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The Longest Palindromic Substring problem

Longest Palindromic Substring (LPS)
Input: String S of length n over alphabet [0, σ) ⊆ [0, n).
Output: [i , j ] such that S [i . . j ] is a longest palindromic substring of S .

S = abcaabcbaabda

Time Space (words) Paper
O(n) O(n) Manacher, JACM 1975

O(n) O(n) Gusfield, Textbook 1997

O(n log σ/ log n) O(n log σ/ log n) This paper

Our algorithm works in sublinear time if σ = 2o(log n).
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The suffix tree

The compacted trie of all the suffixes of the string.

S =
0
C
1
A
2
G
3
A
4
G
5
A
6
#

0 : CAGAGA#
1 : AGAGA#
2 : GAGA#
3 : AGA#
4 : GA#
5 : A#
6 : #
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The suffix tree of S

We assume that the terminating symbol # is lex-smallest.

Theorem (Farach, FOCS 1997)

The suffix tree of S can be constructed in O(n) time using O(n) space.
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We assume that the terminating symbol # is lex-smallest.
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Longest common prefix (LCP) queries

PREPROCESS: a string S of length n over alphabet [0, σ) ⊆ [0, n)
QUERY: a pair (i , j); return the length of the LCP of (S [i . .],S [j . .])
The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both u and v .

u

v

Theorem (Bender and Farach-Colton, LATIN 2000)

Any tree of size O(N) can be preprocessed in O(N) time and space so
that the LCA of any two nodes can be computed in O(1) time.
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Longest common prefix (LCP) queries
PREPROCESS: a string S of length n over alphabet [0, σ) ⊆ [0, n)
QUERY: a pair (i , j); return the length of the LCP of (S [i . .],S [j . .])

Example

Let S = CAGAGA$. Let (1, 5) be the query. The answer is 1 = |A|.

$

GA

A$

$

GA$

GA

CAGAGA$

$

GA$

0

1

3

5

6

4

2

Theorem (Landau and Vishkin, TCS 1986)

LCP queries in S can be answered in O(1) time after O(n) time
preprocessing.
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Gusfield’s algorithm for LPS

Construct the suffix tree of W = S#SR$.

Preprocess the suffix tree for LCA queries.

Say we are interested in odd-length palindromes.

Answer LCP queries for W [i . .] and W [2n − i . .], for all i .

W [i . .]

W [2n− i . .]

S = CATGTATT

SR = TTATGTAC

W = S#SR$ = CATGTATT#TTATGTAC$
3 13
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Gusfield’s algorithm for LPS

W [i . .]

W [2n− i . .]

S = CATGTATT

SR = TTATGTAC

W = S#SR$ = CATGTATT#TTATGTAC$
3 13

A longest LCP represents a longest odd-length palindrome.

Even-length palindromes are handled analogously.

Take the longer of the two as the globally longest.

Theorem (Gusfield, Textbook 1997)

A longest palindromic substring in S can be computed in O(n) time.
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Question

Theorem (Kempa and Kociumaka, STOC 2019)

LCP queries in S can be answered in O(1) time after O(n/ logσ n) time
preprocessing.

Question: Can we improve on Gusfield’s textbook algorithm?

Answer: Yes
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Overview of our new solution

Chunks of length `′ = 1
8 logσ n and extended chunks of length ` = 4`′

Our algorithm proceeds with processing every chunk separately

Preprocessing stage: tabulation technique
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Preprocessing stage

Consider every distinct length-` string over [0, σ)

σ` = σ4`
′

= σ
logσ n

2 = O(
√
n) distinct strings

Each string X is stored in one machine word

Compute palindromes in X in O(`) time1

For each length-` string X store:
(a) a longest palindrome in X
(b) a longest palindrome in X that has its center in the 2nd chunk
(c) the two longest prefix palindromes of X , if they exist

X

0 `
2 − 1 `− 1

(a)
(b)

(c)

Time: O(
√
n logσ n) and Space: O(

√
n)

1Manacher: A New Linear-Time “On-Line” Algorithm for Finding the Smallest Initial
Palindrome of a String. J. ACM (1975)
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Overview of our new solution

Chunks of length `′ = 1
8 logσ n and extended chunks of length ` = 4`′

Our algorithm proceeds with processing every chunk separately

Preprocessing stage: tabulation technique

Main algorithm: for each chunk C in an extended chunk X of S , compute
a longest palindrome in S with a center in C using the
precomputed information for X , periodicity, and LCP queries
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Main algorithm: Basic structure
For the corner cases:

S

0 n− 1

length-` prefix length-` suffix

we use the precomputed data (a) to compute a longest palindrome

(any palindrome centered in the first or last `
2 positions is of length ≤ `)

For the middle part, we decompose:

S

0 n− 1

length-` prefix length-` suffix

C C C C C C C CCC C C

and process chunk C as the second quarter of an extended chunk X :

X C

0 `
2 − 1 `− 1
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Maximal palindromes of S with centers in C

PX : the set of maximal palindromes in S with centers in C that:

either exceed X

or are prefixes of X

X C

0 `
2 − 1 `− 1

. . .
Set PX of palindromes with centers in chunck C

Our goal: show that the longest palindrome in PX can be computed in the
time required to answer O(1) LCP queries on substrings of S#SR$
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Prefix palindromes of X with centers in C
QX : the set of palindromes which are prefixes of X with a center in C

X C

0 `
2 − 1 `− 1

. . .

Set QX of palindromes with centers in chunck C

P1

P2

Observations:

Each P ∈ PX has a subpalindrome P ′ ∈ QX with the same center

If P1 does not exist, then PX = ∅
If P1 exists but P2 does not, then |PX | = 1

Compute the only palindrome in PX from P1 using one LCP query

X C

0 `
2 − 1 `− 1

If |PX | = 1 then ask one LCE query to extend P1

P1
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Both P1 and P2 exist in QX ⇐⇒ Periodicity
By per(V ) we denote the smallest period of a string V .

Example

V = abbaabba = abba · abba and per(V ) = 4.

Lemma (Fici et al., JDA 2014)

Let U be a proper prefix of a palindrome V . Then |V | − |U| is a period of
V if and only if U is a palindrome. In particular, per(V ) = |V | − |U| if and
only if U is the longest palindromic proper prefix of V .

Example

V = abbaabba, U = abba, and per(V ) = 4.

As a consequence, we obtain the following, where p = per(P1) and k ≥ 0.

Lemma

The lengths of prefix palindromes in QX are structured: |P1| − kp.
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Main idea: Three prefix palindromes in QX are enough!

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX
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First step: Extending periodicity on both sides
We know p = |P1| − |P2| = per(P1), so two LCP queries suffice:

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

One LCP query

a

Here per(P1) = 3 generated by string aba.

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

One LCP query

ba
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Case 1: Reach the periodicity endpoints simultaneously
Consider Q ∈ QX with |Q| = b − a:

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

a b

Q ∈ QX with |Q| = b− a a

We use one LCP query to extend it.

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

a b

Note that indeed the palindrome may extend beyond periodicity!
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Case 2: Palindrome breaks when periodicity breaks (left)
Consider Q ∈ QX with its center on the left of the Case 1:

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

a b

Q ∈ QX with center on the left

No LCP query is required to extend it...

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

a b

...because the periodicity breaks first on the left.
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Case 3: Palindrome breaks when periodicity breaks (right)
Consider Q ∈ QX with its center on the right of the Case 1:
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Case 3: Palindrome breaks when periodicity breaks (right)
Consider Q ∈ QX with its center on the right of the Case 1:
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Wrapping-up

By picking the longest of the three palindromes (Cases 1-3), we obtain:

Lemma

The longest palindrome in PX can be computed in the time required to
answer O(1) LCP queries on S#SR$.

For each chunk C , we take the longer of:

the palindrome computed by an application of the above lemma

the longest palindrome precomputed for X with center in C

We have O(n/`) = O(n/ logσ n) chunks.

Using an optimal LCP data structure2, we obtain our final result:

Theorem

A longest palindrome in S can be computed in O(n/ logσ n) time.

2Kempa and Kociumaka: String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. STOC 2019
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