

June 27, 2022 Session I

RePair Grammars are the Smallest Grammars for Fibonacci Words

<u>Takuya Mieno</u> (University of Electro-Communications) Shunsuke Inenaga (Kyushu University) Takashi Horiyama (Hokkaido University)

Straight Line Program (SLP)

A context-free grammar in the Chomsky normal form that produces only a single string *w* is called a **straight-line program (SLP)** for *w*.

E.g.

The grammar $G = (V, \Sigma, \delta, S)$ below is an SLP which produces a single string w = ababaabaaba. X_5 X_6 $V = \{X_7, X_6, X_5, X_4, X_3, X_2, X_1, A, B\}$ X_4 $\Sigma = \{a, b\}, S = X_7,$ X_3 $\delta = \{$ \mathbf{X}_1 X_1 \mathbf{X}_2 $X_7 \rightarrow X_5 X_6, X_6 \rightarrow X_4 A, X_5 \rightarrow X_3 X_4,$ $X_4 \rightarrow X_2B, X_3 \rightarrow X_1X_1, X_2 \rightarrow AA,$ ABABAAB AABA $X_1 \rightarrow AB, A \rightarrow a, B = b$ a b a b a a b a a b a |G| = 9

The *size* |G| of an SLP G is *# of productions* in G. Smaller grammar is better in terms of string compression. Input : String *w* Output : SLP for *w* with the **smallest** size.

This problem is known to be NP-hard [Charikar et al., '05]. Even if the alphabet size σ is a constant with $\sigma \ge 17$ [Casel et al., '21]. The hardness for $1 \le \sigma \le 16$ is open.

There are practical grammar compressors.

RePair, LZ78, BISECTION, SEQUENTIAL, etc.

Bounds for the *approximation ratios* of these compressors have been investigated [Charikar et al., '05], [Bannai et al., '21].

Our Result (informal statement)

We focus on the smallest grammars of *Fibonacci words*:

n	F _n	length
1	b	1
2	a	1
3	ab	2
4	aba	3
5	abaab	5
6	abaababa	8

$$F_1 = b, F_2 = a, F_i = F_{i-1}F_{i-2} \ (i \ge 3).$$

Our main result

For any **Fibonacci word** F_n , the set of **smallest grammars** of F_n equals the set of grammars obtained by applying **RePair** algorithms to F_n .

To our knowledge, Fibonacci words are **the first non-trivial strings** whose smallest grammar sizes are computable in polynomial time (except trivial ones such as a^{2^k} and $(ab)^{2^k}$).

RePair [Larsson & Moffat, '99]

RePair is a greedy algorithm which computes an SLP for given string w.

- 1. Replace all terminals in *w* with non-terminals.
- 2. Recursively do the following while the length of string is ≥ 2 : Choose **a most frequent bigram** and replace it with a non-terminal.

RePair Grammars

RePair is a greedy algorithm which computes an SLP for given string *w*. When there are multiple frequent bigram, we can choose any of them **arbitrarily**.

Which one is chosen depends on the implementation of RePair.

E.g.

Most frequent bigrams in w = ababaabaaba are <u>ab and ba</u>. If we replace ab with X, the string changes to XXaXaXa. If we replace ba with X, the string changes to aXXaXaX.

A grammar which is obtained by applying (any implementation of) RePair to w is called a **RePair grammar** of w. We denote by **RePair**(w) the set of all RePair grammars of w.

Our Result (formal statement)

Let Opt(w) be the set of smallest grammars of w.

Theorem 1 [This work]

For every $n \ge 1$, $Opt(F_n) = RePair(F_n)$ holds. Also, for every $n \ge 4$, $|Opt(F_n)| = n - 2$ if *n* is even, and $|Opt(F_n)| = n - 1$ if *n* is odd.

The proof consists of 3 steps. We will show that

Lemma 1

the smallest size of grammars of F_n equals n,

Lemma 2

the size of **any** RePair grammar of F_n is the smallest, and

Lemma 3

the size of **any non-RePair** grammar of F_n is **not** the smallest.

Smallest Grammar Size of Fibonacci Words

There is a size-*n* grammar by the definition of F_n .

$$F_1 = b, F_2 = a,$$

 $F_i = F_{i-1}F_{i-2} \ (i \ge 3).$

The remaining task is to prove that there is no grammar of size < n.

Relation Between Grammar and LZ-factorization

To evaluate the grammar size of F_n , we utilize the **LZ-factorization**.

Definition (LZ-factorization (without self-reference))

The **LZ-factorization** of string w is a sequence $(p_1, ..., p_z)$ of strings such that $w = p_1 \cdots p_z$ and each p_i is either a fresh symbol or the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

Let z(w) be the number of factors in the LZ-factorization of w.

E.g.

$$w = \mathbf{a} |\mathbf{b}| \mathbf{a} |\mathbf{a} \mathbf{b} \mathbf{a} |\mathbf{a} \mathbf{b} |\mathbf{c}| \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{a} |\mathbf{c} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{a} |\mathbf{b} \mathbf{a}$$
The size of LZ-factorization is $z(w) = 9$

Theorem 2 [Rytter, '03]

For any string $w, z(w) \leq g^*(w)$ holds.

 $g^*(w)$: the size of the <u>smallest</u> grammar of w.

9

Proof of Lemma 1

Theorem 2 [Rytter, '03]

For any string $w, z(w) \leq g^*(w)$ holds.

With a modification to the proof of the Theorem 2, we obtain a slightly tighter lower bound on the smallest grammar size:

Theorem 3 [This work]

For any string $w, z(w) - 1 + \sigma_w \le g^*(w)$ holds

where σ_w is the number of characters appearing in w.

Since $z(\mathbf{F}_n) = n - 1$ holds for Fibonacci words, $z(\mathbf{F}_n) - 1 + \sigma_w = n - 1 - 1 + 2 = n \leq g^*(\mathbf{F}_n)$ holds by Theorem 3. Namely, the aforementioned grammar size n is the smallest.

Lemma 1

The size of the smallest grammar of F_n is n.

Lemmas for **Qur Main Result**

Lemma 1

The size of the smallest grammar of F_n is n.

Lemma 2 **NEXT**

The size of **any** RePair grammar of F_n is n.

By Lemmas 1 and 2, $\operatorname{RePair}(F_n) \subseteq \operatorname{Opt}(F_n)$ holds.

Lemma 3

The size of **any non-RePair grammar** of F_n is at least n + 1.

By combining Lemma 3, we obtain $\text{RePair}(F_n) = \text{Opt}(F_n)$.

Most Frequent Bigrams in Fibonacci Words

The most frequent bigrams in F_n are ab and/or ba.

n		most frequent bigram(s)	
3	ab	E.g. # of occurrences of bigrams in F ₇ = abaababaabaab ab: 5, ba: 4, aa: 3, bb: 0	ab
4	aba		ab, ba
5	abaab		ab
6	abaababa		ab, ba
7	abaababaabaab	ab	
8	abaababaabaaba	ab, ba	
9	abaabaabaabaabaabaabaabaabaabaab		
10	0 abaababaabaabaabaabaabaabaabaabaabaabaa		

There are two possible cases, depending on which bigram is chosen.

When ab is Chosen

Let's observe how Fibonacci words change when **ab** is replaced to another symbol.

E.g. The most frequent bigram in F_7 is (only) ab. $F_7 = abaababaabaabaab$

Replace all ab's with symbol X, then the string changes to

$$X a X X a X a X$$
$$F_6 = a b a a b a b a$$

This is isomorphic to F_6 = abaababa.

In general, Lemma 4 holds.

Lemma 4

By replacing all occurrences of ab in F_n with a new symbol, we obtain a string which is isomorphic to F_{n-1} .

When ab is Chosen

Lemma 4

By replacing all occurrences of **ab** in F_n with a new symbol, we obtain a string which is isomorphic to F_{n-1} .

Lemma 4 can be easily proven by using another definition of F_n : $F_n = \phi^{n-1}(b)$

where ϕ is the string morphism such that $\phi(a) = ab$ and $\phi(b) = a$.

E.g.

$$F_{6} = a b a a b a b a$$

$$\phi \downarrow \qquad \uparrow \text{Replace } ab \rightarrow a$$

$$(and then a \rightarrow b)$$

$$F_{7} = abaababaabaabaab$$

Essentially, the replacement in Lemma 4 is the **inverse of** ϕ . \rightarrow Of course, the resulting string is isomorphic to F_{n-1} .

When ba is Chosen

Let's observe how Fibonacci words change when ba is replaced with another symbol.

E.g. The most frequent bigrams in F_8 are ab and ba.

Replace all ba's with symbol X, then the string changes to

This is isomorphic to the *right-rotation* R_7 of F_7 .

 $\mathbf{R}_n := \mathbf{F}_n[|\mathbf{F}_n|] \cdot \mathbf{F}_n[1.. |\mathbf{F}_n|-1]$

In general, Lemma 5 holds.

Lemma 5

By replacing all occurrences of ba in F_{2k} with a new symbol, we obtain a string which is isomorphic to the right-rotation R_{2k-1} of F_{2k-1} .

Applying RePair to Right-rotation of Fibonacci Words (1/2)

16

п		most frequent bigram	
3	ba		ba
4	aab	$R_7 = hahaahahaahaa$	ab
5	babaa	$\rightarrow XXaXXaXa$	ba
6	aabaabab	(aabaabab)	ab
7	babaabaabaa		
8	aabaababaab	ab	
9	babaabaabaabaabaabaabaabaabaa		
10	0 aabaabaabaabaabaabaabaabaabaabaabaabaab		

Lemma 6

By replacing all occurrences of ba in R_{2k+1} with a new symbol, we obtain a string which is isomorphic to R_{2k} .

Applying RePair to Right-rotation of Fibonacci Words (2/2)

n	$\mathbf{R}_n := \mathbf{F}_n[\mathbf{F}_n] \cdot \mathbf{F}_n[1 \mathbf{F}_n -1]$	most frequent bigram	
3	ba	ba	
4	$\begin{array}{c} aab \\ \hline aab \\ \rightarrow aXaXX \end{array}$	ab	
5	babaa (babaa)	ba	
6	aabaabab		
7	babaabaabaa		
8	aabaabaabaabaabab	ab	
9	babaabaabaabaabaabaabaabaabaa		
10	0 aabaabaabaabaabaabaabaabaabaabaabaabaab		

Lemma 7

By replacing all occurrences of **ab** in R_{2k} with a new symbol, we obtain a string which is isomorphic to R_{2k-1} .

17

"RePair Graph" for Fibonacci words (1/2)

From Lemmas 4–7, the strings that appear during the execution of RePair for a Fibonacci word are strings that are isomorphic to

- some Fibonacci word F_i, or
- the right-rotation R_i of some Fibonacci word.

The **changes** of strings when RePair is applied to Fibonacci words can be represented by the following "*RePair graph*".

"RePair Graph" for Fibonacci words (2/2)

The size of a grammar equals the length of the corresponding path from the left-end (F_n) to the right-end (F_4 or R_4) of the RePair graph.

 \rightarrow That always equals n, i.e., the smallest size.

The number of RePair grammars equals the number of paths from the left-end (F_n) to the right-end (F_4 or R_4) of the RePair graph.

→ That equals n - 2 if n is even, or n - 1 otherwise.

19

 \square

Lemmas for **Qur Main Result**

(omit the details in this talk)

The size of the smallest grammar of F_n is n.

Lemma 1

The size of **any** RePair grammar of F_n is n.

By Lemmas 1 and 2, $\operatorname{RePair}(F_n) \subseteq \operatorname{Opt}(F_n)$ holds.

Lemma 3 **A NEXT**

The size of any non-RePair grammar of F_n is at least n + 1.

By combining Lemma 3, we obtain $\text{RePair}(F_n) = \text{Opt}(F_n)$.

16 Strategies in non-RePair Algorithms

Bigram to replace	aa		ab		ba	
Target string	all	not all	all	not all	all	not all
F_{2k}	1	7	RePair	3	RePair	4
F_{2k+1}	1		RePair		5	6
\mathbf{R}_{2k}	7	8	RePair	9	10	11
R_{2k+1}	12	13	14	15	RePair	16

For all **16 strategies** to replace bigrams which do not satisfy the RePair conditions, the resulting grammars are non-smallest. To prove this, we heavily utilize the fact "The smallest grammar size is lower-bounded by the LZ77 size" (Theorem 3).

Lemmas for **Qur Main Result**

By combining Lemma 3, we obtain $\text{RePair}(F_n) = \text{Opt}(F_n)$.

Conclusion and Future Work

Conclusion

We showed that the smallest grammars are the same as the **RePair grammars** of Fibonacci words F_n .

The smallest grammars of F_n are characterized completely.

Theorem 1 [This work]

For every $n \ge 1$, $Opt(F_n) = RePair(F_n)$ holds. Also, for every $n \ge 4$, $|Opt(F_n)| = n - 2$ if *n* is even, and $|Opt(F_n)| = n - 1$ if *n* is odd.

Future Work

To investigate whether it is possible to characterize the smallest grammars of other binary words, including <u>Thue-Morse words</u> TM_n and <u>Period-doubling words</u> PD_n . We have confirmed that $Opt(TM_n) \neq RePair(TM_n)$ and $Opt(PD_n) \neq RePair(PD_n)$.