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A context-free grammar in the Chomsky normal form that produces 
only a single string w is called a straight-line program (SLP) for w.

Straight Line Program (SLP) 2

V = {X7, X6, X5, X4, X3, X2, X1, A, B} 
Σ = {a, b}, S = X7, 
δ = { 
  X7 → X5X6, X6 → X4 A, X5 → X3X4, 
  X4 → X2B, X3 → X1X1, X2 → AA,  
  X1 → AB, A → a, B = b 
} a b a b a a b a a b a

A AB A B A A B A A B

X1 X2

X3 X4

X5 X6

X7

X1 X2

X4

The grammar G = (V, Σ, δ, S) below is an SLP 
which produces a single string w = ababaabaaba.

E.g. 

The size |G| of an SLP G is # of productions in G. 
Smaller grammar is better in terms of string compression.

|G| = 9



This problem is known to be NP-hard [Charikar et al., ’05]. 

Even if the alphabet size  is a constant with  [Casel et al., ’21]. 

The hardness for  is open. 

There are practical grammar compressors. 

RePair, LZ78, BISECTION, SEQUENTIAL, etc. 

Bounds for the approximation ratios of these compressors have 
been investigated [Charikar et al., ’05], [Bannai et al., ‘21].

σ σ ≥ 17
1 ≤ σ ≤ 16

Smallest Grammar Problem (SLP version) 3

Input : String w
Output : SLP for w with the smallest size.



We focus on the smallest grammars of Fibonacci words: 
F1 = b, F2 = a, Fi = Fi−1Fi−2 (i ≥ 3).

Our Result (informal statement) 4

Our main result
For any Fibonacci word Fn, the set of smallest grammars of Fn equals 
the set of grammars obtained by applying RePair algorithms to Fn.

n Fn length
1 b 1
2 a 1
3 ab 2
4 aba 3
5 abaab 5
6 abaababa 8

To our knowledge, Fibonacci words are the first non-trivial strings 
whose smallest grammar sizes are computable in polynomial time 
(except trivial ones such as  and ).#2k (#$)2k



RePair is a greedy algorithm which computes an SLP for given string w. 
1. Replace all terminals in w with non-terminals. 
2. Recursively do the following while the length of string is ≥ 2: 

Choose a most frequent bigram and replace it with a non-terminal.

RePair [Larsson & Moffat, ’99]
5

w = ababaaaaab
E.g.

CCDDC
↓

ABABAAAAAB
↓

Replace terminals a, b with non-terminals A, B.

CCAAAAC
↓ # of occurrences of each bigram are 

AA: 2, AB: 3, BA: 2, BB: 0. 
→ choose AB and replace it with non-terminal C.

↓…

EDDC
↓ # of occurrences of all bigrams are the same,  

so we can choose a most frequent one arbitrarily. 
Here, choose CC and replace it with E.

δ = { 

}

A → a,
B → b,
C → AB,
D → AA,
E → CC,

…



RePair Grammars 6

RePair is a greedy algorithm which computes an SLP for given string w. 
When there are multiple frequent bigram, we can choose any of them 
arbitrarily. 

Which one is chosen depends on the implementation of RePair. 

A grammar which is obtained by applying (any implementation of) 
RePair to w is called a RePair grammar of w. 
We denote by RePair(w) the set of all RePair grammars of w.

Most frequent bigrams in w = ababaabaaba are ab and ba.
E.g.

If we replace ab with X, the string changes to XXaXaXa.

If we replace ba with X, the string changes to aXXaXaX.



Our Result (formal statement) 7

The proof consists of 3 steps. We will show that 

 
the smallest size of grammars of Fn equals n, 

 
the size of any RePair grammar of Fn is the smallest, and  

 
the size of any non-RePair grammar of Fn is not the smallest.

Theorem 1 [This work]
For every n ≥ 1, Opt(Fn) = RePair(Fn) holds. Also, for every n ≥ 4,  
|Opt(Fn)| = n − 2 if n is even, and |Opt(Fn)| = n − 1 if n is odd.

Lemma 1

Lemma 2

Lemma 3

Let Opt(w) be the set of smallest grammars of w.

◀ NEXT 



There is a size-n grammar by the definition of Fn. 

The remaining task is to prove that there is no grammar of size < n.

Smallest Grammar Size of Fibonacci Words 8

a b a a b a b a a b a a b

F2 F2F1 F2 F2 F1 F2 F1 F2 F2 F1

F3

F4

F5

F6

F7

F2 F1

F3 F3 F3 F3

F4 F4

F5

F1 = b, F2 = a, 
Fi = Fi−1Fi−2 (i ≥ 3).

E.g.



Relation Between Grammar and LZ-factorization 9

E.g.
w = a b a a b a a b c a b a a c a b a a b a

Definition (LZ-factorization (without self-reference))
The LZ-factorization of string w is a sequence (p1, …, pz) of 
strings such that w = p1  pz and each pi is either a fresh symbol  
or the longest prefix of pi pz which occurs in p1 pi−1.

⋯
⋯ ⋯

Theorem 2 [Rytter, ’03]

For any string w, z(w) ≤ g*(w) holds.

The size of LZ-factorization is z(w) = 9

g*(w): the size of the smallest grammar of w.

To evaluate the grammar size of Fn, we utilize the LZ-factorization.

Let z(w) be the number of factors in the LZ-factorization of w.



With a modification to the proof of the Theorem 2, we obtain a 
slightly tighter lower bound on the smallest grammar size:

Proof of Lemma 1 10

Theorem 3 [This work]
For any string w, z(w) − 1 + σw ≤ g*(w) holds  
where σw is the number of characters appearing in w.

Since z(Fn) = n − 1 holds for Fibonacci words, 
z(Fn) − 1 + σw = n − 1 − 1 + 2 = n ≤ g*(Fn) holds by Theorem 3. 
Namely, the aforementioned grammar size n is the smallest.

Theorem 2 [Rytter, ’03]

For any string w, z(w) ≤ g*(w) holds.

Lemma 1
The size of the smallest grammar of Fn is n.

□



By Lemmas 1 and 2, RePair(Fn) ⊆ Opt(Fn) holds. 

 

By combining Lemma 3, we obtain RePair(Fn) = Opt(Fn). 

Lemmas for Our Main Result 11

Lemma 1
The size of the smallest grammar of Fn is n.

Lemma 2
The size of any RePair grammar of Fn is n．

Lemma 3

The size of any non-RePair grammar of Fn is at least n + 1.

◀ NEXT 



The most frequent bigrams in Fn are ab and/or ba.

Most Frequent Bigrams in Fibonacci Words 12

n Fn
most frequent 

bigram(s)

3 ab ab

4 aba ab, ba

5 abaab ab

6 abaababa ab, ba

7 abaababaabaab ab

8 abaababaabaababaababa ab, ba

9 abaababaabaababaababaabaababaabaab ab

10 abaababaabaababaababaabaababaabaababaababaabaababaababa ab, ba

# of occurrences of bigrams  
in F7 = abaababaabaab 
ab: 5, ba: 4, aa: 3, bb: 0

E.g. 

There are two possible cases, depending on which bigram is chosen.



Let’s observe how Fibonacci words change when ab is replaced to 
another symbol. 

The most frequent bigram in F7 is (only) ab. 
               F7 = abaababaabaab 

Replace all ab’s with symbol X, then the string changes to   
               F7 =  X a X X a X a X  

This is isomorphic to F6 = abaababa.
F6 = a b a a b a b a

When ab is Chosen 13

Lemma 4
By replacing all occurrences of ab in Fn with a new symbol, we obtain 
a string which is isomorphic to Fn−1.

E.g.

In general, Lemma 4 holds.



Lemma 4 can be easily proven by using another definition of Fn: 
Fn = (b) 

where  is the string morphism such that (a) = ab and (b) = a.
ϕn−1

ϕ ϕ ϕ

When ab is Chosen 14

Lemma 4
By replacing all occurrences of ab in Fn with a new symbol, we obtain 
a string which is isomorphic to Fn−1.

F6 =  a b a  a b a b a 

F7 = abaababaabaab

E.g.

ϕ Replace ab → a 
(and then a → b)

Essentially, the replacement in Lemma 4 is the inverse of . 
→ Of course, the resulting string is isomorphic to Fn−1.

ϕ
□



Let’s observe how Fibonacci words change when ba is replaced 
with another symbol. 

The most frequent bigrams in F8 are ab and ba. 
               F8 = abaababaabaababaababa 

Replace all ba’s with symbol X, then the string changes to   
               F8 = a X a X X a X a X X a X X  

This is isomorphic to the right-rotation R7 of F7.

When ba is Chosen 15

Lemma 5
By replacing all occurrences of ba in F2k with a new symbol, we obtain 
a string which is isomorphic to the right-rotation R2k−1 of F2k−1.

Rn Fn[|Fn|]  Fn[1.. |Fn|−1]:= ⋅

E.g.

F7 =  a b a a b a b a a b a a b

In general, Lemma 5 holds.



n most frequent 
bigram

3 ba ba

4 aab ab

5 babaa ba

6 aabaabab ab

7 babaababaabaa ba

8 aabaababaabaababaabab ab

9 babaababaabaababaababaabaababaabaa ba

10 aabaababaabaababaababaabaababaabaababaababaabaababaabab ab

Applying RePair to Right-rotation of Fibonacci Words (1/2) 16

Lemma 6
By replacing all occurrences of ba in R2k+1 with a new symbol,  
we obtain a string which is isomorphic to R2k.

 R7 = babaababaabaa 
   →  XXaXXaXa

(aabaabab)

Rn Fn[|Fn|]  Fn[1.. |Fn|−1]:= ⋅



n most frequent 
bigram

3 ba ba

4 aab ab

5 babaa ba

6 aabaabab ab

7 babaababaabaa ba

8 aabaababaabaababaabab ab

9 babaababaabaababaababaabaababaabaa ba

10 aabaababaabaababaababaabaababaabaababaababaabaababaabab ab

R6 = aabaabab 
   →  aXaXX

17

Lemma 7
By replacing all occurrences of ab in R2k with a new symbol,  
we obtain a string which is isomorphic to R2k−1.

Applying RePair to Right-rotation of Fibonacci Words (2/2)

(babaa)

Rn Fn[|Fn|]  Fn[1.. |Fn|−1]:= ⋅



The changes of strings when RePair is applied to Fibonacci words 
can be represented by the following “RePair graph”.

“RePair Graph” for Fibonacci words (1/2) 18

From Lemmas 4−7, the strings that appear during the execution of  
RePair for a Fibonacci word are strings that are isomorphic to 

■ some Fibonacci word Fi , or 

■ the right-rotation Ri of some Fibonacci word.

F2k

R2k

F2k+1

R2k+1

F2k−1

R2k−1

F2k+2

R2k+2

F4 = aba

R4 = aab

…

…

Fn … ab ab ab

ab ba ab

ba ba
F2k−2

R2k−2

ab

ba…



“RePair Graph” for Fibonacci words (2/2) 19

The size of a grammar equals the length of the corresponding 
path from the left-end (Fn) to the right-end (F4 or R4) of the RePair 
graph. 
→ That always equals n, i.e., the smallest size. 

The number of RePair grammars equals the number of paths 
from the left-end (Fn) to the right-end (F4 or R4) of the RePair graph. 
→ That equals n − 2 if n is even, or n − 1 otherwise.

F2k

R2k

F2k+1

R2k+1

F2k−1

R2k−1

F2k+2

R2k+2

F4 = aba

R4 = aab

…

…

Fn … ab ab

ab ba ab

ba ba
F2k−2

R2k−2

ab

ba…

ab

□



By Lemmas 1 and 2, RePair(Fn) ⊆ Opt(Fn) holds. 

 

By combining Lemma 3, we obtain RePair(Fn) = Opt(Fn). 

Lemmas for Our Main Result 20

Lemma 1
The size of the smallest grammar of Fn is n.

Lemma 2
The size of any RePair grammar of Fn is n．

Lemma 3

The size of any non-RePair grammar of Fn is at least n + 1.

(omit the details in this talk)

◀ NEXT 



For all 16 strategies to replace bigrams which do not satisfy 
the RePair conditions, the resulting grammars are non-smallest. 

To prove this, we heavily utilize the fact “The smallest grammar 
size is lower-bounded by the LZ77 size” (Theorem 3).

16 Strategies in non-RePair Algorithms 21

aa ab ba

all not all all not all all not all

F2k
1 2

RePair

3
RePair 4

F2k+1 RePair 5 6

R2k 7 8 RePair 9 10 11

R2k+1 12 13 14 15 RePair 16

Bigram 
to replace

Target string



By Lemmas 1 and 2, RePair(Fn) ⊆ Opt(Fn) holds. 

 

By combining Lemma 3, we obtain RePair(Fn) = Opt(Fn). 

Lemmas for Our Main Result 22

Lemma 1
The size of the smallest grammar of Fn is n.

Lemma 2
The size of any RePair grammar of Fn is n．

Lemma 3

The size of any non-RePair grammar of Fn is at least n + 1.

(omit the details in this talk)



Conclusion 
We showed that the smallest grammars are the same as the 
RePair grammars of Fibonacci words Fn. 

The smallest grammars of Fn are characterized completely. 

Future Work 
To investigate whether it is possible to characterize the smallest 
grammars of other binary words, including Thue-Morse words TMn  
and Period-doubling words PDn. We have confirmed that  

Opt(TMn)  RePair(TMn) and Opt(PDn)  RePair(PDn).≠ ≠

Conclusion and Future Work 23

Theorem 1 [This work]
For every n ≥ 1, Opt(Fn) = RePair(Fn) holds. Also, for every n ≥ 4,  
|Opt(Fn)| = n − 2 if n is even, and |Opt(Fn)| = n − 1 if n is odd.


