Small-Space and Streaming Pattern Matching with k Edits

Tomasz Kociumaka

Ely Porat

Tatiana Starikovskaya

CPM 2022 June 27th, 2022

Pattern matching

Exact pattern matching

Given two strings, a **pattern** P of length m and a **text** T of length n, find all fragments of T **matching** P.

P bbaabbb

T abbaabbbaabbbbbaabbbaa

Pattern matching

Exact pattern matching

Given two strings, a **pattern** P of length m and a **text** T of length n, find all fragments of T **matching** P.

Algorithms:

Knuth, Morris, Pratt 1978, SIAM J. Comput.

 $\mathcal{O}(n+m)$ time

Pattern matching with mismatches

Given a pattern P of length m, a text T of length n, and a **threshold** k, for each position $r \in [m ... n]$, compute the **Hamming distance** HD(P, T(r-m ... r]) **if it does not exceed** k.

Algorithms:

Gawrychowski, Uznański ICALP 2018

$$\widetilde{\mathcal{O}}(\mathit{n}+\mathit{nk}/\sqrt{\mathit{m}})$$
 time

Pattern matching with edits

$$\begin{array}{c} \mathbf{k} = \mathbf{2} \\ P \ \boxed{\mathbf{b} \ \mathbf{b} \ \mathbf{a} \ \mathbf{a} \ \mathbf{b} \ \mathbf{b} \ \mathbf{b}} \end{array}$$

Pattern matching with edits

$$\mathbf{k} = \mathbf{2}$$

$$P \ \boxed{\mathbf{b} \ \mathbf{b} \ \mathbf{a} \ \mathbf{a} \ \mathbf{b} \ \mathbf{b} \ \mathbf{b}}$$

Pattern matching with edits

$$\begin{array}{c} \mathbf{k} = \mathbf{2} \\ P \ \boxed{\mathbf{b} \ \mathbf{b} \ \mathbf{a} \ \mathbf{a} \ \mathbf{b} \ \mathbf{b} \ \mathbf{b}} \end{array}$$

Pattern matching with edits

Pattern matching with edits

Pattern matching with edits

Given a pattern P of length m, a text T of length n, and a threshold k, for each position $r \in [1 ... n]$, compute the **edit distance** $\min_{\ell \in [1 ... r]} \mathsf{ED}(P, T(\ell ... r])$ if it does not exceed k.

$$k = 2$$

$$P bbaabbb$$

Algorithms:

Landau, Vishkin 1989, J. Algorithms

Cole, Hariharan 2002, SIAM J. Comput. $\mathcal{O}(nk)$ time

 $\mathcal{O}(n + \frac{nk^4}{m})$ time

Streaming model:

■ Single sequential scan of the text *T*.

Streaming model:

■ Single sequential scan of the text *T*.

Tabbaabb

- Single sequential scan of the text *T*.
- The answer regarding r to be reported while processing T[r].

$$P$$
 bbaabbb T abbaabb

- Single sequential scan of the text *T*.
- The answer regarding r to be reported while processing T[r].

$$P$$
 bbaabbb T abbaabb

- Single sequential scan of the text *T*.
- The answer regarding r to be reported while processing T[r].

$$P$$
 bbaabbb T abbaabbb

- Single sequential scan of the text *T*.
- The answer regarding r to be reported while processing T[r].

Streaming model:

- \blacksquare Single sequential scan of the text T.
- The answer regarding r to be reported while processing T[r].

P bbaabbb T abb

T abbaabbbaa

Streaming model:

- Single sequential scan of the text *T*.
- The answer regarding r to be reported while processing T[r].
- Main efficiency measure: size of the working space.

P bbaabbb

T abbaabbbaabbbbbbaabbbbaa

Streaming model:

- Single sequential scan of the text *T*.
- The answer regarding r to be reported while processing T[r].
- Main efficiency measure: size of the working space.
- Deterministic and Las-Vegas algorithms require $\Omega(m \log \sigma)$ bits for exact matching.

Streaming pattern matching algorithms

Exact Pattern Matching:

Porat, Porat FOCS 2009

$$\Omega(\log m)$$
 bits $\mathcal{O}(\log^2 m)$ bits

Streaming pattern matching algorithms

Exact Pattern Matching: $\Omega(\log m)$ bits

Porat, Porat $O(\log^2 m)$ bits

Pattern Matching with Mismatches: $\Omega(k \log m)$ bits

Porat, Porat $\widetilde{\mathcal{O}}(k^3)$ bits

FOCS 2009

Clifford et al. $\widetilde{\mathcal{O}}(k^2)$ bits SODA 2016

Golan, Kopelowitz, Porat $\widetilde{\mathcal{O}}(k)$ bits

ICALP 2018

Clifford, K., Porat $\mathcal{O}(k \log^2 m)$ bits SODA 2019

Streaming pattern matching algorithms

Exact Pattern Matching:

 $\Omega(\log m)$ bits

Porat, Porat FOCS 2009

 $\mathcal{O}(\log^2 m)$ bits

Pattern Matching with Mismatches:

 $\Omega(k \log m)$ bits

Porat, Porat FOCS 2009

 $\widetilde{\mathcal{O}}(k^3)$ bits

Clifford et al.

 $\widetilde{\mathcal{O}}(k^2)$ bits

Golan, Kopelowitz, Porat

 $\widetilde{\mathcal{O}}(k)$ bits

ICALP 2018

Clifford, K., Porat

 $\mathcal{O}(k \log^2 m)$ bits

Pattern Matching with Edits:

 $\Omega(k \log m)$ bits $\widetilde{\mathcal{O}}(k^8 \sqrt{m})$ bits

Starikovskaya

K., Porat, Starikovskava (this work) $\widetilde{\mathcal{O}}(k^5)$ bits

$$X \in \Sigma^{\leq n}$$

$$Y \in \Sigma^{\leq n}$$

Known sketches

Efficiently constructible sketches with error probability $n^{-\Theta(1)}$:

Testing equality
$$X = Y$$
 (fingerprints): $\Omega(\log n)$ bits folklore $\Omega(\log n)$ bits

Known sketches

Efficiently constructible sketches with error probability $n^{-\Theta(1)}$:

Testing equality
$$X = Y$$
 (fingerprints): $\Omega(\log n)$ bits folklore $\Omega(\log n)$ bits

Computing HD(
$$X$$
, Y) if at most k : $\Omega(k \log n)$ bits Lipsky, Porat $O(k \log n)$ bits CPM 2007

Known sketches

Efficiently constructible sketches with error probability $n^{-\Theta(1)}$:

Testing equality $X = Y$ (fingerprints): folklore	$\Omega(\log n)$ bits $\mathcal{O}(\log n)$ bits
Computing HD(X, Y) if at most k: Lipsky, Porat CPM 2007	$\Omega(k \log n)$ bits $\mathcal{O}(k \log n)$ bits
Computing $ED(X, Y)$ if at most k :	$\Omega(k \log n)$ bits
Belazzougui, Zhang FOCS 2016	$\widetilde{\mathcal{O}}(k^8)$ bits
Jin, Nelson, Wu STACS 2021	$\widetilde{\mathcal{O}}(k^3)$ bits
K., Porat, Starikovskaya (this work)	$\widetilde{\mathcal{O}}(k^2)$ bits

Outline of the talk

Introduction

Streaming exact pattern matching

Streaming pattern matching with edits

Conclusions and open problems

Outline of the talk

Introduction

Streaming exact pattern matching

Streaming pattern matching with edits

Conclusions and open problems

1 Decompose P into two halves P_L and P_R .

 $P: P_L P_R$

Τ

- 1 Decompose P into two halves P_L and P_R .
- 2 Precompute a **fingerprint** $\phi(P_R)$.

$$\phi(P_R)$$
 $P: P_L P_R$

T:

- **1** Decompose P into two halves P_L and P_R .
- **2** Precompute a **fingerprint** $\phi(P_R)$.
- **3** Recursively look for the occurrences of P_L .

$$egin{array}{c|c} \phi(P_R) & & & & & & & & & & & & \\ \hline P_L & & & & & & & & & & & \\ \hline P_R & & & & & & & & & & & \\ \hline \end{array}$$

T:

- 1 Decompose P into two halves P_L and P_R .
- **2** Precompute a **fingerprint** $\phi(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- 4 Try extending each occurrence $T(I ... p] = P_L$ to an occurrence of P:

- 1 Decompose P into two halves P_L and P_R .
- **2** Precompute a **fingerprint** $\phi(P_R)$.
- 3 Recursively look for the occurrences of P_L .
- **4** Try extending each occurrence $T(I ... p] = P_L$ to an occurrence of P:
 - Maintain a **fingerprint** $\phi(T(p ...r])$.

- 1 Decompose P into two halves P_L and P_R .
- **2** Precompute a **fingerprint** $\phi(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- 4 Try extending each occurrence $T(I ... p] = P_L$ to an occurrence of P:
 - Maintain a **fingerprint** $\phi(T(p ... r])$.
 - Once at $r = p + |P_R|$, compare $\phi(T(p ... r])$ with $\phi(P_R)$.

- 1 Decompose P into two halves P_L and P_R .
- **2** Precompute a **fingerprint** $\phi(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- **4** Try extending each occurrence $T(I ... p] = P_L$ to an occurrence of P:
 - Maintain a **fingerprint** $\phi(T(p ... r])$.
 - Once at $r = p + |P_R|$, compare $\phi(T(p ... r])$ with $\phi(P_R)$.

Active occurrences of P_L

Active occurrences of P_L

An occurrence $P_L = T(I ... p]$ is **active** if $p \in [r - |P_R| ... r]$.

■ For each active occurrence $T(l_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.

Active occurrences of P_L

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.

Active occurrences of P_L

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} \dots p_i]$.
- We maintain $\phi(T(p_1..r])$ only

Active occurrences of P_L

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.
- We maintain $\phi(T(p_1 \dots r])$ only and, after processing $T(I_1 \dots p_1]$

Active occurrences of P_L

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.
- We maintain $\phi(T(p_1 ... r])$ only and, after processing $T(I_1 ... p_1]$

Active occurrences of P_L

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.
- We maintain $\phi(T(p_1 \dots r])$ only and, after processing $T(I_1 \dots p_1]$

Active occurrences of P_L

- For each active occurrence $T(l_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.
- We maintain $\phi(T(p_1 ... r])$ only and, after processing $T(I_1 ... p_1]$, use $\phi(D) = \phi(T(p_1 ... p_2])$

Active occurrences of P_L

- For each active occurrence $T(l_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.
- We maintain $\phi(T(p_1 ... r])$ only and, after processing $T(l_1 ... p_1]$, use $\phi(D) = \phi(T(p_1 ... p_2])$ to derive $\phi(T(p_2 ... r])$.

Active occurrences of P_L

- For each active occurrence $T(l_i ... p_i]$, we need to maintain $\phi(T(p_i ... r])$.
- The active occurrences form a **chain** with a fixed **difference** $D = T(p_{i-1} ... p_i]$.
- We maintain $\phi(T(p_1 ... r])$ only and, after processing $T(l_1 ... p_1]$, use $\phi(D) = \phi(T(p_1 ... p_2])$ to derive $\phi(T(p_2 ... r])$.

Outline of the talk

Introduction

Streaming exact pattern matching

Streaming pattern matching with edits

Conclusions and open problems

1 Decompose P into two halves P_L and P_R .

 $P: \begin{array}{|c|c|c|c|}\hline P_L & P_R \\\hline \end{array}$

Τ

- 1 Decompose P into two halves P_L and P_R .
- 2 Precompute a **sketch** $sk(P_R)$.

$$P: \begin{array}{|c|c|}\hline & \mathsf{sk}(P_R) \\ & & & & & & & & \\\hline P_L & & & & & & \\\hline P_R & & & & & & \\\hline \end{array}$$

T:

- **1** Decompose P into two halves P_L and P_R .
- 2 Precompute a **sketch** $sk(P_R)$.
- **3** Recursively look for the occurrences of P_L .

$$P: \begin{array}{|c|c|}\hline & \mathsf{sk}(P_R) \\ & & & & & & & \\\hline P_L & & & & & \\\hline \end{array}$$

T:

- 1 Decompose P into two halves P_L and P_R .
- 2 Precompute a **sketch** $sk(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- 4 Try extending each occurrence $T(I..p] \approx P_L$ to an occurrence of P:

- 1 Decompose P into two halves P_L and P_R .
- 2 Precompute a **sketch** $sk(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- **4** Try extending each occurrence $T(I..p] \approx P_L$ to an occurrence of P:
 - Maintain a **sketch** sk(T(p...r]).

- 1 Decompose P into two halves P_L and P_R .
- 2 Precompute a **sketch** $sk(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- **4** Try extending each occurrence $T(I..p] \approx P_L$ to an occurrence of P:
 - Maintain a **sketch** sk(T(p..r]).
 - Once at $r \in [p + |P_R| k ... p + |P_R| + k]$, compare sk(T(p...r]) with $sk(P_R)$.

- 1 Decompose P into two halves P_L and P_R .
- 2 Precompute a **sketch** $sk(P_R)$.
- **3** Recursively look for the occurrences of P_L .
- 4 Try extending each occurrence $T(I..p] \approx P_L$ to an occurrence of P:
 - Maintain a **sketch** sk(T(p...r]).
 - Once at $r \in [p + |P_R| k ... p + |P_R| + k]$, compare sk(T(p...r]) with $sk(P_R)$.

Corollary (of Charalampopoulos, K., Wellnitz; FOCS 2020)

Active k-edit occurrences of P_L form $\mathcal{O}(k^3)$ chains whose difference D is among $\mathcal{O}(k)$ prescribed substrings of P_L .

■ For each active occurrence $T(I_i ... p_i]$, we need to maintain $sk(T(p_i ... r])$.

Corollary (of Charalampopoulos, K., Wellnitz; FOCS 2020)

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $sk(T(p_i ... r])$.
- We maintain $sk(T(p_1..r])$ only

Corollary (of Charalampopoulos, K., Wellnitz; FOCS 2020)

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $sk(T(p_i ... r])$.
- lacktriangle We maintain sk $(T(p_1 \dots r])$ only and, after processing $T(I_1 \dots p_1]$

Corollary (of Charalampopoulos, K., Wellnitz; FOCS 2020)

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $sk(T(p_i ... r])$.
- We maintain $sk(T(p_1..r])$ only and, after processing $T(I_1..p_1]$, use $sk(D) = sk(T(p_1..p_2])$

Corollary (of Charalampopoulos, K., Wellnitz; FOCS 2020)

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $sk(T(p_i ... r])$.
- We maintain $sk(T(p_1..r])$ only and, after processing $T(I_1..p_1]$, use $sk(D) = sk(T(p_1..p_2])$ to derive $sk(T(p_2..r])$.

Corollary (of Charalampopoulos, K., Wellnitz; FOCS 2020)

- For each active occurrence $T(I_i ... p_i]$, we need to maintain $sk(T(p_i ... r])$.
- We maintain $sk(T(p_1...r])$ only and, after processing $T(I_1...p_1]$, use $sk(D) = sk(T(p_1...p_2])$ to derive $sk(T(p_2...r])$. Infeasible for edit distance sketches!

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED(P_R , $D^{\infty}(0..t]$) = $\mathcal{O}(k)$ for all feasible chain differences D.

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED(P_R , $D^{\infty}(0..t]$) = $\mathcal{O}(k)$ for all feasible chain differences D.

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED(P_R , $D^{\infty}(0..t]$) = $\mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED $(P_R, D^{\infty}(0..t]) = \mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:
 - \blacksquare $\operatorname{sk}(X), \operatorname{sk}(Y) \rightsquigarrow \mathcal{E}(X, Y)$

$$\mathcal{E}(T(p_c \dots r], D^{\infty}(0 \dots t - c|D|])$$

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED(P_R , $D^{\infty}(0..t]$) = $\mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:
 - \blacksquare $\operatorname{sk}(X), \operatorname{sk}(Y) \rightsquigarrow \mathcal{E}(X, Y)$
 - $\bullet \mathcal{E}(X,Y), \mathcal{E}(\hat{X},\hat{Y}) \leadsto \mathcal{E}(X\hat{X},Y\hat{Y})$

$$\mathcal{E}(T(p_c \dots r], D^{\infty}(0 \dots t - c|D|])$$

$$\mathcal{E}(T(p_1 \dots r], D^{\infty}(0 \dots t])$$

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED $(P_R, D^{\infty}(0..t]) = \mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:
 - \blacksquare $\operatorname{sk}(X), \operatorname{sk}(Y) \rightsquigarrow \mathcal{E}(X, Y)$
 - \bullet $\mathcal{E}(X,Y), \mathcal{E}(\hat{X},\hat{Y}) \leadsto \mathcal{E}(X\hat{X},Y\hat{Y})$
 - \bullet $\mathcal{E}(X,Y), \mathcal{E}(Y,Z) \leadsto \mathcal{E}(X,Z)$

$$\mathcal{E}(T(p_c \dots r], D^{\infty}(0 \dots t - c|D|])$$

$$\mathcal{E}(T(p_1 \dots r], D^{\infty}(0 \dots t])$$

 $\mathcal{E}(P_R, T(p_1 \dots r])$

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED $(P_R, D^{\infty}(0..t]) = \mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:
 - \blacksquare $sk(X), sk(Y) \rightsquigarrow \mathcal{E}(X, Y)$
 - \bullet $\mathcal{E}(X,Y), \mathcal{E}(\hat{X},\hat{Y}) \leadsto \mathcal{E}(X\hat{X},Y\hat{Y})$
 - \bullet $\mathcal{E}(X,Y), \mathcal{E}(Y,Z) \leadsto \mathcal{E}(X,Z)$

$$\mathcal{E}(T(p_c \dots r], D^{\infty}(0 \dots t - c|D|])$$

$$\mathcal{E}(T(p_1 \dots r], D^{\infty}(0 \dots t])$$

 $\mathcal{E}(P_R, T(p_1 \dots r])$

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED(P_R , $D^{\infty}(0..t]$) = $\mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:
 - \blacksquare $\operatorname{sk}(X), \operatorname{sk}(Y) \rightsquigarrow \mathcal{E}(X, Y)$
 - \bullet $\mathcal{E}(X,Y), \mathcal{E}(\hat{X},\hat{Y}) \leadsto \mathcal{E}(X\hat{X},Y\hat{Y})$
 - \bullet $\mathcal{E}(X,Y), \mathcal{E}(Y,Z) \leadsto \mathcal{E}(X,Z)$
 - \bullet $\mathcal{E}(X,Y) \rightsquigarrow \mathsf{ED}(X,Y)$

 $\mathcal{E}(T(p_c \dots r], D^{\infty}(0 \dots t - c|D|])$ $\mathcal{E}(T(p_1 \dots r], D^{\infty}(0 \dots t])$

 $\mathcal{E}(P_R, T(p_1 \dots r])$

 $ED(T(p_1..r], P_R)$

LD(/ (p₁ .../_j ,

- **1** A careful decomposition $P = P_L P_R$ allows assuming that:
 - P_L has $\mathcal{O}(k^2)$ active occurrences, or
 - ED $(P_R, D^{\infty}(0..t]) = \mathcal{O}(k)$ for all feasible chain differences D.
- **2** We design an **encoding** $\mathcal{E}(X,Y)$ for strings X,Y at $\mathsf{ED}(X,Y)=\mathcal{O}(k)$ so that:

$$\begin{array}{ll} \bullet & \mathsf{sk}(X), \mathsf{sk}(Y) \leadsto \mathcal{E}(X,Y) \\ \bullet & \mathcal{E}(X,Y), \mathcal{E}(\hat{X},\hat{Y}) \leadsto \mathcal{E}(X\hat{X},Y\hat{Y}) \\ \bullet & \mathcal{E}(X,Y), \mathcal{E}(\hat{X},\hat{Y}) \leadsto \mathcal{E}(X\hat{X},Y\hat{Y}) \\ \bullet & \mathcal{E}(X,Y), \mathcal{E}(Y,Z) \leadsto \mathcal{E}(X,Z) \\ \bullet & \mathcal{E}(X,Y) \leadsto \mathsf{ED}(X,Y) \\ \end{array}$$

- **3** Techniques behind the encoding $\mathcal{E}(X, Y)$:
 - \blacksquare Distinguish **greedy** edit-distance alignments between X, Y;
 - \blacksquare Observe that any two greedy alignments diverge within few **compressible** regions of X, Y.

Outline of the talk

Introduction

Streaming exact pattern matching

Streaming pattern matching with edits

Conclusions and open problems

Conclusions and open problems

Our main result

The pattern matching with edits problem can be solved using an $\widetilde{\mathcal{O}}(k^5)$ -space streaming algorithm that costs $\widetilde{\mathcal{O}}(k^8)$ amortized time per character and outputs answers correct w.h.p.

Conclusions and open problems

Our main result

The pattern matching with edits problem can be solved using an $\widetilde{\mathcal{O}}(k^5)$ -space streaming algorithm that costs $\widetilde{\mathcal{O}}(k^8)$ amortized time per character and outputs answers correct w.h.p.

Directions for future work:

- Real-time processing of the text.
- Efficient (streaming) preprocessing of the pattern.
- Improved polynomial dependency on k.
- Lower bounds (so far, we know that $\widetilde{\Omega}(k)$ space is necessary).

Conclusions and open problems

Our main result

The pattern matching with edits problem can be solved using an $\widetilde{\mathcal{O}}(k^5)$ -space streaming algorithm that costs $\widetilde{\mathcal{O}}(k^8)$ amortized time per character and outputs answers correct w.h.p.

Directions for future work:

- Real-time processing of the text.
- Efficient (streaming) preprocessing of the pattern.
- Improved polynomial dependency on k.
- Lower bounds (so far, we know that $\widetilde{\Omega}(k)$ space is necessary).

Thank you for your attention!