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˛ Store data in a compact form (lossless).
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Grammar-based compression



Grammar-based compression

A straight-line program (SLP) is a context-free grammarGwhich produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.
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The string length is denoted by N 6 2O(|G|).
Chomsky normal form: rules of the form A → BC or A → a. 2
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The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in timeO(height):
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−→ desirable: heightO(log N) (“balanced SLPs”)
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Logarithmic height

Balancing Theorem (G, Jeż, Lohrey, FOCS 2019, JACM 2021)
Given an SLPG for a string of length N. One can compute in linear time an
equivalent SLP of heightO(log N) and sizeO(|G|).

→ previously: O(|G| · log N) [Rytter, 2002; Charikar et al., 2002]

→ simple solution for random access inO(log N) time and linear space

Other applications:

˛ rank and select queries, computing fingerprints,
range minimum queries, subsequence matching

˛ spanner evaluation [Schmid, Schweikardt 2021]
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This paper

1. Can we refine the balancing theorem, establishing stronger
balancedness properties “for free”? (=O(1) factor increase)

2. Which algorithmic applications can be obtained
using such balancing results?
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Compressed pattern matching

Does balancing lead to improved algorithms for compressed pattern matching?

Given an uncompressed pattern P of length m, and
a compressed text T of length N and compressed size n.

Question Does P occur in T?

Theorem (Gawrychowksi, 2011)
Compressed pattern matching can be solved in time

˛ O(m + n · log N) for LZ77-compression and for SLPs,

˛ O(m + n) for weight-balanced SLPs.

LZ77

weight-balanced SLPs

SLPs

[Charikar et al. ’02], [Gawrychowski ’11]

· log N

· log N
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Zoo of balanced SLPs



logarithmic height

height balanced

weight balanced

Question: Is the multiplicative cost ofO(log N) optimal?
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For all A → BC: |B|/|C| = Θ(1).

multiplicative cost: O(log N) [Charikar et al. ’02]

˛ grammar-based self-index [Gagie et al. ’12]

˛ compr. pattern matching [Gawrychowski ’11]
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logarithmic height

height balanced

weight balanced

path balanced

Theorem
There exist SLPs of sizeO(n) such that any equivalent path balanced SLP has
sizeΩ(n log N).
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In every subtree T, every root-to-leaf
path has lengthΘ(log |T|).



Good News

1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)
Compressed pattern matching for SLP-compressed texts can be solved in time
O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

˛ finger search problem

˛ navigation on compressed trees
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Contracting SLPs

Definition
An SLP is contracting if for every rule A → β1 . . .βk and every variableβi we
have |βi| 6 |A|/2.

˛ Every variable A has heightO(log |A|) (locally balanced).

˛ Given a variable A, one can access A[i] in timeO(log |A|).

˛ Useful when multiple strings s1, . . . , sm are compressed using a single SLP.

Theorem
One can convert an SLPG in linear time into an equivalent contracting SLP of
sizeO(|G|)with rules of constant length.
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Proof sketch

Theorem
One can convert an SLPG in linear time into an equivalent contracting SLP of
sizeO(|G|)with rules of constant length.

Given a trie T with edges labeled by weighted symbols,
define all prefixes by a contracting SLP.

b : 4a : 7

e : 2 f : 8c : 6 d : 1

Possible with a contracting SLP of size O(|T|).
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Applications



Finger search

In finger search on a (compressed) string we want to support the following
operations: [Bille, Christiansen, Cording, Gørtz, 2018]

˛ setFinger(i)

˛ access(i)

˛ moveFinger(i)

loremipsumdolorsitametconsetetursadipscing

👆 d
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Finger search

Theorem (Bille, Christiansen, Cording, Gørtz, 2018)
Given an SLPG for a string of length N, one can support

˛ setFinger(i) in timeO(log N)

˛ access(i) in timeO(log d + log log N)

˛ moveFinger(i) in timeO(log d + log log N)

where d is the distance between i and the finger position,
usingO(|G|) preprocessing time and space.

Choosing t = log∗ N yieldsO(log d) time foraccess(i) and
moveFinger(i).
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Navigation on compressed trees

Extend a navigation data structure on FSLP-compressed trees:

Theorem (Reh, Sieber, 2020)
Given a forest SLP for a tree T, one can support in linear space the following
navigation steps on T in constant time:

˛ parent() inO(1) time

˛ first_child(),last_child() inO(1) time

˛ next_sibling(),prev_sibling() inO(1) time

˛ get_symbol() inO(1) time

˛ child(i) inO(log d) time

where d is the degree of the current node.
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Conclusion

Balancing in grammar-based compression as a preprocessing step
that enables fast queries on the compressed data.

logarithmic height locally balanced path balanced

contracting

height balanced

weight balanced

Open questions:

Finger search inO(log d) time andO(|G|) space?
random access for LZ77 inO(log N) time and linear space?
Balancing for LZ77/collage systems?
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