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The LONGEST PALINDROMIC SUBSTRING problem

LONGEST PALINDROMIC SUBSTRING (LPS)
Input: String S of length n over alphabet [0,0) C [0, n).
Output: [/, /] such that S[i../] is a longest palindromic substring of S.

S = abcaabcbaabda

Time Space (words) Paper

O(n) O(n) Manacher, JACM 1975

O(n) O(n) Gusfield, Textbook 1997
O(nlogo/logn) | O(nlogo/logn) This paper

Our algorithm works in sublinear time if o = 2°(logn)



The suffix tree

The compacted trie of all the suffixes of the string.
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We assume that the terminating symbol # is lex-smallest.

Theorem (Farach, FOCS 1997)

The suffix tree of S can be constructed in O(n) time using O(n) space.
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Longest common prefix (LCP) queries

PREPROCESS: a string S of length n over alphabet [0,0) C [0, n)
QUERY: a pair (i,/); return the length of the LCP of (S[i..],S[j..])
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The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both v and v.




Longest common prefix (LCP) queries

PREPROCESS: a string S of length n over alphabet [0,0) C [0, n)
QUERY: a pair (i,/); return the length of the LCP of (S[i..],S[j..])

The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both v and v.

Theorem (Bender and Farach-Colton, LATIN 2000)

Any tree of size O(N) can be preprocessed in O(N) time and space so
that the LCA of any two nodes can be computed in O(1) time.




Longest common prefix (LCP) queries
PREPROCESS: a string S of length n over alphabet [0,0) C [0, n)
QUERY: a pair (i,j); return the length of the LCP of (S[i..],S[j..])
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Longest common prefix (LCP) queries

PREPROCESS: a string S of length n over alphabet [0,0) C [0, n)
QUERY: a pair (i,j); return the length of the LCP of (S[i..],S[j..])
Example

Let S = CAGAGAS$. Let (1,5) be the query. The answer is 1 = |A|.
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Longest common prefix (LCP) queries

PREPROCESS: a string S of length n over alphabet [0,0) C [0, n)
QUERY: a pair (i,j); return the length of the LCP of (S[i..],S[j..])
Example

Let S = CAGAGAS$. Let (1,5) be the query. The answer is 1 = |A|.

GA

GA$

$

e~

CAGAGAS 2

o

0

Theorem (Landau and Vishkin, TCS 1986)

LCP queries in S can be answered in O(1) time after O(n) time
preprocessing.




Gusfield's algorithm for LPS

o Construct the suffix tree of W = S#SF$.
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Gusfield's algorithm for LPS

o Construct the suffix tree of W = S#SF$.

@ Preprocess the suffix tree for LCA queries.
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Gusfield's algorithm for LPS

e Construct the suffix tree of W = S#S7$.
@ Preprocess the suffix tree for LCA queries.

@ Say we are interested in odd-length palindromes.
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Gusfield's algorithm for LPS

o Construct the suffix tree of W = S#SR$.

@ Preprocess the suffix tree for LCA queries.

@ Say we are interested in odd-length palindromes.

o Answer LCP queries for W[i..] and W[2n —i..], for all i.
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Gusfield's algorithm for LPS

Construct the suffix tree of W = S#SRs.

Preprocess the suffix tree for LCA queries.

Say we are interested in odd-length palindromes.

Answer LCP queries for W[i..] and W[2n —i..], for all i.

S = CATGTATT
ATGTA
ST = TTATGTAC

3 13
W = S#S57$ = CATGTATT#TTATGTACS
X X

Wi2n—i.. b



Gusfield's algorithm for LPS

Wi2n—i.. !

S = CATGTATT
ATGTA
ST = TTATGTAC

3 13
W = S#SE$ = CATGTATT#TTATGTAC$



Gusfield's algorithm for LPS

Wi2n—i..] b
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ATGTA
ST = TTATGTAC

3 13
W = S#Sh¢$ = CATCTATT#TTATGTAC$

@ A longest LCP represents a longest odd-length palindrome.
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Gusfield's algorithm for LPS

S = CATGTATT
ATGTA
ST = TTATGTAC

3 13
W = S#Sh¢$ = CATCTATT#TTATGTAC$

Wi2n—i..] b
@ A longest LCP represents a longest odd-length palindrome.
@ Even-length palindromes are handled analogously.

@ Take the longer of the two as the globally longest.

Theorem (Gusfield, Textbook 1997)
A longest palindromic substring in S can be computed in O(n) time.




Question

Theorem (Kempa and Kociumaka, STOC 2019)

LCP queries in S can be answered in O(1) time after O(n/ log, n) time
preprocessing.
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Question

Theorem (Kempa and Kociumaka, STOC 2019)

LCP queries in S can be answered in O(1) time after O(n/ log, n) time
preprocessing.

Question: Can we improve on Gusfield's textbook algorithm?

Answer: Yes



Overview of our new solution

Chunks of length ¢ = %Iogg n and extended chunks of length ¢ = 4/’
Our algorithm proceeds with processing every chunk separately

Preprocessing stage: tabulation technique



Preprocessing stage

o Consider every distinct length-¢ string over [0, o)

Ad
\/




Preprocessing stage

o Consider every distinct length-¢ string over [0, o)
40" logy n

o ol =0 =03 = O(y/n) distinct strings

Ad
\/

> (a)



Preprocessing stage

o Consider every distinct length-¢ string over [0, o)

U logg n .. .
o ol =0* =035 = O(y/n) distinct strings

@ Each string X is stored in one machine word

Ad
\/

> (a)



Preprocessing stage

o Consider every distinct length-¢ string over [0, o)

U logg n .. .
o ol =0* =035 = O(y/n) distinct strings

@ Each string X is stored in one machine word

e Compute palindromes in X in O(¢) timel
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Palindrome of a String. J. ACM (1975)
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ol=o =¢"% = O(y/n) distinct strings

°
@ Each string X is stored in one machine word
e Compute palindromes in X in O(¢) timel

@ For each length-¢ string X store:

@ a longest palindrome in X
@ a longest palindrome in X that has its center in the 2nd chunk
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Preprocessing stage

o Consider every distinct length-¢ string over [0, o)
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Preprocessing stage

o Consider every distinct length-¢ string over [0, o)

U logg n .. .
ol=o =¢"% = O(y/n) distinct strings

°
@ Each string X is stored in one machine word
e Compute palindromes in X in O(¢) timel

@ For each length-¢ string X store:

@ a longest palindrome in X
@ a longest palindrome in X that has its center in the 2nd chunk
@ the two longest prefix palindromes of X, if they exist

0 % -1 (-1
X | | | |
- (b)- » (a)
<« p (c)

Time: O(y/nlog, n) and Space: O(y/n)

'!Manacher: A New Linear-Time “On-Line” Algorithm for Finding the Smallest Initial
Palindrome of a String. J. ACM (1975)




Overview of our new solution

Chunks of length ¢ = % log, n and extended chunks of length ¢ = 4¢'
Our algorithm proceeds with processing every chunk separately

Preprocessing stage: tabulation technique

Main algorithm: for each chunk C in an extended chunk X of S, compute
a longest palindrome in S with a center in C using the
precomputed information for X, periodicity, and LCP queries



For the corner cases:

Main algorithm: Basic structure
0
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Main algorithm: Basic structure
For the corner cases:

0
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S |
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we use the precomputed data (a) to compute a longest palindrome
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Main algorithm: Basic structure
For the corner cases:
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Main algorithm: Basic structure
For the corner cases:

0
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Main algorithm: Basic structure
For the corner cases:

0

S |

length-¢ prefix length-¢ suffix

we use the precomputed data (a) to compute a longest palindrome
(any palindrome centered in the first or last % positions is of length < ¢)
For the middle part, we decompose:

0
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Px: the set of maximal palindromes in S with centers in C that:
@ either exceed X

@ or are prefixes of X

0 £_q -1

X | | ¢

-
-

\J

-
-

Set Px of palindromes with centers in chunck C



Maximal palindromes of S with centers in C

Px: the set of maximal palindromes in S with centers in C that:
@ either exceed X

@ or are prefixes of X

0 £_q -1

X | | ¢

-
-
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-
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Set Px of palindromes with centers in chunck C

Our goal: show that the longest palindrome in Px can be computed in the
time required to answer O(1) LCP queries on substrings of S#SR$



Prefix palindromes of X with centers in C
Ox: the set of palindromes which are prefixes of X with a center in C
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Set Qx of palindromes with centers in chunck C'
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Prefix palindromes of X with centers in C

Ox: the set of palindromes which are prefixes of X with a center in C
0
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Observations:
@ Each P € Px has a subpalindrome P’ € Qx with the same center

e If P; does not exist, then Px = 0
o If P; exists but P, does not, then |Px| =1
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Prefix palindromes of X with centers in C

Ox: the set of palindromes which are prefixes of X with a center in C
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Prefix palindromes of X with centers in C

Ox: the set of palindromes which are prefixes of X with a center in C
0
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Observations:
@ Each P € Px has a subpalindrome P’ € Qx with the same center
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If [Px| =1 then ask one LCE query to extend P;
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Both P; and P, exist in Ox <= Periodicity
By per(V) we denote the smallest period of a string V.

V = abbaabba = abba - abba and per(V) = 4.

Lemma (Fici et al., JDA 2014)

Let U be a proper prefix of a palindrome V. Then |V| — |U| is a period of
V if and only if U is a palindrome. In particular, per(V) = |V| —|U| if and
only if U is the longest palindromic proper prefix of V.

V = abbaabba, U = abba, and per(V) = 4.

As a consequence, we obtain the following, where p = per(P;) and k > 0.

The lengths of prefix palindromes in Qx are structured: |P1| — kp.




Main idea: Three prefix palindromes in Qx are enough!
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First step: Extending periodicity on both sides
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First step: Extending periodicity on both sides
We know p = |Pi| — |P2| = per(P1), so two LCP queries suffice:

a
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Case 1: Reach the periodicity endpoints simultaneously
Consider Q € Qx with |Q| =b— a:
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Note that indeed the palindrome may extend beyond periodicity!
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Case 2: Palindrome breaks when periodicity breaks (left)
Consider @ € Qx with its center on the left of the Case 1:

«— 0 b >
( =T =
! ! !
! X C \
cde ‘éab aabaab aJab aab aa aabaabaabaab aab%a‘bdg
-t A P >
! b— e ‘

! 'Q € Ox with center on the left ‘

No LCP query is required to extend it...

a b
I | |
| | |
| \X O |
cde ‘hab aabaab aJab aab aa aabaabaabaab aab%xa‘bdg
-« = . > !

...because the periodicity breaks first on the left.



Case 3: Palindrome breaks when periodicity breaks (right)
Consider @ € Qx with its center on the right of the Case 1:

- a > - b >
X C
cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg
- <+ >
- ¢ I >
<< >

Q € Qx with center on the right

- a > - b >
X C
cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg
- <+ >
- <+ > >




Case 3: Palindrome breaks when periodicity breaks (right)
Consider @ € Qx with its center on the right of the Case 1:

a b
I | |
| | |
| \X C |
cde ‘hab aabaab a.'abaab aa aabaabaabaab aab%xa‘bdg
«——= . > !
[ g . > [

Q € Qx with center on the right

a b

- > - >
X C
cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg
- <+ >
- <+ > >




Case 3: Palindrome breaks when periodicity breaks (right)
Consider @ € Qx with its center on the right of the Case 1:

a b
I | |
| | |
| \X C |
cde ‘hab aabaab a.'abaab aa aabaabaabaab aab%xa‘bdg
«——= . > !
[ g . > [

Q € Qx with center on the right

No LCP query is required to extend it...
a b

- > - >
X C
cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg
- <+ >
- <+ > >




Case 3: Palindrome breaks when periodicity breaks (right)
Consider @ € Qx with its center on the right of the Case 1:

a b
I | |
| | |
| \X C |
cde‘habaabaaba'abaabaaaabaabaabaabaab%xa‘bdg
«——= . > !
[ g . > [

Q € Qx with center on the right

No LCP query is required to extend it...

a b
I | |
| | |
| \X C |
cde ‘hab aabaab a.'ab aab aa aabaabaabaab aab%xa‘bdg
- . > > !

‘ <= - —
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Wrapping-up

By picking the longest of the three palindromes (Cases 1-3), we obtain:

The longest palindrome in Px can be computed in the time required to
answer O(1) LCP queries on S#SR$.

For each chunk C, we take the longer of:
@ the palindrome computed by an application of the above lemma
@ the longest palindrome precomputed for X with center in C

We have O(n/¢) = O(n/ log, n) chunks.

Using an optimal LCP data structure?, we obtain our final result:

A longest palindrome in S can be computed in O(n/ log,, n) time.

2Kempa and Kociumaka: String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. STOC 2019



