
Compression by Contracting Straight-Line Programs

Moses Ganardi

Algorithms on Compressed Data

Two goals in data compression:

˛ Store data in a compact form (lossless).

˛ Support efficient queries directly on the compressed representation.
→Avoid decompression!

compression algorithmics

uncompressed
Kolmogorov
complexity

grammar-based
compressionLZ77 RLE

1

Algorithms on Compressed Data

Two goals in data compression:

˛ Store data in a compact form (lossless).

˛ Support efficient queries directly on the compressed representation.
→Avoid decompression!

compression algorithmics

uncompressed
Kolmogorov
complexity

grammar-based
compressionLZ77 RLE

1

Algorithms on Compressed Data

Two goals in data compression:

˛ Store data in a compact form (lossless).

˛ Support efficient queries directly on the compressed representation.
→Avoid decompression!

compression algorithmics

uncompressed
Kolmogorov
complexity

grammar-based
compressionLZ77 RLE

1

Grammar-based compression

Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar

S4 → S3 S2

S3 → S2 S1

S2 → S1 S0

S1 → 1
S0 → 0

derivation tree

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2

Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar

S4 → S3 S2

S3 → S2 S1

S2 → S1 S0

S1 → 1
S0 → 0

derivation tree

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2

Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar

S4 → S3 S2

S3 → S2 S1

S2 → S1 S0

S1 → 1
S0 → 0

derivation tree

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2

Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar

S4 → S3 S2

S3 → S2 S1

S2 → S1 S0

S1 → 1
S0 → 0

derivation tree

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2

Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar

S4 → S3 S2

S3 → S2 S1

S2 → S1 S0

S1 → 1
S0 → 0

derivation tree

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2

Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar

S4 → S3 S2

S3 → S2 S1

S2 → S1 S0

S1 → 1
S0 → 0

derivation tree

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in timeO(height):

S5

S3

S1

1

S2

S0

0

S1

1

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

−→ desirable: heightO(log N) (“balanced SLPs”)

3

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in timeO(height):

S5

S3

S1

1

S2

S0

0

S1

1

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

−→ desirable: heightO(log N) (“balanced SLPs”)

3

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in timeO(height):

S5

S3

S1

1

S2

S0

0

S1

1

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

−→ desirable: heightO(log N) (“balanced SLPs”)

3

The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in timeO(height):

S5

S3

S1

1

S2

S0

0

S1

1

S4

S2

S0

0

S1

1

S3

S1

1

S2

S0

0

S1

1

−→ desirable: heightO(log N) (“balanced SLPs”)

3

Logarithmic height

Balancing Theorem (G, Jeż, Lohrey, FOCS 2019, JACM 2021)
Given an SLPG for a string of length N. One can compute in linear time an
equivalent SLP of heightO(log N) and sizeO(|G|).

→ previously: O(|G| · log N) [Rytter, 2002; Charikar et al., 2002]

→ simple solution for random access inO(log N) time and linear space

Other applications:

˛ rank and select queries, computing fingerprints,
range minimum queries, subsequence matching

˛ spanner evaluation [Schmid, Schweikardt 2021]

4

Logarithmic height

Balancing Theorem (G, Jeż, Lohrey, FOCS 2019, JACM 2021)
Given an SLPG for a string of length N. One can compute in linear time an
equivalent SLP of heightO(log N) and sizeO(|G|).

→ previously: O(|G| · log N) [Rytter, 2002; Charikar et al., 2002]

→ simple solution for random access inO(log N) time and linear space

Other applications:

˛ rank and select queries, computing fingerprints,
range minimum queries, subsequence matching

˛ spanner evaluation [Schmid, Schweikardt 2021]

4

Logarithmic height

Balancing Theorem (G, Jeż, Lohrey, FOCS 2019, JACM 2021)
Given an SLPG for a string of length N. One can compute in linear time an
equivalent SLP of heightO(log N) and sizeO(|G|).

→ previously: O(|G| · log N) [Rytter, 2002; Charikar et al., 2002]

→ simple solution for random access inO(log N) time and linear space

Other applications:

˛ rank and select queries, computing fingerprints,
range minimum queries, subsequence matching

˛ spanner evaluation [Schmid, Schweikardt 2021]

4

Logarithmic height

Balancing Theorem (G, Jeż, Lohrey, FOCS 2019, JACM 2021)
Given an SLPG for a string of length N. One can compute in linear time an
equivalent SLP of heightO(log N) and sizeO(|G|).

→ previously: O(|G| · log N) [Rytter, 2002; Charikar et al., 2002]

→ simple solution for random access inO(log N) time and linear space

Other applications:

˛ rank and select queries, computing fingerprints,
range minimum queries, subsequence matching

˛ spanner evaluation [Schmid, Schweikardt 2021]

4

This paper

1. Can we refine the balancing theorem, establishing stronger
balancedness properties “for free”? (=O(1) factor increase)

2. Which algorithmic applications can be obtained
using such balancing results?

5

Compressed pattern matching

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)
Compressed pattern matching can be solved in time

˛ O(m + n · log N) for LZ77-compression and for SLPs,

˛ O(m + n) for weight-balanced SLPs.

LZ77

weight-balanced SLPs

SLPs

[Charikar et al. ’02], [Gawrychowski ’11]

· log N

· log N

6

Compressed pattern matching

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)
Compressed pattern matching can be solved in time

˛ O(m + n · log N) for LZ77-compression and for SLPs,

˛ O(m + n) for weight-balanced SLPs.

LZ77

weight-balanced SLPs

SLPs

[Charikar et al. ’02], [Gawrychowski ’11]

· log N

· log N

6

Compressed pattern matching

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)
Compressed pattern matching can be solved in time

˛ O(m + n · log N) for LZ77-compression and for SLPs,

˛ O(m + n) for weight-balanced SLPs.

LZ77

weight-balanced SLPs

SLPs

[Charikar et al. ’02], [Gawrychowski ’11]

· log N

· log N

6

Compressed pattern matching

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)
Compressed pattern matching can be solved in time

˛ O(m + n · log N) for LZ77-compression and for SLPs,

˛ O(m + n) for weight-balanced SLPs.

LZ77

weight-balanced SLPs

SLPs

[Charikar et al. ’02], [Gawrychowski ’11]

· log N

· log N

6

Zoo of balanced SLPs

logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?

7

logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?

7

For all A → BC: |B|/|C| = Θ(1).

multiplicative cost: O(log N) [Charikar et al. ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ compr. pattern matching [Gawrychowski ’11]

logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?

7

For all A → BC: |B|/|C| = Θ(1).

multiplicative cost: O(log N) [Charikar et al. ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ compr. pattern matching [Gawrychowski ’11]

For all A → BC: |height(B) − height(C)| 6 1.

multiplicative cost: O(log N) [Rytter ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ fine-grained complexity [Abboud et al. ’17]

logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?

7

For all A → BC: |B|/|C| = Θ(1).

multiplicative cost: O(log N) [Charikar et al. ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ compr. pattern matching [Gawrychowski ’11]

For all A → BC: |height(B) − height(C)| 6 1.

multiplicative cost: O(log N) [Rytter ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ fine-grained complexity [Abboud et al. ’17]

logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?

7

For all A → BC: |B|/|C| = Θ(1).

multiplicative cost: O(log N) [Charikar et al. ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ compr. pattern matching [Gawrychowski ’11]

For all A → BC: |height(B) − height(C)| 6 1.

multiplicative cost: O(log N) [Rytter ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ fine-grained complexity [Abboud et al. ’17]

logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?

7

For all A → BC: |B|/|C| = Θ(1).

multiplicative cost: O(log N) [Charikar et al. ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ compr. pattern matching [Gawrychowski ’11]

For all A → BC: |height(B) − height(C)| 6 1.

multiplicative cost: O(log N) [Rytter ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ fine-grained complexity [Abboud et al. ’17]

logarithmic height

height balanced

weight balanced

path balanced

Theorem
There exist SLPs of sizeO(n) such that any equivalent path balanced SLP has
sizeΩ(n log N).

8

logarithmic height

height balanced

weight balanced

path balanced

Theorem
There exist SLPs of sizeO(n) such that any equivalent path balanced SLP has
sizeΩ(n log N).

8

In every subtree T, every root-to-leaf
path has lengthΘ(log |T|).

Good News

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)
Compressed pattern matching for SLP-compressed texts can be solved in time
O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

˛ finger search problem

˛ navigation on compressed trees

9

Good News

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)
Compressed pattern matching for SLP-compressed texts can be solved in time
O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

˛ finger search problem

˛ navigation on compressed trees

9

Contracting SLPs

Definition
An SLP is contracting if for every rule A → β1 . . .βk and every variableβi we
have |βi| 6 |A|/2.

˛ Every variable A has heightO(log |A|) (locally balanced).

˛ Given a variable A, one can access A[i] in timeO(log |A|).

˛ Useful when multiple strings s1, . . . , sm are compressed using a single SLP.

Theorem
One can convert an SLPG in linear time into an equivalent contracting SLP of
sizeO(|G|)with rules of constant length.

10

Contracting SLPs

Definition
An SLP is contracting if for every rule A → β1 . . .βk and every variableβi we
have |βi| 6 |A|/2.

˛ Every variable A has heightO(log |A|) (locally balanced).

˛ Given a variable A, one can access A[i] in timeO(log |A|).

˛ Useful when multiple strings s1, . . . , sm are compressed using a single SLP.

Theorem
One can convert an SLPG in linear time into an equivalent contracting SLP of
sizeO(|G|)with rules of constant length.

10

Contracting SLPs

Definition
An SLP is contracting if for every rule A → β1 . . .βk and every variableβi we
have |βi| 6 |A|/2.

˛ Every variable A has heightO(log |A|) (locally balanced).

˛ Given a variable A, one can access A[i] in timeO(log |A|).

˛ Useful when multiple strings s1, . . . , sm are compressed using a single SLP.

Theorem
One can convert an SLPG in linear time into an equivalent contracting SLP of
sizeO(|G|)with rules of constant length.

10

logarithmic height locally balanced path balanced

contracting

height balanced

weight balanced

11

logarithmic height locally balanced path balanced

contracting

height balanced

weight balanced

11

Proof sketch

Theorem
One can convert an SLPG in linear time into an equivalent contracting SLP of
sizeO(|G|)with rules of constant length.

Given a trie T with edges labeled by weighted symbols,
define all prefixes by a contracting SLP.

b : 4a : 7

e : 2 f : 8c : 6 d : 1

Possible with a contracting SLP of size O(|T|).

12

Applications

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

👆 d

13

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing
👆

d

13

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing
👆 d

13

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing
👆 d

ideally inO(log d) time

13

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing
👆

13

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

👆

d 👆

13

Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

👆

d 👆

ideally inO(log d) time

13

Finger search

Theorem (Bille, Christiansen, Cording, Gørtz, 2018)
Given an SLPG for a string of length N, one can support

˛ setFinger(i) in timeO(log N)

˛ access(i) in timeO(log d + log log N)

˛ moveFinger(i) in timeO(log d + log log N)

where d is the distance between i and the finger position,
usingO(|G|) preprocessing time and space.

Choosing t = log∗ N yieldsO(log d) time foraccess(i) and
moveFinger(i).

14

Finger search

Theorem (Bille, Christiansen, Cording, Gørtz, 2018; G, 2021)
Given an SLPG for a string of length N, one can support

˛ setFinger(i) in timeO(log N)

˛ access(i) in timeO(log d + log(t) N)

˛ moveFinger(i) in timeO(log d + log(t) N)

where d is the distance between i and the finger position,
usingO(t · |G|) preprocessing time and space, for any t > 1.

Choosing t = log∗ N yieldsO(log d) time foraccess(i) and
moveFinger(i).

14

Finger search

Theorem (Bille, Christiansen, Cording, Gørtz, 2018; G, 2021)
Given an SLPG for a string of length N, one can support

˛ setFinger(i) in timeO(log N)

˛ access(i) in timeO(log d + log(t) N)

˛ moveFinger(i) in timeO(log d + log(t) N)

where d is the distance between i and the finger position,
usingO(t · |G|) preprocessing time and space, for any t > 1.

Choosing t = log∗ N yieldsO(log d) time foraccess(i) and
moveFinger(i).

14

Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020)
Given a forest SLP for a tree T, one can support in linear space the following
navigation steps on T in constant time:

˛ parent() inO(1) time

˛ first_child(),last_child() inO(1) time

˛ next_sibling(),prev_sibling() inO(1) time

˛ get_symbol() inO(1) time

˛ child(i) inO(log d) time

where d is the degree of the current node.

15

Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020)
Given a forest SLP for a tree T, one can support in linear space the following
navigation steps on T in constant time:

˛ parent() inO(1) time

˛ first_child(),last_child() inO(1) time

˛ next_sibling(),prev_sibling() inO(1) time

˛ get_symbol() inO(1) time

˛ child(i) inO(log d) time

where d is the degree of the current node.

15

Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020; G, 2021)
Given a forest SLP for a tree T, one can support in linear space the following
navigation steps on T in constant time:

˛ parent() inO(1) time

˛ first_child(),last_child() inO(1) time

˛ next_sibling(),prev_sibling() inO(1) time

˛ get_symbol() inO(1) time

˛ child(i) inO(log d) time

where d is the degree of the current node.

15

Conclusion

Balancing in grammar-based compression as a preprocessing step
that enables fast queries on the compressed data.

logarithmic height locally balanced path balanced

contracting

height balanced

weight balanced

Open questions:

Finger search inO(log d) time andO(|G|) space?
random access for LZ77 inO(log N) time and linear space?
Balancing for LZ77/collage systems?

16

Conclusion

Balancing in grammar-based compression as a preprocessing step
that enables fast queries on the compressed data.

logarithmic height locally balanced path balanced

contracting

height balanced

weight balanced

Open questions:

Finger search inO(log d) time andO(|G|) space?
random access for LZ77 inO(log N) time and linear space?
Balancing for LZ77/collage systems?

16

	Grammar-based compression
	Zoo of balanced SLPs
	Applications

