Compression by Contracting Straight-Line Programs

Moses Ganardi

Two goals in data compression:

- Store data in a compact form (lossless).
- Support efficient queries directly on the compressed representation.
 → Avoid decompression!

Two goals in data compression:

- Store data in a compact form (lossless).
- ◆ Support efficient queries directly on the compressed representation.
 → Avoid decompression!

Two goals in data compression:

- Store data in a compact form (lossless).
- ◆ Support efficient queries directly on the compressed representation.
 → Avoid decompression!

compression alg					algorit	hmics
	Kolmogorov complexity	LZ77	grammar-based compression	RLE	uncompressed	

Grammar-based compression

Every variable occurs exactly once on the left-hand side of a rule and the variables are topologically ordered.

The string length is denoted by $N \leq 2^{O(|\mathcal{G}|)}$. Chomsky normal form: rules of the form $A \to BC$ or $A \to a$.

Grammar-based compression

A **straight-line program (SLP)** is a context-free grammar \mathcal{G} which produces exactly one string.

Every variable occurs exactly once on the left-hand side of a rule and the variables are topologically ordered.

The string length is denoted by $N \leq 2^{O(|\mathcal{G}|)}$. Chomsky normal form: rules of the form $A \to BC$ or $A \to a$.

Every variable occurs exactly once on the left-hand side of a rule and the variables are topologically ordered.

The string length is denoted by $N \leq 2^{O(|\mathcal{G}|)}$. Chomsky normal form: rules of the form $A \to BC$ or $A \to a$.

Every variable occurs exactly once on the left-hand side of a rule and the variables are topologically ordered.

The string length is denoted by $N \leq 2^{O(|G|)}$. Chomsky normal form: rules of the form $A \to BC$ or $A \to a$.

Every variable occurs exactly once on the left-hand side of a rule and the variables are topologically ordered.

The string length is denoted by $N \leq 2^{O(|\mathcal{G}|)}$.

Chomsky normal form: rules of the form $A \rightarrow BC$ or $A \rightarrow a$.

Every variable occurs exactly once on the left-hand side of a rule and the variables are topologically ordered.

The string length is denoted by $N \leq 2^{\mathcal{O}(|\mathcal{G}|)}$. Chomsky normal form: rules of the form $A \to BC$ or $A \to a$.

For algorithmic applications the two important parameters are size and height.

Example: Random access in time O(height):

For algorithmic applications the two important parameters are **size** and **height**. **Example:** Random access in time O(height):

For algorithmic applications the two important parameters are **size** and **height**. **Example:** Random access in time O(height):

For algorithmic applications the two important parameters are **size** and **height**. **Example:** Random access in time O(height):

Given an SLP \mathcal{G} for a string of length N. One can compute in linear time an equivalent SLP of height $\mathcal{O}(\log N)$ and size $\mathcal{O}(|\mathcal{G}|)$.

 \rightarrow previously: $O(|\mathcal{G}| \cdot \log N)$

[Rytter, 2002; Charikar et al., 2002]

 \rightarrow simple solution for random access in $O(\log N)$ time and **linear** space

Other applications:

- rank and select queries, computing fingerprints, range minimum queries, subsequence matching
- spanner evaluation

Given an SLP \mathcal{G} for a string of length N. One can compute in linear time an equivalent SLP of height $\mathcal{O}(\log N)$ and size $\mathcal{O}(|\mathcal{G}|)$.

 $\rightarrow \mathsf{previously:} \ \mathbb{O}(|\mathcal{G}| \cdot \log N)$

[Rytter, 2002; Charikar et al., 2002]

 \rightarrow simple solution for random access in $O(\log N)$ time and **linear** space

Other applications:

- rank and select queries, computing fingerprints, range minimum queries, subsequence matching
- spanner evaluation

Given an SLP \mathcal{G} for a string of length N. One can compute in linear time an equivalent SLP of height $\mathcal{O}(\log N)$ and size $\mathcal{O}(|\mathcal{G}|)$.

 $\rightarrow \mathsf{previously:} \, \mathbb{O}(|\mathcal{G}| \cdot \log N)$

[Rytter, 2002; Charikar et al., 2002]

 \rightarrow simple solution for random access in $O(\log N)$ time and **linear** space

Other applications:

- rank and select queries, computing fingerprints, range minimum queries, subsequence matching
- spanner evaluation

Given an SLP \mathcal{G} for a string of length N. One can compute in linear time an equivalent SLP of height $\mathcal{O}(\log N)$ and size $\mathcal{O}(|\mathcal{G}|)$.

 $\rightarrow \text{previously: } \mathbb{O}(|\mathcal{G}| \cdot \log N)$

[Rytter, 2002; Charikar et al., 2002]

 \rightarrow simple solution for random access in $O(\log N)$ time and **linear** space

Other applications:

- rank and select queries, computing fingerprints, range minimum queries, subsequence matching
- spanner evaluation

- Can we refine the balancing theorem, establishing stronger balancedness properties "for free"? (= O(1) factor increase)
- 2. Which algorithmic applications can be obtained using such balancing results?

Compressed pattern matching

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern P of length *m*, and a compressed text T of length N and compressed size *n*. **Justion** Does P occur in T?

Theorem (Gawrychowksi, 2011)

Compressed pattern matching can be solved in time

- $O(m + n \cdot \log N)$ for LZ77-compression and for SLPs,
- O(m + n) for weight-balanced SLPs.

[Charikar et al. '02], [Gawrychowski '11]

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern *P* of length *m*, and a compressed text *T* of length *N* and compressed size *n*.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)

Compressed pattern matching can be solved in time

- $O(m + n \cdot \log N)$ for LZ77-compression and for SLPs
- O(m + n) for weight-balanced SLPs.

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern *P* of length *m*, and a compressed text *T* of length *N* and compressed size *n*.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)

Compressed pattern matching can be solved in time

- $O(m + n \cdot \log N)$ for LZ77-compression and for SLPs,
- O(m + n) for weight-balanced SLPs.

[Charikar et al. '02], [Gawrychowski '11]

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern *P* of length *m*, and a compressed text *T* of length *N* and compressed size *n*.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)

Compressed pattern matching can be solved in time

- $O(m + n \cdot \log N)$ for LZ77-compression and for SLPs,
- O(m + n) for weight-balanced SLPs.

[Charikar et al. '02], [Gawrychowski '11]

Zoo of balanced SLPs

For all $A \to BC$: $|B|/|C| = \Theta(1)$.

Theorem

There exist SLPs of size O(n) such that any equivalent path balanced SLP has size $\Omega(n \log N)$.

Theorem

There exist SLPs of size O(n) such that any equivalent path balanced SLP has size $\Omega(n \log N)$.

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)

Compressed pattern matching for SLP-compressed texts can be solved in time O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

- finger search problem
- navigation on compressed trees

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022) Compressed pattern matching for SLP-compressed texts can be solved in time O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

- finger search problem
- navigation on compressed trees

Definition

An SLP is **contracting** if for every rule $A \to \beta_1 \dots \beta_k$ and every variable β_i we have $|\beta_i| \leq |A|/2$.

- Every variable A has height O(log |A|) (locally balanced).
- Given a variable A, one can access A[i] in time O(log |A|).
- Useful when multiple strings s_1, \ldots, s_m are compressed using a single SLP.

Theorem

One can convert an SLP ${\mathcal G}$ in linear time into an equivalent contracting SLP of size ${\mathcal O}(|{\mathcal G}|)$ with rules of constant length.

Definition

An SLP is **contracting** if for every rule $A \to \beta_1 \dots \beta_k$ and every variable β_i we have $|\beta_i| \leq |A|/2$.

- Every variable A has height $O(\log |A|)$ (locally balanced).
- Given a variable A, one can access A[i] in time O(log |A|).
- Useful when multiple strings s₁, ..., s_m are compressed using a single SLP.

Theorem

One can convert an SLP \mathcal{G} in linear time into an equivalent contracting SLP of size $\mathcal{O}(|\mathcal{G}|)$ with rules of constant length.

Definition

An SLP is **contracting** if for every rule $A \to \beta_1 \dots \beta_k$ and every variable β_i we have $|\beta_i| \leq |A|/2$.

- Every variable A has height $O(\log |A|)$ (locally balanced).
- Given a variable A, one can access A[i] in time O(log |A|).
- Useful when multiple strings s₁, ..., s_m are compressed using a single SLP.

Theorem

One can convert an SLP \mathcal{G} in linear time into an equivalent contracting SLP of size $\mathcal{O}(|\mathcal{G}|)$ with rules of constant length.

Theorem

One can convert an SLP \mathcal{G} in linear time into an equivalent contracting SLP of size $\mathcal{O}(|\mathcal{G}|)$ with rules of constant length.

Given a trie *T* with edges labeled by weighted symbols, define all prefixes by a contracting SLP.

Possible with a contracting SLP of size O(|T|).

Applications

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitamet consetetursadipscing

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitamet consetetursadipscing

ideally in $O(\log d)$ time

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

d

- setFinger(i)
- access(i)
- moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

 $d \rightarrow \forall$ ideally in $O(\log d)$ time

Theorem (Bille, Christiansen, Cording, Gørtz, 2018)

Given an SLP \mathcal{G} for a string of length N, one can support

- setFinger(i) in time $O(\log N)$
- access(i) in time $O(\log d + \log \log N)$
- moveFinger(i) in time O(log d + log log N)

where *d* is the distance between *i* and the finger position, using O(|G|) preprocessing time and space.

Choosing $t = \log^* N$ yields $O(\log d)$ time for access(i) and moveFinger(i).

Theorem (Bille, Christiansen, Cording, Gørtz, 2018; G, 2021)

Given an SLP \mathcal{G} for a string of length N, one can support

- setFinger(i) in time $O(\log N)$
- access(i) in time $O(\log d + \log^{(t)} N)$
- moveFinger(i) in time $O(\log d + \log^{(t)} N)$

where *d* is the distance between *i* and the finger position, using $O(t \cdot |G|)$ preprocessing time and space, for any $t \ge 1$.

Choosing $t = \log^* N$ yields $O(\log d)$ time for access(i) and moveFinger(i).

Theorem (Bille, Christiansen, Cording, Gørtz, 2018; G, 2021)

Given an SLP \mathcal{G} for a string of length N, one can support

- setFinger(i) in time O(log N)
- access(i) in time $O(\log d + \log^{(t)} N)$
- moveFinger(i) in time $O(\log d + \log^{(t)} N)$

where *d* is the distance between *i* and the finger position, using $O(t \cdot |G|)$ preprocessing time and space, for any $t \ge 1$.

Choosing $t = \log^* N$ yields $O(\log d)$ time for access(i) and moveFinger(i).

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020)

Given a forest SLP for a tree *T*, one can support in linear space the following navigation steps on *T* in constant time:

٠	
٠	
٠	

get_symbol()

in O(1) time

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020)

Given a forest SLP for a tree *T*, one can support in linear space the following navigation steps on *T* in constant time:

- parent() in O(1) time
 first_child(),last_child() in O(1) time
- next_sibling(), prev_sibling() in O(1) time
- get_symbol()

in $\mathbb{O}\left(1\right)$ time

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020; G, 2021)

Given a forest SLP for a tree *T*, one can support in linear space the following navigation steps on *T* in constant time:

- parent() in O(1) time
 first_child(),last_child() in O(1) time
 next_sibling(),prev_sibling() in O(1) time
- next_sibting(),prev_sib
 get symbol()
- get_symbol
- child(i)

in O(1) time in $O(\log d)$ time

where *d* is the degree of the current node.

Conclusion

Balancing in grammar-based compression as a preprocessing step that enables fast queries on the compressed data.

Open questions:

Finger search in $O(\log d)$ time and O(|G|) space? random access for LZ77 in $O(\log N)$ time and linear space? Balancing for LZ77/collage systems?

Conclusion

Balancing in grammar-based compression as a preprocessing step that enables fast queries on the compressed data.

Open questions:

Finger search in $O(\log d)$ time and O(|G|) space? random access for LZ77 in $O(\log N)$ time and linear space? Balancing for LZ77/collage systems?