Permutation Pattern Matching for Double Partially Ordered Patterns

Laurent Bulteau¹ Guillaume Fertin² Vincent Jugé¹ and Stéphane Vialette¹ CPM, Prague, Czech Republic, June 27–29, 2022 ¹LIGM, CNRS, Université Gustave Eiffel, F-77454 Marne-Ia-Vallée, France ²LS2N, Nantes Université, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Warm up game

Query

Find (if they exist) five cities, say A, B, C, D and E, such that:

- A and C are west of D and north of B,
- E is east of B and south of A,
- D is west of B and north of A and C.

Warm up game

Query

Find (if they exist) five cities, say A, B, C, D and E, such that:

- A and C are west of D and north of B,
- E is east of B and south of A,
- D is west of B and north of A and C.

Warm up game (map as permutation)

Warm up game (query as doubly ordered pattern)

Query

Find (if they exist) five cities, say A, B, C, D and E, such that:

- A and C are west of D and north of B,
- E is east of B and south of A,
- D is west of B and north of A and C.

Pattern avoidance

A permutation σ occurs in another permutation π (or that π contains σ) if there exists a subsequence of elements of π that has the same relative order as σ .

Example

- π contains the permutation $\sigma = 123$ (resp $\sigma = 321$) if it has an increasing (resp a decreasing) subsequence of size 3.
- $\sigma = 4312$ occurs in $\pi = 6152347$, as shown in 6152347.
- $\pi = 6152347$ avoids $\sigma' = 2341$.

Permutation Pattern Matching

PERMUTATION PATTERN MATCHING is the problem to decide is some permutation σ occurs in another permutation π .

- PERMUTATION PATTERN MATCHING is NP-hard [Bose, Buss, Lubiw. 98].
- PERMUTATION PATTERN MATCHING is FPT [Guillemot, Marx. 14].
- (Relatively) Fast exponential-time algorithms [Gawrychowski, Rzepecki. 22 ; Berendsohn, Kozma, Marx. 21].

Permutation Pattern Matching

PERMUTATION PATTERN MATCHING is the problem to decide is some permutation σ occurs in another permutation π .

- **PERMUTATION PATTERN MATCHING** is solvable in $O(|\sigma|^4)$ time if σ is (2413, 3142)-avoiding (aka. *separable*) [Ibarra. 95; Neou, Rizzi, V. 16].
- PERMUTATION PATTERN MATCHING is in P if both π and σ are 321-avoiding [Guillemot, V. 09; Albert, Lackner, Lackner, Vatter. 16].
- PERMUTATION PATTERN MATCHING is NP-complete if π is 4321avoiding and σ is 321-avoiding [Jelínek, Kynč. 17].
- PERMUTATION PATTERN MATCHING is linear-time solvable if both π and σ are (213, 231)-avoiding [Neou, Rizzi, V. 16].

Generalizations

- Consecutive patterns [Elizalde, Noy. 03].
- Barred patterns [West. 90].
- Vincular (or generalized) patterns [Babson, Steingrímsson. 00].
- Bivincular patterns [Bousquet-Mélou, Claesson, Dukes, Kitaev. 10].
- Partially ordered patterns [Kitaev. 07].
- Parity permutation matching [Ardévol Martínez, Sikora, V. 22].
- . . .

Definition

A vincular pattern σ of length k is a permutation in $\mathfrak{S}(k)$ some of whose consecutive letters may be underlined.

If σ contains $\underline{\sigma_i \sigma_{i+1} \dots \sigma_j}$ then the letters corresponding to $\sigma_i \sigma_{i+1} \dots \sigma_j$ in an occurrence of σ in a permutation π must be adjacent.

if σ begins with $\mathbf{\pounds} \sigma_1$ then any occurrence of σ in a permutation π must begin with the leftmost element of π .

if σ ends with σ_k then any occurrence of σ in π must end with the rightmost element of π .

Examples

σ	Occurrences in $\pi = 241563$
231	241, 453, 463 and 563
<u>23</u> 1	241 and 563
2 <u>31</u>	241, 463 and 563
<u>å231</u>	241
<u>231</u> £	563
231 .£ .	453, 463 and 563

Partially ordered patterns

(Informal) Definition

The idea of partially ordered patterns is to allow the possibility for some letters to be incomparable in the sense that we do not know the relative order of these letters.

Partially ordered patterns

(Informal) Definition

The idea of partially ordered patterns is to allow the possibility for some letters to be incomparable in the sense that we do not know the relative order of these letters.

dpop

A doubly partially ordered pattern (dpop) is a pair $P = (P_v, P_p)$, of posets $P_v = (X, \leq_v)$ and $P_p = (X, \leq_p)$ defined over the same set X.

We call P_v and P_p the value poset and the position poset, respectively.

dpop (cont.)

- A dpop $P = (P_v, P_p)$ is
 - symmetric if $P_v = P_p$,
 - dual if $P_v = P_p^{\partial}$, and
 - semi-total if one of P_p or P_v is a total order.

DPOP MATCHING

Given a permutation $\pi \in \mathfrak{S}(n)$ and a dpop $P = (P_v, P_p)$, an occurrence (or mapping) of P in π is an injective function $\varphi: X \to [n]$ such that:

- $\pi \circ \varphi$ is \leq_{v} -non-decreasing, i.e., for all $x, y \in X$, if $x \leq_{v} y$ then $\pi(\varphi(x)) \leq \pi(\varphi(y))$, and
- φ is \leq_p -non-decreasing, i.e., for all $x, y \in X$, if $x \leq_p y$ then $\varphi(x) \leq \varphi(y)$.

DPOP MATCHING is the problem to decide whether *P* occurs in π .

Observation

PERMUTATION PATTERN MATCHING is the special case of **DPOP MATCHING** where both \leq_v and \leq_p are total orders, and hence **DPOP MATCHING** is NP-hard.

Observation

Let $P = (P_v, P_p)$ be a dpop and π be a permutation. The following statements are equivalent:

- 1. (P_v, P_p) occurs in π ;
- 2. $(P_v, (P_p)^{\partial})$ occurs in π^r ;
- 3. $((P_v)^{\partial}, P_p)$ occurs in π^c ;
- 4. $((P_v)^{\partial}, (P_p)^{\partial})$ occurs in π^{cr} ;
- 5. $(P_{\rm p}, P_{\rm v})$ occurs in π^{-1} .

Observation

Let $P = (P_v, P_p)$ be a dpop with $P_v = (X, \leq_v)$, $P_p = (X, \leq_p)$ and k = |X|, and let $\pi \in \mathfrak{S}(n)$ be a permutation. The following statements are equivalent:

- P occurs in π .
- There exists a linear extension $\tau_v : X \to [k]$ of P_v and a linear extension $\tau_p : X \to [k]$ of P_p such that the permutation $\sigma \in \mathfrak{S}(k)$ defined by $\sigma(i) = \tau_v(\tau_p^{-1}(i))$ for $1 \leq i \leq k$ is contained in π .

Corollary

DPOP MATCHING is FPT for the parameter |P|.

ordering

Weak order

A partial order \leq is a on a set X is a weak order if the following property holds:

for all pairwise distinct $x, x', x'' \in X$, if x is incomparable with x'(i.e., neither $x \leq x'$ nor $x' \leq x$ is true) and if x' is incomparable with x'', then x is incomparable with x''.

A partial order is k-weak if it the disjoint union of k weak orders.

Recall that a dpop $P = (P_v, P_p)$ is semi-total if one of P_p or P_v is a total order.

Theorem

DPOP MATCHING is solvable in $O(n^{\text{height}(P_V)})$ time if P_V is a weak order and P_p is a total order.

Theorem

DPOP MATCHING is NP-complete even if $height(P_v) = 2$, P_p is a total order and π avoids 1234.

Semi-total patterns

Recall that a dpop $P = (P_v, P_p)$ is symmetric if $P_v = P_p$.

Theorem ([Crochemore, Porat. 10])

DPOP MATCHING is solvable in $O(n \log \log |P|)$ time if P is a symmetric dpop of width 1 (i.e., a total symmetric dpop P).

BALANCED k-INCREASING COLORING

Given a positive integer k and a permutation π , **BALANCED** *k*-**INCREASING COLORING** is the problem of deciding whether there exists a balanced *k*-coloring of π (i.e., a partition of [kn] into *k* subsets of size exactly *n*) such that each color induces an increasing subsequence of π .

Theorem

BALANCED k-INCREASING COLORING for 312-avoiding permutations is W[1]-hard for the parameter k.

Proof elements

Reduction from UNARY BIN PACKING which is known to be is W[1]-hard [Jansen, Kratsch, Marx. 13].

Given a set of integers $S = \{s_1, s_2, ..., s_n\}$ encoded in unary and two positive integers B and k, decide whether S can be partitioned into k subsets, each of total size B.

Symmetric patterns & bounded width

Symmetric patterns & bounded width

Proof elements

 $(\Rightarrow) \\ \sum_{s_i \in S_j} (s_i + 1) + n - |S_i| = \sum_{s_i \in S_j} s_i + |S_i| + n - |S_i| = B + n.$ (\Leftarrow)

Every gadget requires k colors, and hence the increasing part of each gadget is monochromatic.

$$B + n = \sum_{s_i \in S_j} (s_i + 1) + n - |S_j|$$
$$= \sum_{s_i \in S_j} s_i + |S_j| + n - |S_j|$$
$$= \sum_{s_i \in S_j} s_i + n.$$

Symmetric patterns & bounded width

Theorem

DPOP MATCHING for symmetric dpop and 312-avoiding permutations is W[1]-hard for the parameter width(P).

Proof elements

Reduce from **BALANCED** *k*-**INCREASING COLORING** for 312-avoiding permutations.

Construct a symmetric dpop $P = (\mathcal{P}, \mathcal{P})$, where $\mathcal{P} = (X, \preccurlyeq)$, as follows: $X = [k] \times [n]$ and $(i, j) \preccurlyeq (i', j')$ if and only if i = i' and $j \leqslant j'$.

We claim that P occurs in π if and only π admits a k-coloring for which every color induces an increasing pattern of length n.

Theorem

DPOP MATCHING for k-weak symmetric dpop is XP with parameter k.

Symmetric patterns & pattern avoidance

Theorem

DPOP MATCHING for height-2 symmetric dpop P and permutation π is NP-hard even if π is separable (it avoids 2413 and 3142) and one of the following restrictions occurs:

- 1. π is 123-avoiding;
- 2. π is (132, 213)-avoiding;
- 3. π is (132, 321)-avoiding;
- 4. π is (231, 312)-avoiding;
- 5. π is (132, 312)-avoiding;
- 6. π is (213, 321)-avoiding;
- 7. π is (213, 312)-avoiding;
- 8. π is (132, 231)-avoiding;
- 9. π is (213, 231)-avoiding.

π is (231, 312)-avoiding.

Theorem

DPOP MATCHING is in P for symmetric dpop P if one of the following restrictions on π occurs:

- 1. π is (123, 231)-avoiding;
- 2. π is (123, 132)-avoiding;
- 3. π is (123, 321)-avoiding;
- 4. π is (123, 312)-avoiding;
- 5. π is (123, 213)-avoiding.

Symmetric patterns & pattern avoidance

direct sum, $\pi \in \mathfrak{S}(m)$, $\sigma \in \mathfrak{S}(n)$

$$(\pi \oplus \sigma)(i) = \begin{cases} \pi(i) & \text{for } 1 \leqslant i \leqslant m, \\ \sigma(i-m) + m & \text{for } m+1 \leqslant i \leqslant m+n. \end{cases}$$

skew sum, $\pi \in \mathfrak{S}(m)$, $\sigma \in \mathfrak{S}(n)$

$$(\pi \ominus \sigma)(i) = \begin{cases} \pi(i) + n & \text{for } 1 \leqslant i \leqslant m, \\ \sigma(i - m) & \text{for } m + 1 \leqslant i \leqslant m + n, \end{cases}$$

and

π is (123, 231)-avoiding

Proof elements

There exist integers k, ℓ and m, with sum n, such that $\pi = dp(k) \oplus (dp(\ell) \oplus dp(m))$.

π is (123, 132)-avoiding

Proof elements

The permutation π is a skew sum $\pi = \bigoplus_{p=1}^{k} d_p$ of patterns of the form $d_p = dp(a_p) \oplus dp(1)$ for some integer $a_p \ge 0$.

Symmetric patterns & pattern avoidance

BIC = Biclique,

3P = 3-Partition,

BIN = Unary Bin Packing,

BIS = Bisection.

Concluding remarks

General remarks

- Generate instances that yield a unique solution (minimizing |X|).
- Permutation classes.

Semi-total patterns

- Constant width patterns.
- Most classes of pattern avoiding permutations.

Symmetric patterns

- (231, 321)-avoiding patterns.
- (312, 321)-avoiding patterns.