Polynomial-Time Equivalences and Refined Algorithms for Longest Common Subsequence Variants

Yuichi Asahiro^a Jesper Jansson^b Guohui Lin^c

Eiji Miyano^d Hirotaka Ono^e Tadatoshi Utashima^d

^a Kyushu Sangyo University
 ^b Kyoto University
 ^c University of Alberta
 ^d Kyushu Institute of Technology
 ^e Nagoya University

June 29, 2022 / CPM2022

Longest Common Subsequence Problem on Two Sequences

LCS

Input: A pair of sequences X and Y over the alphabet Σ . Goal: Find a longest common subsequence LCS(X, Y) of X and Y.

Example: Alphabet $\Sigma = \{a, c, g, t\}$

$$\begin{split} X &= \langle t,g,a,c,t,c,t,g,t,g,c,a \rangle \\ Y &= \langle t,g,c,t,c,a,g,t,g,c,a,c \rangle \\ LCS(X,Y) &= \langle t,g,c,t,c,g,t,g,c,a \rangle \end{split}$$

Proposition [Hirschberg '75][Needleman et al '70][Sankoff '72] LCS can be solved in polynomial time.

Proof. DP works well.

Eiji MIYANO (Kyutech)

Four Variants of LCS

- In this talk, four variants of LCS are considered.
 - Every has two sequences (X, Y), plus some additional constraints as input.
 - Assume that |X| = n and |Y| = O(poly(n)).
 - Every is NP-hard.
- [Asahiro et al. COCOA 2019 & TCS 2020]
 REPETITION-BOUNDED LONGEST COMMON SUBSEQUENCE (RBLCS)
- [Mincu et al. SPIRE 2018]
 MULTISET RESTRICTED COMMON SUBSEQUENCE (MRCS)
- [Castelli et al. CPM 2017 & TCS 2019]
 ONE-SIDE-FILLED LONGEST COMMON SUBSEQUENCE (1FLCS)
- [Castelli et al. CPM 2017 & TCS 2019]
 Two-SIDE-FILLED LONGEST COMMON SUBSEQUENCE (2FLCS)

Our contributions

Result 1 (polynomial-time equivalence)

• Each of MRCS, 1FLCS and 2FLCS is polynomially equivalent to RBLCS.

Polynomial-time equivalence (polynomially equivalent)

- Let ALG_A and ALG_B be (exact exponential) algorithms for P_A and for P_B , respectively.
- We say that P_A and P_B are polynomially equivalent if
 - P_A can be solved by \mathtt{ALG}_B with some extra polynomial-time calculations; and
 - P_B can be solved by ALG_A with some extra polynomial-time calculations.

Our contributions

Result 1 (polynomial-time equivalence)

• Each of MRCS, 1FLCS and 2FLCS is polynomially equivalent to RBLCS.

Result 2 (exact exponential algorithms)

• RBLCS can be solved in ${\cal O}(1.415^n)$ time.

•
$$|X| = n$$
 and $|Y| = O(poly(n))$.

• From Results 1 and 2, MRCS, 1FLCS and 2FLCS can be also solved in $O(1.415^n)$ time.

Result 3 (approximation algorithm)

• There exists a 2-approximation algorithm for 2FLCS.

Repetition-Bounded LCS problem (RBLCS)

- Let $occ(W, \sigma)$ be the number of occurrences of $\sigma \in \Sigma$ in a sequence W.
- Let C_{occ} be an <u>occurrence constraint on a solution sequence</u>, i.e., a function $C_{occ}: \Sigma \to \mathbb{N}$ assigning an upper bound on the number of occurrences of each symbol in Σ .

RBLCS [Asahiro et al. COCOA 2019 & TCS 2020]

Input: A pair of sequences X and Y, and an occurrence constraint C_{occ} . Goal: Find a longest common subsequence Z of X and Y such that $occ(Z, \sigma) \leq C_{occ}(\sigma)$ is satisfied for every $\sigma \in \Sigma$.

Example: RBLCS

$$\begin{split} X &= \langle t, g, t, c, a, c, g, t, g, a, a, g \rangle \\ Y &= \langle a, t, g, c, a, t, g, g, a, c, a, g, c \rangle \\ C_{occ}(a) &= 1, C_{occ}(c) = 1, C_{occ}(g) = 2, C_{occ}(t) = 1 \end{split}$$

• $Z = \langle g, c, t, g, a \rangle$ of length 5 is an optimal solution since occ(Z, a) = 1, occ(Z, c) = 1, occ(Z, g) = 2, occ(Z, t) = 1

• Note that $\langle t,g,c,a,t,g,a,a,g\rangle$ of length 9 is an original LCS solution.

Repetition-Bounded LCS problem (RBLCS)

- Let $occ(W, \sigma)$ be the number of occurrences of $\sigma \in \Sigma$ in a sequence W.
- Let C_{occ} be an occurrence constraint on a solution sequence, i.e., a function $C_{occ}: \Sigma \to \mathbb{N}$ assigning an upper bound on the number of occurrences of each symbol in Σ .

RBLCS [Asahiro et al. COCOA 2019 & TCS 2020]

Input: A pair of sequences X and Y, and an occurrence constraint C_{occ} . Goal: Find a longest common subsequence Z of X and Y such that $occ(Z, \sigma) \leq C_{occ}(\sigma)$ is satisfied for every $\sigma \in \Sigma$.

[Asahiro et al. COCOA 2019 & TCS 2020] previously proved

- NP-hard (APX-hard)
- RBLCS can be solved in $O(1.442^n)$ time by a DP-based algorithm.

New result

Result 2 (exact exponential algorithms)

• RBLCS can be solved in $O(1.415^n)$ time by using a smaller DP-table.

Multiset-Restricted Common Subsequence problem (MRCS)

MRCS [Mincu et al. SPIRE 2018]

Input: A pair of sequences X and Y, and a multiset \mathcal{M} .

Goal: Find a common subsequence Z of X and Y such that Z contains the maximum number of symbols from M.

Example: MRCS

$$X = \langle t, g, t, c, a, c, g, t, g, a, a, g \rangle$$
$$Y = \langle a, t, g, c, a, t, g, g, a, c, a, g, c \rangle$$
$$\mathcal{M} = \{ a, c, g, g, t \}$$

- Z = ⟨g, c, t, g, a⟩ of length 5 is an optimal solution since |M| = 5 and Z has one a, one c, two g's, and one t.
- $Z' = \langle g, c, t, g, a, a, g \rangle$ of length 7 is another optimal solution since $|\mathcal{M} \cap Z| = 5$ and Z' also has one a, one c, two g's, and one t.
- Note that the solution value is at most $|\mathcal{M}|$.

Warm-up: Equivalence of RBLCS and MRCS

Simple Observation

- A multiset \mathcal{M} of MRCS can be seen as an occurrence constraint C_{occ} of RBLCS.
- An occurrence constraint C_{occ} of RBLCS can be seen as a multiset \mathcal{M} of MRCS.

$$\begin{array}{ll} \mathsf{MRCS} & X = \langle t,g,t,c,a,c,g,t,g,a,a,g \rangle \\ & Y = \langle a,t,g,c,a,t,g,g,a,c,a,g,c \rangle \\ & \mathcal{M} = \{a,c,g,g,t\} \\ & Z = \langle g,c,t,g,a \rangle \\ & \Downarrow & \uparrow \end{array}$$

$$\mathsf{RBLCS} & X = \langle t,g,t,c,a,c,g,t,g,a,a,g \rangle \\ & Y = \langle a,t,g,c,a,t,g,g,a,c,a,g,c \rangle \\ & C_{occ}(a) = 1, C_{occ}(c) = 1, C_{occ}(g) = 2, C_{occ}(t) = 1 \\ & Z = \langle g,c,t,g,a \rangle \end{array}$$

Warm-up: Equivalence of RBLCS and MRCS

Theorem

• Consider a pair of a multiset \mathcal{M} in an input for MRCS and an occurrence constraint C_{occ} of symbols in Σ in an input for RBLCS such that $C_{occ}(\sigma) = occ(\mathcal{M}, \sigma)$ for every $\sigma \in \Sigma$.

Then, the followings hold:

- Given an optimal solution Z_R for an input (X, Y, C_{occ}) of RBLCS, we can obtain an optimal solution for an input (X, Y, \mathcal{M}) of MRCS in polynomial time.
- **②** Given an optimal solution $Z_{\mathcal{M}}$ for an input (X, Y, \mathcal{M}) of MRCS, we can obtain an optimal solution for an input (X, Y, C_{occ}) of RBLCS in polynomial time.

Namely,

(Part of) Result 1 (polynomial-time equivalence)

• MRCS is polynomially equivalent to RBLCS.

One-Side-Filled LCS problem (1FLCS)

1FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of a complete sequence X and an incomplete sequence Y, and a multiset \mathcal{M}_Y of missing symbols.

Goal: Find a filling Y^* such that the length of $LCS(X, Y^*)$ is the longest among the length of $LCS(X, Y^+)$ over all fillings Y^+ .

Example: 1FLCS

Input:

- (Complete) reference sequence $X = \langle a, c, a, g, t \rangle$;
- \bullet Incomplete sequence $Y=\langle g,c,g,a\rangle;$ and
- Multiset $\mathcal{M}_Y = \{a, a, t\}$ of missing symbols.

Goal

- Find a omplete sequence $Y^* = \langle \underline{a}, g, c, \underline{a}, g, \underline{t}, a \rangle$ by filling missing symbols in \mathcal{M}_Y to Y; and
- Find a LCS $LCS(X, Y^*) = \langle \underline{a}, c, \underline{a}, g, \underline{t} \rangle$ of two sequences X and Y^* .

Two-Side-Filled LCS problem (2FLCS)

2FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of incomplete sequences X and Y, and a pair of multisets \mathcal{M}_X and $\overline{\mathcal{M}_Y}$ of missing symbols.

Goal: Find two fillings X^* and Y^* such that the length of $LCS(X^*, Y^*)$ is the longest among the lengths of $LCS(X^+, Y^+)$ over all pairs of X^+ and Y^+ .

4 types of matches

• Let "match" be a common symbol of two fillings X^* and Y^* .

$$X = \langle g, t, c, a, c, t, g, a \rangle$$
$$Y = \langle g, a, t, c, c, g, t, g \rangle$$
$$\mathcal{M}_X = \{g, t\}$$
$$\mathcal{M}_Y = \{c, t, t\}$$
$$X^* = \langle \underline{t}, g, t, c, a, c, \underline{g}, t, g, a \rangle$$
$$Y^* = \langle \underline{t}, g, \underline{t}, \underline{c}, a, t, c, c, g, t, g \rangle$$
$$CS(X^*, Y^*) = \langle t, g, t, c, a, c, g, t, g \rangle$$

Each match is one of the following 4 types:

L

- (\mathcal{M}_X -symbol, \mathcal{M}_Y -symbol)-match (e.g., 1st symbol "t")
- (X-symbol, Y-symbol)-match (e.g., 2nd symbol "g")
- (X-symbol, \mathcal{M}_Y -symbol)-match (e.g., 3rd symbol "t")
- (\mathcal{M}_X -symbol, Y-symbol)-match (e.g., 7th symbol "g")

Match Exchanging

Observation

• Every symbol $\sigma \in \mathcal{M}_Y$ (resp. \mathcal{M}_X) can be matched to σ at any position in X (resp. Y) without restrictions.

Match exchanging

• (X, Y)-match and $(\mathcal{M}_X, \mathcal{M}_Y)$ -match can be exchanged to (X, \mathcal{M}_Y) -match and (\mathcal{M}_X, Y) -match.

$$X = \langle \cdots a_X \cdots a_{\mathcal{M}_X} \cdots \rangle$$
$$Y^+ = \langle \cdots a_Y \cdots a_{\mathcal{M}_Y} \cdots \rangle$$
$$\Downarrow$$
$$X = \langle \cdots a_X a_{\mathcal{M}_X} \cdots \cdots \rangle$$
$$Y^+ = \langle \cdots a_{\mathcal{M}_Y} a_Y \cdots \cdots \rangle$$

• By repeating match-exchanging methods, (X, Y)-match-free (or $(\mathcal{M}_X, \mathcal{M}_Y)$ -match-free) sequence can be obtained.

Symbol Deleting

Symbol deleting

• A filling-procedure of a symbol $\sigma \in \mathcal{M}_Y$ into Y to match some σ in X can be seen as a deleting-procedure of the matched σ from X.

$$\begin{split} X &= \langle \cdots \ a \ g \ c \cdots \rangle \\ \mathcal{M}_Y &= \{ \cdots, c, g, g, t, \cdots \} \\ Y^+ &= \langle \cdots \ t \ \underline{g} \ c \ \cdots \rangle \quad (\text{filling } g \in \mathcal{M}_Y \text{ between } t \text{ and } c \text{ in } Y) \\ & \downarrow \\ X^- &= \langle \cdots \ a \ \Box \ c \ \cdots \rangle \quad (\text{deleting } g \text{ between } a \text{ and } c \text{ from } X) \\ \mathcal{M}_Y^- &= \{ \cdots, c, \Box, g, t, \cdots \} \quad (\text{deleting one } g \text{ from } \mathcal{M}_Y) \\ Y &= \langle \cdots \ t \ c \ \cdots \rangle \end{split}$$

- Longest length on $(X, Y, \mathcal{M}_X, \mathcal{M}_Y)$ = Longest length on $(X^-, Y, \mathcal{M}_X, \mathcal{M}_Y^-)$ +1 Similarly,
- Longest length on $(X, Y, \mathcal{M}_X, \mathcal{M}_Y)$ = Longest length on $(X, Y^-, \mathcal{M}_X^-, \mathcal{M}_Y)$ +1

 $\operatorname{Repetition-Bounded}$ LCS problem

• Occurrence constraint on the output sequence

RBLCS [Asahiro et al. COCOA 2019 & TCS 2020]

Input: A pair of sequences X and Y, and an occurrence constraint C_{occ} . Goal: Find a longest common subsequence Z of X and Y such that $occ(Z, \sigma) \leq C_{occ}(\sigma)$ is satisfied for every $\sigma \in \Sigma$.

 $\operatorname{ONE-SIDE-FILLED}$ LCS problem

• One complete, one incomplete sequences and missing symbols

1FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of a complete sequence X and an incomplete sequence Y, and a multiset \mathcal{M}_Y of missing symbols.

Goal: Find a filling Y^* such that the length of $LCS(X, Y^*)$ is the longest among the length of $LCS(X, Y^+)$ over all fillings Y^+ .

Observations

- After all σ 's in \mathcal{M}_Y are matched in 1FLCS, the number of remaining unmatched σ 's in X is $occ(X, \sigma) occ(\mathcal{M}_Y, \sigma)$, which can be seen as the occurrence constraint $C_{occ}(\sigma)$ of the input (X, Y, C_{occ}) for RBLCS.
- The number $occ(X, \sigma) C_{occ}(\sigma)$ of σ 's in X for RBLCS can be seen as the number of σ 's in \mathcal{M}_Y for 1FLCS.

1FLCS

$$X = \langle a \ c \ a \ g \ c \ g \ a \ c \ t \rangle$$

$$\mathcal{M}_{Y} = \{c, c, g, t\}$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$\mathbb{RBLCS}$$

$$X = \langle a \ c \ a \ g \ c \ g \ a \ c \ t \rangle$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$C_{occ}(a) = 3, \ C_{occ}(c) = 1, \ C_{occ}(g) = 1, \ C_{occ}(t) = 0$$

Lemma

- Given an input triple (X, Y, \mathcal{M}_Y) of 1FLCS, we can construct an input triple (X, Y, C_{occ}) of RBLCS satisfying $C_{occ}(\sigma) = occ(X, \sigma) occ(\mathcal{M}_Y, \sigma)$ for every $\sigma \in \Sigma$ in polynomial time.
- Given an input triple (X, Y, C_{occ}) of RBLCS, we can construct an input triple (X, Y, \mathcal{M}_Y) of 1FLCS satisfying $occ(\mathcal{M}_Y, \sigma) = occ(X, \sigma) C_{occ}(\sigma)$ for every $\sigma \in \Sigma$ in polynomial time.

1FLCS

$$X = \langle a \ c \ a \ g \ c \ g \ a \ c \ t \rangle$$

$$\mathcal{M}_{Y} = \{c, c, g, t\}$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$\Downarrow$$
RBLCS

$$X = \langle a \ c \ a \ g \ c \ g \ a \ c \ t \rangle$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$Y = \langle a \ c \ g \ a \ g \ a \ c \ t \rangle$$

$$C_{occ}(a) = 3, \ C_{occ}(c) = 1, \ C_{occ}(g) = 1, \ C_{occ}(t) = 0$$

- Consider a pair of inputs (X, Y, \mathcal{M}_Y) for 1FLCS and (X, Y, C_{occ}) for RBLCS such that $C_{occ}(\sigma) = occ(X, \sigma) occ(\mathcal{M}_Y, \sigma)$ holds for every $\sigma \in \Sigma$.
- Let $Z_F = LCS(X, Y, \mathcal{M}_Y)$ and Y^* be an optimal filling for 1FLCS.
- Let $Z_R = LCS(X, Y, C_{occ})$ be an optimal solution for RBLCS.

Theorem

- Given an optimal solution Z_R for RBLCS, we can obtain an optimal solution for 1FLCS in polynomial time.
- **②** Given an optimal filling Y^* (or solution Z_F) for 1FLCS, we can obtain an optimal solution for RBLCS in polynomial time.

Namely,

(Part of) Result 1 (polynomial-time equivalence)

• 1FLCS is polynomially equivalent to RBLCS.

2FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of incomplete sequences X and Y, and a pair of multisets \mathcal{M}_X and \mathcal{M}_Y of missing symbols.

Goal: Find two fillings X^* and Y^* such that the length of $LCS(X^*, Y^*)$ is the longest among the lengths of $LCS(X^+, Y^+)$ over all pairs of X^+ and Y^+ .

• For an input $(X, Y, \mathcal{M}_X, \mathcal{M}_Y)$ of 2FLCS, consider an occurrence constraint $C_{occ}(\sigma) = \min \{occ(X, \sigma) - occ(\mathcal{M}_Y, \sigma), occ(Y, \sigma) - occ(\mathcal{M}_X, \sigma)\}$ for every $\sigma \in \Sigma$.

Theorem

Given an optimal solution Z_R of RBLCS on (X, Y, C_{occ}) , we can obtain optimal fillings X^* and Y^* of 2FLCS on $(X, Y, \mathcal{M}_X, \mathcal{M}_Y)$ in polynomial time.

(Part of) Result 1 (polynomial-time equivalence)

• 2FLCS is polynomially equivalent to RBLCS.

Eiji MIYANO (Kyutech)

Exact Algorithms for RBLCS

Result 2 (exact exponential algorithms)

• RBLCS can be solved in $O(1.415^n)$ time.

Proof.

- $\bullet\,$ The basic ideas are very similar to the previous $O(1.443^n)\mbox{-time DP-based}$ algorithm; but
- we can show the DP-table size can be reduced to ${\cal O}(1.415^n)$ from ${\cal O}(1.443^n).$

Corollary

MRCS, 1FLCS, and 2FLCS can be also solved in $O(1.415^n)$ time.

Proof. Polynomial-time equivalences $+ O(1.415^n)$ -time algorithm for RBLCS.

Approximation Algorithm for 2FLCS

• Consider an input $(X, Y, \mathcal{M}_X, \mathcal{M}_Y)$ of 2FLCS.

$$X = \langle g, t, c, a, c, t, g, a \rangle$$
$$Y = \langle g, a, t, c, c, g, t, g \rangle$$
$$\mathcal{M}_X = \{g, t\}$$
$$\mathcal{M}_Y = \{t, c, t\}$$

Algorithm ALG

- Find $\langle t, c, t \rangle$ by scanning X from left to right, and construct a filling $Y^+ = \langle \mathcal{M}_Y \rangle \circ Y = \langle t, c, t \rangle \circ Y$.
- Find (g,t) by scanning Y from left to right, and construct a filling X⁺ = X ∘ (M_X) = X ∘ (g,t).
- Solution Find a LCS of two fillings X^+ and Y^+ (denoted by $LCS(X^+, Y^+)$).

Approximation Algorithm for 2FLCS

Theorem

Algorithm ALG is a polynomial-time 2-approximation algorithm for 2FLCS on an input $(X, Y, \mathcal{M}_X, \mathcal{M}_Y)$.

Proof.

• By repeating the symbol-deleting methods, we can show:

 $OPT \le |LCS(X,Y)| + |\mathcal{M}_X| + |\mathcal{M}_Y|.$

• Let ALG be the length obtained by our algorithm ALG. Namely,

 $ALG = |LCS(X \circ \langle \mathcal{M}_X \rangle, \langle \mathcal{M}_Y \rangle \circ Y)|.$

• Therefore, $ALG \ge |LCS(X, Y)|$ and $ALG \ge |\mathcal{M}_X| + |\mathcal{M}_Y|$.

• The approximation ratio is:

 $\frac{OPT}{ALG} \leq \frac{|LCS(X,Y)| + |\mathcal{M}_X| + |\mathcal{M}_Y|}{\max\{|LCS(X,Y)|, |\mathcal{M}_X| + |\mathcal{M}_Y|\}} \leq \frac{2(|LCS(X,Y)| + |\mathcal{M}_X| + |\mathcal{M}_Y|)}{|LCS(X,Y)| + |\mathcal{M}_X| + |\mathcal{M}_Y|} = 2$

Symbol Deleting (revisited)

Symbol deleting

• A filling-procedure of a symbol $\sigma \in \mathcal{M}_Y$ into Y to match some σ in X can be seen as a deleting-procedure of the matched σ from X.

$$\begin{split} X &= \langle \cdots \ a \ g \ c \cdots \rangle \\ \mathcal{M}_Y &= \{ \cdots, c, g, g, t, \cdots \} \\ Y^+ &= \langle \cdots \ t \ \underline{g} \ c \ \cdots \rangle \quad (\text{filling } g \in \mathcal{M}_Y \text{ between } t \text{ and } c \text{ in } Y) \\ & \downarrow \\ X^- &= \langle \cdots \ a \ \Box \ c \ \cdots \rangle \quad (\text{deleting } g \text{ between } a \text{ and } c \text{ from } X) \\ \mathcal{M}_Y^- &= \{ \cdots, c, \Box, g, t, \cdots \} \\ Y &= \langle \cdots \ t \ c \ \cdots \rangle \\ \text{Longest length on } (X, Y, \mathcal{M}_X, \mathcal{M}_Y) \\ &= \text{Longest length on } (X^-, Y, \mathcal{M}_X, \mathcal{M}_Y) + 1 \end{split}$$

- = Longest length on $(X^-, Y^-, \mathcal{M}_X^-, \mathcal{M}_Y^-) + 2$ = \cdots = Longest length on $(X', Y', \emptyset, \emptyset) + |\mathcal{M}_X| + |\mathcal{M}_Y|$
- $= \cdots = \text{Longest length on } (X, Y, \psi, \psi) + |\mathcal{M}_X| + |$ $\leq |LCS(X, Y)| + |\mathcal{M}_X| + |\mathcal{M}_Y|$

Summary

New results:

- Polynomial-time equivalences among RBLCS, MRCS, 1FLCS, and 2FLCS.
- $O(1.413^n)$ -time algorithm for RBLCS, MRCS, 1FLCS, and 2FLCS.
- Polynomial-time 2-approximation algorithm for 2FLCS.

Previous results:

- $O(1.442^n)$ -time algorithm for RBLCS.
- $O(|X||Y|(t+1)^{|\Sigma|})$ -time algorithm for MRCS,
 - where t is the maximum multiplicity of symbols in \mathcal{M} , and
 - ∑ is the alphabet set.
- $O(|X|^{|\Sigma|+2}|Y|)$ -time algorithm for 1FLCS.
- $O(2^{O(k)}poly(|X| + |Y| + |\mathcal{M}_Y|))$ -time algorithm for 1FLCS,
 - where k is the number of (X, \mathcal{M}_Y) -matches in $LCS(X, Y^*)$.
- \bullet Polynomial-time $1.667\mbox{-approximation}$ algorithm for 1FLCS.
- No results on algorithms for 2FLCS.