Collaborative Report DC-97-03

Proceedings

of the Prague Stringology Club Workshop 97
Edited by Jan Holub

November 1997

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University

Karlovo nam. 13

121 35 Prague 2

Czech Republic

Program Committee
Jun-ichi Aoe, Jan Holub, Botivoj Melichar, Bruce W. Watson

Organizing Committee
Martin Bloch, Jan Holub

Sponsors

We thank Exprit, Fulsoft and Hewlett-Packard for their support of the Prague Stringol-
ogy Club Workshop "97.

1

Table of contents
Preface

An Efficient Trie Hashing Method Using a Compact Binary Trie by
Masami Shishibori, Makoto Okada, Toru Sumitomo and Jun-ichi Aoe

A New Family of String Pattern Matching Algorithms by Bruce W. Wat-
son, Richard E. Watson

6D Classification of Pattern Matching Problems by Borivoj Melichar, Jan
Holub

A Boyer-Moore (or Watson-Watson) Type Algorithm for Regular Tree
Pattern Matching by Bruce W. Watson

Simulation of NFA in Approximate String and Sequence Matching by
Jan Holub

SPARE Parts: A C++ Toolkit for String PAttern REcognition by Bruce
W. Watson

Algebra of Pattern Matching Automata by Viclav Sndsel, Tomds Koutny

111

1

12

24

33

39

47

61

Preface

This collaborative report contains the proceedings of the Prague Stringology Club
Workshop ’97 (PSCW’97), held at the Department of Computer Science and Engi-
neering of Czech Technical University in Prague on July 7, 1997. The workshop was
preceded by PSCW’96 which was the first action of the Prague Stringology Club.
The proceedings of PSCW’96 were published as a collaborative report DC-96-10
of Department of Computer Science and Engineering and are also available in the
postscript form at Web site with URL: http://cs.felk.cvut.cz/psc. While the
papers of PSCW’96 were invited papers, the papers of PSCW’97 were submitted as
a response to a call for papers. The papers in this proceedings are ordered according
to the sequence of their presentation.

The PSCW aims at strengthening the connection between stringology (computer
science on strings and sequences) and finite automata theory. The automata theory
has been developed and successfully used in the field of compiler construction and
can be very useful in the field of stringology too. The automata theory can facilitate
the understanding of existing algorithms and the developing of new algorithms.

Jan Holub, editor

An Efficient Trie Hashing Method Using
a Compact Binary Trie

Masami Shishibori, Makoto Okada, Toru Sumitomo and Jun-ichi Aoe

Department of Information Science & Intelligent Systems
Faculty of Engineering
Tokushima University
2-1 Minami-Josanjima-Cho
Tokushima-Shi 770

Japan

e-mail: {bori, aoce}@is.tokushima-u.ac.jp

Abstract. In many applications, information retrieval is a very important re-
search field. In several key strategies, the binary trie is famous as a fast access
method to be able to retrieve keys in order. However, if the binary trie struc-
ture is implemented, the greater the number of the registered keys, the larger
storage is required, as a result, the binary trie can not be stored into the main
memory. In order to solve this problem, the method to change the binary trie
into a compact bit stream have been proposed, however, searching and updat-
ing a key takes a lot of time in large key sets. This paper proposes the method
to improve the time efficiency of each process by introducing a new hierarchi-
cal structure. The theoretical and experimental results show that this method
provides faster access than the traditional method.

Key words: information retrieval, trie hashing, binary trie, data structures,
pre-order bit stream

1 Introducion

In many natural language processing and information retrieval systems, it is necessary
to be able to adopt a fast digital search, or trie search for looking at the input character
by character. In digital search methods, trie method [1], [2], [3], [4] is famous as
one of the fastest access methods, and trie searching is frequently used as a hash
table of trie hashing [5] indices in information retrieval systems and dictionaries in
natural language processing systems. Although hash and B-tree strategies are based
on comparisons between keys, a trie structure can make use of their representation
as a sequence of digits or alphabetic characters. A trie can search all keys made up
from prefixes in an input string, in only one time scanning, since a trie advances the
retrieval character by character, which makes up keys. From this reason, the trie is
called the Digital Search-tree (DS-tree). Especially, DS-tree whose nodes have only
two arcs labelled with 0 and 1 is called a Binary Digital Search-tree (BDS-tree) [5],

[6].

Proceedings of the Prague Stringology Club Workshop 97

In the case when the binary trie, that is BDS-tree, is implemented as the index of
information retrieval application, if the key sets to be stored are large, it is too big
to store into main memory. Therefore, it is very important to compress the binary
trie into a compact data structure. Then, Jonge et al. [5] proposed the method to
compress the binary trie into a compact bit stream, which is called the pre-order bit
stream, by traversing the trie in pre-order. However, the bigger the binary trie, the
longer the pre-order bit stream is, as a result, the time cost to retrieve keys located
toward the end of the bit stream is high.

This paper proposes a new method able to avoid the increase of the time-cost
even if the dynamic key sets become very big. The data structures compressed by
this method have two distinctive features: (1) they store no pointers and require one
bit per node in the worst case, and (2) they are divided into the small binary tries,
and their small tries are connected by pointers.

2 A Compact Data Structure for Binary Tries

In the BDS-tree, the binary sequence, which is obtained from the translation of the
characters into their binary code, is used as the value of the key, namely, the left arc
is labeled with the value ‘0" and the right arc with the value ‘1’. If each of leaves in
the BDS-tree points the record of only one key, the depth of the BDS-tree becomes
very deep. So, each leaf has the address of the bucket, where some corresponding
keys to the path are stored. We will use B_STZ FE to denote the number of keys and
their records that can be stored in one bucket. For example, let us suppose that the
following key set K is inserted into the BDS-tree.

K = {air, art, bag, bus, tea, try, zoo}

If the binary sequence, obtained from the translation of the internal code of each
character, where internal codes of a, b, ¢, z are 0, 1, c, 25 respectively, into binary
numbers of 5 bits, is used, the corresponding bit strings to be registered are below.

air — 0/ 8/ 17 — 00000 01000 10001
art — 0/ 17/ 19 — 00000 10001 10011
bag — 1/ 0/ 6 — 00001 00000 00110
bus — 1/ 20/ 18 — 00001 10100 10010
tea — 19/ 4/ 0 — 10011 00100 00000
try — 19/ 17/ 24 — 10011 10001 11000
zoo — 25/ 14/ 14 — 11001 01110 01110

It B.SIZE is 2, the corresponding BDS-tree for the key set K is shown in Figure 1.
In order to compress the BDS-tree, we applied the particular leaf which does not have
any addresses for the bucket. This leaf will be called dummy leaf. Using the dummy
leaf, the following advantages are derived. First, it satisfies the property of binary
trees that the number of leaves is one more than the number of internal nodes. This
property underlies the search algorithm using the compact data structure. Next, if
the search terminates in a dummy leaf, the search key is regarded as a key that does
not belong to the BDS-tree, and no disk access at all will be needed.

2

Figure 1: An Example of the BDS-tree.

When the BDS-tree is implemented, the larger the number of the registered keys,
the greater the number of the nodes in the tree is, and more storage space is required.
So, Jonge et al. [5] proposed the method to compress the BDS-tree into a very compact
bit stream. This bit stream is called pre-order bit stream. The pre-order bit stream
consists of 3 elements: treemap, lea fmap and B_.T'BL. The treemap represents
the state of the tree and can be obtained by a pre-order tree traversal, emitting
a ‘0’ for every internal node visited and a ‘1’ for every bucket visited. The lea fmap
represents the state (dummy or not) of each leaf and by traversing in pre-order the
corresponding bit is set to a ‘0’ if the leaf is dummy, otherwise the bit is set to a ‘1’.
The BT BL stores the addresses of each bucket. Figure 2 shows the pre-order bit
stream corresponding to the BDS-tree of Figure 1. Then, in order to understand
the relation between the BDS-tree and the pre-order bit stream easily, we indicate
above the treemap the corresponding internal node and leaf number (in the case of
the dummy leaf, the symbol is a “d”) within the round “()” and square “[]” brackets,
respectively.

The search using the pre-order bit stream proceeds bit by bit from the first bit
of treemap, so that the search is traversed the BDS-tree in pre-order. The search
algorithm using the pre-order bit stream is presented below, where it uses the following
variables and functions:
s_key: The bit string of the key to be searched.
keypos: A pointer to the current position in s_key.
treepos: A pointer to the current position in treemap.
lea fpos: A pointer to the current position in lea fmap.
bucketnum: The corresponding bucket number.

SKIP_COUNT(): Skips the left partial tree, and returns the number of the leaf
within the partial tree.

FIND_BUCKETY(): Returns the corresponding bucket number of s_key.

[An Algorithm to search in the BDS-tree]

Input: s_key;

Output: If s_key can be found, then the output is TRUE, otherwise FALSE;

Step(S-1): {Initialization}
keypos « 1, treepos «— 1, leafpos «— 1;

3

Proceedings of the Prague Stringology Club Workshop 97

Leaves
(1) (2) 3) 4 (5 [1] [2] [d] [d] [d] (6) [3] [4]
treemap: [0]0]0]0]0|1[1[1][1]1[0]1]1]

Internal
nodes

3 T e
leafmap: |1[1[0]0]0|1]1]

& Dummy leaves

B_TBL : address of bucket 1

1

2| address of bucket 2
3| address of bucket 3
4| address of bucket 4

Figure 2: An example of the pre-order bit stream.

Step(S-2): {Skipping the left subtree}
If the bit of s_key pointed to by keypos is a ‘17,
then lea fpos «— leafpos+SKIP_COUNT();

Step(S-3): {Advance to the right subtree}
keypos «— keypos+1; treepos «— treepos+1;

Step(S-4): {Loop invariant until reaching the leaf}
If the bit of treemap pointed to by treepos is a ‘0°, return to Step(S-2);

Step(S-5): {Verification of leafmap}
If the bit of lea fmap pointed to by leafpos is a ‘0’, FALSE is returned;

Step(S-6): {Verification of B.TBL}
bucketnum «— FIND_BUCKET();
If the bucket indicated by bucketnum contains the key, return TRUE, otherwise
return FALSE;

Regarding the above algorithm, since a left subtree in treemap is represented
following the 0 bit of its parent node, when advancing to the left subtree, the Step(S-
2) is not executed, however when advancing to the right subtree, the Step(S-2) to skip
the left subtree is added. This skipping process utilizes the binary tree’s property
that the number of leaves is one more than the number of internal nodes in any binary
subtree. Using this property, the function SKIP_COUNT() can search for the end
position of the left subtree and get the number of leaves in the left subtree. Namely,
this function advances treepos until the number of 1 bits is one more than the number
of 0 bits, and returns the number of 1 bits (leaves). Moreover, the value obtained by
counting the number of 1 bits in lea fmap from the first bit to the one pointed to by
lea fpos indicates which slot in B_T'BL contains the required bucket address.

For example, to retrieve key=“z00” (s_key=“11c¢") in Figure 2, the following steps
are performed:

An Efficient Trie Hashing Method Using a Compact Binary Trie

Step(S-1): keypos=treepos=leafpos=1; Since the first bit of s_key is a ‘1’, the
subtree whose root is node 2 is skipped by SKIP_.COUNT().

Step(S-2): leafpos=leafpos+SKIP_COUNT()=6;
Step(S-3): keypos=2; treepos=11;
Step(S-4): Since the 11-th bit of treemap is a ‘0’, return to Step(S-2);

Step(S-2¢4): Since the 2-th of s_key is a ‘1’, the subtree whose root is node 6 is
skipped; lea fpos=lea fpos+SKIP_COUNT()=T7; treepos=13;

Step(S-5): Since the 7-th bit of lea fmapis a ‘1, B_.TBL is verified;

Step(S-6): Since key “zoo” is stored in the bucket 4, TRUE is returned;

3 Improvement by Using Hierarchical Structures

The BDS-tree represented by the pre-order bit stream is a very compact binary trie,
however, the more keys are stored in the tree, the longer the bit strings (treemap and
lea fmap) are. As a result, the time-cost for each process is high. For example, as
for the retrieval, the worst case is when search process is done toward the rightmost
leaf in the BDS-tree as shown in Figure 3. In this case, if the rightmost leaf keeps
the address of the bucket of the searching key, all bits in treemap (leafmap also) of
the pre-order bit stream must be scanned. Similarly, in the case when an arbitrary
key is inserted in the bucket corresponding to the leftmost leaf, suppose the bucket is
divided and merge, all bits after the bit corresponding to the leftmost leaf in treemap
of the pre-order bit stream have to be shifted. In this paper, the method to solve the
problem stated above is proposed.

This method separates the BDS-tree into smaller BDS-trees of a certain depth.
This depth is called the separation depth, and these small trees are called separated
trees. These separated trees are numbered and connected by pointers. The BDS-tree
separated in this way is called a Hierarchical Binary Digital Search tree (HBDS-tree).
The HBDS-tree obtained based on the BDS-tree of Figure 4 -(a), with a separation
depth of 2, is shown in Figure 4 -(b). In this case when rightmost leaf is searched, if
we use the BDS-tree as shown in Figure 4 -(a), all internal nodes and leaves must be
scanned in pre-order traversal. On the other hand, in the case of the HBDS-tree as
shown in Figure 4 -(b), we can search the rightmost leaf by scanning all nodes and
leaves of the only separated tree 1.

The algorithm to retrieve a key in the HBDS-tree uses the pre-order bit stream.
The binary sequence H(k) of the key is divided into the following binary sequence:

(k) = Hi(k) Ma(k) ¢ Hi(k) ¢ Ha(k)

Supposing that the separation depth is denoted by L, the lengths of Hi(k) Ha.1(k) are L
bits and the length of Ha(k) is less than L bits. The HBDS-tree can be compressed into
a very compact data structure named the pre-order bit stream as well as the BDS-
tree. The pre-order bit stream is created and controlled for each of the separated
trees. The pre-order bit stream that corresponds to the :-th separated tree in the

5

Figure 3: Retrieval of the BDS-tree in the worst-case.

HBDS-tree consists of treemap;, leafmap; and B_T'BL;, but the leaf which becomes
the pointer to the next separated tree is regarded as a especial leaf and B T'BL;
contains the number of the next separated tree preceded by a minus sign in the
slot corresponding to the leaf. The HBDS-tree obtained based on the BDS-tree of
Figure 1, with a separated depth of 2, is shown in Figure 5, and the pre-order bit
stream for the HBDS-tree of Figure 5 is shown in Figure 6, where, as can be seen
above the treemap, the leaves which became the pointer to the separated tree are
marked by “()”. By using this improved method, each process can be sped up,
because unnecessary scanning of the pre-order bit stream for each separated tree can
be omitted.

The algorithm for retrieval of the HBDS-tree represented by the pre-order bit
stream is shown below, where it uses the following variables:
2. The current separated tree number.
s_key: The key to be searched.
keypos: A pointer to the current position in s_key.
treepos: A pointer to the current position in treemaps;.
lea fpos: A pointer to the current position in lea fmap;.
bucketnum: The corresponding bucket number.
Moreover, each of the functions performs the same process as the functions explained
in Section 2 toward the :-th separated tree, when : is initialized with 1.
[An Algorithm to search in the HBDS-tree]
Input: s_key;
Output: If s_key can be found, then the output is TRUE, otherwise FALSE;

Step(S’-1)~Step(S’-5): The same procedures as the Step(S-1)‘Step(S-5) are per-
formed, however their treemap, lea frmap are changed into treemap;, lea fmap;;

Step(S’-6): {Verification of bucketnum}

An Efficient Trie Hashing Method Using a Compact Binary Trie

(a) An exampleof the BDS-tree.

separated tree 1

/— Y

separated
tree 3

~— separated —
tree 2

(b) An example of the HBDS-tree.

Figure 4: Improvement of the BDS-tree by using hierarchical structures.

bucketnum «— FIND_BUCKET(7);
If bucketnum < 0, proceed to Step(S’-T), otherwise proceed to Step(S’-8);

Step(S’-7): {Obtaining the separated tree number}
i = —1 x bucketnum; Return to Step(S’-1);

Step(S’-8): {Verification of B.TBL}
If the bucket indicated by bucketnum contains the key, return TRUE, otherwise
return FALSE;

For example, in the case of retrieval the key = zoo (s_key = “11¢”) in the pre-
order bit stream of the HBDS-tree as shown in Figure 6, s_key can be retrieved in
the HBDS-tree by using the pre-order bit stream of the only separated tree 1, so that
the time-cost of retrieval becomes better than the case by using the BDS-tree’s one.

7

Proceedings of the Prague Stringology Club Workshop 97

o d
Y

4 0 ry| [*9°
Y bucket3 bucketd
0 1
! pointer

air| [bag
art bus
bucket]l bucket2

Figure 5: HBDS-tree based of the BDS-tree of Figure 1.

4 An Insertion Algorithm

The method for inserting the new key into the HBDS-tree is divided into the following
three cases as well as the BDS-tree.

1) the required bucket is partially filled.

2) the required bucket is a dummy bucket.

3) the required bucket is full.

In this chapter, the third case, when the required bucket is full, that is, the method
for dividing the full bucket into the new two buckets is explained. An explanation of
the other cases is omitted, because they are very simple.

When there is an overflow in the required bucket, in the BDS-tree, the following
processes are repeated until the overflow of the bucket does not happen. First, the
corresponding leaf to the full bucket is changed into a tree which consists of a node
and two dummy leaves. This tree is called a unit tree. Next, all the keys in the full
bucket and an insertion key are distributed between the corresponding two buckets
to dummy leaves of the unit tree. On the HBDS-tree, when the unit tree is made,
a new separated tree must be created every time the depth of each separated tree
exceeds the separation depth. As for the insertion process which uses the pre-order
bit stream, a bit line “011”7, which represents the unit tree in treemap, and a bit
line “00”, which represents the two dummy leaves of the unit tree in lea fmap, are
inserted into treemap and lea fmap respectively.

8

An Efficient Trie Hashing Method Using a Compact Binary Trie

(1) 2)<3>[d] (6) [3] [4]

treemap : [0]o[1[1]0]1]1]
(3) (4)<5>[d] [d]

treemap,: [0]0[1[1]1]

G (11 [2]

treemap_ :

leafmap :
leafmap:

Ieafmap3 :
B TBL,: 1 -2
2 | bucket address for 3
3 | bucket address for 4
B_TBL,: 1| -3
B_TBL 3. 1| bucketaddress for 1
2 | bucket address for 2

Figure 6: The pre-order bit stream for the HBDS-tree of Figure 5.

5 Evaluation

5.1 Theoretical Evaluation

In this section, the worst-case time complexities of each algorithm for the BDS-tree
and HBDS-tree are theoretically analyzed. And the space complexities of each pre-
order bit stream for the BDS-tree and HBDS-tree also are calculated. Let the tree
structure to be analyzed be the complete tree. The following parameters are used:
n: The depth of the complete tree;

m: The separation depth;

a: The number of layers in the HBDS-tree. It is obtained by [n/m], where [n/m]
indicates the minimum integer greater than or equal to n/m;

As for the time complexity, the worst-case time complexity for retrieval for the
BDS-tree is O(2"), because the whole of the complete tree must be scanned. However,
for the HBDS-tree it is O(a2™), since only « separate trees are scanned. Regarding
the insertion and deletion, the worst case is when each process is done toward the
leftmost bucket in the tree. In this case, suppose the bucket is divided and merged, the
BDS-tree has a time complexity O(2" —n), because all bits after the bit corresponding
to the bucket in the pre-order bit stream have to be shifted, however for the HBDS-
tree it is O(2™ — m), because the same operations are performed toward only one
separated tree. Generally, for n < 2" and m < 2™, the worst-case time complexity
for insertion and deletion in the BDS-tree is O(2") and for the HBDS-tree it is O(2™).

As for the space complexity, on the BDS-tree, the number of bits used for the
treemap is equal to the total number of nodes (internal nodes and leaves) of the
complete tree, that is, it is 2°t! — 1. And the leafmap needs 2" bits which is the
number of leaves in the complete tree. As for the sizes of the treemap and lea fmap

9

Proceedings of the Prague Stringology Club Workshop 97

for the HBDS-tree, they are calculated as shown below :
Number of bits required for treemap

= (number of all nodes of the separated tree) X (number of the separated trees within the complete tree)

m e 2ma _1
— Z 21c « Z Qm(k—l) — (2m+1 _ 1) —

k=0 k=1 277‘a 1 2 B 1 277‘a 1
= 20" - 1)+ 1} —— = (2T —)

{2()+;2ﬁ_1 ()+ S
=2)+ ———1

2m — 1
Number of bits required for lea fmap

= (number of leaves of the separated tree) x (number of the separated trees within the complete tree)

o oma _ |
— 97 ZQm(k—l) —omZ -

k=1 2m —1

- gma _ gma _ |
=2"-14+1)—=(2"* =1 _—

(o7 = T

_2n+2”—1 |
B 2m — 1

From the above results, if the BDS-tree is separated, the storage requirement for both
the treemap and the leafmap increases only (2n — 1)/(2m — 1) — 1 bits.

5.2 Experimental Evaluation

This method was written in about 2,000 lines of code in C, and implemented on a Sun
Microsystems Sparc Station 2 (28 MIPS).

Key sets Japanese nouns English words
Kinds of trees BDS-tree HBDS-tree BDS-tree HBDS-tree
Number of

non_dummy leaves 6,002 6,159

dummy leaves 3,649 8,411

Internal nodes 9,650 14,569

depth 82 70

separated tree 2,060 2,940
Time (Second)

Registration 870 146 1875 164
Time (Milli-Second)

Retrieval 8.68 0.48 11.26 0.56

Insertion 38.00 3.00 37.50 3.28
Storage (K-byte)

treemap 241 2.67 3.64 4.00

lea fmap 1.21 1.46 1.82 2.19

B.TBIL 12.00 16.12 12.32 18.20

Table 1: Experimental results.

In order to observe the effect of this method, we compare the cost time of each
process and storage requirement for the BDS-tree and the HBDS-tree. 50,000 nouns
in Japanese and 50,000 English words with an average length of 6 and 9 bytes respec-
tively are used as the key sets. Table 1 shows the experimental results for the each

10

An Efficient Trie Hashing Method Using a Compact Binary Trie

of key sets, where the separation depth is 5 and B_.STZFE is 16. Retrieval time is
the average time required for a key when all registered keys are searched and deleted,
respectively. Insertion time is the average time required for a key when 1000 unregis-
tered keys are added to the key set. Storage in Table 1 shows the memory required
for the registration of the each key set.

From the experimental results, the retrieval in the HBDS-tree is 1820 times
faster than in the BDS-tree, the insertion is 11°13 times faster. Thus, it can be
concluded that the time each of the processes requires is significantly less when us-
ing this method. As for the storage space required by the HBDS-tree, the sizes of
treemap, leafmap and BT BL are 1.11, 1.21 and 1.34 times the size of the ones
used by the BDS-tree. However, by nature, the pre-order bit stream is very compact
in size, thus their sizes are good enough for practical applications. Moreover, for
the BDS-tree and the HBDS-tree, both represented by the pre-order bit stream, the
storage requirement to register one key is of 2.50 and 3.24 bits, respectively. Thus,
these methods can be operated with more compact storage than the B-tree, BT-tree,
etc.

6 Conclusions

The Binary trie represented by the pre-order bit stream can search a key in order,
however, the time-cost of each process becomes high for large key sets. So, the method
for solving the above problem by separating the tree structure has been presented in
this paper. The time and space efficiency of the proposed method is theoretically
discussed, and the validity of this method has been supported by empirical observa-
tions. As future improvements, an efficient method to improve the space efficiency of

the bucket should be designed.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, “Data Structures and Algorithms”,
Reading, Mass.: Addison-Wesley, pp. 163-169, 1983.

(2] J. Aoe, “An Efficient Digital Search Algorithm by Using a Double-Array Struc-
ture”, IEEFE Trans. Software. Eng., Vol. 15, No. 9, pp. 1,066-1,077, 1989.

(3] J. Aoe, “Computer Algorithms-Key Search Strategies”, IEEE Comput. Society
Press, 1991.

[4] G.H. Gonnet, “Handbook of Algorithms and Data Structures”, Addison-Wesley,
Reading Mass. Ch. 3 (Searching Algorithms), pp. 25-147, 1984.

[5] W. D. Jonge, A.S. Tanenbaum and R.P. Reit, “Two Access Methods Using Com-
pact Binary Trees”, IEEE Trans. Software. Eng., Vol. 13, No. 7, pp. 799-809,
1987.

[6] M. Shishibori, S. Kiyohara and J. Aoe, “Improvement of Binary Digital Search
(BDS)-Trees Using Hierarchical Structures”, in Japanese, Trans. IEICE,
Vol. J79-D-1, No. 2, pp. 79-87, 1996.

11

A New Family of String Pattern Matching
Algorithms

Bruce W. Watson, Richard E. Watson

RIBBIT SOFTWARE SYSTEMS INC.
(IST TECHNOLOGIES RESEARCH GROUP)
Box 24040, 297 Bernard Ave.
Kelowna, B.C., V1Y 9P9, Canada

e-mail: {watson, rwatson}@RibbitSoft.com

Abstract. FEven though the field of pattern matching has been well studied,
there are still many interesting algorithms to be discovered. In this paper, we
present a new family of single keyword pattern matching algorithms. We begin
by deriving a common ancestor algorithm, which naively solves the problem.
Through a series of correctness preserving predicate strengthenings, and imple-
mentation choices, we derive efficient variants of this algorithm. This paper
also presents one of the first algorithms which could be used to do a minimal
number of match attempts within the input string (by maintaining as much
information as possible from each match attempt).

Key words: single keyword pattern matching, shift distances, match attempts,
reusing match information, predicate strengthening and weakening.

1 Introduction and related work

In this paper, we present a new family of algorithms solving the single keyword
string pattern matching problem. This particular pattern matching problem can be
described as follows: given an input string S and a keyword p, find all occurrences of p
as a continuous substring of S. The field of string pattern matching is generally well-
studied, however, it continues to yield new and exciting algorithms, as was seen in
Watson’s Ph.D. dissertation [Wats95], the recent book by Crochemore and Rytter [2],
the more classic paper by Hume and Sunday [7] and book by Gonnet and Baeza-Yates
[4]. In the dissertation [Wats95], a taxonomy of existing algorithms was presented,
along with a number of new algorithms. Any given algorithm may have more than one
possible derivation, leading to different classifications of the algorithm in a taxonomy.
Many of the new derivations can prove to be more than just an educational curiosity,
possibly leading to interesting new families of algorithms. This paper presents one
such family — with some new algorithms and also some alternative derivations of
existing ones. While a few of the derivation steps are shared with the presentation

!This is precisely what happened with the Boyer-Moore type algorithms as presented in the
dissertation [Wats95].

12

A New Family of String Pattern Matching Algorithms

in [Wats95], this paper takes a substantially different approach overall and arrives at
some completely new algorithms.

The algorithms presented in this paper can be extended to handle some more
complex pattern matching problems, including multiple keyword pattern matching,
regular pattern matching and multi-dimensional pattern matching.

Our derivation begins with a description of the problem, followed by a naive
first algorithm. We then make incremental (correctness preserving) improvements to
these algorithms, eventually yielding efficient variants. Throughout the paper, we
first precede each definition with some intuitive background. Before presenting the
derivation, we give the mathematical preliminaries necessary to read this paper.

2 Mathematical preliminaries

While most of the mathematical notation and definitions used in this paper are is
described in detail in [5], here we present some more specific notations. Indexing
within strings begins at 0, as in the C and C++ programming languages. We use
ranges of integers throughout the paper which are defined by (for integers i and j):

1)) =kl <k <j
(] =kli<k<y
[i,] = [i,4) U (i,]
(i,5) = [i,5) N (i,]

In addition, we define a permutation of a set of integers to be a bijective mapping of
those integers onto themselves.

3 The problem and a first algorithm

Before giving the problem specification (in the form of a postcondition to the algo-
rithms), we define a predicate which will make the postcondition and algorithms easier
to read. Keyword p (with the restriction that p # ¢, where € is the empty string) is
said to match at position j in input string S if p = S;..;4|p/—1; this is restated in the
following predicate:

Definition 3.1 (Predicate Matches): We define predicate Matches as
Matches(S,p,j) =p = Sj.jtipl-1
O

The pattern matching problem requires us to compute the set of all matches of key-
word p in input string S. We register the matches as the set O of all indices j (in 5)
such that Matches(S,p,) holds.

13

Proceedings of the Prague Stringology Club Workshop 97

Definition 3.2 (Single keyword pattern matching problem): Given a com-
mon alphabet V', input string S, and pattern keyword p, the problem is defined using
postcondition PM:

O ={jljel0,|S]) A Matches(S,p,;) }
Note that this postcondition implicitly depends upon S and p. O

We can now present a nondeterministic algorithm which keeps track of the set of
possible indices (in S) at which a match might still be found (indices at which we
have not yet checked for a match). This set is known as the live zone. Those indices
not in the live zone are said to be in the dead zone. This give us our first algorithm
(presented in the guarded command language of Dijkstra [3, 1]).

Algorithm 3.3:

live, dead := [0, |S]), @;
0:=0;
{ invariant: live U dead = [0,|S]) A live N dead = @
NO={j]|j € dead N Matches(S,p,j)} }
do live # 0 —
let 7 : 7 € live;
live, dead := live \ {7}, dead U {7 };
if Matches(S,p,j) = O:=0U{j}
| —Matches(S,p,j) — skip
fi
od{ postcondition: PM }

O

The invariant specifies that live and dead are disjoint and account for all indices in S;
additionally, any match at an element of dead has already been registered. Thanks to
this relationship between live and dead, we could have written the repetition condition
live # @ as dead # [0,]S]), and the j selection condition j € live as j & dead. 1t
should be easy to see that the invariant and the termination condition of the repetition
implies the postcondition — yielding a correct algorithm. Note that this algorithm
is highly over-specified by keeping both variables live and dead to represent the live
and dead zones, respectively. For efficiency, only one of these sets would normally be
kept.

Some of the rightmost positions in S cannot possibly accommodate matches
— no match can be found at any point j € [|S]| — [p| + 1,|S]) since |5;..|sj-1] <
|S|s1=|p|+1-13]-1] < |p| (the match attempt begins too close to the end of S for p to
fit). For this reason, we safely change the initializations of live and dead to

live, dead := [0, |S| = [p]. [1S] = [p| + 1,15])

In the next section, give a deterministic (more realistically implemented) version
of the last algorithm.

14

A New Family of String Pattern Matching Algorithms

4 A more deterministic algorithm

In the last algorithm, our comparison of p with S;..;4,-1 is embedded within the
evaluation of predicate Matches. In this section, we make this comparison explicit.
We begin by noting that p = S;..;1p—1 is equivalent to comparing the individual
symbols pi of p with the corresponding symbols S;x of S (for k € [0, |p|)). In fact,
we can consider the symbols in any order whatsoever. To determine the order in
which they will be considered, we introduce match orders:

Definition 4.1 (Match order): We define a match order mo as a permutation on
[0, [p])- O

Using mo, we can restate our match predicate.
Property 4.2 (Predicate Matches): Predicate Matches is restated as
Matches(S’,p,j) = (V 11t € [Oa |p|> P Pmo(s) = Sj+mo(z')>
O

This rendition of the predicate will be evaluated by a repetition which uses a new
integer variable ¢ to step from 0 to |p| — 1, comparing pn.(;) to the corresponding
symbol of S. As 7 increases, the repetition has the following invariant:

(V k2 k €[0,4) : Protk) = Sitmor))

and terminates as early as possible.
In the following algorithm, we use the match order mo, the new repetition and
our previous optimization to the initializations of dead and live.

Algorithm 4.3:

lve, dead := [0,15] [, [15] — Ip| + 1,151}
0 := 0;
{ invariant: live U dead = [0,|S]) A live N dead = @
NO={j|j€ dead N Matches(S,p,j)} }
do live # () —
let 7 : 5 € live;
live, dead := live \ {7}, dead U {j};
1= 0;
{ invariant: (V k: &k €[0,7) : Pruok) = Sjpmo(r)) }
do i < |p| cand py.o(y = Sitmos) —
=1+ 1
od;
{ postcondition: (V &k : k € [0,7) : pro(r)y = Sitmo(k))
A (2 < |p| = Proti) # Sjtmo(s)) }
ifi =p| — 0:=0U{j}
[i<|p| — skip
fi
od{ postcondition: PM }

15

Proceedings of the Prague Stringology Club Workshop 97

The operator P cand () appears in the guard of the inner loop of the above algo-
rithm. This operator is similar to conjunction P A () except that if the first conjunct
evaluates to false then the second conjunct is not even evaluated. This proves to be
a useful property in cases such as the loop guard since, if the first conjunct (¢ < [p])
is false (hence ¢ >= |p|, and indeed ¢ = |p|), then the term mo(i) appearing in the
second conjunct is not even defined. Note that the implication within the second
conjunct of the loop postcondition is derived from the loop guard, forcing the impli-
cation operator to be conditional as well (that is, if ¢ < |p| is determined to be false,
then pn, ;) # Sj+mo(i) 18 DOt even evaluated).

As we will see in the next section, the particular choice for mo can make a dif-
ference in the performance of the algorithm. Some possible match orders include
‘forward’ (mo is the identity permutation) and ‘reverse’ (mo(z) = |p| —7 —1). The
permutation chosen could even be devised according to some theoretical expecta-
tions or statistical analysis for a particular application. For instance, if p contained
a subsequence of characters which are known to appear very rarely within the type
of input string, then the permutation would be chosen in order to check for a match
within that subsequence first (since this may result in discovering a mismatch sooner).
This approach is standard fare, and is used to find fast variants of the Boyer-Moore
algorithms (as described in [7]).

Yet another possibility which could prove interesting is that mo is chosen on-the-
fly, that is, mo(z) could be allowed to depend upon mo(i — 1), mo(z —2), ..., mo(0)
and even upon other factors such as how much of the input string we have already
processed. Such an choice of permutation would be highly specialized to a particular
instance of this problem and we do not explore it any further in this paper. In the
next section, we outline some precomputation on p which speeds up the algorithm
tremendously but also depends upon the choice of mo, meaning that if we devised the
permutation on-the-fly, we would be forced to perform the precomputation for each
of the possible unique permutations that our algorithm could produce (a maximum

of [p[!).

5 Reusing match information

On each iteration of the outer repetition, index j is chosen and eliminated from the
live zone in the statement:

live, dead := live \ {7}, dead U {j}

The performance of the algorithm can be improved if we remove more than just j in
some of the iterations. To do this, we can use some of the match information, such as
2, which indicates how far through mo the match attempt proceeded before finding
a mismatching symbol. The information most readily available is the postcondition
of the inner repetition:

(Vk:ke[0,0): Proth) = Sigmok)) N (2 < |P| = Pmoi) F Sitmoi))

We denote this postcondition by Result(S,p,,j). Since this postcondition holds, we
may be able to deduce that certain indices in S cannot possibly be the site of a match.

16

A New Family of String Pattern Matching Algorithms

It is such indices which we could also remove from the live zone. They are formally
characterized as:

{o |2 €[0,]5]) A (Result(S,p,i, j) = ~Matches(S, p,) }

Determining this set at pattern matching time is inefficient and not easily imple-
mented. We wish to derive a safe approximation of this set which can be precomputed,
tabulated and indexed (at pattern matching time) by ¢. In order to precompute it,
the approximation must be independent of 7 and S. We wish to find a strengthening
of the range predicate since this will allow us to still remove a safe set of elements
from set live, thanks to the property that, if P = @ (P is a strengthening of), and
Q) is a weakening of P), then

{z|Plx)} S {z]Qx)}

As a first step towards this approximation, we can normalize the ideal set (above), by
subtracting 7 from each element. The resulting characterization will be more useful
for precomputation reasons:

{22 € [=3,18] = §) A (Result(S, p,i,5) = ~Matches(S,p,j + 1)) }

Note that this still depends upon j, however, it will make some of the derivation steps
shown shortly in Section 5.1 easier. Because those steps are rather detailed, they are
presented in isolation. Condensed, the derivation appears as:

(Result(S,p,1,7) = —~Matches(S,p,j + z))

&= { Section 5.1}
~((V k:ke[0,i) Amo(k) € [z,]p| +) : Do) = Pro(k)-z)
A (< [p| A mo(2) € [z, [p| +) = Pmo(i) 7 Pro(i)=2))

= { define the predicate Approzimation(p,i,z)}
Approzimation(p,i,x)

Note that we define the predicate Approzimation(p,i,x) which depends only on p
and ¢ and hence can be precomputed and tabulated. It should be mentioned that
this is one of several possible useful strengthenings which could be derived. We could
even have used the strongest predicate, false, instead of Approzimation(p,i,x). This
would yield the empty set, @, to be removed form live in addition to j (as in the
previous algorithm).

We can derive a smaller range predicate of = for which we have to check if
Approzimation(p,i,x) holds. Notice that choosing and x such that [z, |p| +) N
[0, |p]) = @ has two important consequences:

e The range of the quantification in first conjunct of Approzimation(p,i,z) is
empty (hence this conjunct is true, by the definition of universal quantification
with an empty range).

e The range condition of the second conjunct (the ‘implicator’) is false — hence
the whole of the second conjunct is true since false = P for all predicates P.

17

Proceedings of the Prague Stringology Club Workshop 97

With this choice of z, we see that predicate Approzimation(p,i,x) always evaluates
to false, in which case we need not even consider values of x such that [z, |p| 4+ z) N
[0, |p]) = @. This simplification can be seen in the following algorithm where we have
solved the above range equation for z, yielding the restriction that « € [1—|p|, |p|—1).
Intuitively we know that there must be such a range restriction since we can not
possibly know from a current match attempt whether or not we will find a match of
p in S more than |p| symbols away.

Finally we have the following algorithm (in which we have added the additional
update of live and dead below the inner repetition). Note that we introduce the set
nogood to accumulate the indices for which Approzimation(p,i,x) holds. Also note
that we renormalize the set nogood by adding j to each of its members and ensuring
that it is within the valid range of indices, [0,]S5]).

Algorithm 5.1:

lve, dead := [0,15] — o]}, [1S] — Ip| + 1,151}
0:=0;
{ invariant: live U dead = [0,|S]|) A live N dead = @
ANO ={l]|1l¢€ dead N Matches(S,p,1)} }

do live # 0 —

let j : j € live;

live, dead := live \ {7}, dead U {7 };

1= 0;

{ invariant: (V &k : &k € [0,7) : Pror) = Sjgmo(r)) }

do i < |p| cand puoi) = Sipmo(i) —

=1+ 1

od;

{ postcondition: Result(S,p,7,7) }

ifi=|p| - 0:=0U{;}

[i < |p| — skip

fi;

nogood := ({x |z € [1 — |p|,|p| — 1) A Approzimation(p,i,z)} + j)

N[0,)

live := live \ nogood;

dead := dead U nogood
od{ postcondition: PM }

5.1 Range predicate strengthening

Here, we present the derivation of a strengthening of the range predicate
Result(S,p,i,j) = —Matches(S,p,j +)

Being more comfortable with weakening steps, we begin with the negation of part of
the above range predicate, and proceed by weakening:

18

A New Family of String Pattern Matching Algorithms

—(Result(S,p,i,7) = —Matches(S,p,j + z))

{ definition of =}
=(=Result(S,p,t,5) V ~Matches(S,p,j + x))

{De Morgan }

Result(S,p,i,7) A Matches(S,p,j + x))

{ definition of Result and Matches }

(Vk:k€[0,1): Pror) = Siwmok) A (1 < [Pl = Prmoi) # Sitmo(i))
(v k:ke [0 |P|) Pmo(k) = Smo()+J+x)
{ change range predicate in second quantification and definition of mo }
(Vk:kE[O ")‘pmo()ZSj_}_mo())/\(Z<|p|$pmoZ #Sﬁ_moz)
A (V k mo() [0 |p|) Pmo(k) = Smo()+J+1‘)
= { change dummy (mo(k") = mo(k) 4 z), restrict range }
(Vk:k€[0,2) : protr) = Sjtmo() A (2 <Pl = Prmo(i) # Sitmo(i))
(V k' mo(k’) — T € [0 |p|) Pmo(k)—z = Smo(k’)+])

= { simplify range predicate of second quantification }
(V k:ke [Oal> P Pmo(k) = Sj-}-mo(k)) A (L < |p| = Pmo(i) 7é S]-l—mo (%))
ANV E - mo(K') € [z, [pl + %) & Proky— = Smo(k)+i)

= { one-point rule: second conjunct and second quantification }
(V k:ke [O,i) D Pmo(k) = Sj+mo(k))
A ((Z < |p| A mo(z) € [$, |p| + I)) = Pmo(s) 7é me(i)—x)
A (VK mo(k') € [z, [p| +) : Pro(r)—c = Smo(kr)+)

= { combine two quantifications and remove dependency on §

and transitivity of =}
(Vk:kel[0,0) A mo(k) € [z,[p| +) : Prmo(k) = Prmo(k)—z)
A (i < [pl A mo(i) € [, pl +) = Prmo(s) 7 Prmo(i)—)

6 Choosing j from the live zone

In this section, we discuss strategies for choosing the index j (from the live zone) at
which to make a match attempt. In the last algorithm, the way in which j is chosen
from set live is nondeterministic. This leads to the situation that live (and, of course,
dead) is fragmented, meaning that an implementation of the algorithm would have
to maintain a set of indices for live. If we can ensure that live is contiguous, then an
implementation would only need to keep track of the (one or two) boundary points
between live and dead. There are several ways to do this, and we discuss some of
them in the following subsections section. Each of these represents a particular policy
to be used in the selection of j.

6.1 Minimal element

We could use the policy of always taking the minimal element of live. In that case,
we can make some simplifications to the algorithm (which, in turn, improve the

19

Proceedings of the Prague Stringology Club Workshop 97

algorithm’s performance):

e We need only store the minimal element of live, instead of sets live and dead.
We use live to denote the minimal element.

e The dead zone update could be modified as follows: we will have considered all
of the positions to the left of 7 and so we can ignore the negative elements of
the update set:

{z |z €[l —|pl,0) A Approzimation(p,i,z) }
Indeed, we can just add the maximal element (which is still contiguously in the

update set and greater than j) of the update set to live for the new version of
our new update of live and dead.

Depending upon the choice of weakening, and the choice of match order, the above
policy yields variants of the classical Boyer-Moore algorithm (see [Wats95, 2, 7]):

Algorithm 6.1:

lgz;::O;

0:=0;

do live < || — [p| —
j = live;
li/&:zli/v\e%—l;
2= 0;

{ invariant: (V k: k € [0,2) : Pro(e) = Sitmor)) }
do ¢ < |p| cand pyo3) = Sipmo(i) =

=1+ 1
od;
{ postcondition: Result(S,p,7,7) }
ifi=|p| > 0:=0U{j}
[i< |p| — skip
fi;
nogood := (MAX z :z € [0,]p| — 1)

AN (Y h:h€0,z]: Approzimation(p,i,x)) : x);

five := live + noﬁod

od{ postcondition: PM }

6.2 Maximal element

We could always choose the maximal element of live. This would yield the dual of
the previous algorithm.

20

A New Family of String Pattern Matching Algorithms

6.3 Randomization

We could randomize the choice of j. Given the computational cost of most reasonable
quality pseudo-random number generators, it is not clear yet that this would yield an
interesting or efficient algorithm. It is conceivable that there exist instances of the
problem which could benefit from randomly selected match attempts.

6.4 Recursion

We could also devise a recursive version of the algorithm as a procedure. This pro-
cedure receives a contiguous range of live indices (live) — initially consisting of the
range [0, |S] — |pl].

If the set it receives is empty, the procedure immediately returns. If the set
is non-empty, 7 is chosen so that the resulting dead zone would appear reasonably
close to the middle of the current live zone?. This ensures that we discard as little
information as possible from the nogood index set. After the match attempt, the
procedure recursively invokes itself twice, with the two reduced live zones on either
side of the new dead zone. This yields the following procedure:

Algorithm 6.2:

proc mat(S, p, live, dead) —
{ live is contiguous }
if live = @ — skip
| live #0 —
live_low := (MIN k : k € live : k);
live_high := (MAX k : k € live : k);
7= |(live_low + live_high — |p|)/2];
1= 0;
{ invariant: (V k: &k € [0,7) : Pror) = Sjtmok))
do i < |p| cand ppo(iy = Sitmo) —
=1+ 1
od;
{ postcondition: Result(S,p,i,7) }
ifi =|p| = 0:=0U{j}
| < |p| — skip
fi;
new_dead := ({z | x € [l = |pl|, |p| = 1) A Approzimation(p,i,z)} + 7)
N[0, 1S));
dead := dead U new _dead,
mat (S, p, [live_low, (MIN k : k € new_dead : k)), dead);
mat(S,p, (MAX k: k € new_dead : k), live_high], dead)
fi

corp

a

?The algorithm given in this section makes a simple approximation by taking the middle of the
live zone it receives, and subtracting ||p|/2].

21

Proceedings of the Prague Stringology Club Workshop 97

This procedure is used in the algorithm:

Algorithm 6.3:

0:=0;
mat(S,p,[0,|S] = |pl],
{ postcondition: PM }

N

S| =1Ipl +1,150))

a

Naturally, for efficiency reasons, the set live can be represented by its minimal
and maximal elements (since it is contiguous).

7 Further work

The family of algorithms presented in this paper can easily be extended to multiple
pattern matching and to regular pattern matching (using regular expressions or regu-
lar grammars). In each of these cases, various strengthenings of the update predicate
could be explored and specialized methods for choosing the index of the next match
attempt determined.

Another branch in this family tree of algorithms could be derived by removing
the conjunct pro() = Sjymo(;) from the guard of the inner repetition (that is, do
not terminate the match attempt as soon as we encounter a mismatch). This would
allow us to accumulate more mismatch information and possibly provide a weaker
strengthening than Approzimation(p,i,z) (and hence a larger set nogood). It is not
yet clear that this would lead to an interesting family of algorithms.

Few of the algorithms presented here have been implemented in practice. Some
of the algorithms presented here can be manipulated to yield the well-known Boyer-
Moore variants, and we can therefore speculate that their running time is excellent,
based upon the results presented in [Wats95]. It would be interesting to see how the
new algorithms perform against the existing variants.

8 Conclusions

We have shown that there are still many interesting algorithms to be derived within
the field of single keyword pattern matching. The correctness preserving derivation
of am entirely new family of such algorithms demonstrates the use of formal methods
and the use of predicates, invariants, postconditions and preconditions. It is unlikely
that such a family of algorithms could have be devised without the use of formal
methods.

Historically, keyword pattern matching algorithms have restricted themselves to
processing the input string from left to right, thus discarding half of the useful infor-
mation which can be determined from previous match attempts. As a new starting
point for pattern matching algorithms, this paper proposes pattern matching in the
more general manner of making match attempts in a less restricting order within the
input string. With the advent of both hardware and software which enable near-
constant-time lookup of a random character in a file stream (using memory mapped

22

A New Family of String Pattern Matching Algorithms

files, as are available in most newer operating systems), such algorithms will prove
useful for typical single keyword pattern matching applications (ones which have a fi-
nite input string which can be randomly accessed).

The derivation also yielded a recursive algorithm which appears to be particu-
larly efficient. The algorithm has been implemented, and benchmarking results will
be presented in the final paper, comparing the algorithm to the other extensively

benchmarked algorithms in [7, Wats95].

9 Acknowledgements

We would like to thank Nanette Saes and Mervin Watson for proofreading this paper,
Ricardo Baeza-Yates for serving as a sounding board, and Ribbit Software Systems
Inc. for allowing us to pursue some of our pure research interests.

References

[1] COHEN, E. Programming in the 1990s, (Springer-Verlag, New York, NY, 1990).

[2] CROCHEMORE, M. and W. RYTTER. Text Algorithms, (Oxford University Press,
Oxford, England, 1994).

(3] DUKSTRA, E.W. A discipline of programming, (Prentice Hall, Englewood Cliffs,
NJ, 1976).

[4] GONNET, G.H. and R. BAEZA-YATES. Handbook of Algorithms and Data Struc-
tures (In Pascal and C), (Addison-Wesley, Reading, MA, 2nd edition, 1991).

[5] Gries, D. and F.B. SCHNEIDER. A Logical Approach to Discrete Math,
(Springer-Verlag, New York, NT, 1993).

[6] GRIES, D. The Science of Programming, (Springer-Verlag, New York, NY, 1981).

[7] HuME, S.C. and D. SUNDAY. “Fast string searching,” Software — Practice &
FExperience, 21(11) 1221-1248.

[8] WaTsoN, B.W. Tazonomies and Toolkits of Regular Language Algorithms, Ph.D
dissertation, Faculty of Mathematics and Computing Science, Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands, September 1995, ISBN 90-386-
0396-7.

23

6D Classification of Pattern Matching Problems!

Botivoj Melichar, Jan Holub

Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo nameésti 13
121 35 Prague 2
Czech Republic

e-mail: {melichar, holub}@cs.felk.cvut.cz

Abstract. We present our unified view to pattern matching problems and their
solutions. We classify pattern matching problems by using six criteria and
therefore we can locate them into six-dimensional space. We also show basic
model of nondeterministic finite automaton that can be used for constructing
models for all pattern matching problems.

Key words: string matching, sequence matching, classification, finite automata

1 Introduction

Pattern matching (string and sequence matching) appears as a very important com-
ponent of many applications, including text editing, word processing, data retrieval,
symbol manipulation, alignment in genetics, etc. This problem has been extensively
studied since beginning of seventies.

The exact string matching is based on the two historical papers by Knuth, Morris
and Pratt [KMP77] and by Boyer and Moore [BM77]. Matching of sequences started
by Chvatal, Klainer and Knuth [CKK72]. They designed an algorithm for the longest
common subsequence problem. Approximate string matching is based on well known
paper by Wagner and Fischer [WF74]. Multiple string matching was originated by
Aho and Corasick [ACT5].

Since this first algorithms, many different problems of pattern matching were
studied and many excellent ideas are included in existing text algorithms [CR94].

All one-dimensional pattern matching problems are sequential problems and there-
fore it is possible to solve them using finite automata. Below we discuss construction
of finite automata for many pattern matching problems. These automata are mostly
nondeterministic. There are three ways how these automata can be used:

1. To serve as a model of algorithms for solving of different problems.

2. To simulate the nondeterministic automaton in a deterministic way. Some of
known pattern matching algorithms use this approach.

1This work was supported by grant FRVS 0892/97.

24

6D Classification of Pattern Matching Problems

3. To construct an equivalent deterministic finite automaton. This approach may
lead to the high space complexity in some cases.

The use of finite automata for the modelling of pattern matching algorithms
means, that there is a formal method introduced to this part of computer science.
It is well known from other areas (e.g. language theory) that introduction of formal
approach has positive consequences. The main advantage is that it is possible to
describe all problems using an unified view. This leads to the possibility to transfer
know-how from another, well developed area, to compare different solutions, to find
limitations, etc.

One of the consequences of the introduction of finite automata formalism is:

The possibility of the construction of finite automata for all problems in question
shows, that there exist algorithms for all pattern matching problems having the linear
time complexity. The space complexity is different for different problems. Existing
upper bounds on space complexity of some problems are pessimistic.

Evaluation of some existing algorithms as simulators of nondeterministic finite
automata will lead to understanding how some classes of automata can be simulated.
This knowledge may serve for improvement of other algorithms and for the design of
new ones.

2 Pattern matching problems

2.1 Basic notions and notations

Some basic notions will be used in subsequent sections. This section collects defini-
tions of them. The notion pattern matching is used for string matching and sequence
matching.

“Don’t care” symbol is a special universal symbol @) that matches any other symbol
including itself.

Definition 1 (Basic pattern matching problems)
Given a text string T' = t1t5- - - t,, and a pattern P = pyps - - - pr. Then we may define:

1. String matching: verify if string P is a substring of text 7.
2. Sequence matching: verify if sequence P is a subsequence of text T

3. Subpattern matching: verify if a subpattern of P (substring or subsequence)
occurs in text 7.

4. Approximate pattern matching: verify if pattern P occurs in the text 7' so that
the distance D(P, X) < k for given k < m, where X = t;---1; is a part of
text T

5. Pattern matching with “don’t care” symbols: verify if pattern P containing
“don’t care” symbols occurs in text T'.

Definition 2 (Matching a sequence of patterns)
Given a text string 7' = t1t5 - - - t,, and a sequence of patterns (string and sequences)

25

Proceedings of the Prague Stringology Club Workshop 97

Py, Py, -+, P,. Matching of sequence of patterns Py, P, - -, P is a verification whether
an occurrence of pattern P; in text T' is followed by an occurrence of Piyq, 1 <11 < s.

Definitions 1 and 2 define pattern matching problems as a decision problems,
because the output is a Boolean value. A modified version of these problems consists
in searching for the first, the last, or all occurrences of pattern and moreover the result
may be the set of positions of the pattern in the text. Instead of just one pattern,
one can consider a finite or infinite set of patterns.

Definition 3 (Distance of patterns)
Three variants of distances between two patterns X and Y are defined as minimal
number of editing operations:

1. replace (Hamming distance, R-distance),
2. delete, insert and replace (Levenshtein distance, DI R-distance),

3. delete, insert, replace and transpose (generalized Levenshtein distance, DIR T-
distance),

needed to convert pattern X into pattern Y.

The Hamming distance is a metrics on the set of string of equal length. The
Levenshtein and the generalized Levenshtein distances are metrics on the set of strings
not necessarily of equal length.

2.2 Classification of pattern matching problems

One-dimensional pattern matching problems for a finite size alphabet can be classified
according to several criteria. We will use six criteria for classification leading to six-
dimensional space in which one point corresponds to particular pattern matching
problem.

Let us make a list of all dimensions including possible “values” in each dimension:

1. Nature of the pattern: string, sequence.
2. Integrity of the pattern: full pattern, subpattern.
3. Number of patterns: one, finite number, infinite number.

4. The way of matching: exact, approximate matching with Hamming distance (R-
matching), approximate matching with Levenshtein distance (DI R-matching),
approximate matching with generalized Levenshtein distance (DI R T-matching).

5. Importance of symbols in pattern: take care of all symbols, don’t care of some
symbols.

6. Number of instances of pattern: one, finite sequence.

The above classification is visualized in Figure 1. If we count the number of
possible pattern matching problems, we obtain N =2+ 2% 3 %4 %2 %2 = 192.

In order to make references to particular pattern matching problem easy, we will
use abbreviations for all problems. These abbreviations are summarized in Table 1.

26

6D Classification of Pattern Matching Problems

Subpattern
Infinite

Full pattern Finite

One
R-matching DIRT—matchingO
4 4 4 4 4
Exact DIR-matching

1 4 4
O seQuence String

Figure 1: Classification of pattern matching problems.

Dimension

T2 516
ST BN,
Qs D|S

~ M Qlw
QO D&~

Table 1: Abbreviations of pattern matching problems.

Using this method, we can, for example, refer to exact string matching of one string
as SFOECO problem.

Instead of single pattern matching problem we will use the notion of family of
pattern matching problems. In this case we will use symbol ‘?” instead of particular
letter. For example SFO?77 is the family of all problems concerning one full string
matching.

Each of pattern matching problem can have several instances. For example,
SFOECO problem can have the following instances:

1. verify whether given string occurs in text or not,
2. find the first occurrence of given string,
3. find the number of all occurrences of given string,

4. find all occurrences of given string and where they are.

27

Proceedings of the Prague Stringology Club Workshop 97

If we take into account all possible instances, the number of pattern matching prob-
lems is further growing.

2.3 Pattern matching algorithms

Many algorithms for pattern matching problems were designed using ad hoc approach.
But pattern matching problems are sequential problems and therefore it is possible
to solve them using finite automata. There is possible to use systematic approach
and to create a model of algorithm for each pattern matching problem. This model
is nondeterministic finite automaton (NFA) in all cases.

We can convert an NFA to a deterministic finite automaton (DFA) and run it
using the text as an input. If we suppose a finite size alphabet, then the running time
of DFA is O(n), where n is the length of text.

It is well known, that the NFA to DFA conversion requires at most O(2™) time,
where m is the number of states of the NFA. The resulting DFA may have at most
O(2™) states.

Latest investigation shows, that this bound does not take place in the area of
pattern matching problems [Me95], [Me96]. The bound of number of states of DFA is
much lower and therefore this approach may have practical applications. Instead of
conversion of NFA to DFA, we can simulate the NFA in a deterministic way. Some of
known pattern matching algorithms use this approach. The problem of this approach
is a high time complexity while the space complexity is low. In case of approximate
string matching, “Shift-Or” based algorithms [BG92], [WM92] use this approach as
it is shown in [Me95], [Me96].

3 Models of pattern matching algorithms

We will show, in this section, basic model of pattern matching algorithms. Moreover,
we will show how to construct some models for more complicated problems using
models of simple problems.

3.1 Exact string and sequence matching

In Fig. 1 the basic model of pattern matching algorithms is represented by the circle
that meets all the axes in the points which are the closest to the junction of the axes.
This model is the model for exact string matching (SFOECO problem). For pattern
P = pipapsps this model is shown in Fig. 2. The SFOECQO automaton has m + 1
states for the pattern of the length m. This NFA can be transformed to DFA which
has the same number of states as its nondeterministic version. The transformation
can be performed in time O(m).

If we add loops labeled by mismatching characters into states, from which there
leads at least one edge, in the model for string matching we obtain a corresponding
model for sequence matching. The model of algorithm for exact sequence matching
(QFOECO problem) for pattern P = pipapsps is shown in Fig. 3. Character
represents any character mismatching character p. The QFOFECO automaton has
m + 1 states for the pattern of length m.

28

6D Classification of Pattern Matching Problems

3.2

Figure 2: NFA for exact string matching (SFOECO automaton)

A P, P, [

P. ; 2 P. ; ;\ Ps

0 "V N\

Figure 3: NFA for exact sequence matching (QFOFECO automaton).

Substring and subsequence matching

The model of algorithm for exact substring matching (SSOFECO problem) for pattern
P = pipapsps 1s shown in Fig. 4. We can see that this automaton has been created
by connecting m SFOECO automata. The SSOECO automaton has (m+1)4+m+
(m—1)+---4+2= @ states and is called an initial e-treelis.

Figure 4: NFA for exact substring matching (SSOECO automaton).

The model of algorithm for exact subsequence matching (QSOFECO problem) is
similar as for exact substring matching. We get this model from SSOFECO model by

adding loops for mismatching characters and e-transitions into all states from which
just one transition leads. Each e-transition leads from state ¢; to the state ¢; such

that from state, which is just under state ¢;, a matching transition leads to state g;.
This automaton can be also constructed by connecting m QQ FOFECO automata. The
QSOFECO automaton has MTZ—HI states and is called e-treelis.

29

Proceedings of the Prague Stringology Club Workshop 97

3.3 Approximate string matching

We will discuss three variants of approximate string matching corresponding to three
definitions of distances between strings: Hamming distance, Levenshtein distance,
and generalized Levenshtein distance.

A

Figure 5: NFA for string R-matching (SFORCO automaton).

Hamming distance Let us note, that Hamming distance between strings = and y
is equal to the minimal number of editing operations replace which are necessary to
convert string x into string y. Therefore this type of string matching is called string
R-matching. The model of algorithm for string R-matching (S FORCO problem) was
presented in [Me95] and in Fig. 5 it is shown for string P = p1papsps and Hamming
distance k£ = 3.. This automaton has been created by connecting £k + 1 SFOECO
automata by edges that represent editing operation replace. The SFORCO automa-
ton has (m+1)+m+(m—-1)4+---+(m—~k+1)= (k—l—l)(m—l—l—%) states. This

automaton is called R — treelis.

Levenshtein distance Let us note, that Levenshtein distance between strings x
and y is equal to the minimal number of editing operations delete, insert and replace
which are necessary to convert string x into string y. Therefore this type of string
matching is called string DIR-matching. The model of algorithm for string DIR-
matching (SFODCO problem) was presented in [Me96], [Ho96] and in Fig. 6 it is
shown for string P = pipepsps. It has been created from SFORCO model by adding
edges representing editing operations insert and delete.

Generalized Levenshtein distance Let us note, that generalized Levenshtein
distance between strings x and y is equal to the minimal number of editing operations
delete, insert, replace and transpose which are necessary to convert string z into string
y. Therefore this type of string matching is called string DI R T-matching. The model
of algorithm for string DI R T-matching (SFOGCO problem) for string P = p1p2pspa

30

6D Classification of Pattern Matching Problems

Figure 6: NFA for string DI R-matching (SFODCO automaton).

is shown in Fig. 7. It has been constructed from SFODCQO model by adding states
for editing operation transpose and corresponding edges.

Conclusion

We have presented unified view to pattern matching. We have also shown the basic
model for pattern matching and several methods of constructing other models. These
models can be very useful in designing new methods or improving existing methods
for pattern matching. Since for each pattern matching problem there exists NFA
there exists algorithm running in linear time for each such problem.

References

[ACT5] Aho, A. V., Corasick, M. J.: Efficient String Matching: An Aid to Bibli-
ographic Search. CACM, Vol. 18, No. 6, pp. 333-340, 1975.

[BG92] Baeza-Yates, R., Gonnet, G. H.: A New Approach to Text Searching.
Communications of the ACM, October 1992, Vol. 35, No. 10, pp. 74-82.

[BM77] Boyer, R. S., Moore, J. S.: A Fast String Searching Algorithm. Commun.
ACM, Vol. 20, No. 10, October 1977, pp. 762-772.

[CKKT72] Chvatal, V., Klarner, D. A., Knuth, D. E.: Selected Combinatorial Re-
search Problems. STAN-C5-72-292, Stanford University, June 1972, 26.

31

Proceedings of the Prague Stringology Club Workshop 97

Figure 7: NFA for string DIR T-matching (SFOGCO automaton).

[CR94]

[Ho96]

[KMP77]

[Me95]

[Me96]

[WE74]

[WM92]

Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press,
New York 1994, p. 414.

Holub, J.: Reduced Nondeterministic Finite Automata for Approximate
String Matching. Proceedings of the Prague Stringology Club Work-
shop 96, Czech Technical University, August 1996, pp. 19-27.

Knuth, D. E., Morris, J. H., Pratt, V. R.: Fast Pattern Matching in
Strings, STAM J. Comput., Vol. 6, No. 2, June 1977, pp. 322-350.

Melichar, B.: Approximate String Matching by Finite Automata. Com-
puter Analysis of Images and Patterns. LNCS 970, Springer 1995, pp. 342—
349.

Melichar, B.: String Matching with & Differences by Finite Automata.
Proceedings of the 13** ICPR, Vol. 11, August 1996, pp. 256-260.

Wagner, R. A., Fisher, M. J.: The String-to-String Correction Problem.
Journal of ACM, January 1974, Vol. 21, No. 1, pp. 168-173.

Wu, S., Manber, U.: Fast Text Searching Allowing Errors. Communica-
tions of the ACM, October 1992, Vol. 35, No. 10, pp. 83-91.

32

A Boyer-Moore (or Watson-Watson) Type
Algorithm for Regular Tree Pattern Matching

Bruce W. Watson

RIBBIT SOFTWARE SYSTEMS INC.
(IST TECHNOLOGIES RESEARCH GROUP)
Box 24040, 297 Bernard Ave.
Kelowna, B.C., V1Y 9P9, Canada

e-mail: watson@RibbitSoft.com

Abstract. In this paper, I outline a new algorithm for regular tree pattern
matching. The Boyer-Moore family of string pattern matching algorithms are
considered to be among the most efficient. The Boyer-Moore idea of a shift dis-
tance was generalized by Commentz-Walter for multiple keywords, and general-
izations for regular expressions have also been found. The existence of a further
generalization to tree pattern matching was first mentioned in the statements
accompanying my dissertation, [Wats95].

Key words: tree pattern matching, tree parsing, code selection, Boyer-Moore
algorithms, shift distances.

1 Introduction

The most popular exact pattern matching algorithms' (for strings or trees) can be
classified into one of two families: the Knuth-Morris-Pratt (KMP) or Boyer-Moore
(BM) families.

Interest in Boyer-Moore type algorithms is driven by the fact that they are fre-
quently much faster (in practice) than their KMP counterparts. For a discussion
of this phenomenon, see [Wats95]. Since a KMP type algorithm for regular tree
pattern matching was presented in [1], the missing piece has been a BM type al-
gorithm for tree pattern matching. This algorithm is an extension (to trees) of
one of the algorithms presented at the Prague Workshop in 1996 [4]; it is also re-
lated to the algorithm presented at the European Symposium on Algorithms in
1996 [3]. For more background material, consult the links on my homepage at
http://www.RibbitSoft.com/research/watson/index.html

Instead of providing a set of formal definitions, we introduce most of the concepts
using examples.

! As opposed to approzimate pattern matching algorithms.

33

Proceedings of the Prague Stringology Club Workshop 97

2 The problem

For the regular tree pattern matching problem, we consider node labeled trees (the
labels are taken from a fixed alphabet). All nodes with a particular label have a fixed
arity (number of children). We will write all of our trees in a linear (prefix) form,
instead of drawing pictures; for example:

+(a,*(b,a))

Each of the nodes has an associated depth, with the depth of the root being 0.

A tree grammar is a finite set of productions, with nonterminals (written as upper-
case letters, as opposed to regular node labels which are written in lowercase letters or
as mathematical operators) on the left and tree templates on the right. Nonterminals
are permitted to appear at the leaves of the tree templates. For example, each of the
following lines is a production:

A — +(B,B)

B — a

B — x(C,a)
C — b
C — x(b,B)

The productions match at the input tree nodes in the intuitive way. In our sample
input tree (4(a,*(b,a))), we have the following matched patterns:

o The left a is matched by B — a.
o The right a is matched by B — a.

o The b node is matched by ' — b,

o The * node is matched by B — +(C, a) and by D — (b, B).
o The + node is matched by A — +(B, B).

In the next section, we will subdivide the pattern matching problem into a smaller
problem which can be solved more readily.

3 Subproblems

One way of reducing the pattern matching problem to a simpler one, is to encode
the trees as strings. We do this using so-called path strings. In this scheme, the tree
is represented as a set of strings (there is one string for each leaf in the tree). Each
string consists of alternating node labels and child numbers. For example, our input
tree +(a,*(b,a)) is represented by +1a, +2 * 1b, and +2 * 2a.

In a similar manner, we encode each of the right sides of the productions as a set
of path strings. The only difference is that we omit the nonterminals. For example,
production A — +(B, B) is represented by the two path strings +1B and +2B,
from which we drop the nonterminals to get +1 and +2. The example set of right
sides is encoded as +1, +2, a, *1, *2a, b, x1b, and *2. These path strings can then
be mapped back to their corresponding production right sides. These pattern path

34

A Boyer-Moore (or Watson-Watson) Type Algorithm for Regular Tree Pattern Matching

strings will be used in a reduced problem. Note that the pattern path strings will
always begin with a node label.

Given this encoding, we will only concern ourselves with finding matches of the
pattern path strings in the set of strings representing the input tree. The matching
tree productions can then be easily reconstructed — this is not considered further
here. In our example set of input path strings, we have the following pattern path
string matches:

e +1 and +2 match at the root.

e a matches at the left and the right a nodes.
e x1, 2, *x1b, and *2a match at the * node.
e b matches at the b node.

From this information, we can then piece together the tree matches. Note that, in
effect, we are making use of multiple keyword pattern matching with the pattern path
strings as the keywords. To solve this problem, we could use the Commentz-Walter
algorithm (among others) [Wats95, Section 4.4].

4 Solving the reduced problem

We begin by presenting a brute-force (naive) algorithm, solving our simplest subprob-
lem. In presenting the algorithm, we will assume (as in the string pattern matching
algorithms presented in my dissertation) the following:

e We use a forward trie 7 (constructed from the pattern path strings) for the
actual pattern matching. The symbol L is used to indicate when the trie takes
an undefined value.

e We assume that the start state for the trie is named ¢q.

e Thereis a special procedure RM (for ‘register matches’) which is used to register
matches at nodes in the tree. Precisely how it registers the matches is not
relevant.

The mainline of the algorithm is:

lev:= (MAX n:n € nodes : n.level);
do lev > 0 —
for n : n € nodes A n.level = lev —
AM (qo,n)
rof;
lev:=lev—1

od

This algorithm simply traverses the tree from the bottom up, using procedure AM
(for ‘attempt match’) to check for matches and RM to register the matches. The
procedure AM is given as:

35

Proceedings of the Prague Stringology Club Workshop 97

proc AM(g,n) is
RM(q,n);
if 7(¢,n.label) # L then
q := 7(q,n.label);
RM(q,n);
for ¢ € [1, n.arity] —
if 7(¢q,7) # L then
AM(7(q,1),n.child(z))
fi

rof

corp

This procedure uses the trie and traverses the input tree (starting at node n) top-down
to find matches. Note that it is recursive.

As with the other BM type algorithms, we wish to make shifts of more than one
level (in the tree) in the mainline program. The shift will be computed in a manner
similar to that in the Commentz-Walter family of algorithms — since we are using
multiple keyword pattern matching.

Since procedure AM tries a number of possible paths rooted at a node n, there
will be a number of potential contributing shifts. In order to make a safe shift, we
will have to use the smallest of these contributing shifts.

We will use a novel method of implementing the actual shift: if a shift of distance
k is required after a match attempt at node n, we will store n.level — k in a location
permit[n] (permat is an array which is indexed by n). If a match attempt is initiated
at some node n' (above n), then the match attempt will not continue (down in the
tree) past node n unless n’ < permit[n]. This can be done safely since all matches
that began lower than permit[n| cannot possibly lead to a match below n.

To implement this, we use the following mainline?:

for n : n € nodes A nasleaf —
permit[n] := n.level
rof;
lev:= (MAX n:n € nodes : n.level);
do lev > 0 —
for n: n € nodes A n.level = lev —
permit[n] := n.level — AM(qo,n,lev)
rof;
lev :=lev —1

od

Correspondingly, we make use of the shift function shift which gives the shift distance
in levels in the tree®.

2To abort a match attempt when it is futile, we also pass a third argument to AM — the level
at which the match attempt was started. The procedure now returns the integer shift (in terms of
levels).

3The distance in levels is the ceiling of half of the distance given by the Commentz-Walter shift
functions, since the shift distance given for the pattern path strings will be in terms of the path
strings and a path string may be up to twice as long as the level of the leaf at which it ends because

path strings contain the edge numbers interspersed with node labels.

36

A Boyer-Moore (or Watson-Watson) Type Algorithm for Regular Tree Pattern Matching

proc AM(q,n,beginlev) returns sh is

RM(q,n);

if 7(q, n.label) = L V beginlev > permit[n] then
sh := shift(q)

else
q:= 71(q,n.label);
RM(q,m),
if n.arity = 0 then

sh := shift(q)

else
for i € [1, n.arity] —
if 7(¢,i) = L then
sh := sh min shift(q)
else
sh := sh min AM(7(q,1),n.child(i), beginlev)
fi
rof
fi

corp

5 Conclusions

I have outlined a Watson-Watson type algorithm for regular tree pattern matching,
thereby backing-up the statement accompanying my dissertation [Wats95]. Unfortu-
nately, this algorithm has not yet been implemented and so nothing is known about
its running time performance in practice, though it could potentially be proportional
to the product of the input tree size and the size of the largest pattern tree. It there-
fore appears that the algorithm will not be as efficient as the KMP type algorithm
(solving the same problem) given by Aho and Ganapathi in [1], which runs in time
linear to the size of the input tree.

Like the other classes of BM type algorithms (for single keyword, multiple key-
word, or regular expression string pattern matching), there are likely to be other
(perhaps more efficient) variants of this algorithm. For example, it may be possi-
ble to devise such an algorithm which operates in a top-down manner, instead of in
a bottom-up manner. Alternatively, it may be possible to reduce the primary prob-
lem in a different way than what we have done here. These alternatives are left as an
exercise for the reader.

Acknowledgements:

I would like to thank Richard Watson (co-developer of the Watson-Watson regular ex-
pression pattern matching algorithm for strings) and Nanette Saes for their assistance
in preparing this note.

37

Proceedings of the Prague Stringology Club Workshop 97

References

[1] AHO, A.V. and M. GANAPATHI. Efficient tree pattern matching: an aid to code
generation, in: Proceedings of the 12th ACM Symposium on Principles of Pro-
gramming Languages, New Orleans, p. 334-340, 1985.

[2] WaTsoN, B.W. Tazonomies and Toolkits of Regular Language Algorithms, Ph.D
dissertation, Faculty of Computing Science, Eindhoven University of Technology,

The Netherlands, 1995, ISBN 90-386-0396-7.

[3] WaTsoN, B.W. A new regular grammar pattern matching algorithm, in: Diaz,
J. and M. Serna, eds., Proceedings of the European Symposium on Algorithms,
Barcelona, Spain, 1996.

[4] WATSON, B.W. A collection of new regular grammar pattern matching algo-
rithms, in: J. Holub, ed., Proceedings of the First Annual Prague Stringology
Club Workshop, Prague, Czech Republic, 1996.

38

Simulation of NFA in Approximate String and
Sequence Matching!

Jan Holub

Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo nameésti 13
121 35 Prague 2
Czech Republic

e-mail: holub@cs.felk.cvut.cz

Abstract. We present detailed description of simulation of nondeterministic
finite automata (NFA) for approximate string matching. This simulation uses
bit parallelism and used algorithm is called Shift-Or algorithm. Using knowledge
of simulation of NFA by Shift-Or algorithm we design modification of Shift-
Or algorithm for approximate string matching using generalized Levenshtein
distance and modification for exact and approximate sequence matching.

Key words: finite automata, approximate string matching, simulation of non-
deterministic finite automata, bitwise parallelism

1 Introduction

Approximate string matching is defined as a searching for all occurrences of pattern
P = pips...pp in text T' = t115...1, with at most k errors allowed. The number
of errors allowed in a found substring is determined by a distance which is defined
as a minimal number of edit operations needed to convert pattern P to the found
substring. In the Hamming distance, the allowed edit operation is replace (replacing
a character by another character). In the Levenshtein distance, the allowed edit
operations are replace, delete (deletion of a character from the pattern) and insert
(insertion of a character into the pattern). In the generalized Levenshtein distance,
there is, besides edit operations replace, delete and insert, a new operation transpose
(two adjacent characters are exchanged). This new edit operation represents situation
when one types two characters in reversed order.

Sequence matching is defined as a searching for all occurrences of pattern P =
P1P2 - .. Pm in text T = t4t5 .. .1, such that between symbols p; and p;41, 0 <1 < m,
in text T can be located any number of input symbols. For approximate sequence
matching we can also use Hamming, Levenshtein and generalized Levenshtein dis-
tance.

Nondeterministic finite automaton (NFA) is a quintuple (@, A, d, go, F'), where Q)
is a set of states, A is a set of input symbols, ¢ is a mapping @ x (AU {e}) > subsets
of), qo is an initial state and F'is a set of final states.

1This work was supported by grant FRVS 0892/97.

39

Proceedings of the Prague Stringology Club Workshop 97

2 Exact String Matching

NFA for exact string matching is shown in Figure 1, where m = 4. Shift-Or algorithm
[BG92], [WM92] for exact string matching uses one m-bit vector R in which [** bit,
1 <1< m corresponds to [*" state of NFA. If I'" state is active then I** bit is set to
0 and if I** state is not active then [** bit is set to 1.

A

S U = P,
0 (O————C
Figure 1: NFA for exact string matching.

In this NFA each nonfinal and noninitial state has transition to its right-hand
neighbour. Hence transitions of all active states can be performed at once by bitwise
operation shift. Now, it is necessary to select only those transitions that correspond
to the input symbol ¢. It is handled by bitwise operation or with mask vector corre-
sponding to the input symbol. These mask vectors are stored in mask table D. For
each symbol a of input alphabet A there is one vector in which 0 is located in the
same positions in which symbol « is located in the pattern P. The self-loop of the
initial state is implemented by operation shift which inserts 0 at the beginning of
the vector R. Before reading the first symbol of the input text the vector R is filled
up by 1. The formula for computing the vector when reading (7 + 1)** input symbol
is (1)2. Shift-Or algorithm reports “pattern found” when m®"
to 0.

bit of the vector is set

R = (shi(R)orDltis]) (1)

Each version of Shift-Or algorithm described in this paper needs space O([Z] *
min(|A|,m 4 1)) for mask table D, where |A| denotes size of input alphabet A and w
denotes length of computer word in bits. For exact string matching, space complexity
of vector R is O([”]) and time complexity is O([”] * n), where n is a length of the
input text. Moreover at the beginning of searching we can use faster trivial searching
for the first character of the pattern and when it is found then we start Shift-Or

algorithm.

3 Approximate String Matching

3.1 Hamming Distance

NFA for approximate string matching using Hamming distance was shown in [Me95].
Such NFA for m = 4 and number of errors allowed k£ = 3 is shown in Figure 2
where symbol p; represents any symbol of input alphabet A except symbol p;. Each

In Shift-Or algorithm, transitions from states in our figures are implemented by operation shl
(shift to the left) because of easier implementation in case that number of states of NFA is greater
than length of computer word and vector R has to be divided into two vectors.

40

Simulation of NFA in Approximate String and Sequence Matching

level of states represents number of errors allowed. Operation replace is represented
by transition that leads to the following state of the level of one more errors. This
transition has the same direction for all states so we can use also operation shift
applied to previous value of vector for one lower number of errors.

A

Figure 2: NFA for approximate string matching using Hamming distance.

Shift-Or algorithm uses for each level 5, 0 < j < k, of states one vector R’.
Vector R’ is computed using formula (1). Vectors R/, j > 0, allowing errors have
to be computed with respect to transitions representing edit operation replace. They
are computed using formula (2).

Ry, = (shl(R})orDlti]) and (shi(Ri™) (2)

This formula does not correspond exactly to the NFA because transition represent-
ing edit operation replace is performed for both unmatching and matching symbols.
Vector of states in previous level is only shifted but it should be also masked by nega-
tion of D[t;11] in order to select only the transitions for unmatching symbols. Since
we always search for minimal number of errors this simplification does not influence
result.

In this case vectors R’ need space O([2] *(k+ 1)) and the algorithm runs in time

O([=] *n* (k+1)).

3.2 Levenshtein Distance

NFA for approximate string matching using Levenshtein distance was shown in [Me96-
1] and reduced in [Ho96]. Such NFA for m = 4 and number of errors allowed k& = 3
is shown in Figure 3. There we can see edit operation insert which is represented
by vertical transition — unmatching character inserted into the pattern. In Shift-Or

41

Proceedings of the Prague Stringology Club Workshop 97

algorithm, this transition is implemented by adding previous value of the vector for
one lower number of errors. It is located at the end of formula (3) for computing
the vector. Like for edit operation replace, this transition is also made for both
unmatching and matching symbols but it also does not influence the result.

A

Figure 3: NFA for approximate string matching using Levenshtein distance.

Rl = (shl(R!)orD[tit1]) and (shl(RI™" and RI;})) and (RI™") (3)

In the NFA the edit operation delete is represented by e-transition — any symbol
deleted from the pattern. In Shift-Or algorithm, matching transitions are made for
all active states and then resulting active states are moved to their right neighbours
in the level for one higher number of errors. In formula (3) it is implemented by
SI(RILY).

In this case vectors B’ need space O([%1 *(k+1)) and the algorithm runs in time
O([%] ¥ nx (k+1)).

3.3 Generalized Levenshtein Distance

In approximate string matching using generalized Levenshtein distance we have new
edit operation transpose that represents the situation when two adjacent symbols
pipit1, 0 < ¢ < m, of the pattern P are placed in the found string in reversed
order p;y1p;. In case of this edit operation we read two characters therefore this edit
operation has to be represented by auxiliary state such that transition labeled by
pir1 leads to this state and transition labeled by p; leads from this state. NFA for
approximate string matching using generalized Levenshtein distance for m = 4 and
k = 3 is shown in Fig. 4.

42

Simulation of NFA in Approximate String and Sequence Matching

Figure 4: NFA for approximate string matching using generalized Levenshtein dis-
tance.

In Shift-Or algorithm we have to introduce new vectors S;, 0 < j < k, for auxiliary
states. For each state ¢;, whose right-hand neighbour ¢;4; is not final state, holds
that transition leading from this state to an auxiliary state ¢, is labeled by matching
symbol of state ¢;+; and transition leading from the auxiliary state ¢, is labeled by
matching symbol of state ¢;.

R, = (shl(R}) or Dlti41]) and (shl(RI™ and RI1})) and (RI™)
| and (sﬁZ(Sf_l orDlti+1])) (4)
Sl = shl(R})or(shr(D[tiy1)) (5)

Vectors R/, 0 < j < k, are computed by using formula (4) and vectors S7,
0 < j < k, are computed by using formula (5). At the beginning vectors S7 are filled
up by 1.

In this case vectors B/ and S7 both together need space O([Z] * (2k 4 1)) and
the algorithm runs in time O([2] * n * (2k + 1)).

w

4 Sequence Matching

In previous sections we have shown simulation of NFAs for exact and approximate
string matching. Since NFAs for exact and approximate sequence matching are very
similar to corresponding NFAs for string matching we can use Shift-Or algorithm for
sequence matching as well.

43

Proceedings of the Prague Stringology Club Workshop 97

A D, D,
P, ‘Q P, ‘Q P,
"g "V T

Figure 5: NFA for exact sequence matching.

NFA for sequence matching can be constructed from corresponding NFA for string
matching by adding self-loop for mismatching symbols into all noninitial and nonfinal
states. Such NFA for m = 4 is shown in Fig. 5. When constructing formula for
computing vector R we use fromula for exact string matching (1) to which we have to
add the part which represents self-loops for mismatching symbols. Selt-loop expresses
that a state is active even in the next step if mismatching symbol appears in the input.
We implement it by adding previous value of vector R which is masked by negation
of D[ti1]. The resulting formula is (6). This formula does not exactly correspond to
NFA because it gives self-loop also into final state. Therefore when any final state
reports “pattern found” the bit corresponding to this final state has to be set to 1.
It is faster than reseting the bit in formula (6) which is performed for each input
symbol ;.

Riy1 = (shl(R;)orDl[tiy1]) and (R; or shr(not D[t;11])) (6)

NFA for approximate sequence matching using Hamming distance is shown in
Fig. 6 and formula for computing vector R is (7), for Levenshtein distance it is shown
in Fig. 7 and formula is (9) and for generalized Levenshtein distance it is shown in
Fig. 8 and formulae are (10) and (11).

P, [
;;; P ;;2

Figure 6: NFA for approximate sequence matching using Hamming distance.

44

Simulation of NFA in Approximate String and Sequence Matching

R, = (hl(Rf) D[ti11]) and (shl(R] YYand (R; or shr(not D[tiy1])) (1)
R, = (shl(R!)orD[t;y1]) and (shl(RI™ and RI7})) and (RI™") (8)
| and (R; or shr(not D[t;11])) (9)
Rl = (shl(R])orD[Z+1])a:ma:l(3hl(RJ 1ande+11))and(R] 1)
| and (shl(SJ ! orD[t;y1])) and (R; or shr(not D[t;11])) (10)
Sl = shl(R?) or(shr(Dltir1)) and (S; or shr(shr(not D[tiy1]))) (11)

Figure 7: NFA for approximate sequence matching using Levenshtein distance.

Conclusions

We have presented detailed description of Shift-Or algorithm that runs in time O([2]*
n*k) and needs space O((%W *(2k+1)). Besides simulation of NFAs we can transform
them to corresponding deterministic finite automata (DFAs) that run in time O(n).
In case of exact string matching the number of states of DFA for pattern P is the
same as the number of states of NFA for pattern P so except for very short text it is
faster to use DFA.

In case of approximate string and sequence matching the number of states of DFA
unfortunately seems to be exponential but exact bounds have not been determined.
Some estimations were presented in [Me96-2] but they also seem to be pessimistic.
In case that we do not want to know the number of errors in the found string we can
reduce NFA, shorten vectors R’ and simplify formulae as shown in [Ho96].

45

Proceedings of the Prague Stringology Club Workshop 97

Figure 8: NFA for approximate sequence matching using generalized Levenshtein

distance.

When searching it is necessary to consider length of the input text, length of the
pattern and memory space available in order to choose optimal searching method —

DFA or simulation of NFA.

References

[BGY2]

[Ho96]

[Me95]

[Me96-1]

[Me96-2]

[WM92]

Baeza-Yates, R., Gonnet, G.H.: A New Approach to Text Searching. Com-
munications of the ACM, October 1992, Vol. 35, No. 10, pp. 74-82.

Holub, J.: Reduced Nondeterministic Finite Automata for Approximate
String Matching. Proceedings of the Prague Stringology Club Work-
shop 96, Czech Technical University, August 1996, pp. 19-27.

Melichar, B.: Approximate String Matching by Finite Automata. Com-
puter Analysis of Images and Patterns, LNCS 970, Springer-Verlag, Berlin
1995, pp. 342-349.

Melichar, B.: String Matching with k& Differences by Finite Automata.
Proceedings of the 13" ICPR, Vol. II, August 1996, pp. 256-260.

Melichar, B.: Space Complexity of Linear Time Approximate String
Matching. Proceedings of the Prague Stringology Club Workshop 96,
Czech Technical University, August 1996, pp. 28-36.

Wu, S., Manber, U.: Fast Text Searching Allowing Errors. Communications

of the ACM, October 1992, Vol. 35, No. 10, pp. 83-91.

46

SPARE Parts: A C++4 Toolkit for String PAttern
REcognition

Bruce W. Watson

RIBBIT SOFTWARE SYSTEMS INC.
(IST TECHNOLOGIES RESEARCH GROUP)
Box 24040, 297 Bernard Ave.
Kelowna, B.C., V1Y 9P9, Canada

e-mail: watson@RibbitSoft.com

Abstract. In this paper, we consider the design and implementation of SPARE
Parts, a C++ toolkit for pattern matching. SPARE Parts is the second gen-
eration string pattern matching toolkit from the Ribbit Software Systems Inc.
and the Eindhoven University of Technology. The toolkit contains implementa-
tions of the well-known Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick and
Commentz-Walter algorithms (and their variants).

The toolkit is publicly available (though it is not in the public domain and it
may not be redistributed) for noncommercial use. A totally re-implemented
toolkit, known as SPARE Parts |l, is available for commercial licensing from
Ribbit Software Systems Inc. In addition to the functionality of SPARE Parts,
it contains approximate pattern matchers, regular pattern matchers, multi-
dimensional pattern matchers, and a highly tuned set of foundation classes.

Key words: keyword pattern matching, C++ toolkits, C++ frameworks, gen-
eric algorithms, foundation classes, taxonomies.

1 Introduction and related work

In this paper, we outline the design, design rationale, and use of SPARE Parts, a C++
toolkit for string pattern matching. The algorithms implemented in the toolkit in-
clude:

e The Knuth-Morris-Pratt [KMP77] single keyword pattern matching algorithm.

e Several variants of the Boyer-Moore [BMT77] single keyword pattern matching
algorithms.

e Several variants of the Aho-Corasick [AC75] multiple keyword pattern matching
algorithms.

e Several variants of the Commentz-Walter [Com79a, Com79b]| multiple keyword
pattern matching algorithm.

47

Proceedings of the Prague Stringology Club Workshop 97

In addition to the original papers, all of these algorithms are extensively treated
(with full correctness arguments) in a taxonomy presented in [Wats95, Chapter 4].

SPARE Parts is the second generation string pattern matching toolkit from the Rib-
bit Software Systems Inc. and the Eindhoven University of Technology. The toolkit is
publicly available (though not in the public domain and it may not be redistributed)
for noncommercial use. A re-implemented (and greatly extended) toolkit, known as
SPARE Parts I, is available for commercial licensing from Ribbit Software Systems
Inc. In addition to the functionality of SPARE Parts, it contains approximate pat-
tern matchers, regular pattern matchers, multi-dimensional pattern matchers, and
a highly tuned set of foundation classes.

The first generation toolkit (called the Eindhoven Pattern Kit, written in C and
described in [Wats94, Appendix A]) is a procedural library based upon the original
taxonomy of pattern matching algorithms [WZ92]. Experience with the Eindhoven
Pattern Kit revealed a couple of deficiencies (leading to the design of SPARE Parts),
detailed as follows. The rudimentary and explicit memory management facilities in C
caused numerous errors in the code and made it difficult to perform pattern matching
over more than one string simultaneously (in separate threads of the program) without
completely duplicating the code. While the performance of the toolkit was excellent,
some of the speed was due to sacrifices made in the understandability of the client
interface.

There are other existing pattern matching toolkits, notably the toolkit of Hume
and Sunday [HS91]. Their toolkit consists of a number of implementations of Boyer-
Moore type algorithms — organized so as to form a taxonomy of the Boyer-Moore
family of algorithms. Their toolkit was primarily designed to collect performance
data on the algorithms. As a result, the algorithms are implemented (in C) for speed
and they sacrifice some of the safety (in terms of error checking) that would normally
be expected of a general toolkit. Furthermore, the toolkit does not include any of
the non-Boyer-Moore pattern matching algorithms (other than a brute-force pattern
matcher) and, most noticeably, does not contain multiple keyword pattern matchers.

SPARE Parts is a completely object-oriented implementation of the algorithms ap-
pearing in [Wats95, Chapter 4]. SPARE Parts is designed to address the shortcomings
of both of the toolkits described above. The following are the primary features of the
class library:

e The design of SPARE Parts follows the structure of the taxonomy in [Wats95,
Chapter 4] very closely. As a result, the code is easier to understand and

debug. In addition, SPARE Parts includes implementations of almost all of the
algorithms described in [Wats95, Chapter 4].

e The use of C++ (instead of C) for the implementation has helped to avoid
many of the memory management-related bugs that were present in the original
toolkit.

e The client interface to the toolkit is particularly easy to understand and use.
The flexibility introduced into the interface does not reduce the performance of
the code in any significant way.

e The toolkit supports multi-threaded use of a single pattern matching object.

48

SPARE Parts: A C++ Toolkit for String PAttern REcognition

This paper is structured as follows:

2

Section 2 considers issues in the design and implementation of class libraries.

Section 3 gives an introduction to the client interface of the toolkit. It includes
some examples of programs which use SPARE Parts.

Section 4 presents some experiences with the toolkit and the conclusions of this
chapter.

Section 5 gives some information on how to obtain and compile the toolkit.

Designing and implementing class libraries

In this section, we briefly discuss some of the issues involved in designing, implement-
ing, and presenting class libraries (or toolkits). The following description of a toolkit

is taken from [GHJV95, p. 26]:

A toolkit is a set of related and reusable classes designed to provide useful,
general-purpose functionality. Toolkits don’t impose a particular design
on your application; they just provide functionality that can help your ap-
plication do its job. They are the object-oriented equivalent of subroutine
libraries.

We will use the terms class library, library, and toolkit interchangeably. We will also
use the term client to refer to a program that makes use of classes in the toolkit, or
the author of such a program. The important aspects and design goals of a toolkit

are:

Toolkits do not provide a user interface. (Toolkits that do provide user interfaces
should be placed in the category of ‘application program’.)

The classes in the toolkit must have a coherent design, meaning that they are
designed and coded in the same style. They have a clear relationship and
a logical class hierarchy.

The client interface to the library must be easily understood, permitting clients
to make use of the library with a minimum of reading.

The efficiency of using the classes in the toolkit must be comparable to hand-
coded special-purpose routines — the toolkit must be applicable to production
quality software.

To provide an educational use for the toolkits, and to allow clients to easily
modify classes and member functions, the method of implementation must be
clear and understandable.

The toolkit is implemented in the C++ programming language, which was chosen
because of its object-oriented features and its widespread availability. Efforts were
made to refrain from using obscure features of C++ (such as RTTI or name spaces),

49

Proceedings of the Prague Stringology Club Workshop 97

or language features not easily found in other object-oriented programming languages
(such as multiple-inheritance).

Throughout this paper, we assume that the reader is familiar with the C++
language and object-oriented terminology (especially the C++ variety).

The general process of library design will not be described here, as there is a large
body of literature discussing this issue. The following books are of particular rele-
vance:

e [GHJV95, Souk94] discuss ‘design patterns’ (not related to our pattern matching
problem) which are used heavily in library design.

e [CE95], [Stro9l, Chapter 13] and [Stro94, Chapter 8] provide a general discus-
sion of C++ library design.

e [MeyB94] is an excellent treatment of the design of a number of loosely cou-
pled libraries in the Eiffel programming language. Many of the concepts and
techniques discussed in the book are broadly applicable to C++ as well.

e [Plau95, Teal93] discuss the design and implementation of specific C++4 libraries
— the standard C++ library! and the 10Streams (input and output) class
libraries respectively.

We define the following types of object-oriented classes:
User: A class intended for use by a client program.
Client: A class defined in the client program.

Implementation: A class defined in the toolkit for exclusive use by the toolkit. The
class is used to support the implementation of the client classes.

Foundation: Those implementation classes which are simple enough to be reused in
other (perhaps unrelated) class libraries.

Interface: An abstract (pure virtual) class which is declared to force a particular
public interface upon its inheritance descendants.

Base: An inheritance ancestor of a particular class.

Derived: An inheritance descendant of a particular class.

2.1 Motivations for writing class libraries

There are a number of motivations for creating the class libraries:

e Until now, few general purpose toolkits of pattern matchers existed. The ones
that do exist are not intended for general use in production quality software.

!Plauger’s book considers the implementation of an early, and now defunct, draft of the standard
library.

30

SPARE Parts: A C++ Toolkit for String PAttern REcognition

e The level of coherence normally required to implement a toolkit was not previ-
ously possible. The literature on pattern matching algorithms was scattered and
in some places incomplete. With the construction of the taxonomy, [Wats95,
Chapter 4], all of the algorithms are described in a coherent fashion, allowing
us to base the class library structures on the taxonomy structure.

e The uniformity of implementation that was possible (given the taxonomy) had
two important effects:

— Clients need not examine the source code in order to make a decision on
which class to use; the quality of the implementations of each of the pattern
matchers is roughly the same.

— Uniformity gives greater confidence in the accuracy of relative performance
comparing different algorithms.

e The toolkit and the taxonomy can serve as examples of implementation tech-
niques for class libraries; in particular methods for organizing template classes?

and class hierarchies.

e Implementing the abstract algorithm can be painless and fun, given the taxon-
omy presentation of the algorithms and their correctness arguments.

2.2 Code sharing

One of the main aims of object-oriented programming is that it permits, and even
encourages, code sharing (or code reuse). The code reuse in object-oriented program-
ming corresponds neatly with the factoring of common parts of algorithms in the
taxonomy.

Although code sharing can be achieved in a number of ways, in this section we
discuss four techniques which could have been used in the design of the toolkits.
The first discussion centres around the use of base classes (with virtual member
functions) versus templates. The second discussion concerns the use of composition
versus protected inheritance.

2.2.1 Base classes versus templates

A number of the pattern matching objects have common functionality and it seems
wasteful to duplicate the code in each of the specific types of pattern matchers.

The obvious design involves creating a new base class and factoring the common
code into the base class. Each of the pattern objects would then inherit from this base
and provide specific virtual member functions to obtain the desired functionality. For
example, the Commentz-Walter algorithms all share a common algorithm skeleton:
they each have specific shift functions. We could create a CW base class with the
functionality of the skeleton and provide a virtual ‘shift distance’ member function
to obtain the Commentz-Walter variants.

2We use the term template class, as opposed to class template suggested by Carroll and Ellis in
[CE95]. Our choice was made to correspond to the term generic class used in some other object-
oriented programming languages.

51

Proceedings of the Prague Stringology Club Workshop 97

The advantage of this approach is its elegance. It provides a relatively easy to
understand class hierarchy, that reflects the structure of the taxonomy. Furthermore,
a member function which takes (as a parameter) a pointer to a CW object need not
know which particular variant (of a CW object) the pointer points to, only that the
CW object satisfies the general CW functionality. This solution provides code reuse
at both the source language and executable image levels. The disadvantage is that
it would require a virtual function call for every shift. Indeed, if the same technique
was used to factor the common code from the Aho-Corasick variants, it would require
a virtual function call for every character of the input string.

The other approach is to create a template class CW, which takes a ‘shifter class’
as its template (type) parameter. We would then provide a number of such shifter
classes, for use as template parameters — each giving rise to one of the Commentz-
Walter variants. The primary advantage of this approach is that it is efficient: when
used to implement the Aho-Corasick algorithms, each character in the input string
will require a non-virtual function call (which may be inlined, unlike virtual function
calls). The disadvantages are twofold: pointers to the variants of the CW algorithms
are not interchangeable and code will be generated for each of the CW variants. The
code reuse is at the source level and not at the executable image level.

It is expected, for example, that few clients of the toolkits will instantiate objects
of different CW classes. A programmer writing an application using pattern matching
is more likely to choose a particular type of pattern matcher, as opposed to creating
objects of various different types. For this reason, the advantages of the template
approach are deemed to outweigh its disadvantages, and we prefer to use it over base
classes in the toolkits.

2.2.2 Composition versus protected inheritance

Composition (sometimes called the has-a relationship) and protected inheritance
(sometimes called the is-a relationship) are two additional solutions to code sharing.
We illustrate the differences between these two solutions using an example. When
implementing a Set class, we may wish to make use of an already-existing Array class.
There are two ways to do this: composition and protected inheritance.

With protected inheritance, class Set inherits from Arrayin a protected way. Class
Set still gets the required functionality from Array, but the protected inheritance pre-
vents the is-a relation between Set and Array (that is, we cannot treat a Set as an
Array). The advantage of this approach is that it is elegant and it is usually the
approach taken in languages such as Smalltalk and Objective-C [Budd91]. The dis-
advantage is that the syntax of C++4 places the inheritance clause at the beginning of
the class declaration of Set, making it plain to all clients of Set that it is implemented
in terms of Array. Furthermore, protected inheritance (and indeed private inheri-
tance) is one of the rarely-used corners of C++, and it is unlikely that the average
programmer is familiar with it [MeyS92, Murr93].

In a composition approach, an object of class Set has (in its private section) an
object of class Array. The Set member functions invoke the appropriate member func-
tions of Array to provide the desired functionality. The advantage of this approach
is that it places all implementation details in the private section of the class defini-
tion. The disadvantage is that it deviates from the accepted practice (in some other
languages) of inheriting for implementation. It is, however, the standard approach

52

SPARE Parts: A C++ Toolkit for String PAttern REcognition

in C4++. At first glance, it would appear that composition can lead to some ineffi-
ciency: in our example, an invocation of a Set member function would, in turn, call
an Array member function. These extra function calls, usually called pass-throughs,
are frequently eliminated through inlining.

There are no efficiency-based reasons to choose one approach over the other. For
this reason, we arbitrarily choose composition because of the potential readability
and understandability problems with protected inheritance.

2.3 Coding conventions and performance issues

At this time, coding in C4++ presents at least two problems: the language is not
yet stable (it is still being standardized) and, correspondingly, the “standard” class
libraries are not yet stable.

In designing the libraries, every effort was made to use only those language features
which are well-understood, implemented by most compilers and almost certain to
remain in the final language. Likewise, the use of classes from the proposed standard
library, or from the Standard Template Library [S.94], was greatly restricted. A number
of relatively simple classes (such as those supporting strings, arrays, and sets) were
defined from scratch, in order to be free of library changes made by the standardizing
committee. A future version of the toolkits will make use of the standard libraries
once the International Standards Organization has approved the C++ standard.

In the object-oriented design process, it is possible to go overboard in defining
classes for even the smallest of objects — such as alphabet symbols. In the interests
of efficiency, we draw the line at this level and make use of integers for such basic
objects.

Almost all of the classes in the toolkits have a corresponding class invariant mem-
ber function, which returns TRUF if the class is structurally correct and FALSE
otherwise®. Structural invariants have proven to be particularly useful in debugging
and in understanding the code (the structural invariant is frequently a good first place
to look when trying to understand the code of a class). For this reason, they have
been left in the released code (they can be disabled as described in the next section).

We use a slightly non-traditional way of splitting the source code into files. The
public portion of a class declaration is given in a .hpp file, while the private parts
are included from a .ppp file. There is a corresponding . cpp file containing all of the
out-of-line member function definitions. A .ipp file contains member functions which
can be inlined for performance reasons. By default the member functions in the .ipp
file are out-of-line. The inlining can be enabled by defining the macro INLINING. To
implement such conditional inlining, the .ipp file is conditionally included into the
.hpp or the .cpp file. The inlining should be disabled during debugging or for smaller
executable images.

3 Using the toolkit

In this section, we describe the client interface of the toolkit and present some exam-
ples of programs using the toolkit.

3This will be changed to use the new bool datatype once most compiler support it.

33

Proceedings of the Prague Stringology Club Workshop 97

The client interface defines two types of abstract pattern matchers: one for single
keyword pattern matching and one for multiple keyword pattern matching. (A fu-
ture version of SPARE Parts can be expected to include classes for regular expression
pattern matching — for example, an implementation of the algorithm described in
[Wats95, Chapter 5].) All of the single keyword pattern matching classes have con-
structors which take a keyword. Likewise, the multiple keyword pattern matchers
have constructors which take a set of keywords. Both types of pattern matchers
make use of call-backs (to be explained shortly) to register matched patterns. In
order to match patterns using the call-back mechanism, the client takes the following
steps (using single keyword pattern matching as an example):

1. A pattern matching object is constructed (using the pattern as the argument
to the constructor).

2. The client calls the pattern matching member function PMSingle::match, pass-
ing the input string and a pointer fto a client defined function which takes an
int and returns an int*. (This function is called the call-back function.)

3. As each match is discovered by the member function, the call-back function is
called; the argument to the call is the index (into the input string) of the symbol
immediately to the right of the match. (If there is no symbol immediately to
the right, the length of the input string is used.)

4. If the client wishes to continue pattern matching, the call-back function returns

the constant TRUFE, otherwise FALSE.

5. When no more matches are found, or the call-back function returns FALSE, the
member function PMSingle::match returns the index of the symbol immediately
to the right of the last symbol processed.

We now consider an example of single keyword pattern matching.
The following program searches an input string for the keyword hisher, printing
the locations of all matches along with the set of matched keywords:

#include "com-misc.hpp"
#include "pm-kmp.hpp"
#include <iostream.h>

static int report(int index) {
cout << index << '\n';
return(TRUE);

}

int main(void) {
auto PMKMP Machine("hisher");
Machine.match("hishershey", &report);
return(0);

4The integer return value is a Boolean value; recall that TRUE and FALSE have type int in C
and C++. The new bool keyword is not yet supported by all compilers.

o4

SPARE Parts: A C++ Toolkit for String PAttern REcognition

The header file com-misc.hpp provides a definition of constants TRUFE and FALSFE.
Header file pm-kmp . hpp defines the Knuth-Morris-Pratt pattern matching class, while
header file iostream.h defines the input and output streams, including the standard
output cout. Function report is our call-back function, simply printing the index of
the match (to the standard output) and returning TRUF to continue matching. The
main function (the program mainline) creates a local KMP machine, with keyword
hisher. The machine is then used to find all matches in string hishershey. (Recall
that, in C and C++, a pointer to the beginning of the string is passed to member
match, as opposed to the entire string.)

In addition to the KMP algorithm defined in pm-kmp.hpp, other single keyword
pattern matchers are defined in header file bms.hpp, which contains suggestions for
instantiating some of the Boyer-Moore variants. Additionally, a brute-force single
keyword pattern matcher is defined in pm-bfsin.hpp.

Multiple keyword pattern matching is performed in a similar manner, as the follow-
ing example shows. The following program searches an input string for the keywords
his, her, and she, printing the locations of all matches:

#include "com-misc.hpp"
#include "string.hpp"
#include "set.hpp"
#include "acs.hpp"
#include <iostream.h>

static int report(int index, const Set<String>& M) {
cout << index << M << '\n';
return(TRUE);

}

int main(void) {
auto Set<String> P("his");
P.add("her"); P.add("she");
auto PMACOpt Machine(P);
Machine.match("hishershey", &report);
return(0);

Header file string.hpp defines a string class, while set.hpp defines a template
class for sets of objects. Header file acs.hpp defines the Aho-Corasick pattern match-
ing classes. Function report is our call-back function, simply printing the index of
the match (to the standard output) and the set of keywords matching, and returning
TRUF to continue matching. Note that the call-back function has a different sig-
nature for multiple keyword pattern matching: it takes the index of the symbol to
the right of the match and the set of keywords matching with index as their right
end-point.

The main function (the program mainline) creates a local AC machine from the
keyword set. The machine is then used to find all matches in string hishershey. In
the following two sections, we consider ways to use SPARE Parts more efficiently in
certain application domains.

99

Proceedings of the Prague Stringology Club Workshop 97

3.1 Multi-threaded pattern matching

One important design feature (as a result of the call-back client interface) of SPARE
Parts is that it supports multi-threading. This can lead to high performance in ap-
plications hosted on multi-threading operating systems. For example, consider an
implementation of a keyword grep application in which 1000 files are to be searched
for occurrences of a given keyword. The following are three potential solutions:

e In a sequential solution, a single pattern matching object is constructed and
each of the 1000 files are scanned (in turn) for matches.

e In anaive multi-threaded solution, 1000 threads are created (each corresponding
to one of the input files). Each of the threads construct a pattern matching
object, which is then used to search the file.

o An efficient solution is to create a single matching object, with 1000 threads
sharing the single object. Fach of the threads proceeds to search its file, using
its own invocation of member function PMSingle::match.

The last (most efficient) solution would not have been possible without the call-back
client interface.

3.2 Alternative alphabets

The default structure in SPARE Parts is to make use of the entire ASCII character set
as the alphabet. This can be particularly inefficient and wasteful in cases where only
a subset of these letters are used. For example, in genetic sequence searching, only
the letters a, ¢, ¢, and t are used. SPARE Parts facilitates the use of smaller alpha-
bets through the use of normalization. Header file alphabet.hpp defines a constant
ALPHABETSIZE (which, by default is CHAR_-MAX). The alphabet which SPARE
Parts uses is the range [0, ALPHABETSIZE). An alternative alphabet can be used
by redefining ALPHABFETSIZFE and mapping the alternative alphabet in the required
range. The mapping is performed by functions alphabetNormalize and alphabetDenor-
malize, both declared in alphabet.hpp (by default, these functions are the identity
functions). The only requirement is that the functions map 0 to 0 (this is used to
identify the end of strings). In the genetic sequence example, we would make use of
the following version of header alphabet.hpp:

#include <assert.h>
#define ALPHABETSIZE 5

inline char alphabetNormalize(const char a) {

switch(a) {

case O: return(0);

case 'a': return(1);

case 'c': return(2);

case 'g': return(3);

case 't': return(4);

default: assert(!"Non-genetic character");
}

26

10

SPARE Parts: A C++ Toolkit for String PAttern REcognition

}

inline char alphabetDenormalize(const char a) {

switch(a) {

case O: return(0);

case 1: return('a');

case 2: return('c');

case 3: return('g');

case 4: return('t');

default: assert(!"Non-genetic image");

}

4 Experiences and conclusions

Designing and coding SPARE Parts lead to a number of interesting experiences in class
library design. In particular:

e SPARE Parts comprises 5787 lines of code in 59 .hpp, 32 .cpp, 43 .ppp, and 49
.ipp files.

Compiling the files, with the WATCOM C++432 Version 9.5b compiler, shows
that the size of the object code varies very little for the various types of pattern
matchers.

The taxonomy presented in [Wats95, Chapter 4] was critical to correctly imple-
menting the many complex precomputation algorithms.

Designing and structuring generic software (reusable software such as class li-
braries) is much more difficult than designing software for a single application.

The general structure of the taxonomy proved to be helpful in guiding the
structure of SPARE Parts.

In [Wats95, Chapter 4], we consider the relative performance of the algorithms
implemented in SPARE Parts. It is also helpful to consider how the implemen-
tations in SPARE Parts fare against commercially available tools such as the
fgrep program. Four fgrep-type programs were implemented (using SPARE
Parts), corresponding to the Knuth-Morris-Pratt, Aho-Corasick, Boyer-Moore
and Commentz-Walter algorithms. The four tools were benchmarked informally
against the fgrep implementation which is sold as part of the MKS toolkit for
MS-Dos. The resulting times (to process a 984149 byte text file, searching for
a single keyword) are:

fgrep variant | MKS | KMP | BM | AC | CW
Time (sec) 3.9 51 | 4.2 [4.7] 4.0

These results indicate that using a general toolkit such as SPARE Parts will
result in performance which is similar to carefully tuned C code (such as MKS
fgrep). Much more extensive test results are reported in [Wats95, Wats96].

57

20

Proceedings of the Prague Stringology Club Workshop 97

Detailed records were kept on the time required for designing, typing, compiling (and
fixing syntax errors) and debugging the toolkit. The time required to implement the
toolkit is broken down as follows (an explanation of each of the tasks is given below):

Task Design | Typing | Compile/Syntax | Debug || Total
Time (hrs:min) || 6:00 13:40 10:05 5:15 || 35:00

Most of these times are quite short compared to what a software engineer could expect
to spend on a project of comparable size. The following paragraphs explain exactly
what each of the tasks entailed:

e The design phase involved the creation of the inheritance hierarchy and the
declaration (on paper) of all of the classes in the toolkit. (A C4++ declaration
provides names and signatures of functions, types and variables, whereas a defi-
nition provides the implementation of these items.) The design phase proceeded
exceptionally smoothly thanks to a number of things:

— The inheritance hierarchy followed directly from the structure of the tax-
onomy.

— The decisions on the use of templates (instead of virtual functions) and
call-backs were made on the basis of experience gained with FIRE Engine,
Ribbit’s finite automata and transducer toolkit. These decisions were also
somewhat forced by the efficiency requirements for the toolkit as well as
the need for multi-threading.

— Representation issues, such as the selection of data structures, were re-
solved using experience gained with the earlier Eindhoven Pattern Kit.

e Once the foundation classes were declared and defined, typing the code amounted
to a simple translation of guarded commands (appearing in [Wats95]) to C++.

e The times required for compilation and syntax checking were minimized by using
a very fast integrated environment (BORLAND C++4) for initial development.
Only the final few compilations were done using the (slower, but more thor-
oughly optimizing) WATCcOM C++ compiler. The advantages of using a fast
development environment on a single user personal computer should not be
underestimated.

e Since the C++ code in the toolkit was implemented directly from the abstract
algorithms (for which correctness arguments are given), the only (detected) bugs
were those involving typing errors (such as the use of the wrong variable, etc.).
Correspondingly, little time needed to be spent on debugging the toolkit.

New research in pattern matching requires that tools such as SPARE Parts evolve.
The following are some of the upcoming changes:

e The toolkit will use a version of the C++ Standard Template Library.

o In light of the success and widespread applicability of the commercialized ver-
sion, SPARE Parts I, SPARE Parts will be template parameterized to support
input strings and patterns over arbitrary alphabets (as opposed to the rudimen-
tary alphabet support now provided).

a8

SPARE Parts: A C++ Toolkit for String PAttern REcognition

o Efforts will begin to integrate approximate pattern matching algorithms into
the toolkit.

5 Obtaining and compiling the toolkit

SPARE Parts is available via www.RibbitSoft.com/research/watson/. The toolkit
and some associated documentation are combined into a tar file.

SPARE Parts has been successfully compiled with BORLAND C++ Versions 3.1 and
4.0, and WATCOM C++32 Version 9.5b on MS-D0s and MICROSOFT WINDOWS 95
platforms. Since the WATCOM compiler is also a cross-compiler, there is every reason
to believe that the code will compile for WiINDOWS NT or for IBM OS/2. The
implementation of the toolkit makes use of only the most basic features of C++
and it should be compilable using any of the template-supporting UNIX based C++
compilers.

A version of SPARE Parts will remain freely available (though not in the public
domain). Contributions to the toolkit, in the form of new algorithms or alternative
implementations, are welcome.

References

[ACT5] AHO, A.V. and M.J. CorasICK. Efficient string matching: an aid to
bibliographic search, Comm. ACM, 18(6) (1975) 333-340.

[BM77] BoYER, R.S. and J.S. MOORE. A fast string searching algorithm,
Comm. ACM, 20(10) (1977) 62-72.

[Budd91] BupD, T.A. An introduction to object-oriented programming. (Addison-
Wesley, Reading, MA, 1991).

[CE95] CARROLL, M.D. and M.A. ELLIS. Designing and coding reusable C++.
(Addison-Wesley, Reading, MA, 1995).

[ComT79a] COMMENTZ-WALTER, B. A string matching algorithm fast on the av-
erage, in: H.A. Maurer, ed., Proc. 6th Internat. Coll. on Automata,
Languages and Programming (Springer-Verlag, Berlin, 1979) 118-132.

[ComT79b] COMMENTZ-WALTER, B. A string matching algorithm fast on the av-
erage, Technical Report TR 79.09.007, IBM Germany, Heidelberg Sci-
entific Center, 1979.

[GHJV95] Gamwma, E., R. HELM, R. JOHNSON, and J. VLISSIDES. Design Pat-
terns: FElements of Reusable Object-Oriented Software. (Addison-Wesley,
Reading, MA, 1995).

[HS91] HuME, S.C. and D. SUNDAY. Fast string searching, Software—Practice
and Experience 21(11) (1991) 1221-1248.

[KMPT77] KnuTH, D.E., J.H. MORRIS and V.R. PRATT. Fast pattern matching
in strings, SIAM J. Comput. 6(2) (1977) 323-350.

99

Proceedings of the Prague Stringology Club Workshop 97

[MeyB94]

[MeyS92]

[Murr93]

[Plau95]

[SL94]

[Souk94]

[Stro91]

[Stro94]

[Teal93]

[Wats94]

[Wats95]

[Wats96]

[WZ92]

[WZ95]

MEYER, B. Reusable Software: The Base Object-Oriented Component
Libraries. (Prentice Hall, Englewood Cliffs, N.J, 1994).

MEYERS, S. Effective C++: 50 specific ways to improve your programs.
(Addison-Wesley, Reading, MA, 1992).

MURRAY, R.B. C++ strategies and tactics. (Addison-Wesley, Reading,
MA, 1993).

PLAUGER, P.J. The Draft Standard C++ Library. (Prentice Hall, New
Jersey, 1995).

STEPANOV, A. and M. LEE. Standard Template Library, Computer Sci-
ence Report, Hewlett-Packard Laboratories, 1994.

SOUKUP, J. Taming C++: Pattern Classes and Persistence for Large
Projects. (Addison-Wesley, Reading, MA, 1994).

STROUSTRUP, B. The C++ programming language. (Addison-Wesley,
Reading, MA, 2nd edition, 1991).

STROUSTRUP, B. The Design and FEvolution of C++. (Addison-Wesley,
Reading, MA, 1994).

TEALE, S. C++ [OStreams Handbook. (Addison-Wesley, Reading, MA,
1993).

WATSON, B.W. The performance of single-keyword and multiple-
keyword pattern matching algorithms, Computing Science Report
94/19, Eindhoven University of Technology, The Netherlands, 1994.

WATSON, B.W. Tazxonomies and Toolkits of Regular Language Algo-
rithms. (Ph.D dissertation, Eindhoven University of Technology, The
Netherlands, 1995).

For availability, see www.RibbitSoft.com/research/watson/.

WaTsoN, B.W. The performance of single and multiple keyword pat-
tern matching algorithms, Workshop on String Processing (Recife,
Brazil, 1996). Available via www.RibbitSoft.com/research/watson/.

WATSON, B.W. and G. ZwAAN. A taxonomy of keyword pattern
matching algorithms, Computing Science Report 92/27, Eindhoven Uni-
versity of Technology, The Netherlands, 1992.

WaTsoN, B.W. and G. ZWAAN. A taxonomy of sublinear keyword pat-

tern matching algorithms, Computing Science Report 95/13, Eindhoven
University of Technology, The Netherlands, 1995.

60

Algebra of Pattern Matching Automata

Vaclav Snasel, Tomas Koutny

Department of Computer Science
Palacky University
Tomkova 40
771 00 Olomouc
Czech Republic

e-mail: {Vaclav.Snasel, Tomas.Koutny}@upol.cz

Abstract. In this paper we classify pattern matching problems using algebraic
means. We construct an algebra of pattern matching automata in which finite
automata are the elements and operations applied to them correspond to the
creation of new pattern matching problems. We present several such operations
and describe some identified properties of the algebra defined in this way.

Key words: pattern matching, finite automata, algebra

1 Introduction

In this paper we will classify pattern matching problems using algebraic means. We
will define an algebra of pattern matching automata. Elements of this algebra will be
automata and defined operations will correspond to the creation of pattern matching
problems.

Melichar and Holub also deal with pattern matching problems classification in
their work [MH97]. However, their approach is different. They describe pattern
matching problems using 6 criteria and therefore they can locate them in 6D space.
They show how to construct a finite automaton for each point of the space. It
is possible to start from a simple automaton which performs an exact match and
transform it into a more sophisticated one. This inspired us to create an algebra
of finite automata and to define operations with them which would correspond to
transformations resulting in different points of the 6D space. This may provide an
answer to an interesting question: will the number of obtained points be finite after
a multiple application of such operations or not?

We wanted to construct operations for each of the six axes of the space which
would generate automata corresponding to the points already identified. Then we
could apply these operations several times and identify the properties of the algebra
defined by the set of finite automata and these operations. In this paper we present
up-to-date results of our work. We created an algebra of pattern matching automata
in which only several of the intended operations are defined. To support our theory, we
created a program in which we implemented operations identified on the automata so
far. Using the program we obtained experimental data which was useful for us when
constructing proofs for our statements.

61

Proceedings of the Prague Stringology Club Workshop 97

In the next part we will give a precise definition of the algebra of pattern matching
automata. Following that, we will characterize the algebra using identities discovered.
In chapter 3 we will describe the program used during our experiment. To conclude
with, we will mention other possible implementations of finite automata which are
more suitable for practical application and outline our further research goals.

2 Definition of the algebra of pattern matching
automata

2.1 Notation

Notation not listed directly in this paper can be found in [MI91].
Definition: Nondeterministic automaton is the quantiple M defined as M =

(3,Q,6,qo, F), where
Y is a finite alphabet

Q) is a finite set of states
go € @ is the start state
F C @ is a set of final states

0, a transition relation, is a finite subset of) x ¥* x Q).

In the remaining part of the text we will use an extended alphabet X', which is
derived from ¥ as follows:

Let X be a finite set. Then we can use ¥~ to denote the set {Z|z = ¥ —{z}Va € X}.
Let’s use I' to denote the symbol corresponding to the whole set and ¢ to denote the
symbol corresponding to an empty transition. Then we can define the extended
alphabet ¥’ over the set ¥ as YU X~ U {e} U {T'}.

For the definition of the algebra of pattern matching automata we will need to
define an operation &: merger of automata.

Definition: Let A be a set of automata using the same alphabet ¥ and the
same start state gg. Then for the automata X = (3,Q%,6%,¢p, FX) € Aand YV =
(3,QY,8Y, g0, F¥) € A we will define the automaton X @ Y in the following way:

XaY=(2,QYu@X,6¥uéY, g, FXUFY)
Note: 6% U Y for our purposes means a union of relations.

In the following we will assume that set A is closed with respect to construction
. Then (A, @) is an algebra with a binary operation.

Theorem 1. Algebra (A, @) satisfies the following identities:

aba =a
adb=bDa
(adb)Bec=a & (b c)
Ya,b,c € A
Proof.
The proof is obvious and ensues directly from the construction of operation . O

62

Algebra of Pattern Matching Automata

2.2 Definition of operations R, I, D
[MHO97] introduced constructions R(X, k) and DIR(X, k).

These constructions correspond to the creation of a nondeterministic automaton X'
from the automaton X which accepts a string P = p1ps ... p,. Automaton X' accepts
only those strings P’ with the value of P to P’ distance equivalent to k& while using
distance R or DIR. Distance R(P, P') is called Hamming distance and is defined
as the minimum number of symbol replacement operations in string P required for
the conversion of string P into string P’. Distance DIR(P, P') is called Levenshtein
distance and is defined as the minimum number of operations of symbol deletion (D),
insertion (/) or replacement (R) in P required for the conversion of string P into
string P'.

Automaton X' is called R—trellis or DI R—trellis as the case may be. Their construc-
tion is described, for example, in [MH97] or [HO96] (see Fig. 1).

Figure 1: DIR—trellis for string “text”, k = 2.

When defining the operations in our algebra we are not restricted to the set of
automata which perform an exact match but we define operations R and DIR for
any finite automaton X in a similar way as Muzatko in his generalization of regular
expression matching automata in [MU96]. Since distance DIR corresponds to any
combination of operations of deletion D, insertion I, or replacement R, it is possible
to define each of these operations independently.

Definition: Let X = (X,0Q, 6, qo, F') be a finite automaton and let £ € N. The
result of operations D(X, k), I(X,k) or R(X, k) is an automaton X’ which will be

derived from automaton X through the following steps:

1. Automaton X’ will contain k£ + 1 clones of automaton X.

2. The states of automaton X’ will be labelled ¢; ; where 7 is the sequence num-
ber of the clone and j is the sequence number of the state inside the original
automaton X.

3. All transitions defined in the original automaton X will remain included in all
its clones.

63

Proceedings of the Prague Stringology Club Workshop 97

4. Error transitions will be added into automaton X’ according to one of the
following operations:

Operation R: 6(¢;j,a) = 6(¢it1,5,a) shall be defined for each state ¢, ;(0 <
i<k —1,0<j<m—1) and for each symbol a € ¥ for which transition
6(¢;j,a) is defined. The symbol @ € X~ represents all symbols from
alphabet ¥ not equal to symbol a; or

Operation D: 6(¢;;,&) = 6(¢i+1,;, @) shall be defined for each state ¢; ; and for
each symbola € ¥, (0<i<k —1,0<j7<m—1);or

Operation I: 6(g;;,I') = giy1,; shall be defined for each state ¢; ;,(0 < ¢ <
k—1,0<j<m—1).

5. Start state of automaton X' is state ¢oo. The alphabet of the automaton is the
extended alphabet Y’. The set of final states is the union of final states in all
the clones: F'= Fo U U...FU ;.

Definition: Operations D(X), R(X) and I(X) correspond to operations
D(X,1),R(X,1) and I(X,1) respectively.

Now we are ready to define the algebra of pattern matching automata.

Definition: The algebra of pattern matching automata is the algebra A =
(A,D,I,R,*,+,-, @), where

A is a set of finite automata

@4 is an operation of merger

D is an operation of deletion

I is an operation of insertion

R is an operation of replacement
* 1s an operation of closure

+ is an operation of union

- is an operation of concatenation

2.3 Properties of the algebra of pattern matching automata

Theorem 2. Let A be an algebra of pattern matching automata. Then for each
automaton X € A it holds that

R(X,k) = RF(X)

where R*(X) means R(R(R(...R(X))...))).

k times

Proof.
We will prove the theorem using mathematical induction.

1. According to the definition it holds: R(X,1) = R(X).

64

Algebra of Pattern Matching Automata

2. Let’s assume that R(X, k) = RF(X) holds.

3. If string worowyry ... wrrpwesr is accepted by automaton X, then automaton
R(X,k + 1) accepts the string w = worjwsr] ... wgriwey1, where vt € {7;,7;}.
According to induction hypothesis, automaton R* accepts string
worhwyTh .. wirpwiy1. After reading string worfwyr) ... wy, automaton RF(X)

wy- 1t 1s obvious from the construction of automaton

R(R*(X)) that if 7, = 7, then there is a transition from state Grogrbwr ! g0

into state qugrwrf..w,r 1 and hence automaton R(R*(X)) = R*1(X) accepts

string w. If r}, = ry, it is obvious that automaton R(R*(X)) = RF!(X) accepts

string w.

is in a state Guoriuw,r! ...

In reverse, let’s assume that automaton R**1(X) accepts string
w = wergwiry ... wirywry1. Then again according induction hypothesis it holds
that R*'(X) = R(R(X,k)). Automaton R(X, k) accepts string
WorgW1ry ... WeTkWry1. 1t is obvious from the construction of the trellis that
automaton R(R(X, k)) accepts string worgw:r] ... wgriwrr and hence the lan-
guages accepted by both automata, R*+'(X) and R(X,k + 1), are equal. O

Similar proofs can be provided for the remaining operations, D and I. Figure 2
shows an example of an automaton for operation D and k = 2.

We have not defined an equivalent of the DIR construction in our algebra. It
is not really necessary. The corresponding DIR operation in our algebra will result
from suitable application of operation & to automata D(X), I(X) and R(X):

DIR(X)=D(X)® I(X)& R(X)
The correctness of such a definition ensues from the behaviour of operation &.

It is also possible to define the following in a similar way:
DI(X)=D(X)® I(X)

DR(X) =D(X) & R(X)
RI(X)=R(X) & I(X)
Theorem 3. For any automaton X = (X, Q, 6, go, F') it holds that

DIR(X,k) = D*(X) & I"(X) & R¥(X)

Proof.

Let X' be an extended alphabet over alphabet X.

DIR(X,1) = D(X) & I(X) @ R(X) ensues directly from the definition of the con-
struction.

If string w = werowiry ... wrrrwes1, where r; € 3, is accepted by automaton X,
then automaton DIR(X, k) accepts string w = worjw1r} ... wgrywi1, where rl € 3.
If v, = T, then having read string wor}, using transitions from automaton I*(X), au-
tomaton DIR(X, k) reaches state Guor, Which corresponds to the state of automaton
X after the acceptance of word wgrg. Similarly, it is possible to demonstrate that
for any segment of string w’, automaton D*(X) & I*(X) @ R*(X) reaches the state

65

Proceedings of the Prague Stringology Club Workshop 97

corresponding to the equivalent segment of string w.

It means that string w’ transfers the automaton into a final state.

Let’s suppose that string w is accepted by automaton X. The string accepted by au-

tomaton Dk(X) @ Ik(X) @ Rk(X) will contain k + 1 segments separated by symbols

from set ¥'. It means that this string will be accepted by automaton DIR(X, k) too.
O

3 Program

During the phase of building the hypotheses we carried out some experiments using
our own program written in Microsoft Visual Basic 5.0. In this program we imple-
mented nondeterministic finite automata and operations with such automata.

We used the method of simulation of the nondeterministic finite automaton in
a deterministic way. The usage of symbols from the extended alphabet over the
original alphabet prevented the rapid increase of states and transitions which would
otherwise become inevitable during multiple application of the operation to the orig-
inal string searching automaton.
The aim of the implementation was to verify our hypotheses and which was why we
didn’t pay any special attention to the effectiveness of the implementation. In case
where the speed of the algorithm is one of the main criteria, it is possible to use
a different type of implementation as described, for example by Mohri in [MM95].

In the following we give an example of pseudocode which demonstrates the algo-
rithm of determination of active states after reading a terminal from input.

EpsilonPath(states)

1 1<-1

2 While <= states.Count Do

3 For Each trans In m_Transitions[states[i],Epsilon]
4 Union (states,trans)

5 1<-1+1

NewStates(old_states, t)

new_states <- EmptySet

For Each index In t

For Each or_state In old_states
For Each trans In m_Transitions[or_state,index]
If trans <> EmptyState And trans <> PreStartState Then
Union (new_states,trans)
EpsilonPath (new_states)
NewStates <- new_states

00 ~N O Ol W N =

Go(t)
1 t_col <- m_TableOfTerminals.TermToIndexes(t)
2 m_ActiveStates <- NewStates (m_ActiveStates, t_col)

66

Figure 2: Double application of operation D on automaton performing exact match

Proceedings of the Prague Stringology Club Workshop 97

4 Conclusion

As we mentioned in the introduction we still find ourselves in the middle of the work.
Our target is to create a description of pattern matching problems on an algebraic
basis. This could be achieved by gradual addition of other operations which would
correspond to the axes of the 6D space not included in our work yet. A further step
of our research could be extension of the computing power of nondeterministic finite
automata through the application of other models, such as multitape automata, and
finding out whether they are suitable for pattern matching.

Another problem is the construction of an effective automaton (see [CR94]). As
mentioned in the previous part of the paper, a construction scheme of the determin-
istic automaton for a regular expression can be found in [MM95]. We think that this
scheme could be applicable for our purposes too.

References

[CR94] M. Crochemore, W. Rytter. Text Algorithms. Oxford University Press, 1994.

[HO96] J. Holub. Reduced Nondeterministic Finite Automata for Approximate
String Matching. Proceedings of the Prague Stringology Club Workshop 96.

[LP81] H. R. Lewis, C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall 1981.

[MH97] B. Melichar, J. Holub. 6D Classification of Pattern Matching Problems. In

this volume.

[MI91] B. Mikolajczak ed. Algebraic and Structural Automata Theory. North Hol-
land 1991.

[MM95] M. Mohri. Matching Patterns of an Automaton. Combinatorial Pattern
Matching, 6th Annual Symposium, CPM 95, Espoo, Finland, Springer Ver-
lag 1995.

[MU96] P. Muzéatko. Approzimate Regular Expression Matching. Proceedings of the
Prague Stringology Club Workshop ’96.

[DP90] D. Perrin. Finite Automata. Handbook of Theoretical Computer Science.
Elsevier Science Publishers 1990.

68

