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Grammar-based compression

A straight-line program (SLP) is a context-free grammar G which produces
exactly one string.

Every variable occurs exactly once on the left-hand side of a rule
and the variables are topologically ordered.

grammar derivation tree

S, =SS, (59

S, = S,S, S )
S, = 58

. 5 HO®
So — @ &G 1 1 0

The string length is denoted by N < 2951,
Chomsky normal form: rules of the form A — BCorA — a. 2
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The random access problem

For algorithmic applications the two important parameters are size and height.

Example: Random access in time O (height):

—> desirable: height O(log N) (“balanced SLPs”)
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Logarithmic height

Balancing Theorem (G, Jez, Lohrey, FOCS 2019, JACM 2021)

Given an SLP G for a string of length N. One can compute in linear time an
equivalent SLP of height O(log N) and size O(|G]).

— previously: O(|G] - log N) [Rytter, 2002; Charikar etal., 2002]

— simple solution for random access in O(log N) time and linear space

Other applications:

+ rankand select queries, computing fingerprints,
range minimum queries, subsequence matching

¢ spanner evaluation [Schmid, Schweikardt 2021]



This paper

1. Can we refine the balancing theorem, establishing stronger
balancedness properties “for free”? (= O(1) factor increase)

2. Which algorithmic applications can be obtained
using such balancing results?
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Compressed pattern matching

Does balancing lead to improved algorithms for

?

Given an uncompressed pattern P of length m, and

a compressed text T of length N and compressed size n.

Question Does P occurin T?

Theorem (Gawrychowksi, 2011)

Compressed pattern matching can be solved in time

e O(m+n-logN) for
o O(m + n) for

-log N

-log N

-compression and for

weight-balanced SLPs

[Charikar etal. ’02], [Gawrychowski’11]
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ForallA — BC: [B|/|C| = ©(1).

multiplicative cost: O (log N) [Charikar etal. ’02]

* grammar-based self-index [Gagieetal. 2]

weight balanced « compr. pattern matching [Gawrychowski "11]

logarithmic height ForallA — BC: |height(B) — height(C)| < 1.

multiplicative cost: O (log N) [Rytter’02]

+ grammar-based self-index [Cagieetal.12]

height balanced + fine-grained complexity [Abboud etal. 17]

Question: Is the multiplicative cost of O(log N) optimal?
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weight balanced

logarithmic height path balanced

In every subtree T, every root-to-leaf

path has length © (log |T]).
height balanced

Theorem

There exist SLPs of size O(n) such that any equivalent path balanced SLP has
size Q(nlogN).
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1. Compressed Pattern Matching

Theorem (G, Gawrychowksi, 2022)

Compressed pattern matching for SLP-compressed texts can be solved in time
O(m + n).

Relies only on logarithmic height SLPs (and new data structures).

2. A Refined Balancing Theorem

New algorithmic applications:

+ fingersearch problem

+ navigation on compressed trees
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Contracting SLPs

Definition
An SLP is contracting if forevery rule A — (3, ... 3, and every variable 3; we
have |3 < |Al/2.

« Everyvariable A has height O(log |A|) (locally balanced).
+ Givenavariable A, one can access Ali] in time O(log |A]).

¢ Useful when multiple stringss;, . . ., s,, are compressed using a single SLP.

Theorem

One can convertan SLP G in linear time into an equivalent contracting SLP of
size O(|G]) with rules of constant length.



logarithmic height

AA

locally balanced

contracting

path balanced

weight balanced

height balanced
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Proof sketch

Theorem
One can convertan SLP G in linear time into an equivalent contracting SLP of
size O(|G|) with rules of constant length.

Given atrie T with edges labeled by weighted symbols,
define all prefixes by a SLP.

N
NN

Possible with a contracting SLP of size O(|T|).
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Theorem (Bille, Christiansen, Cording, Ggrtz, 2018)
Civen an SLP G for a string of length N, one can support

+ setFinger(i) intime O (logN)
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+ moveFinger(i) intime O (logd + log log N)

where d is the distance between i and the finger position,
using O(|S|) preprocessing time and space.
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Theorem (Bille, Christiansen, Cording, Ggrtz, 2018; )
Civen an SLP G for a string of length N, one can support

+ setFinger(i) intime O (logN)
+ access(i) intime O (logd + )
+ moveFinger(i) intime O (logd + )

where d is the distance between i and the finger position,
using O(t - ||) preprocessing time and space,

Choosingt = log™ Nyields O(log d) time foraccess(i) and
moveFinger(i).
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Conclusion

Balancing in grammar-based compression as a preprocessing step
thatenables fast queries on the compressed data.

WA

contracting weight balanced

/Nl nlip)

logarithmic height locally balanced path balanced

height balanced
Open questions:

Fingersearch in O(logd) time and O(|9]|) space?
random access for LZ77 in O(log N) time and linear space?
Balancing for LZ77/collage systems?
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