to point forward.

Classical dynamic compression algorithms focus only on the item that is currently
processed and increments its frequency, which may consequently imply a shorter
corresponding codeword in future usage. However, as a consequence these savings
may come at the price of having certain other codewords lengthened. The forward
approach improves upon this “egoistic” behavior by a more social approach of the
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forward looking variant, where the frequency of the currently processed element is
decreased , even at the price that the corresponding codeword can become longer.
However, this operation may shorten the overall codeword length of those elements
that are still present in the tree, yielding a better space savings.

2 A new hybrid adaptive coding method

The performance of both the classical static Huffman coding and its dynamic variants
suffers from the fact that they use some information about the distribution of the
characters to be encoded which is not necessarily needed. Moreover, this additional
information has a negative impact on the compression ratio that may be achieved.
More precisely, static Huffman coding uses throughout the frequencies of the char-
acters in the entire text, yet the occurrences of these characters are not necessarily
spread uniformly. In an extreme case in which a certain character x is clustered locally
and does not appear elsewhere, the appearance of a leaf assigned to x in the Huffman
tree is a burden, reducing the compression gain for the parts of the text outside of
these clusters.

As another example, consider Huffman’s dynamic variant, as proposed by Vit-
ter [22], and an input text T consisting first of a long string of characters from
{a, b, . . . , z}, followed by a long string of numbers from {0, 1, . . . , 9}. While for the
beginning of the file, the Huffman tree will only have 27 leaves (including one for
the not yet transmitted elements), the Huffman tree for the second part will have 37
leaves, including the newly encountered digits. However, the fact that non-numeric
characters do not appear in the second part is not taken advantage of, which could
have reduced the average codeword length.

The forward looking dynamic Huffman coding [9] starts with the full frequencies,
as for the static algorithm, and then decreases them gradually after the occurrence
of each of the characters. The extreme case of the input file T will then imply a
symmetric behavior, in which the encoding of the first part of the file will be based
on a full Huffman tree with 37 leaves and therefore be wasteful, and only in the second
part will the tree be reduced to 11 nodes for the set of digits alone.

To remedy this potential source of inefficiency, we propose the following hybrid
method taking advantage of both forward and backward looking dynamic Huffman
coding and thereby correcting some of their drawbacks.

The idea is to start with the same tree as the traditional dynamic Huffman en-
coding. That is, at the beginning, the Huffman tree contains only a special leaf, sym-
bolizing the set of characters that has not yet occurred in the text read so far. This
special character is often labelled NYT for Not Yet Transmitted . The corresponding
codeword is the empty string. The forward looking dynamic variant requires the entire
distribution of the alphabet to be known at the beginning of the process, whereas the
classical backward looking dynamic method of Vitter transmits the alphabet incre-
mentally, each character immediately after its first occurrence. For Vitter’s method,
there is no need to transmit the character frequencies, which are updated on the
encoder and decoder sides in synchronization.

For the hybrid method, we again assume that the whole distribution of the char-
acters in the entire input file is known to the encoder, as for static encoding, but
that this distribution will not be transferred to the decoder in advance as is done
in the forward looking dynamic method. We now suggest transmitting a newly en-
countered character y immediately at its first occurrence, for example by issuing the
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Huffman codeword for NYT, followed by some encoding of the new character y, e.g.,
in ascii. The innovation is that at this point, we also transmit the frequency of y in
the remaining part of the file.
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Figure 1. Illustration of the standard vitter adaptive Huffman algorithm for T = BANANAS.

The expected savings are of course not in the transmitted statistics of the char-
acters, since instead of sending them as a bulk in a header at the beginning, they are
spread within the encoded file. The real advantage lies in the fact that on the one
hand, at each point, the current Huffman tree reflects only the set of characters in the
prefix of the file so far, as in the backward looking variant, but that the frequencies
are according to the suffix of the file, as in the forward looking variant, which is better
from the compression point of view. Moreover, characters are altogether eliminated
from the tree after their last occurrence, which in extreme cases, when the suffix only
includes a small subset of the original alphabet, may yield significant savings.

3 Bidirectional Adaptive Coding

The bidirectional adaptive compression can be adapted to any statistical dynamic
compression such as dynamic Huffman, adaptive arithmetic coding and Prediction
by Partial Matching (PPM) [4]. The generic encoding algorithm, named hybrid-
encode, is given in Algorithm 1. Decoding is done symmetrically. In a preprocessing
stage, the text T is scanned in order to gather the underlying statistics storing the
frequency freq(σi) for each character σi in the alpahbet Σ. The tree is initialized by
NYT having as frequency the size of the alphabet, since this is the number of times it
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will be used. The text T = xi · · · xn is rescanned. In case a character xi is encountered
for the first time, the codeword for NYT is transmitted followed by the ascii encoding
of xi, and some encoding of the frequency freq(xi). One of the possible choices for
the encoding method of these frequencies could be Elias’s Cδ code [5], a universal
encoding method of the integers ≥ 1 using about log x+ log log x bits to encode the
value x. Otherwise, xi is already in the model and encoded accordingly, its frequency
is decremented by 1 and the model is updated.

Algorithm 1: hybrid-encode

hybrid-encode(T = x1 · · · xn )
1 preprocess T to get freq(σi), ∀σi ∈ Σ
2 initialize the model with a single element, for NYT, with freq(NYT)) ← |Σ|
3 encode freq(NYT)
4 for i← 1 to n do
5 if xi has already appeared earlier then
6 encode xi according to current model
7 freq(xi)← freq(xi)− 1

8 else // first occurrence

9 encode NYT according to the current model
10 freq(NYT)← freq(NYT)− 1
11 output ascii(xi)
12 encode freq(xi)
13 Update the model with xi, freq(xi) and freq(NYT)

Consider as example the text T = BANANAS over the alphabet {A, B, N, S} with
corresponding weights {3, 1, 2, 1}. Figure 1 shows the way the Huffman tree alters
for the standard adaptive Huffman coding of [22] while T is processed. The tree is
initialized with the NYT node with 0 weight. When B is encountered, ascii(B) is
output and the letter B is inserted as a new leaf into the Huffman tree with weight 1
resulting in the tree presented in Figure 1(a). Note that for this standard algorithm,
there is no need to transmit the frequency of B, which will be learned by the decoder
incrementally while processing the remaining part of the file. When A is processed, the
NYT with codeword 0 is output, followed by ascii(A), and a new leaf for A is inserted
resulting in Figure 1(b). The following character N is dealt with similarly, the codeword
of NYT is now 10, followed by ascii(N) (Figure 1(c)). To process the second A, and
then the second N, the corresponding codewords 10 and 110 are output, their weights
are incremented, and the tree is updated to Figure 1(d) and then to Figure 1(e). The
codeword for the last A is 0, and while the structure of the tree remains the same, A’s
weight is incremented to 3 (Figure 1(f)). For the last character S, NYT is encoded by
100 and followed by ascii(S), and the process stops (Figure 1(g)).

The forward algorithm basically works in the opposite way, starting with the
final tree of the dynamic variant, and ending with the empty tree. The main difference
is that a special node for NYT and the transmission of the frequencies is not needed, as
the entire alphabet and its statistics are assumed known to the decoder. Our running
example for Forward-Huffman is presented in Figure 2.

The initial tree, shown in Figure 2(a), contains statistics for the entire alphabet,
exactly as for the static version of Huffman coding. When the only appearance of B
is processed, it is encoded by 101, and then B is removed from the tree, resulting in
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Figure 2. Illustration of Forward adaptive Huffman algorithm for T = BANANAS.

the tree of Figure 2(b). The following characters A, N, and A generate 0, 11, and 0
as output, each followed by a decrement of their correnponding frequencies, with no
other changes, yielding the trees Figure 2(c), Figure 2(d) and Figure 2(e), respectively.
When the last N is processed, 11 is output again, and N is removed from the tree,
resulting in the tree of Figure 2(f). When the last A is processed, 0 is output, and A

is removed from the tree, resulting in a tree with a single node corresponding to S,
thus no further bits need to be transferred to the decoder, who already realizes that
the remaining suffix of the file may only contain a single character, which must be S,
and which repeats freq(S) times.

The proposed hybrid algorithm starts with a tree containing the NYT node, but
unlike for the standard dynamic Huffman algorithm, its frequency is initialized by |Σ|,
which is 4 in our case. Each time a new character is encountered, the procedure uses
its knowledge of the “future” and updates the exact frequency, which, subsequently,
alters the model. When B is processed, it does not need to be inserted into the tree, as
it only occurs once, and ascii(B) is output, along with a single bit 1, which is the Cδ

encoding of its frequency 1, resulting in the tree of Figure 3(b). When the following
character A is encountered, having frequency 3, there is no need to encode NYT, which
is still the only leaf in the tree, so only ascii(A) is output, followed by Cδ(3) = 0101,
and A is inserted into the tree with frequency 2 (Figure 3(c)). To process N, NYT is
now encoded by 0, followed by ascii(N) (Figure 3(d)), followed by Cδ(2) = 0100. A
is then encoded by 0 (Figure 3(e)), N is encoded by 11 and removed from the tree
(Figure 3(f)), and A is encoded as 0, and the tree is updated to contain again only
NYT (Figure 3(g)). For S, which occurs only once in T , only its ascii code is output,
followed by its frequency Cδ(1) = 1 (and not preceded by NYT).

Figure 4 summarizes this example in a comparative chart, showing the binary
output sequences produced by the different approaches. For the standard vitter
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(NYT,4)

(a) (b) (c)

(e) (f) (g)

(A,2)
(NYT,2)

4(NYT,3)

(A,1)

(NYT,1)

2

(N,1)

3

(A,1) (NYT,1)

2 (NYT,1)

(A,2)

(NYT,1)

2

(N,1)

4

(d)

Figure 3. Illustration of Hybrid adaptive Huffman algorithm for T = BANANAS.

algorithm, the output consists of Huffman codewords, and if the special codeword
for nyt has been emitted, it is followed by the ascii representation of the newly en-
countered character. For forward, there are only Huffman codewords in the output,
since the alphabet is known in advance, so there is no need for nyt. Note that there
is no encoding for the last letter S, because in this particular example, S appears
only once, and after all other characters have been eliminated from the tree, so the
corresponding codeword is the empty string. In the hybrid technique, the output is
a sequence of elements of four different kinds: Huffman codewords of elements of the
alphabet, the Huffman codeword for nyt, newly encountered characters in ascii, and
frequencies in Cδ, all of which can be uniquely identified according to their position
in the compressed text.

vitter
0100
0010

0 0100
0001

10 0100
1110

10 110 0 100 0101
0011

B nyt A nyt N A N A nyt S

forward
101 0 11 0 11 0

B A N A N A S

hybrid
0100
0010

1 0100
0001

0101 0 0100
1110

0100 0 11 0 0101
0011

1

B Cδ(1) A Cδ(3) nyt N Cδ(2) A N A S Cδ(1)

Figure 4. Comparative chart for the output of the three adaptive encoding procedures.
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4 Analysis of the proposed algorithm

The contribution of the forward looking dynamic Huffman coding algorithm proposed
in [9] is that it provably always achieves compression savings that are at least as good
as those of the static Huffman algorithm, which is often claimed to yield “optimal”
performance, and practically also improves upon the dynamic compression efficiency.
The contribution of the current paper is yet a new twist on the implementation, with
both theoretical and practical improvements over the forward algorithm.

Theorem: The expected performance of the hybrid algorithm is at least as good as
that of the forward algorithm.

Proof: Note that the forward and hybrid algorithms only differ in their behavior at
the beginning of the processing of a file, up to the moment where the entire alphabet
to be used is already known. From that point on, the two algorithms are identical
and generate exactly the same codewords. Define as i0 the index of the character in
the input file from which on the two models coincide, that is, i0 is the index of the
first occurrence of the last character of the alphabet that is encountered in a left to
right scan of the input. Denote by fj and hj the lengths of the codewords generated
for the j-th input character by the forward and hybrid algorithms, respectively.
We have that

hj = fj for j ≥ i0. (1)

Define the sequence k1 = 1, k2, . . . , k|Σ| = i0, as the indices of the first occurrences
of all the characters of the alphabet Σ, in the order of their appearances. At any point
k < i0, the set of characters seen so far, denoted by Σk, is a proper subset of Σ. When
processing the input characters with indices between kr and kr+1, for 1 ≤ r < |Σ|,
the hybrid algorithm bases its encoding on an alphabet of only r characters, just
as Vitter’s variant would do. The forward algorithm, on the other hand, uses
already the entire alphabet, and therefore works with another set of probabilities for
the given subset Σkr , in spite of using the same frequencies .

Denote by Hkr the Huffman code based on the frequencies of the characters in
Σkr and by Hkr

σ the codeword length for a character σ ∈ Σkr in this Huffman code.
At point kr (and up to the characters indexed kr+1 − 1), the hybrid algorithm uses
the Huffman code Hkr , but the forward algorithm uses other probabilities, and
therefore the corresponding codeword lengths F kr

σ cannot be better, because of the
optimality of Huffman’s procedure, that is

∑

σ∈Σkr

pσH
kr
σ ≤

∑

σ∈Σkr

pσF
kr
σ , (2)

where pσ is the probability of occurrence of the character σ at the given index kr.
In other words, looking at the character indexed kr, we encode it for hybrid using

a Huffman code which has been built for P = {pσ | σ ∈ Σkr}, which is optimal at
that specific point. But for forward, we base ourselves on other probabilities, so the
resulting Huffman code is not necessarily optimal for P . Therefore, when averaging
with the same set of probabilities, we get (2), that is, the former set of lengths yields
an average which is not larger than that obtained by the latter set.

Summing over all r for the indices up to i0 and adding eq. (1) for the larger
indices, we conclude that the expected length of a codeword for hybrid is ≤ than for
forward.
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We remark that this does not mean that necessarily hj ≤ fj for all j < i0, and
that the claim is only for their expected values. Indeed we found at least one example
for which hj = fj + 1 for some j.

Another remark concerns the expected savings by using hybrid instead of for-
ward. These will be rather modest for many “typical” large files. The reason is that
there is a possible advantage of the former only before the entire alphabet has been
discovered in a scan from the beginning. But this will often happen fairly soon in
typical natural language texts.

Indeed, the distribution of the characters in standard English texts is well known
and can be found in many books, see, e.g., [6]. Though the details vary from one
source to another, it is well known that the letters J and Q, for example, are rare
and appear with probability about 0.002. But that means that the expected number
of characters to scan until the first appearance of one of these characters is about
1/0.002 = 500, if we assume for simplicity that the text is generated by independently
appearing characters. Therefore it will only rarely occur that after a few thousand
letters, there is still a part of the alphabet that has not been seen.

We therefore see the main contribution of this paper as a theoretical one, showing
that one can improve, even if only slightly, on a method which already seems better
than one considered generally as optimal. Useful applications might be restricted to
special files with sharply varying statistics, e.g., a file consisting first only of digits,
then of characters, and similar settings.

5 Experimental Results

In order to compare the compression savings of the herein suggested hybrid method
relative to the three other algorithms, the dynamic vitter and forward Huffman
encodings, as well as the static Huffman variant, we have considered several datasets
of different sizes and nature, and using different alphabets. ebib is the Bible (King
James version) in English, in which the text has been stripped of all punctuation
signs except blank; ftxt is the French version of the European Union’s JOC corpus,
a collection of pairs of questions and answers on various topics used in the arcade
evaluation project [21]; eng is the concatenation of English text files, downloaded
from the Pizza & Chili Corpus, selected from etext02 to etext05 collections of the
Gutenberg Project, from which the headers related to the project were deleted so as
to leave just the real text; exe is the executable file produced by compiling the source
code we used for the hybrid Huffman algorithm; and nt is a dataset constructed from
ebib in order to obtain a file composed of two parts having disjoint sets of alphabets
— digits, followed by characters. The first part of the file takes the ten thousand first
characters of the ebib file and writes them as decimal digits; the second part consists
of the remaining characters of ebib in their original form. Table 1 summarizes the
information regarding the used datasets.

In many encoding algorithms, the description of the underlying model on which the
method relies on, is given in the header of the encoded file, and varies for each method.
For static arithmetic coding the exact frequencies of the characters are not needed,
and approximate probabilities suffice. On the other hand, the forward looking coding
requires the exact frequencies of the items, while the traditional adaptive arithmetic
method does not need any frequencies, since they are incrementally learned by both
encoder and decoder. As the size of the prelude describing the model does not usually
grow as a function of the size of the underlying file, it can be treated as a constant
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File full size (bytes) |Σ|
ebib 3,711,020 53
exe 48,640 256
ftxt 7,648,930 132
eng 52,428,800 176
nt 3,726,683 63

Table 1. Information about the used datasets

sized header. Alternatively, we decided to compare the core of the encoding, neglecting
the technical issue of transferring the model itself (which can be probably squeezed
to be much shorter by a fine tuning of its encoding). The figures presented in Table 2
are the net sizes of the encodings, that is, the sizes of the entire codewords of the
file without the description of the model, given in bytes. As can be seen from the
results, the compression efficiencies of all methods are very close, which justifies the
omission of the headers, as the description of the model is not negligible in the size
of the difference.

File
Size of Encoded file (bytes)

Static Adaptive Forward Hybrid
ebib 1,940,573 1,941,321 1,940,527 1,940,268
exe 31,296 31,851 31,132 28,930
ftxt 4,443,525 4,444,660 4,443,419 4,442,447
eng 29,914,197 29,915,562 29,914,021 29,912,644
nt 1,969,884 1,970,694 1,969,830 1,945,310

Table 2. Compression performance

Table 2 presents our experimental results on each file of our dataset in which the
figures are given in bytes. The first column is the file’s name. The second to fifth
columns correspond to the size of the encoded files of static Huffman (Static), adap-
tive Huffman of Vitter (Adaptive), forward (Forward), and our proposed method
(Hybrid), respectively. As theoretically expected, Hybrid consistently slightly im-
proves Forward which itself improves both the static and dynamic versions, except
for the file, nt, based on two different alphabets, for which the improvement is more
significant.
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Abstract. Dynamic compression methods continuously update the model of the un-
derlying text file to be compressed according to the already processed part of the file,
assuming that such a model accurately predicts the distribution in the remaining part.
Since this premise is not necessarily true, we suggest to update the model only selec-
tively. We give empirical evidence that this hardly affects the compression efficiency,
while it obviously may save processing time and allow the use of the compression scheme
for cryptographic applications.

1 Introduction

Compression systems often comprise three major components: the model, the encod-
ing process, and the corresponding inverse decoding process. The model is basically
the definition of the set of symbols, called the alphabet, and their distribution. The
alphabet defined in the model is not limited to characters only, and can also include
words and phrases, and we shall use the term alphabet in this border sense. Generally,
as the model becomes more and more accurate and adapted to the underlying text,
the compression efficiency achieved by the encoding phase becomes better. However,
the space overhead imposed by extending the model to be more precise, might di-
minish the savings achieved by the enhanced encoding, implying a crucial trade-off.
Thus, determining the model has a crucial impact on the compression efficiency.

Text compression systems can be partitioned into static and dynamic compres-
sion techniques. Static variants determine the model in a preprocessing stage, and
the model remains the same throughout the compression stage. The model can be
constructed based on known distributions as well as on statistics gathered through a
double pass over the file, the latter being suitable to off-line compressions. Dynamic
variants, called also adaptive compression, save the additional pass, and usually con-
sist of three main steps for each processed symbol:

1. reading the following symbol;
2. encoding the symbol according to the current model;
3. updating the model by incrementing the frequency of the currently read symbol.

The intuition of the dynamic variants is that as more information is collected about
the characters in the text seen so far, the more accurate the probabilities become,
and, thus, better approximation is achieved to the probabilities of the characters
that are still to be seen. Indeed, all adaptive compression methods are based on the
assumption that the distribution of the characters in the text starting from the current
position onwards will be similar to the distribution in the part of the text preceding
this current position. However, this is a statistic observation, which is not necessarily
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true, especially not for non-homogeneous texts. In these kind of texts it may happen
that basing the prediction of the character probabilities on a random subset of the
recently read characters may yield a compression performance that is not inferior,
and sometimes even better, than using the entire history. Such an example is given
in Section 3.2.

Evidence for basing the distribution of a certain alphabet in a given file on a
subset of its characters, rather than on the entire file, can be found in the reported
numbers for letter frequency analysis, which are often used in cryptography and
linguistics. For example, Norvig [3] generated tables of counts for letters, words and
letter sequences, on Google books, a collection of 23GB of the books that have been
scanned by Google. The probabilities are given with an accuracy of at most 5 digits
after the decimal point, corresponding to frequencies within a text of size 100,000,
less than a fraction of 10−5 of the actual text. Even if the entire text has been used to
generate the probabilities, the lower precision suffices to discriminate between them
and therefore using a higher precision would have been a overkill.

Another example for using a restricted history, rather than the entire available one,
can be found in the LZSS [4] compressor, which represents a given file T as a sequence
of substring copies and single characters. The copies are described in the form of
ordered pairs (off , len), meaning that the substring starting at the current position
can be copied from off characters before the current position in the decompressed
file, and the length of this substring is len. The variable off is often bounded by the
size of a predefined sliding window, which limits the history in practice. gzip uses a
default window size of 32K, and thus the off values can be written in 15 bits. The
use of a limited history implemented as a sliding window is motivated by the saving
incurred by the required bits to represent offsets within the restricted window. In this
research we show that a limited history may have advantages beyond explicit storage
savings.

The core motivation for basing the statistics of subsequent encoding only on a part
of the previously seen symbols, rather than on the entire history, is time savings due
to the processing of a smaller set. There is, however, a concern whether the restricted
history may hurt the compression efficiency. A Compression-Crypto System based on
arithmetic coding is introduced in [2], where the model gets updated according to a
secret key shared only by encoder and decoder. This is yet another motivation for the
encoding that is based on selectively updating the model, called selective encoding
for short, however, here we extend the method to general adaptive compressors as
well as for other purposes, other than encryption needs.

We focus on three different adaptive algorithms and examine the effect on time
and compression performance in case the model is updated selectively. Our empirical
results suggest that the loss in compression efficiency incurred by turning to a selec-
tive updating procedure as suggested, is hardly noticeable. Moreover, the encoding
and decoding processing times can only be improved using the selective method, as
expected, by saving the operations in case the model does not get updated, giving
noticeable practical time savings.

Traditional dynamic Huffman codes turn the encoded file into an extremely vul-
nerable one in case of even a single bit error [1]. As a solution to this problem,
blockwise dynamic Huffman variants are suggested, where the Huffman tree is peri-
odically, rather than constantly, updated. Experiments show that the new scheme is
more robust against single errors introduced in the encoded file. Here we suggest a
“semi-blockwise” variant in which not all occurrences get updated.
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The paper is constructed as follows. Section 2 presents the general method for
selective encoding. Section 3 adapts the general selective algorithms to the three
basic adaptive codings: dynamic Huffman, LZW and arithmetic coding. Section 4
presents empirical results and concludes.

2 General Method

Traditional dynamic algorithms update the frequencies adaptively after every char-
acter, according to the assumption that better compression can be achieved when all
previous characters are taken into account. This seems to justify the slow processing
time of some of the adaptive methods, such as dynamic Huffman coding. The selective
method calls for omitting a subset of these updates in a predefined setting that is syn-
chronized between the encoder and decoder. The selection may be done periodically,
randomly, or by supplying the specific cases in which the model should get updated.
We present here only the random version, with probability 1

2
for the occurrences of 0

and 1 bits, which can be easily updated to the other selection variants.

Algorithm 1: selective-encode
selective-encode(T = x1 · · ·xn )

1 initialize the model
2 initialize a random bit generator
3 for i← 1 to n do
4 encode xi according to the current model
5 bit← random()
6 if bit = 1 then
7 Update the model

The general random selective encoding and corresponding decoding algorithms
are presented in Algorithm 1 and Algorithm 2, respectively. The selective encoding
algorithm is applied on a given text T = x1 · · · xn where each xi is a symbol of the
alphabet Σ.

Algorithm 2: selective-decode
selective-decode(E(T ))

1 initialize the model
2 initialize a random bit generator identical to the one in selective-encode
3 for i← 1 to n do
4 decode xi according to the current model
5 bit← random()
6 if bit = 1 then
7 Update the model

The coding method is chosen in advance and known to both the encoder and
decoder. The model gets updated in case the bit returned by the random number
generator is set to 1. We refer to the chosen encoding and corresponding decoding
applications as a black box, and deal with specific encodings in the following section.
The selective decoding algorithm is applied on a given compressed text denoted by
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E(T ), where E is the encoding function. The model and random bit generator are
initialized identically in both procedures.

As mentioned above, instead of using a randomized algorithm, basing the selection
on a random bit generator, one may decide in advance of setting a constant k, so that
the model gets updated exactly every k symbols. The randomized version can be
approximated by the constant updates with k = 2.

3 Specific Variants

The general selective approach may require adaption when applied to a specific
method. Here we examine our proposed selective algorithms on three main adap-
tive compression techniques: arithmetic coding [7], dynamic Huffman coding [5] and
LZW [6]. The following describes the adaptation suggested for each variant.

3.1 Arithmetic Coding

One of the most effective compression schemes, in theory as well as in practice, is
arithmetic coding, for which the compression efficiency approaches the underlying
text’s entropy. The arithmetic compressor is initialized with the interval [low, high) =
[0, 1), which is narrowed for each processed character of the input file, according to
the character’s probability.

More formally, given a text T = x1 · · · xn over an alphabet Σ of size σ, the current
interval [low, high) is partitioned into σ subintervals, each corresponding to one of the
symbols σi ∈ Σ, where the size of the subinterval assigned to σi is proportional to its
probability pi. After iterating on all symbols of T , the compressed text is represented
by a single number within the final interval that corresponds to T .

For example, if Σ = {A, B, C}, initialized with uniform probabilities, one may
start with (fictitious) frequencies 1 for each of the three characters. The partition is
{[0, 1

3
), [1

3
, 2
3
), [2

3
, 1)}, and the intervals may be assigned lexicographically. If the text

to be compressed is BCB, then the initial interval [0, 1) is narrowed to I1 = [1
3
, 2
3
)

after having read the first B, and the probabilities are updated to P = {1
4
, 1
2
, 1
4
}; the

interval then narrows to I2 = [ 7
12
, 2
3
) after the processing of C and the probabilities are

updated to P = {1
5
, 2
5
, 2
5
}; and finally, after reading the second B, the interval narrows

to I3 = [3
5
, 19
30
). Any real number within I3 can be chosen to represent the compressed

file, e.g., 0.625 whose binary representation 0.101 is the shortest.
However, when the model gets updated selectively, for example for every second

character (k = 2 in our notation), the initial interval [0, 1) gets narrowed in the first
step, as in the traditional arithmetic coding, to S1 = [1

3
, 2
3
) after reading the first

character B, and P becomes P = {1
4
, 1
2
, 1
4
}; processing the character C does not cause

an update of the model, yet the interval narrows to S2 = [ 7
12
, 2
3
); but then, processing

the following B narrows the interval to S3 = [29
48
, 31
48
) and updates the probabilities

to P = {1
5
, 2
5
, 2
5
}. The same binary number 0.101 can represent this interval. The

compressed file will thus consist of a three bits in both cases.
Let P = (p1, . . . , pσ) be the probability distribution of all the characters of Σ in

the entire text, and let P ′ be the probability distribution of the characters within the
subtext that has been selected by the model, consisting by those corresponding to the
1-bits chosen by the random number generator. Because of the random selection and
if the subset is large enough, the distribution remains almost the same, and therefore
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H(P ) ≃ H(P ′), where H(P ) = −Σσ
i=1pi log pi is the entropy of the distribution P .

Since we know that the size of the encoded text is n · H(P ) in the first case and
n ·H(P ′) in the second, we conclude that there is practically no loss in compression
efficiency.

In the cryptographic application of [2], the bit sequence generated by the random
bit generator is kept as a secret key K shared only by encoder and decoder. Using
different keys yields completely different output files, and there seems to be no easy
way to decipher the message without guessing K, yet the sizes of the compressed files
were practically unchanged for different keys, as long as their 1-bit density was kept
at 1

2
.

3.2 Dynamic Huffman Coding

We assume, for simplicity, that all dynamic Huffman variants initialize the tree with
all the characters of the alphabet. We suggest two approaches for applying the pro-
posed selective method in case of dynamic Huffman coding. Both algorithms still
update the model periodically or via a random bit generator. The difference between
them relates to the way the model gets updated.

The first approach, analogous to the one used for arithmetic coding, updates
the dynamic Huffman tree by advancing the frequency of the current character only,
ignoring the previous characters that have been skipped, and using Vitter’s Algorithm
in order to fix the Huffman tree in case the sibling property is violated. The first
variant is denoted by Huf-subset.

The second approach, denoted by Huf-full, performs the updates according to the
changes in the frequencies of all the characters seen since the last update. Practically,
the updates in this case are spaced out and only done at the end of a block of several
characters, therefore, immediately after the processing of a set bit in Algorithm 1, the
updated Huffman tree reflects all symbols processed so far. As Vitter’s Algorithm is
based on updating the Huffman tree when only a single character frequency has been
incremented by 1, we generated a static Huffman tree from scratch to implement the
second suggestion.

Obviously, a bad selection may in the worst case jeopardize any compression
savings, for example, when processing fixed length lines of 80 characters and choosing
k = 80. The subset of Σ would then consist of the newline character only! On the
other hand, the selective Huffman algorithm can produce a compressed file that is not
only marginally smaller than the file constructed by traditional dynamic Huffman,
but may even reach only about 3

4
of its size, as shown in the following example.

Let T = B{CCBB}t for some positive integer t. For both variants, the Huffman tree
is initialized with Σ = {A, B, C} as shown in Figure 1(a). Consider first the traditional
dynamic algorithm as proposed in [5]. The first B is encoded as two bits, 10, and B is
exchanged with A, as shown in Figure 1(b). When processing C of the first quadruple
CCBB, only the second C causes a change in the structure of the Huffman tree, but
this happens after the two Cs have already been encoded by 11, using 2 bits each.
The Huffman tree after reading the prefix BCC of T , is depicted in Figure 1(c). When
the following two Bs of the first quadruple CCBB are processed, again the positions of
the B and C nodes are swapped only after the frequency of B exceeds that of C, so
each of the Bs is also encoded by two bits (11). This alternating structure between
two different Huffman trees proceeds until the end of the file, thus every character of
T uses 2 bits, for a total of 2|T | = 8t+ 2 bits.
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Figure 1. Example for which selective Huffman coding produces a file 3
4 of the size of that con-

structed by standard Huffman.

However, when selective Huffman coding is used with k = 2, the first B is again
encoded as two bits, 10, and B is exchanged with A, as shown in Figure 1(b). When
processing the following C, it does not change the model, and is encoded with 2 bits as
11. The following C does cause an update of the frequencies, but does not change the
structure of the Huffman tree. When the following two Bs of the first quadruple CCBB
are processed, they are both encoded as 0, using a single bit, and only the second B

causes an update of the frequencies in the tree, but no change in its structure. This
behavior proceeds until the end of the file, where the structure of the tree remains
the same, and only the frequencies of the Bs and Cs get updated, encoding all Bs as
0, and all Cs by 11. Thus every quadruple CCBB uses 6 bits, for a total of 6t+ 2 bits,
which is about 3

4
of the regular encoding.

A random selection of the characters that are chosen for updating the model may
be used to turn a dynamic Huffman encoder into a cryptosystem. Although in the long
run, the distribution of the characters in the selected subset will be so close to their
distribution in the entire text that there will be no noticeable loss in the compression,
the small details of when exactly to increment which frequency will have a cumulative
impact, producing ultimately completely different output sequences. Nevertheless, the
sizes of these output files will be very close. As example, we compressed a French text
file of 7.3MB with five independently generated random keys, and got compression
ratios 0.57801, 0.57812, 0.57803, 0.578058 and 0.578061.

3.3 LZW

We turn to LZW [6], which is a member of the family of dictionary methods introduced
by Ziv and Lempel [8,9], unlike the statistical compressions dealt with in the previous
sections. The dictionary is initialized by the single characters of the alphabet, and then
is updated dynamically by adding newly encountered substrings that have not been
seen previously in the parsing of the underlying text. The text is thereby partitioned
into a sequence of longest possible phrases that already occur in the dictionary, and
the encoded file is a list of indices, each pointing to the entry of the corresponding
phrase. LZW starts with a dictionary of size 512 which is filled to half its capacity by
the alphabet of ascii symbols, and each entry index is encoded by 9 bits. Once the
dictionary has filled up after adjoining 256 new phrases, its size is doubled to 1024
entries, and all dictionary entries are encoded from this point on using 10-bit pointers.
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In general, after processing 29, 210, . . . , 2i, . . . more elements of the input file, the size
of the dictionary is doubled to 211, 212, . . . , 2i+2, . . . entries, up to a predetermined
maximal size, which is 216 in our implementation. We consider two variants:

1. restarting the dictionary from scratch each time the dictionary reaches its maxi-
mum size, denoted here by LZW-restart; or

2. considering the dictionary as static once it gets full, and not adjoining any more
strings, denoted by LZW-static.

The dictionary built by LZWmaintains a prefix property, that is, for each substring
in the dictionary, all its prefixes also are included in the dictionary. In both cases of the
selective variant, the dictionary gets filled up at a slower pace than for the traditional
approach. As not all elements of the dictionary are necessarily used later, there are
situations where the selective variant may improve the space savings of the traditional
one, as can be seen in our experimental results presented in the following section.

Similarly to what could be done for Huffman coding, if the subset of newly en-
countered substrings is chosen randomly according to a secret key K, it will be hard
to decode the file for whoever has to guess the 1-bits in K. Even though the com-
pressed file consists of a sequence of integers and those are easy to decipher, it is their
interpretation as representing certain substrings that is only known to the encoder
and decoder. As before, different keys produce completely different dictionaries and
thus different output strings, but there is hardly any change in the size of these files.
For the same example input as in the previous section, the obtained compression
ratios for 5 different keys were 0.3988, 0.3978, 0.3994, 0.3987 and 0.3981.

4 Experimental Results and conclusion

We examined the traditional and selective methods comparing the compression effi-
ciency as well as the encoding and decoding processing times using the three basic
adaptive compression algorithms mentioned above. We considered the 50MB file En-
glish, downloaded from the Pizza&Chili Corpus, which is the concatenation of English
text files selected from etext02 to etext05 collections of the Gutenberg Project, from
which the headers related to the project were deleted so as to leave just the real text.
All experiments were conducted on a machine running 64 bit Windows 10 with an
Intel Core i5-8250 @ 1.60GHz processor, 6144K L3 cache, and 8GB of main memory.

Our first experiment compares the compression efficiency of the traditional vs.
selective variants of the various adaptive compression methods: Huf-subset, Huf-full,
LZW-restart, LZW-static and arithmetic codings. The results are given in Figure 2
depicting the compression ratio (defined as the size of the compressed over the size of
the original file) for k = 1, . . . , 8 and k = 16, 32. The traditional dynamic algorithms
correspond to k = 1, where the model gets updated after every character.

As can be seen, LZW-restart is less effective as the blocks become larger. However,
when the dictionary stays constant once it gets filled up, the compression improves
for larger blocks, until a point (not depicted in the graph), where the compression
gain declines. According to our results, the compression efficiency becomes worse than
for the traditional LZW for k = 256. This phenomenon can be explained by the fact
that the static variant needs only a single learning period, while the other method
undergoes, after each restart, a new learning phase during which the compression is
less effective. In any case, the difference between selective and traditional techniques
is less than 3%.
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Figure 2. Compression Efficiency as a function of k.

The performance of the blockwise dynamic Huffman encoding, Huf-full, is practi-
cally identical to that of the partial update variant, Huf-subset, and their plots are
overlapping in Figure 2. As for arithmetic coding, our results coincide with the theory
mentioned above, and selective arithmetic compression remains very similar to the
traditional one, as the probabilities are quite the same.

Figure 3 shows the processing times for both compression and decompression,
for the standard and selective methods. For each of the test files, the encoding and
decoding times were averaged over 10 runs. The displayed times are averages, given in
seconds. Obviously, the compression and decompression times improve as the spacing
becomes larger, because a smaller number of model updates is required.

Compression ratio Encoding time Decoding time
Trad Rand Trad Rand Trad Rand

Huf-subset 0.571 0.571 4447 2789 2388 1190
LZW-restart 0.452 0.446 10.667 9.781 5.321 4.348
LZW-static 0.456 0.454 8.796 8.771 3.096 3.097
arithmetic 0.5661 0.5661 41.61 27.11 46.65 32.39

Table 1. Results for Random as a function of k.

Table 1 presents the results for a random selection in which the choice to update
the model is determined by a random bit generator (columns Rand). The columns
headed Trad bring the results of the traditional, non-selective, approach. A random
selection is similar to a fixed length selection model with k = 2, but has the advan-
tage of almost surely avoiding worst case scenarios, like, e.g., a file for which even
indexed characters belong to a different and disjoint alphabet than the odd indexed
characters. As can be seen, the compression efficiencies are about the same, and that
of the selective choice may sometimes be better. The processing times are consistently
better, suggesting the usefulness of a selective encoder.
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Optimal Time and Space Construction of Suffix

Arrays and LCP Arrays for Integer Alphabets⋆

Keisuke Goto

Fujitsu Laboratories Ltd., Kawasaki, Japan, goto.keisuke@fujitsu.com

Abstract. Suffix arrays and LCP arrays are one of the most fundamental data struc-
tures widely used for various kinds of string processing. We consider two problems for
a read-only string of length N over an integer alphabet [1, . . . , σ] for 1 ≤ σ ≤ N ,
the string contains σ distinct characters, the construction of the suffix array, and a
simultaneous construction of both the suffix array and LCP array. For the word RAM
model, we propose algorithms to solve both of the problems in O(N) time by using
O(1) extra words, which are optimal in time and space. Extra words means the re-
quired space except for the space of the input string and output suffix array and LCP
array. Our contribution improves the previous most efficient algorithms, O(N) time
using σ + O(1) extra words by [Nong, TOIS 2013] and O(N logN) time using O(1)
extra words by [Franceschini and Muthukrishnan, ICALP 2007], for constructing suffix
arrays, and it improves the previous most efficient solution that runs in O(N) time
using σ+O(1) extra words for constructing both suffix arrays and LCP arrays through
a combination of [Nong, TOIS 2013] and [Manzini, SWAT 2004].

Keywords: suffix array, longest common prefix array, in-place algorithm

1 Introduction

Suffix arrays [21] are data structures that store all suffix positions of a given string
sorted in lexicographical order according to their corresponding suffixes. They were
proposed as a space efficient alternative to suffix trees, which are one of the most
fundamental and powerful tools used for various kinds of string processing. LCP
arrays [21] are auxiliary data structures that store the lengths of the longest common
prefixes between adjacent suffixes stored in suffix arrays. Suffix arrays with LCP
arrays are sometimes called enhanced suffix arrays [1], and they can simulate various
operations of suffix trees. Suffix arrays or enhanced suffix arrays can be used for
efficiently solving problems in various research areas, such as pattern matching [21,23],
genome analysis [1, 19], text compression [3, 5, 11], and data mining [9, 12]. In these
applications, one of the main computational bottlenecks is the time and space needed
to construct suffix arrays and LCP arrays.

In this paper, we consider two problems that are for a given read-only string:
constructing suffix arrays and constructing both suffix arrays and LCP arrays. For
both problems, we propose optimal time and space algorithms. We assume that an
input string of length N is read only, consists of an integer alphabet [1, . . . , σ] for 1 ≤
σ ≤ N , and contains σ distinct characters 1. We assume that the word RAM model
with a word size of w = ⌈logN⌉ bits and that basic arithmetic and bit operations on
constant number of words take constant time. We say that an algorithm runs in-place

⋆ The full paper is available at https://arxiv.org/abs/1703.01009.
1 As we will describe later, this is a slightly stronger assumption than commonly used in previous
research.

Keisuke Goto: Optimal Time and Space Construction of Suffix Arrays and LCP Arrays for Integer Alphabets, pp. 111–125.
Proceedings of PSC 2019, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06618-8 c© Czech Technical University in Prague, Czech Republic
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and runs in optimal space if the algorithm requires constant extra words, which is
the space except for the input string, output suffix array, and LCP array.

Suffix array construction. The first linear time (optimal time) algorithms for
constructing suffix arrays for a string over an integer alphabet [1, . . . , σ] for 1 ≤ σ ≤ N
were proposed at the same time by several authors [14, 16, 18], and they require at
least N extra words. Nong [24] proposed a linear time and space efficient algorithm
that requires σ + O(1) extra words, but it still requires about N extra words in the
worst case since σ can be N . An in-place algorithm that runs in O(N logN) time was
proposed by Franceschini and Muthukrishnan [10] 2. It has been an open problem
whether there exists a suffix array construction algorithm that runs in linear time
and in-place.

We propose an in-place linear time algorithm for a string over an integer alphabet
[1, . . . , σ] that consists of σ distinct characters. Our algorithm is based on the induced
sorting framework [10,18,24,25], which splits all suffixes into L- and S-suffixes, sorts
either of which first, and then sorts the other. The induced sorting framework uses two
arrays: (1) a bit array of N bits to store each type of suffix, and (2) an integer array
of σ words, for each character t, to store a pointer to the next insertion position of a
suffix starting with t in the suffix array, so this framework requires σ+N/ logN+O(1)
extra words in a naive way. Our algorithm runs in almost the same way as the previous
ones [10,18,24,25], but it stores these two arrays in the space of the output suffix array.
Therefore, our algorithm runs in linear time and in-place. As a minor contribution,
we also propose a simple space saving technique for the induced sorting framework.
The framework has to store the beginning and ending positions of sub-arrays in
recursive steps, which requires O(logN) words in total in a naive way. Franceschini
and Muthukrishnan [10] proposed a method for storing them in-place and obtained
each value in O(logN) time. We propose a simpler one for storing them in-place and
obtain each value in O(1) time (see the full paper for details).

Our assumption is slightly stronger than those of previous research in that all
characters of an alphabet must appear in the input string 3. However, if an input
string can be writable not read-only, our algorithm still runs in linear time and in-
place also for the same problem setting to previous research which an input string is
over an integer [1, . . . , σ] and some characters may not appear in the string. Because
we can transform the string to a string over an integer alphabet [1, . . . , σ′] that consists
of σ′ ≤ σ distinct characters by the counting sort [17] that uses the space of output
suffix arrays before our algorithm runs.

Recent and independent works for suffix array construction. Recently
and independently, some in-place suffix array construction algorithms were proposed.

Li et al. [20] proposed an in-place linear time algorithm for a read-only string
over an integer alphabet [1, . . . , O(N)] whose assumption is more general, and the
result is stronger than ours. Though Li et al.’s algorithm is also based on the induced
sorting framework, the details are different from ours. Both their and our algorithm
look simple according to the framework, but this simplicity comes from using complex
data structures and algorithms as tools. Li et al.’s algorithm uses two complex tools,
in-place stable merge sort algorithm [4] and succinct data structures supporting select
queries in constant time [13] which is used for storing pointers in compressed space.

2 They assume that an input string is over a general alphabet, i.e., only comparison of any two
characters is allowed, which can be done in O(1) time. Their time and space complexities are
optimal for general alphabets but not for integer alphabets.

3 The same problem setting also appeared in [2].
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On the other hand, our algorithm uses only the former one and store pointers in
a normal array. Using complex tools tend to increase the runtime in practice, e.g.,
according to [7], select query times on a succinct data structure are several time slower
than normal array accesses. In this perspective, our algorithm is simpler than theirs,
and our work may contribute to develop practically faster in-place linear time suffix
array construction algorithms in future.

Prezza [26] studied a similar problem that, for a writable input string, sorts suffixes
of a size-b subset instead of all suffixes and constructs a sparse suffix array and sparse
LCP array. His algorithm is based on a longest common extension data structure
that, for two given positions i and j, efficiently computes the length of the longest
common prefix between two suffixes starting at i and j, and it runs in O(N+b log2N)
expected time and in-place.

Suffix array and LCP array construction. Most previous research focused
on a setting that computes LCP arrays from a given string and its suffix array. Kasai
et al. [15] proposed the first linear time (optimal time) algorithm that computes the
inverse suffix array and then uses it and computes the LCP array. Since it stores the
inverse suffix array in extra space, it requires N + O(1) extra words. Manzini [22]
proposed a more space efficient linear time algorithm. The algorithm constructs the
ψ array, which is similar to the inverse suffix array, in the output space of the LCP
array and then rewrites it to the LCP array. The rewriting process runs in-place, but
constructing the ψ array requires σ+O(1) extra words, so the algorithm runs in linear
time using σ + O(1) words in total. Suffix arrays and LCP arrays can be computed
in the same time and space by computing the suffix array with Nong’s algorithm [24]
and then by computing the LCP array with Manzini’s algorithm [22]. The problem
for constant alphabets with σ ∈ O(1) has been studied in [6, 8], and the algorithms
in [6, 8] are very competitive in practice for constant alphabets.

Our proposed linear time in-place algorithm constructs the suffix array and LCP
array on the basis of a simple but non-trivial strategy. First, we construct the ψ array
by using the space of the suffix array and LCP array and store it in the space of
the LCP array. Then, we construct the suffix array in-place by using our linear time
in-place algorithm, and we rewrite the ψ array to the LCP array as in Manzini’s
algorithm. Thus, we finally obtain both the suffix array and LCP array in linear time
and in-place.

Organization. This paper is organized as follows. In Section 2, we introduce
notations and definitions. In Section 3, we explain the induced sorting framework on
which our algorithms are based. In Section 4 and Section 5, we propose optimal time
and space algorithms for constructing suffix arrays and both suffix arrays and LCP
arrays, respectively.

2 Preliminaries

Let Σ be an integer alphabet, the elements of which are [1, . . . , σ] for an integer
σ ≥ 1. An element of Σ∗ is called a string. The length of a string T is denoted by
|T|. The empty string ǫ is a string of length 0. For a string T = xyz, x, y and z
are called a prefix, substring, and suffix of T, respectively. For a string T of length
N , the i-th character of T is denoted by T[i] for 1 ≤ i ≤ N , and the substring of
T that begins at position i and that ends at position j is denoted by T[i . . . j] for
1 ≤ i ≤ j ≤ N . For convenience, we assume that T[N ] = $, where $ is a special
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Figure 1. Suffix array and LCP array of T = banana$. T[i] is colored red if Ti is an L-suffix, and
blue otherwise. Moreover, T[i] is underlined if Ti is an LML- or LMS-suffix.

character lexicographically smaller than any characters in the string T[1 . . . N − 1].
In this paper, we also assume that σ ≤ N and that T contains σ distinct characters.

A suffix starting at a position i and its first character are denoted by Ti and
ti, respectively, and the position i is also called a pointer to Ti. If no confusion
occurs, we sometimes use Ti as a pointer i. For 1 ≤ i ≤ N , Ti is called a small
type suffix (S-suffix) if i = N or Ti is lexicographically smaller than Ti+1, and it is
called a large type suffix (L-suffix) otherwise. An S-suffix/L-suffix Ti is also called a
leftmost-S-suffix/leftmost-L-suffix (LMS-suffix/LML-suffix) if i > 1 and Ti−1 is an
L-suffix/S-suffix. For i < N , T′

i denotes the substring T[i . . . j], where j > i is the
leftmost position such that Tj is an LMS-suffix. Each type of T′

i is equal to that of Ti,
and T′

i is referred to as an L-, S-, LML-, or LMS-substring according to its type. The
important property is that, for 1 ≤ i < N , Ti is an L-suffix if ti > ti+1, or ti = ti+1

and Ti+1 is an L-suffix, and Ti is an S-suffix otherwise. From this property, each type
of suffix can be obtained in O(N) time with a right-to-left scan on T by comparing
the first characters of adjacent suffixes. suf (all) denotes the set of all suffixes of T,
and also suf (L), suf (S ), suf (LML), and suf (LMS ) denote the set of all L-, S-, LML-,
and LMS-suffixes of T, respectively. The size of a setM is denoted by NM . Note that
either Nsuf (L) or Nsuf (S) must be less than or equal to N/2 because all of the suffixes
belong to either one. Moreover, Nsuf (LMS) must be less than or equal to the smallest
of Nsuf (L) and Nsuf (S). For a subsetM of suf (all) and a suffix Tj ofM , the rank of Tj

is denoted by rankM(j), namely, Tj is the rankM(j)-th smallest suffix of M . When
the context is clear, we denote rank suf (all) as rank .

For a subset M of suf (all), the suffix array SAM of length NM is an integer array
that stores all pointers of M such that corresponding suffixes are lexicographically
sorted. More precisely, for all suffixes Ti ofM , SAM [rankM(i)] = i. When the context
is clear, we denote SAsuf (all) as SA. For each character t, the maximum interval in
which the first characters of suffixes are equal to t in SA is called the t-interval.
Because L- and S-suffixes are respectively larger and smaller than their succeeding
suffix, for any character t, L-suffixes that start with t are always located before S-
suffixes starting with t in SA.

The LCP array is an auxiliary array of SA such that LCP[i] contains the length
of the longest common prefix of TSA[i] and TSA[i−1] for 1 < i ≤ N , and LCP[1] = 0.
See Figure 1.
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3 Induced Sorting Framework

Our algorithm is based on the induced sorting framework [10,18,24,25], so, in this sec-
tion, we explain the algorithm in [25] as an example of the framework. This algorithm
runs in O(N) time using σ +N/ logN +O(1) extra words 4.

The key point of the framework is to sort a subset of suffixes once and then
sort another subset of suffixes from the sorted subset. From this perspective, we
say that the sorting of latter suffixes is induced from the former suffixes. Let T0

be T and let Ti+1 be a string such that |Ti+1| is the number of LMS-substrings of
Ti and Ti+1[j] = k, where the j-th LMS-substring from the left of Ti is the k-th
lexicographically smallest LMS-substring of Ti. There are two important properties;
the first is that |Ti+1| ≤ ⌊|Ti|/2⌋ since the number of LMS-substrings in Ti is at
most ⌊|Ti|/2⌋, and the second is that the rank of the j-th LMS-suffix from the left
of Ti within all LMS-suffixes in Ti corresponds to the rank of the j-th suffix from
the left of Ti+1 within all suffixes in Ti+1. The algorithm recursively computes the
suffix array SAi of the string Ti at each recursive step i, namely, the algorithm sorts
suffixes the number of which is smaller in more inner recursive steps. Note that Ti

has the same property of T such that Ti consists of an integer alphabet of [1, . . . σ′]
for 1 ≤ σ′ ≤ |Ti| and Ti contains σ′ distinct characters.

Below is an overview of the algorithm for computing the SAi of Ti at a recursive
step i. Note that all suffixes and substrings that appear in the overview indicate those
of Ti.

1. Sort all LMS-substrings.
2. Sort all LMS-suffixes from sorted LMS-substrings.
3. Sort all suffixes from sorted LMS-suffixes.
(a) Perform preprocessing for Step 3b.
(b) Sort all L-suffixes from sorted LMS-suffixes.
(c) Sort all S-suffixes from sorted L-suffixes.

The essence of the algorithm is the part in which all suffixes are sorted from the
sorted LMS-suffixes in Step 3. Step 1 runs in almost the same way as Step 3. Step 2
creates Ti+1 and computes its suffix array recursively. Therefore, we herein explain
only Step 3.

We consider only the case of computing the SA0 = SA of T0 = T at the recursive
step 0 since we can also compute the SAi of Ti similarly at each recursive step i.
The algorithm requires three arrays, A, LE/RE 5, and type. A is an integer array of
length N to be SA at the end of the algorithm. At the beginning of the algorithm, we
assume that each A[i] is initialized to empty in linear time, where empty is a special
symbol that is used so that any element storing this symbol stores no meaningful
value6. type is a binary array of length N , which indicates the type of Tj such
that type[j] = L if Tj is an L-suffix, and type[j] = S otherwise. The type can

4 The space for storing beginning and ending positions of sub-arrays in recursive steps is not ac-
counted for.

5 The notation was borrowed from LF/RF used in [20], which is the abbreviation of left-
most/rightmost free. Although the definition is the same as the bkt array commonly used in
previous research [6, 24, 25], the name LF/RF is more specific. In our paper, we frequently use
empty as the special symbol, so we prefer to use the notation LE/RE, which is the abbreviation
for leftmost/rightmost empty.

6 Practically, the special symbol is represented as an integer N + 1 indicating a position out of A
so that we can distinguish the special symbol from pointers of A.
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be computed in O(N) time with a right-to-left scan on T by comparing the first
characters of the current suffix and its succeeding suffix. LE/RE is an integer array
of length σ such that LE[t]/RE[t] indicates the next insertion position of a suffix
starting with a character t in A. LE[t]/RE[t] is initially set to the head/tail of the
t-interval of SA, and it is managed in order to indicate the leftmost/rightmost empty
position of the t-interval at any step of the algorithm. LE can be initialized in O(N)
time as follows. Let Ct be the number of suffixes starting with t. First, LE[t] = Ct is
computed for all characters t by counting ti with a single scan on T by using LE[ti]
as a counter, and last, LE[t] = 1+

∑
t′<t Ct′ is computed by accumulating LE[t] = Ct

lexicographically. Similarly, RE can also be computed in O(N) time.
We assume that LE is initialized at the beginning of Step 3b and that RE is

also at the beginning of Step 3a and Step 3c. During the steps, types of suffixes are
obtained by type.

Step 3a: As the result of Step 2, we have SAsuf (LMS) = A[1 . . . Nsuf (LMS)], and
A[Nsuf (LMS)+1 . . . N ] is filled with empty. With a right-to-left scan on SAsuf (LMS), we
move each SAsuf (LMS)[i] = Tj into A[RE[tj]], which is the rightmost empty position
of the tj-interval, and decrease RE[tj] by one to indicate the new rightmost empty
position of the tj-interval.

Step 3b:With a left-to-right scan onA, we read all L- and LMS-suffixesA[i] = Tj

in lexicographic order, if Tj−1 is an L-suffix, store Tj−1 in A[LE[tj−1]], and increase
LE[tj−1] by one.

Step 3c: This step runs almost the same way as Step 3b. With a right-to-left
scan on A, we read all L- and S-suffixes A[i] = Tj in reverse lexicographic order, if
Tj−1 is an S-suffix, store Tj−1 in A[RE[tj−1]] and decrease RE[tj−1] by one.

Steps 3a, 3b, and 3c run in O(N) time because each step scans A only one time,
and any of the operations take constant time per access. From Lemma 1, all induced L-
and S-suffixes Tj−1 are stored in A[rank(j−1)], so A = SA is obtained at the end of
Step 3. Roughly speaking, the correctness of Lemma 1 comes from the invariant that
all suffixes stored in A are always sorted during the steps. When reading A[i] = Tj,
the L-suffix Tj−1 must be larger than any suffix Tk−1 already stored in tj−1-interval
since Tk must appear at A[i′] for i′ < i, and it holds that Tk < Tj from the invariant.
Moreover, we do not miss any L-suffixes since we always store an induced L-suffix
from a suffix stored in A[i] in a more rightward position A[i′] for i′ > i.

Lemma 1 ( [25]). When an L-suffix/S-suffix Tj−1 is being induced in Step 3b/Step 3c,
LE[tj−1]/RE[tj−1] indicates rank(j − 1).

Since |Ti+1| ≤ ⌊|Ti|/2⌋ and the algorithm runs in O(|Ti|) time for all ⌈logN⌉
recursive steps i, the algorithm runs in O(N) time in total. Moreover, the algorithm
requires σ+N/ logN +O(1) extra words, the first and second factors are for LE/RE
and type, respectively.

4 Optimal Time and Space Construction of Suffix Arrays

We propose a novel algorithm for constructing suffix arrays on the basis of the induced
sorting framework. The space bottleneck of the previous algorithm [25] is the space
of LE/RE and type. Our algorithm embeds both arrays in the space of A, and runs
in O(N) time and in-place, namely, in optimal time and space.

As seen in Section 3, the essence of the induced sorting framework is the part in
which L-suffixes are sorted. Therefore, we focus on how to sort the L-suffixes from
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sorted LMS-suffixes in O(N) time and in-place. We can also sort S-suffixes in the
same way (see Appendix A.2) and also LMS-substrings. Thus, we have the following
theorem.

Theorem 2. Given a read-only string T of length N , which consists of integers
[1, . . . , σ] for 1 ≤ σ ≤ N and contains σ distinct characters, there is an algorithm for
computing the SA of T in O(N) time and in-place.

Our main idea for reducing the space is to store sorted L- and LMS-suffixes in
three internal sub-arrays in A. We refer to these arrays as X, Y, and Z. The length
of Y is σ, and for each character t, Y[t] stores either LE[t], the largest L-suffix
starting with t, or the smallest LMS-suffix starting with t. X and Z store all L- and
LMS-suffixes other than the ones stored in Y, respectively.

We embed LE in Y. Intuitively, this idea does not work because the total size of
X and LE may exceed N , and if so, X overlaps with LE in A, and elements of LE
required in the future may be overwritten by induced L-suffixes. Moreover, we may
not be able to even store SAsuf (LMS) and LE in A at the same time before sorting
L-suffixes because their total size can also be greater than N . We avoid this problem
by overwriting LE[t] only when it is no longer used in the future, namely, when all
L-suffixes starting with t have been induced or there is no L-suffix starting with t. We
detect such timing by causing a conflict between induced L-suffixes. Let CLt be the
number of L-suffixes starting with t. We try to store all L-suffixes in X, whose space is
limited that can store only CLt−1 L-suffixes starting with t for each character t. More
precisely, for a character t, the beginning and ending position of t-interval overlaps
with the ending position of the preceding t′-interval for t′ < t and the beginning
position of the succeeding t′′-interval for t′′ > t, respectively. Therefore, conflict must
occur between the largest (the last induced) L-suffix starting with a character t and
the smallest (the first induced) L-suffix starting with t′′ > t. We can detect the
timing on the basis of conflicts, and we find that all L-suffixes starting with a smaller
character t have been induced and that LE[t] is no longer needed in the future.

We do not need type anymore for detecting the type of suffixes being induced. We
read L- and LMS-suffixes Ti stored either in X, Y, and Z in lexicographic order. If
Ti is read from X or Z, we know the type of Ti, so the type of Ti−1 is easily obtained.
Otherwise, we do not know the type of Ti in Y, so the type of Ti−1 is non-trivial. An
important observation is that, for a suffix Ti in Y, the preceding character ti−1 must
be different from ti since Ti is the largest L-suffix starting with ti or the smallest
LMS-suffix starting with ti. Therefore, the type of Ti−1 can be determined without
type by comparing the characters ti−1 and ti.

We use type of σ bits rather than N bits for distinguishing the L- and LMS-
suffixes and the elements of LE, which are stored in Y. Although type require σ
bits if it is stored naively, we can embed it in the space of Y. Details on the in-place
implementation of type will be given in Section 4.2.

The sub-arrays X, Y, and Z and their more internal sub-arrays are located in
A as shown in Figure 2. The figure also shows all of the steps of our algorithm.
We partition the suffixes in certain subsets, which allows us to run each transition
above in O(N) time and in-place. Let suf (LMSx ) be the set of the LMS-suffixes
that are the smallest among all LMS-suffixes starting with the same character, and
let suf (LMSx ) be the set of all other LMS-suffixes. Let suf (LMSy) be a subset of
suf (LMSx ) that contains all Ti ∈ suf (LMSx ) such that there is no L-suffix starting
with ti, and let suf (LMSy) be the set of all other LMS-suffixes. We have suf (LMSy) ⊆
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Figure 2. Inside transition of A while computing SAsuf (L) from SAsuf (LMS). Space colored with
gray indicates empty space.

suf (LMSx ), |suf (LMSx )| ≤ σ, and suf (LMSx ) ⊆ suf (LMSy). Let suf (Lx ) be the
set of all L-suffixes that are the largest among all L-suffixes starting with the same
character, and let suf (Lx ) be the set of all other L-suffixes. Intuitively, suf (Lx ) and
suf (LMSx ) consist of L- and LMS-suffixes that are closest to the border of L- and
S-suffixes in each t-interval in SAsuf (all), respectively. Moreover, suf (Lx )∪suf (LMSy)
is made by selecting one suffix for each interval from the set suf (Lx ) ∪ suf (LMSx ),
where we give an L-suffix priority over an LMS-suffix if both exists. Thus, we have
|suf (Lx ) ∪ suf (LMSy)| ≤ σ.

We store various types of elements in Y. To reduce ambiguity, YM denotes Y
overwritten by a set of suffixes M whose first characters are distinct (we consider
that the initial Y is filled with empty). More precisely, for a character t, YM [t] =
Ti if Ti starting with t exists in M , and YM [t] = Y[t] otherwise. For example,
Ysuf (LMSy)[t] = Ti if Ti ∈ suf (LMSy) starting with t exists, and Ysuf (LMSy)[t] is
empty otherwise. Moreover, LEsuf (LMSy)[t] = Ti if Ti ∈ suf (LMSy) starting with t
exists, and LEsuf (LMSy)[t] = LE[t] otherwise.
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4.1 Sort all L-suffixes

We compute SAsuf (L) in the head of A from SAsuf (LMS) stored in the head of A,
which is given by the result of sorting the LMS-suffixes. The internal transitions of
A in the algorithm are shown in Figure 2, and each transition runs in O(N) time
and in-place. In Transitions 1-6, we compute LE and move LMS-suffixes in Y and Z.
Transition 7 induces all L-suffixes from LMS-suffixes stored in Y and Z and stores
them in X and Y. The concept of this transition is almost the same as Step 3b in
Section 3. In Transitions 8-9, we merge the L-suffixes ofX andY and obtain SAsuf (L).
The former part Transitions 1-5 is not so hard, so we omitted (we left the details in
Appendix A.1), and we only describe the latter part Transitions 6-9 which is the
most technical part of our algorithm. We assume that we have a bit array type of
σ bits without extra space, and details on its in-place implementation are given in
Section 4.2.

As the result of Transitions 1-5, we have Ysuf (LMSy) for which Y[t] = Ti if Ti ∈
suf (LMSy) starting with t exists, and Y[t] is empty otherwise, and we also have type
for which type[t] = 1 if an L-suffix starting with t exists, and type[t] = 0 otherwise.

Transition 6: We transform Ysuf (LMSy) into LEsuf (LMSy). With a right-to-left
scan on T, we compute CLt for each character t for which type[t] = 1, namely for
which CLt > 0, and store it in Y[t] by using Y[t] as a counter. Note that we never
overwrite a suffix of suf (LMSy) stored in Y[t] since type[t] = 0 and there is no
L-suffix starting with t. With a left-to-right scan on Y, we compute the prefix sum
Y[t] = LE[t] = 1+

∑
t′<t max(0,CLt′ −1) for each t for which type[t] = 1. Finally, we

have LEsuf (LMSy) in Y that Y[t] = LE[t] if type[t] = 1, and Y[t] is Ti ∈ suf (LMSy)
or empty otherwise.

Transition 7: We compute SAsuf (Lx) in X1 and LEsuf (Lx)∪suf (LMSy) in Y. This
transition consists of the following three parts whose concept is almost same as Step 3b
in Section 3. Part 1 reads all L- and LMS-suffixes Ti lexicographically from X1, Y,
and Z3, Part 2 judges whether Ti−1 is an L-suffix or not, and Part 3 stores Ti−1 if
it is an L-suffix. During the transition, we use type to determine whether Y[t] is a
suffix (including both L- and LMS-suffixes) or an element of LE. The invariant is
that type[t] = 1 if Y[t] is an element of LE, and type[t] = 0 otherwise, that is, Y[t]
is empty or a suffix of suf (Lx )∪ suf (LMSy). As the result of the previous transition,
type has already satisfied the invariant.

We explain Part 1 last because it depends on Part 3.

Part 2: Judge whether Ti−1 is an L-suffix or not. As already explained, the
type of Ti−1 can be obtained by comparing the first character ti−1 and its succeeding
characters ti.

Part 3: Store Ti−1 if it is an L-suffix. We try to store an L-suffix Ti−1

in X1[LE[ti−1]], which is the next insertion position of a suffix starting with ti−1.
If X1[LE[ti−1]] is empty, we simply store Ti−1 there and increase LE[ti−1] by one
to update the next insertion position. Otherwise, X1[LE[ti−1]] has already stored a
suffix Tj . As already explained, a conflict must occur between the largest (the last
induced) L-suffix starting with a character t and the smallest (the first induced) L-
suffix starting with t′ > t, and all L-suffixes starting with the smaller character t
have already induced. Therefore, we compare the first characters ti−1 and tj, store
the smaller one in LE[min(ti−1, tj)], store the larger one in X[LE[ti−1]], and update
type[min(ti−1, tj)] = 0. Moreover, we increase LE[ti−1] by one if ti−1 > tj.
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Part 1: Read all L- and LMS-suffixes Ti lexicographically. Recall that the
arrays X1, Y, and Z3 store sorted suffixes. With a left-to-right scan on X1, Y, and
Z3, we scan X1[iX ], Y[iY ], and Z3[iZ ] simultaneously in lexicographic order, where
iX , iY , and iZ are the scanning positions of X1, Y, and Z3, respectively. We recall
the types of suffixes stored in X1, Y, and Z3:

– X1[iX ] is either empty or an L-suffix.
– Y[iY ] is either empty, a suffix of suf (Lx ) ∪ suf (LMSy), or LE[iY ].
– Z3[iZ ] is a suffix of ∈ suf (LMSy).

Let tX , tY , and tZ be the first characters of suffixes stored inX1[iX ],Y[iY ], and Z3[iZ ],
respectively, where tY equals iY . Here, we assume that tX , tY , and tZ are σ + 1 6∈ Σ
if each index iX , iY , or iZ indicates a position out of the corresponding array, that is,
such tX , tY , and tZ must not be chosen. We also assume that tX is σ + 1 if X1[iX ] is
empty.

We choose the smallest character ti of tX , tY , and tZ . In case we need to break a
tie, we give tX priority over tY , and tY priority over tZ . Note that Ti is the smallest
suffix of the three candidates because, for suffixes Tj1 , Tj2 , and Tj3 of suf (Lx ),
suf (Lx )∪ suf (LMSy), and suf (LMSy), respectively, we have Tj1 < Tj2 < Tj3 if they
all start with the same character, and Ti is chosen in this order of priority. Next,
we increase the scanning position by one. Thus, we can read all L- and LMS-suffixes
lexicographically.

One concern is that we may choose tY = iY for which either Y[iY ] is empty or
Y[iY ] = LE[iY ]. The former case implies that none of the L- or LMS-suffixes start
with tY , so we increase iY by one and choose the smallest character from the three
candidates again. In the latter case, let Ti be the largest L-suffix starting with t, it
implies that type[iY ] must be 1, a conflict with Ti has not occured yet, and Ti has
already been read and is still stored in X1. So, in this case also, we increase iY by
one and choose the smallest character from the three candidates again. Ti stored in
X1 will conflict with another L-suffix and be stored in LE[tY ] in the future.

Transition 8: We compute SAsuf (Lx) in X2 and initialize the space except for
X in A as empty. All L-suffixes of suf (Lx ) are stored in Y, and we have type for
which type[t] = 1 if Y[t] stores an L-suffix of suf (Lx ), and type[t] = 0 otherwise.
With a left-to-right scan on Y, we move all L-suffixes Ti for which type[ti] = 1 in
back of X1 while preserving the order, and we obtain SAsuf (Lx) in X2. Finally, we fill
A[Nsuf (L) . . . N ] with empty.

Transition 9: We compute SAsuf (L). By applying the in-place stable merge al-
gorithm in Theorem 3 to SAsuf (Lx) and SAsuf (Lx) considering the first characters as

keys, we compute SAsuf (L) in O(N) time and in-place.

Theorem 3 ( [4]). For two sorted integer arrays A1 = A[1 . . . N1] and A2 = A[N1+
1 . . . N1 +N2] that are stored in an array A[1 . . . N1 +N2], there is an in-place linear
time (O(N1 +N2) time) algorithm that can stably merge A1 and A2 in A.

Remark: For ease of explanation, we use the complex stable merge algorithm
in Transition 5 and 9 for sorting L-suffixes. We can optimize the algorithm so that
the algorithm does not use the merge algorithm for sorting L-suffixes and use only
two times for sorting S-suffixes. Since SAsuf (LMSy) is read only sequentially, we can
simulate the sequential scan of SAsuf (LMSy) by scanning SAsuf (LMSx)∩suf (LMSy) and
SAsuf (LMSx) sequentially. Moreover, Transition 9 is equal to Transition 2 in sorting

S-suffixes (see Appendix A.2), so we can skip Transition 9 and avoid to use the stable
merge algorithm.
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4.2 In-place implementation of type

We store suffixes and elements of LE in Y in a compact representation so that whose
most significant bits (MSBs) are vacant, and embed type in the MSBs of Y. Since
each original value can be obtained from the simple compact representation in O(1)
time, it does not cause any problems for all transitions shown in Figure 2.

LE is a non-decreasing sequence, so we remember the leftmost m-interval that
includes the position 2⌈logN⌉−1 in X1 whose MSB is 1, and also remember the MSB of
LE[m] as msb. In Transition 7, msb is initially 0 but finally becomes 1. All elements
of LE[t] are stored in Y in the compact representation by clearing the MSBs to 0.
The original value of each LE[t] can be obtained in O(1) time as follows;

– Set the MSB to 0 for t < m.
– Set the MSB to msb for t = m.
– Set the MSB to 1 for t > m.

A suffix Ti is stored as ⌊i/2⌋ so that the MSB is vacant. We use two important
properties to obtain original values that, for a suffix Ti stored in Y[t], (1) the first
character of Ti must be t, and (2) the preceding character ti−1 does not equal t (since
Ti is the largest L-suffix starting with t or the smallest LMS-suffix starting with
t). We can obtain an original suffix Ti from its compact representation Y[t] = j.
The candidate of i is 2j or 2j + 1. If t2j 6= t2j+1, we choose one that equals t with
Property 1. Otherwise, we choose 2j with Property 2.

Thus, we can store all elements of LE and suffixes inY in a compact representation
whose MSBs are vacant and store type in-place in the MSBs of Y.

5 Optimal Time and Space Construction of Suffix Arrays
and LCP Arrays

We propose an algorithm for computing the suffix array and LCP array of a given
read-only string T in O(N) time and in-place. We revisit Manzini’s algorithm [22],
which constructs an LCP array LCP from a given string T and a suffix array SA in
O(N) time by using σ + O(1) extra words. The algorithm uses a ψ array Ψ which
is also called the rank next array, where Ψ[rank(i)] = rank(i + 1) for 1 ≤ i < N .
The algorithm consists of two parts. The first part computes Ψ in O(N) time by
using σ + O(1) extra words. The second part converts Ψ into LCP in O(N) time
and in-place. Therefore, LCP can be computed in O(N) time and in-place if Ψ can
be computed in O(N) time and in-place.

Let A and B be integer arrays of length N to be SA and LCP at the end of
the algorithm, respectively. Our algorithm computes B = Ψ with both arrays A and
B and O(1) extra words. After that, it computes A = SA in-place as described in
Section 4 and converts B = Ψ into B = LCP in-place as in Manzini’s way. For
computing Ψ, we use the inverse suffix array ISA such that ISA[SA[i]] = i, which is
also called the rank array since ISA[i] = rank(i). The algorithm runs in the following
steps.

1. Compute B = SA.
2. Compute A = ISA from SA.
3. ComputeB = Ψ, that is, drop SA. With a left-to-right scan on ISA, setB[ISA[i]] =

ISA[i+ 1] if ISA[i] < N .
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4. Compute A = SA as described in Section 4.
5. Convert B = Ψ into B = LCP as in Manzini’s way.

All of the steps run in O(N) time and in-place. Thus, we have the following theorem.

Theorem 4. Given a read-only string T of length N , which consists of integers
[1, . . . , σ] for 1 ≤ σ ≤ N and contains σ distinct characters, there is an algorithm for
computing both SA and LCP of T in O(N) time and in-place.

Acknowledgement

We wish to thank Takashi Kato, Shunsuke Inenaga, Hideo Bannai, Dominik Köppl,
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A Appendix

A.1 Sort all L-suffixes: Former Transitions

We describe Transitions 1-5, which are omitted in Section 4.1.
Transition 1: We shift SAsuf (LMS) stored in the head of A into Z.
Transition 2: We store suf (LMSx ) in Z1 and compute SAsuf (LMSx) in Z2. Note

that the suffixes in Z2 are sorted but may not be in Z1. Let j be the insertion position
in Z2 for SAsuf (LMSx), which is initially set to Nsuf (LMS), namely, the end of Z. With

a right-to-left scan on Z = SAsuf (LMS), we swap SAsuf (LMS)[i] = Tk with Z[j] and

decrease j by one if Tk ∈ suf (LMSx ) and do nothing otherwise. Whether or not Tk

belongs to suf (LMSx ) can be judged in O(1) time by comparing the first characters
because the first characters tSAsuf (LMS)[i] and tSAsuf (LMS)[i−1] are the same if and only

if Tk ∈ suf (LMSx ). Since we shift the suffixes of suf (LMSx ) to the end of Z while
preserving the order of the shifted suffixes, we obtain suf (LMSx ) in Z1 (which may
not be sorted) and SAsuf (LMSx) in Z2.

Unfortunately, we cannot compute Ysuf (LMSy) at this point directly because we
currently do not know the size of Nsuf (LMSy) determining the starting position of Y
within A. We obtain this information in Transition 4. To start with, we consider a
temporary array Y′ = A[1 . . . σ] and compute Y′

suf (LMSx).

Transition 3: We compute Y′
suf (LMSx). With a right-to-left scan on Z1, we try

to move Z1[i] = Tj1 into Y′[tj1 ]. However, Y
′[tj1 ] may contain an LMS-suffix Tj2

because Y′ may overlap with Z1. We simply move Tj1 into Y′[tj1 ] if Y
′[tj1 ] is empty
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and do nothing if Y′[tj1 ] is Tj1 because then Z1[i] and Y′[tj1 ] are the same entry
in A. Otherwise, Y′[tj1 ] contains a suffix Tj2 such that Tj2 6= Tj1 . In this case, we
move Tj1 into Y′[tj1 ] and then try to move Tj2 into Y′[tj2 ]. We repeat this procedure
until we move Tjk to Y′[tjk ], which is empty, or encounter Y′[tjk ] = Tjk . Because
Nsuf (LMSx) ≤ σ and the first characters of suf (LMSx ) are all different, the number
of insertions is O(σ), and this transition can be done in O(σ) time. Finally, we have
Y′

suf (LMSx) such that Y′[ti] = Ti if Ti ∈ suf (LMSx ) or Y′[ti] is empty otherwise.
Transition 4: We compute Ysuf (LMSy) and SAsuf (LMSx)∩suf (LMSy). The set

suf (LMSx ) ∩ suf (LMSy) consists of each suf (LMSx ) suffix for which there is an
L-suffix starting with the same character, and suf (LMSy) is other suf (LMSx ). We
compute type[t] = 1 if there is an L-suffix starting with t, and type[t] = 0 otherwise.
We initialize type with 0. With a right-to-left scan on T, we set type[t] = 1
for an L-suffix starting with t. Now we know that a suffix stored in Y′

suf (LMSx)[t]

with type[t] = 1 belongs to suf (LMSy) ∩ suf (LMSx ). With a right-to-left scan on
Y′

suf (LMSx), we move such suffixes in front of Z2 = SAsuf (LMSx) while preserving the

order; then, we have Z1 = SAsuf (LMSx)∩suf (LMSy). We just move Y′ in front of Z1,
and we have Ysuf (LMSy).

Transition 5: We compute SAsuf (LMSy). Because a suffix Ti of suf (LMSy) ∩
suf (LMSx ) is smaller than all suffixes of suf (LMSx ) starting with the same
character ti, SAsuf (LMSy) can be obtained by stably merging the last two
arrays SAsuf (LMSy)∩suf (LMSx) and SAsuf (LMSx) with respect to the first char-

acters as keys. The merged array contains all suf (LMSy) suffixes since
(suf (LMSy) ∩ suf (LMSx )) ∪ suf (LMSx ) = suf (LMSy). By applying Theorem 3 to
SAsuf (LMSy)∩suf (LMSx) and SAsuf (LMSx), we compute SAsuf (LMSy) in O(N) time and
in-place.

A.2 Sort all S-suffixes

We can sort all S-suffixes in almost the same way as sorting L-suffixes but compute
SA instead of SAsuf (S). The same can be said by switching the roles of LE, L- and
LMS-suffixes with RE, S-, and L-suffixes, respectively. Let suf (Sx ) be the smallest
suffixes starting with each character t, let suf (Sx ) be the set of the other S-suffixes,
let suf (Ly) be the set of the largest L-suffixes starting with each character t such
that no S-suffix starts with t, and let suf (Ly) be the set of the other L-suffixes. We
compute SAsuf (Ly), REsuf (Ly)∪suf (Sx), and SAsuf (Sx) from SAsuf (L) in a similar way
as Transitions 1-7 in Section 4.1. Note that REsuf (Ly)∪suf (Sx) equals SAsuf (Ly)∪suf (Sx)
from the definition. We compute SA in O(N) time and in-place by considering the
first characters as keys, by applying Theorem 3 to SAsuf (Ly) and SAsuf (Ly)∪suf (Sx),
and then by applying the result and SAsuf (Sx).

Thus, all S-suffixes can be sorted in O(N) time and in-place as in Section 4.1. See
Figure 3.
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Figure 3. Inside transition of A while computing SA from SAsuf (L). Space colored with gray
indicates empty space.
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Abstract. The wavelet tree (Grossi et al. [SODA, 2003]) and wavelet matrix (Claude
et al. [Inf. Syst., 2015]) are compact data structures with many applications such as text
indexing or computational geometry. By continuing the recent research of Fischer et
al. [ALENEX, 2018], we explore the similarities and differences of these heavily related
data structures with focus on their construction. We develop a data structure to modify
construction algorithms for either the wavelet tree or matrix to construct instead the
other. This modification is efficient, in that it does not worsen the asymptotic time and
space requirements of any known wavelet tree or wavelet matrix construction algorithm.
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1 Introduction

The wavelet tree [5] is a data structure with numerous applications in text indexing,
data compression, computational geometry (as an alternative to fractional cascading)
and other areas [3, 8, 10]. Common queries that the wavelet tree can answer efficiently
are rank and select for any symbol that occurs in the underlying text, as well as access
queries to restore said text. The wavelet matrix [2] is a related data structure with the
same asymptotic running times for these queries However, they are faster in practice,
because they require less subqueries on bit vectors to be answered.

Both data structures are based on storing n⌈log σ⌉ bits for the text of length n
over an alphabet of size σ and answer access, rank and select queries in asymptotic
time O(log σ). Since they can also be used for accessing individual characters in time
O(log σ), they can both be seen as different encodings of the text. They differ (a) in
the order these bits are stored, and (b) in the auxiliary data required to answer
the queries. However, there are many similarities between these two data structures
and it is natural to ask how far these similarities go. In this work, we focus on the
construction process of the data structures.

Related work. Fischer et al. [4, Sect. 5.2] recently showed that there is a data
structure to efficiently transform any construction algorithm for the wavelet tree to
construct instead the wavelet matrix without worsening the asymptotic construction
times. This makes it possible to apply techniques used by (parallel) wavelet tree
construction algorithms, which make use of the tree structure, to the wavelet matrix,
which discards the tree structure. Their data structure occupies O(n + σ log n) bits
of space and can be constructed in time O(n + σ) using o(n + σ) bits of memory.

Patrick Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction, pp. 126–135.
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Our contributions. Fischer et al. left open whether there is a data structure for
the inverse direction, i.e., whether there is an efficient way to construct the wavelet
tree using a construction algorithm for the wavelet matrix. In order to learn more
about the similarities and differences between the two, we propose a first solution
to this problem and give the corresponding data structure of the same asymptotic
space requirements as that in [4]. It can be constructed easily in time O(σ) from the
text’s histogram and its principle works for both directions. However, there is a slight
limitation that gives us some insight on the different information contained in the
wavelet tree and matrix.

2 Preliminaries

Let T ∈ Σn be a text over an alphabet Σ. For some integer i < n, let T [i] be the i-th
symbol of T . We use zero-based indexing, so that T [0] is the first symbol of T and
T [n − 1] is the last.

Computational model. We use the word RAM model, where we assume that we
can perform arithmetic operations on words of bit width O(log n) in constant time.

Histogram. The histogram H : c 7→ occT (c) of T maps each symbol c ∈ Σ to its
number occT (c) of occurrences in T . The set of those σ symbols with occT (c) > 0
are the effective alphabet of T . We represent it as the interval Σ ′ = [0, σ), so that
the lexicographically smallest symbol is represented by 0 and the largest symbol by
σ − 1. Let effT (c) ∈ Σ ′ be the rank of c in the effective alphabet. In the effective
transformation T ′ of T , we set T ′[i] := effT (T [i]) for each i < n. As an example,
consider the text and alphabet in Figure 1. The effective transformation of the text
is T ′ = 6 0 5 1 2 1 4 4 3 1 1.

C array. For every x ∈ Σ ′, the C array contains the accumulated number of oc-
currences of symbols in T ′ that are lexicographically smaller than x. Formally, it is
C[x] := ∑x−1

k=0 occT ′(k). We furthermore define C[σ] := n.

Bit vectors. A bit vector is a text over the binary alphabet B = {0, 1}. Let B = Bn

be a bit vector of length n. For every position i < n, the function rank1(B, i) returns
the number of 1-bits in B from its beginning up to (including) position i. For a k > 0,
the function select1(B, k) returns the position of the k-th 1-bit in B. The functions
rank0 and select0 are defined analogously for 0-bits. There is a data structure that
can answer rank and select queries for a fixed B and any i or k, respectively, in time
O(1), requires o(n) bits of memory and can be constructed in time O(n) [6].

Bit reversal. Let B ∈ B∗ be a bit vector and let (B)N ∈ N denote the integer that
B is the binary representation of. For k > 0 and an integer i < 2k, we call (i)B,k ∈ Bk

the k-bit binary representation of i. Let BR denote the reversal of B. We define the
k-bit reversal bitrevk(i) := (((i)B,k)R)N as the integer represented by the reversal of
i’s k-bit binary representation. For a fixed k, the bit-reversal permutation maps each
integer i < 2k to its k-bit reversal. To give examples, Table 1 shows the bit-reversal
permutations for k = 2 and k = 3.
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i (i)B,2 ((i)B,2)R bitrev2(i)
0 00 00 0
1 01 10 2
2 10 01 1
3 11 11 3

(a) Bit-reversal permutation for k = 2.

i (i)B,3 ((i)B,3)R bitrev3(i)
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

(b) Bit-reversal permutation for k = 3.

Table 1: Breakdowns of the bit-reversal permutations for k = 2 (left) and k = 3
(right). The first column contains the integers i < 2k, the second shows their k-bit
binary representations, the third shows the reversals and the final column contains
the k-bit reversal of i.

wavelettree

10100011000

aeleree

0010100

aeeee

01111
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01

wvtt

1000

vtt
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w

0

Σ = {a, e, l, r, t, v, w}
Σ′ = [0, 7)
c effT (c)
a 0 = 000b
e 1 = 001b
l 2 = 010b
r 3 = 011b
t 4 = 100b
v 5 = 101b
w 6 = 110b

Figure 1: The wavelet tree (left), alphabet, effective alphabet and binary representa-
tions of symbols (right) for T = wavelettree. The texts above the node bit vectors
are shown only for comprehensibility; they are not a part of the node labels and are
not stored.

2.1 The Wavelet Tree

The wavelet tree [5] is a binary tree of height ⌈log σ⌉ where each node v represents an
interval [a, b] ⊆ Σ ′ of the effective alphabet and is labeled by a bit vector Bv ∈ B+.
Bv contains one bit for each text position i, in text order, where T ′[i] ∈ [a, b]: a 0-bit
if T ′[i] ≤ ⌊a+b

2 ⌋, i.e., if the symbol T ′[i] lies in the left half of the represented interval,
or a 1-bit otherwise.

The root node represents the entire effective alphabet Σ ′ and thus its bit vector
has length n. A node v has two children iff a < b. We apply the described structure
recursively for the left child to represent the interval [a, ⌊a+b

2 ⌋] (the left half ) and the
right child to represent [⌊a+b

2 ⌋ + 1, b] (the right half ). Following that, the tree’s leaves
are those nodes that represent an interval of size one, i.e., precisely one symbol from
the input alphabet (a = b). Since the bit vector of a leaf contains only zero-bits, we
need not store level ⌈log σ⌉ + 1 of the wavelet tree, because it would consist of leaves
only. Figure 1 shows an example of a wavelet tree.

The size of any node in the wavelet tree, i.e., the length of its bit vector label, can
be precomputed using the C array:

Observation 1 Let [a, b] ⊆ Σ ′ be the alphabet interval represented by a wavelet tree
node v. The length of the bit vector Bv that labels v is |Bv| = C[b + 1] − C[a].
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1 0 1 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0

0 1 1 1 1 0 1

1 0 0 0
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1 0 1 0 0 0 1 1 0 0 0
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0 1 1 1 1 1 0 0 0 1 0
0 1 2 3 0 2 1 3

Figure 2: Comparison of the node ordering in the wavelet tree (left) and the wavelet
matrix (right). Due to the nature of the bit reversal permutation, the ordering on the
first two levels remains the same in the wavelet matrix. On the third level, we observe
how nodes 0 and 2 (left children of their respective parents) go to the left part of the
corresponding wavelet matrix bit vector and nodes 1 and 3 (right children of their
respective parents) go to the right.

For storing the wavelet tree, we consider the pointerless representation (also known
as the levelwise representation), where we concatenate the bit vectors on each level
and enhance them by constant-time rank/select support. This is is enough information
to be able to navigate in the tree [10]. The concatenation of bit vectors on any level
has a length of at most n bits, so that the wavelet tree’s bit vectors consume at most
n⌈log σ⌉ bits in total.

2.2 The Wavelet Matrix

The wavelet matrix [2] can be thought of as an alternative representation of the
pointerless wavelet tree. In the wavelet tree, in order to retrieve the bit vector BT

ℓ

for level ℓ, we concatenate the bit vectors of the single nodes on that level from left
to right. In the wavelet matrix, the nodes are concatenated in a different order to
obtain bit vector BM

ℓ : all left children of their respective parents are moved to the
left and all right children are moved to the right. Like in the pointerless wavelet
tree, we concatenate the bit vectors of all nodes on every level. Figure 2 shows an
example. The re-ordering of nodes corresponds to the bit-reversal permutation of the
node ranks on the respective level [4].

A practical consequence of the different ordering is that navigation in the wavelet
matrix becomes easier than in the pointerless wavelet tree. In the tree, we need to
keep track of the current node’s interval — its left and right boundary — within
the respective level’s bit vector while navigating. This can be done using two rank
queries on the respective bit vector when navigating from a node to either child. In
the matrix, the simpler structure makes it feasible to precompute the left boundary
for the right children on each level, all of which have been concatenated in the right
part of the level’s bit vector. This boundary is often referred to as value z in literature,
as it corresponds to the number of zero bits in the bit vector. We can store z for all
levels using negligible O(log σ log n) bits and use it to save one rank query on each
level while navigating.

One could precompute the same information for the wavelet tree. However, this
would require us to store the left boundary of every node, resulting in O(σ log n) bits
as there are O(σ) nodes. For this reason, the wavelet matrix can be considered more
relevant for practical applications where the alphabet is large.
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3 Wavelet Tree and Wavelet Matrix Construction

We continue the research of Fischer et al. [4] and are interested in how a construction
algorithm for the wavelet tree or matrix can be modified efficiently to construct the
other. We consider such a modification efficient if the asymptotic time and space
boundaries of the modified construction algorithm are not worsened. Fischer et al.
show that there is a data structure that can be used to efficiently transform any
construction algorithm for the wavelet tree to construct instead the wavelet matrix.
We propose a data structure for the inverse direction, transforming a wavelet matrix
construction algorithm to one for the wavelet tree, with the same asymptotic space
requirements.

Formally, let us consider the situation where, during the construction of the
wavelet tree, the i-th bit is set in bit vector BT

ℓ of level ℓ of (assuming, without
loss of generality, the pointerless representation). Fischer et al. [4] present a data
structure to efficiently compute a function f : (ℓ, i) 7→ (ℓ, j) so that j is the cor-
responding position for the bit to be set in bit vector BM

ℓ of the wavelet matrix.
That is, by modifying the wavelet tree constructor to set the bit at position f(ℓ, i)
instead of i on level ℓ, it instead constructs the wavelet matrix. Because f can be
computed in constant time, there is no asymptotic overhead. For input length n and
alphabet size σ, their data structure occupies n + σ + (σ + 2)⌈log n⌉ bits of space and
can be constructed in time O(n + σ) using o(n + σ) bits of memory, not worsening
the asymptotic construction time and space requirements for any known wavelet tree
constructor.

In the following, we first observe various properties of the wavelet tree that lead
to a similar result for f as that of [4]. Based on these observations, we develop a
novel data structure for the inverse f−1, which maps (ℓ, j) back to (ℓ, i) with the
same asymptotic time and space boundaries as for f .

3.1 Locating Nodes and Bit Offsets

As previously noted, the wavelet matrix can also be represented as a tree by re-
ordering the nodes of the wavelet tree on each level according to the bit-reversal
permutation. Even though there are no practical advantages of storing the wavelet
matrix as a tree, the notion will help us develop our data structures.

The simple nature of the re-ordering makes it easy to translate a node ID (the
node’s rank in a breadth-first traversal of the tree) between the two data structures.
Based on this, we employ the following strategy to find data structures for functions
f and f−1: given the level and position of the bit to be written, we attempt to find

(1) the ID of the node that the bit belongs to, and
(2) the position of the node’s first bit in its level’s bit vector.

Once this information is available, f and f−1 are easy to compute in constant time.



P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 131

a e l r t v w ⊤
c 0 1 2 3 4 5 6 7

occT (c) 1 4 1 1 2 1 1 0
C[c] 0 1 5 6 7 9 10 11 11

Figure 3: The histogram and the C array for T = wavelettree. We added the artifi-
cial symbol ⊤ so σ = 8 is a power of two. The new symbol never occurs in T and is
lexicographically larger than the other symbols.

Bottom level node sizes. Observation 1 shows the relation between the C array
and the sizes of the wavelet tree’s nodes. This relation is especially interesting re-
garding the virtual bottom-most level h = ⌈log σ⌉ of a full binary wavelet tree. We
call this level virtual, because all bits on it would be zero and there is no need to
actually store it. On this level, each node corresponds to a single symbol from the
effective alphabet. Let node vc on level h correspond to symbol c ∈ Σ ′. We have
|Bvc| = C[c + 1] − C[c] = occTeff(c), i.e., the size of vc matches the number of occur-
rences of c.

This property is only valid if the wavelet tree is a full binary tree: if it was not,
there would be leaves on level h−1 and not all nodes on level h would exist. Without
loss of generality, let us assume from now on that σ = 2h for some integral h > 0,
i.e., that the alphabet size is a power of two. Then, the wavelet tree is a full binary
tree. In case σ is not a power of two, we introduce artificial symbols that never occur
in the input and are lexicographically larger than all symbols of Σ ′. This way, the
empty nodes for these symbols are moved to the far right of the wavelet tree and can
be ignored in the following.

Locating in the wavelet tree. We consider the situation where a wavelet tree
constructor sets the i-th of bit vector BT

ℓ . Let v(ℓ, i) be the rank of the wavelet tree
node on level ℓ to which the i-th bit belongs. We represent v(ℓ, i) relative to the
number of the first node on level ℓ, i.e., v(ℓ, 0) = 0 and v(ℓ, n − 1) = 2ℓ − 1. This
representation requires ℓ bits, because there are precisely 2ℓ − 1 nodes on level ℓ.
Furthermore, let p(ℓ, v) be the position of the first bit in BT

ℓ that belongs to node v
and let δv(ℓ, i) := i − p(ℓ, v(ℓ, i)) be the distance of i from that position.

We take a closer look at v and p on the virtual level h and observe that

v(h, i) = min{x | C[x] > i} − 1.

This is because each node on this level corresponds to precisely one symbol from the
input alphabet and the C array encodes, for every c, the number of symbols in the
input that are lexicographically smaller than c. This corresponds to the accumulated
sizes of the node’s left siblings. An example of this relation can be seen comparing
Figure 3 and Figure 4b (in row ℓ = 3). The node that i belongs to on level h is left
of the first node whose accumulated size — its entry in the C array — exceeds i.
We can immediately conclude that the first bit that belongs to node v is located at
position

p(h, v) = C[v].

How do v and p on level h relate to those on the other levels ℓ < h that we are
actually interested in? To answer this, we make use of the fact that our wavelet tree
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is a full binary tree: the size of a node equals the sum of its children’s sizes, because
the children partition the alphabet interval of their parent. As a consequence, the
accumulated size of any node is retained in its right child, as can be seen in Figure 4b.
Since the C array encodes the accumulated sizes of the nodes on level h, it also
implicitly encodes the accumulated sizes of all nodes on levels ℓ < h. Following this
notion, we can conclude the following relations:

v(ℓ, i) =
⌊

min{x | C[x] > i} − 1
2h−ℓ

⌋

and

p(ℓ, v) = C[v · 2h−ℓ]. (1)

If the C array is stored in ascending order, the minimum query required to find v
can be answered in time O(log σ) using binary search. However, we seek a computation
in constant time. We construct a bit vector BC of length n and set BC [k] := 1 if
C[c] = k − 1 for some c and BC [k] := 0 otherwise and prepare it for constant-time
rank queries. This can be done in time O(n) and requires n + o(n) bits of additional
space. BC marks the node boundaries on level h of the wavelet tree, see Figure 4a for
an example. We can now compute

v(ℓ, i) =
⌊

rank1(BC , i) − 1
2h−ℓ

⌋
(2)

in constant time.
We now know that the i-th bit in BT

ℓ corresponds to the (δv)-th bit in the v-th node
on level ℓ in the wavelet tree. We can compute v, p and δv in constant time using the C
array and rank-enhanced bit vector BC , which together occupy σ⌈log n⌉+n(1+o(1))
bits of space. Asymptotically, this space boundary matches that of the data structure
presented by Fischer et al. [4].

Example 1. Figure 4, in combination with Figure 3, shows an example of the data
structure for T = wavelettree. Assume that we are interested in locating the node for
bit i = 9 on level ℓ = 2. With Equation 2, we get v(2, 9) =

⌊
rank1(BC ,9)−1

23−2

⌋
=

⌊
5
2

⌋
= 2.
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(a) The text re-ordering on each level and
the bit vector BC . The vertical lines mark
the boundaries of the wavelet tree’s nodes.
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(b) The accumulated sizes of each of the
wavelet tree’s nodes. Note that the rightmost
node on the bottom level corresponds to our
artificial symbol ⊤ from Figure 3.

Figure 4: Display of the wavelet tree’s text re-ordering on each level, including the
virtual level h = 3, the bit vector BC and the accumulated node sizes for our running
example text T = wavelettree.
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Figure 5: Display of the wavelet matrix’s text re-ordering on each level for running
example text T = wavelettree.

This means that the bit belongs to the third node on level 2 (because we start counting
at zero). Furthermore, with Equation 1, we get p(2, 2) = C[2 · 23−2] = C[4] = 7. This
means that the third node on level 2 starts at position 7. Finally, it is δv(2, 9) =
9 − p(2, 2) = 9 − 7 = 2, so bit 9 on level 2 ultimately corresponds to the third bit of
the third node on that level.

Locating in the wavelet matrix. The question is how a similar locating can be
done for the wavelet matrix. As previously mentioned, the bit vector BM

ℓ of the
wavelet matrix is the concatenation of the wavelet tree’s node bit vectors on level ℓ
in bit-reverse order.

We consider the situation where a wavelet matrix constructor sets the j-th bit of
bit vector BM

ℓ and are interested in the node to which this bit belongs. Analogously
to v, p and δv, we define u(ℓ, j), q(ℓ, u) and δu(ℓ, j) := j − q(ℓ, u(ℓ, i)) as the node
into which the written bit belongs, the position of the node’s first bit in BM

ℓ and the
distance of j from the node’s first bit, respectively.

Due to the re-ordering of the nodes, the correspondences between their accumu-
lated sizes and the C array, which we observed for the wavelet tree, are no longer
valid for the wavelet matrix. As a consequence, we need to find a different way to
compute u and q.

The following observation is useful to find u: in both the wavelet tree and the
wavelet matrix [2, Prop. 1], all occurrences of a symbol c ∈ Σ ′ belong to the same
node on any level. Therefore, in order to find the node to which any occurrence of c
belongs on virtual level h, it suffices to know to which node the first occurrence of
c belongs. This first occurrence of c on level h is always located at position C[c]. As
seen previously, once the node for level h is known, it is easy to narrow it down to any
level ℓ < h. Of course, we then have the node in the wavelet tree, but in the wavelet
matrix, the nodes are simply permuted in bit-reverse order. Let c be the symbol from
which we computed the bit that we are setting in BM

ℓ . If c is known, we can express

u(ℓ, j, c) = bitrevℓ(v(ℓ, C[c])). (3)

The consequences of having to know c are discussed later.
It remains to compute q. As stated above, the C array cannot be used directly to

compute the accumulated node sizes for the wavelet matrix, because nodes are per-
muted. However, the node sizes themselves remain the same and thus, with awareness
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of the bit-reversal ordering of nodes on every level, it is easy to precompute the ac-
cumulated node sizes for all nodes of the wavelet matrix using the C array in time
O(σ). Since we are dealing with a full binary tree of height h = log σ, the accumu-
lated wavelet matrix node sizes can be stored in an array C ′ of length 2h − 1 = σ − 1
(since σ is a power of two), occupying (σ − 1)⌈log n⌉ bits of space. Figure 5b shows
an example. We imagine C ′ to be a set of arrays C ′

ℓ for each level ℓ, so that the first
entry of C ′

ℓ contains the size of the first node on level ℓ. Then, q can be found as
follows:

q(ℓ, u) =




0 if u = 0.

C ′
ℓ[u − 1] if u > 0.

(4)

We then know that the j-th bit in BM
ℓ of the wavelet matrix corresponds to the

δu-th bit in the u-th node’s bit vector on level ℓ. We can compute u, q and δu in
constant time using the arrays C and C ′ and rank-enhanced bit vector BC , which, in
total, occupy (2σ − 1)⌈log n⌉ + n(1 + o(1)) bits of space.
Example 2. Figure 5, in combination with Figure 4 and Figure 3, shows an exam-
ple for the data structure for T = wavelettree. Assume that we are interested in
locating the node for bit j = 9 on level ℓ = 2 of the wavelet matrix. The sym-
bol for which the bit is written is c = r (see Figure 5a). With Equation 3, we get
u(2, 9, r) = bitrev3(v(2, C[r])) = bitrev3(v(2, 6)) = bitrev2(1) = 2. This means that
the bit belongs to the third node on level 2. Furthermore, with Equation 4, we get
q(2, 2) = C ′

2[2 − 1] = 8. This means that the third node on level 2 starts at position
8. Finally, it is δu(2, 9) = 9 − 8 = 1, so bit 9 on level 2 ultimately corresponds to the
second bit of the third node on that level.

3.2 Translating Between Wavelet Tree and Wavelet Matrix Construction
Using the locating data structures described above, we can express functions f and
f−1 as follows:

f(ℓ, i) = q(ℓ, bitrevℓ(v(ℓ, i))) + δv(ℓ, i),
f−1(ℓ, j, c) = p(ℓ, bitrevℓ(u(ℓ, j, c))) + δu(ℓ, j, c).

Both f and f−1 can be computed in constant time using the arrays C, C ′ and
rank-enhanced bit vector BC . These occupy σ⌈log n⌉ + (2σ − 1)⌈log n⌉ + n(1 + o(1))
bits of space can be constructed in time O(σ + n).

Limitations. We impose the restriction that for f−1, the symbol c, for which a
bit is being set in BM

ℓ , has to be known when setting the bit. Even though this bit
must ultimately have been computed from c, there are construction algorithms for
the wavelet tree that redistribute the bits of c before constructing the bit vectors
[1, 7, 9, 11]. Due to the existence of our function f alone, such techniques may as
well be used for the construction of the wavelet matrix. In this case, c is not known
when setting the bit in question and f−1 cannot be used.

More generally, in the wavelet tree, c is always implicitly given by the tree structure
itself and implicitly used by f by jumping to the virtual bottom level to the leaf that
would represent c via the C array. The wavelet matrix discards the tree structure and
the information is lost, so that we need to receive it from the constructor in order to
compute f−1.



P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 135

4 Conclusions

We solved an open theoretical problem concerning the construction of wavelet trees
and wavelet matrices. We described a data structure that can be used to extend a
construction algorithm for the wavelet matrix to construct instead the wavelet tree
with constant time overhead. This data structure can be constructed in time O(σ+n)
time and it requires O(σ log n+n) bits of memory, matching the asymptotic time and
space requirements of the data structure described by Fischer et al. [4] for the inverse
direction, transforming wavelet tree construction into wavelet matrix construction.

However, because the wavelet matrix discards the wavelet tree’s binary tree struc-
ture, we require some additional information from the constructor for our computa-
tions. This limitation makes our data structure unsuitable for the class of wavelet
matrix constructors that do not keep the entire binary representation of the input
symbols when computing the bit vectors. To that end, it is still open whether there
is a data structure for our translation function with the same (or lower) asymptotic
time and space requirements that does not require any information other than the
position of the written bit in the wavelet matrix.
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