Compression by Contracting Straight-Line Programs

Moses Ganardi

o MAX PLANCK INSTITUTE
C EOR SOFTWARE SYSTEMS

- J

Algorithms on Compressed Data

Two goals in data compression:

« Storedatainacompact form (lossless).

¢ Support efficient queries directly on the compressed representation.

Algorithms on Compressed Data

Two goals in data compression:

« Storedatainacompact form (lossless).

¢ Support efficient queries directly on the compressed representation.
— Avoid decompression!

Algorithms on Compressed Data

Two goals in data compression:

+ Storedataina (lossless).

+ Support directly on the compressed representation.
— Avoid decompression!

compression algorithmics

Kolmogorov grammar-based
. Lz77 } RLE uncompressed
complexity compression

Grammar-based compression

Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar
Se = S;S,
S, = 5,5
S, =+ 5%
S — 1
So — 0

Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar derivation tree

S, =SS, (59

S, = S,S, S)
S, = 58

. 5 HO®
So — @ &G 1 1 0

Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar derivation tree

S, =SS, (59

S, = S,S, S)
S, = 58

. 5 HO®
So — @ &G 1 1 0

The string length is denoted by N < 2951,

Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar derivation tree

S, =SS, (59

S, = S,S, S)
S, = 58

. 5 HO®
So — @ &G 1 1 0

The string length is denoted by N < 2951,
Chomsky normal form: rules of the form A — BCorA — a. 2

The random access problem

For algorithmic applications the two important parameters are size and height.

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in time O (height):

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in time O (height):

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in time O (height):

—> desirable: height O(log N) (“balanced SLPs”)

Logarithmic height

Balancing Theorem (G, Jez, Lohrey, FOCS 2019, JACM 2021)

Given an SLP G for a string of length N. One can compute in linear time an
equivalent SLP of height O(log N) and size O(|G]).

Logarithmic height

Balancing Theorem (G, Jez, Lohrey, FOCS 2019, JACM 2021)

Given an SLP G for a string of length N. One can compute in linear time an
equivalent SLP of height O(log N) and size O(|G]).

— previously: O(|G] - log N) [Rytter, 2002; Charikar etal., 2002]

Logarithmic height

Balancing Theorem (G, Jez, Lohrey, FOCS 2019, JACM 2021)

Given an SLP G for a string of length N. One can compute in linear time an
equivalent SLP of height O(log N) and size O(|G]).

— previously: O(|G] - log N) [Rytter, 2002; Charikar etal., 2002]

— simple solution for random access in O(log N) time and linear space

Logarithmic height

Balancing Theorem (G, Jez, Lohrey, FOCS 2019, JACM 2021)

Given an SLP G for a string of length N. One can compute in linear time an
equivalent SLP of height O(log N) and size O(|G]).

— previously: O(|G] - log N) [Rytter, 2002; Charikar etal., 2002]

— simple solution for random access in O(log N) time and linear space

Other applications:

+ rankand select queries, computing fingerprints,
range minimum queries, subsequence matching

¢ spanner evaluation [Schmid, Schweikardt 2021]

This paper

1. Can we refine the balancing theorem, establishing stronger
balancedness properties “for free”? (= O(1) factor increase)

2. Which algorithmic applications can be obtained
using such balancing results?

Compressed pattern matching

Does balancing lead to improved algorithms for ?

Compressed pattern matching

Does balancing lead to improved algorithms for ?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.
Question Does P occurin T?

Compressed pattern matching

Does balancing lead to improved algorithms for ?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.
Question Does P occurin T?

Theorem (Gawrychowksi, 2011)
Compressed pattern matching can be solved in time

e O(m+n-logN) for -compression and for ,

Compressed pattern matching

Does balancing lead to improved algorithms for

?

Given an uncompressed pattern P of length m, and

a compressed text T of length N and compressed size n.

Question Does P occurin T?

Theorem (Gawrychowksi, 2011)

Compressed pattern matching can be solved in time

e O(m+n-logN) for
o O(m + n) for

-log N

-log N

-compression and for

weight-balanced SLPs

[Charikar etal. ’02], [Gawrychowski’11]

Zoo of balanced SLPs

weight balanced

logarithmic height

height balanced

ForallA — BC: [B|/|C| = ©(1).

weight balanced

logarithmic height

height balanced

ForallA — BC: [B|/|C| = ©(1).

weight balanced

logarithmic height ForallA — BC: |height(B) — height(C)| < 1.

height balanced

ForallA — BC: [B|/|C| = ©(1).

multiplicative cost: O (log N) [Charikar etal. '02]

weight balanced

logarithmic height ForallA — BC: |height(B) — height(C)| < 1.

multiplicative cost: O (log N) [Rytter’02]

height balanced

ForallA — BC: [B|/|C| = ©(1).

multiplicative cost: O (log N) [Charikar etal. '02]

* grammar-based self-index [Gagieetal. 2]

weight balanced « compr. pattern matching [Gawrychowski "11]

logarithmic height ForallA — BC: |height(B) — height(C)| < 1.

multiplicative cost: O (log N) [Rytter’02]

+ grammar-based self-index [Gagieetal.12]

height balanced + fine-grained complexity [Abboud etal. 17]

ForallA — BC: [B|/|C| = ©(1).

multiplicative cost: O (log N) [Charikar etal. ’02]

* grammar-based self-index [Gagieetal. 2]

weight balanced « compr. pattern matching [Gawrychowski "11]

logarithmic height ForallA — BC: |height(B) — height(C)| < 1.

multiplicative cost: O (log N) [Rytter’02]

+ grammar-based self-index [Cagieetal.12]

height balanced + fine-grained complexity [Abboud etal. 17]

Question: Is the multiplicative cost of O(log N) optimal?

weight balanced

logarithmic height path balanced

height balanced

Theorem

There exist SLPs of size O(n) such that any equivalent path balanced SLP has
size Q(nlogN).

weight balanced

logarithmic height path balanced

In every subtree T, every root-to-leaf

path has length © (log |T]).
height balanced

Theorem

There exist SLPs of size O(n) such that any equivalent path balanced SLP has
size Q(nlogN).

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)
Compressed pattern matching for SLP-compressed texts can be solved in time
O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)

Compressed pattern matching for SLP-compressed texts can be solved in time
O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

+ fingersearch problem

+ navigation on compressed trees

Contracting SLPs

Definition
An SLP is contracting if forevery rule A — (3, ... 3, and every variable 3; we
have |3 < |Al/2.

Contracting SLPs

Definition
An SLP is contracting if forevery rule A — (3, ... 3, and every variable 3; we
have |3 < |Al/2.

o Everyvariable A has height O(log |A]) ().
+ Givenavariable A, one can access Ali] in time O(log|A|).

o Useful when multiple stringss;, . . ., s,, are compressed using a single SLP.

Contracting SLPs

Definition
An SLP is contracting if forevery rule A — (3, ... 3, and every variable 3; we
have |3 < |Al/2.

« Everyvariable A has height O(log |A|) (locally balanced).
+ Givenavariable A, one can access Ali] in time O(log |A]).

¢ Useful when multiple stringss;, . . ., s,, are compressed using a single SLP.

Theorem

One can convertan SLP G in linear time into an equivalent contracting SLP of
size O(|G]) with rules of constant length.

logarithmic height

AA

locally balanced

contracting

path balanced

weight balanced

height balanced

contracting,” weight balanced
4

logarithmic height locally balanced , path balanced

height balanced

Proof sketch

Theorem
One can convertan SLP G in linear time into an equivalent contracting SLP of
size O(|G|) with rules of constant length.

Given atrie T with edges labeled by weighted symbols,
define all prefixes by a SLP.

N
NN

Possible with a contracting SLP of size O(|T|).

Applications

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

9

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

\
o d

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

\
o d

ideallyin O (log d) time

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

9

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

d o

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Ggrtz, 2018]

+ setFinger(i)
e access(i)

+ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing\

d "
ideallyin O (log d) time

Theorem (Bille, Christiansen, Cording, Ggrtz, 2018)
Civen an SLP G for a string of length N, one can support

+ setFinger(i) intime O (logN)
+ access(i) intime O (logd + loglog N)
+ moveFinger(i) intime O (logd + log log N)

where d is the distance between i and the finger position,
using O(|S|) preprocessing time and space.

Theorem (Bille, Christiansen, Cording, Ggrtz, 2018;)
Civen an SLP G for a string of length N, one can support

+ setFinger(i) intime O (logN)
+ access(i) intime O (logd +)
+ moveFinger(i) intime O (logd +)

where d is the distance between i and the finger position,
using O(t - ||) preprocessing time and space,

Theorem (Bille, Christiansen, Cording, Ggrtz, 2018;)
Civen an SLP G for a string of length N, one can support

+ setFinger(i) intime O (logN)
+ access(i) intime O (logd +)
+ moveFinger(i) intime O (logd +)

where d is the distance between i and the finger position,
using O(t - ||) preprocessing time and space,

Choosingt = log™ Nyields O(log d) time foraccess(i) and
moveFinger(i).

Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020)
Given a forest SLP for a tree T, one can support in linear space the following
navigation steps on T in constant time:

+ parent() in O (1) time
e first _child(),last_child() in© (1) time
o next_sibling(),prev_sibling() in O (1) time
o get_symbol() in O (1) time

Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020;)
Given a forest SLP for a tree T, one can support in linear space the following
navigation steps on T in constant time:

+ parent() in O (1) time
e first _child(),last_child() in© (1) time
o next_sibling(),prev_sibling() in O (1) time
o get_symbol() in O (1) time

Conclusion

Balancing in grammar-based compression as a preprocessing step
thatenables fast queries on the compressed data.

WA

contracting weight balanced
logarithmic height locally balanced path balanced

height balanced

Conclusion

Balancing in grammar-based compression as a preprocessing step
thatenables fast queries on the compressed data.

WA

contracting weight balanced

/Nl nlip)

logarithmic height locally balanced path balanced

height balanced
Open questions:

Fingersearch in O(logd) time and O(|9]|) space?
random access for LZ77 in O(log N) time and linear space?
Balancing for LZ77/collage systems?

	Grammar-based compression
	Zoo of balanced SLPs
	Applications

