
Polynomial-Time Equivalences and Refined Algorithms for

Longest Common Subsequence Variants

Yuichi Asahiroa Jesper Janssonb Guohui Linc

Eiji Miyanod Hirotaka Onoe Tadatoshi Utashimad

a Kyushu Sangyo University
b Kyoto University

c University of Alberta
d Kyushu Institute of Technology

e Nagoya University

June 29, 2022 / CPM2022

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 1 / 25

Longest Common Subsequence Problem on Two Sequences

LCS
Input: A pair of sequences X and Y over the alphabet Σ.

Goal: Find a longest common subsequence LCS(X,Y) of X and Y .

Example: Alphabet Σ = {a, c, g, t}

X = ⟨t, g, a, c, t, c, t, g, t, g, c, a⟩
Y = ⟨t, g, c, t, c, a, g, t, g, c, a, c⟩

LCS(X,Y) = ⟨t, g, c, t, c, g, t, g, c, a⟩

Proposition [Hirschberg ’75][Needleman et al ’70][Sankoff ’72]

LCS can be solved in polynomial time.

Proof. DP works well.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 2 / 25

Four Variants of LCS

In this talk, four variants of LCS are considered.

▶ Every has two sequences (X,Y), plus some additional constraints as input.
▶ Assume that |X| = n and |Y | = O(poly(n)).
▶ Every is NP-hard.

1 [Asahiro et al. COCOA 2019 & TCS 2020]

Repetition-Bounded Longest Common Subsequence (RBLCS)

2 [Mincu et al. SPIRE 2018]

Multiset Restricted Common Subsequence (MRCS)

3 [Castelli et al. CPM 2017 & TCS 2019]

One-Side-Filled Longest Common Subsequence (1FLCS)

4 [Castelli et al. CPM 2017 & TCS 2019]

Two-Side-Filled Longest Common Subsequence (2FLCS)

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 3 / 25

Our contributions

Result 1 (polynomial-time equivalence)

Each of MRCS, 1FLCS and 2FLCS is polynomially equivalent to RBLCS.

Polynomial-time equivalence (polynomially equivalent)

Let ALGA and ALGB be (exact exponential) algorithms for PA and for PB ,
respectively.

We say that PA and PB are polynomially equivalent if

▶ PA can be solved by ALGB with some extra polynomial-time calculations; and

▶ PB can be solved by ALGA with some extra polynomial-time calculations.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 4 / 25

Our contributions

Result 1 (polynomial-time equivalence)

Each of MRCS, 1FLCS and 2FLCS is polynomially equivalent to RBLCS.

Result 2 (exact exponential algorithms)

RBLCS can be solved in O(1.415n) time.

|X| = n and |Y | = O(poly(n)).

From Results 1 and 2,
MRCS, 1FLCS and 2FLCS can be also solved in O(1.415n) time.

Result 3 (approximation algorithm)

There exists a 2-approximation algorithm for 2FLCS.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 5 / 25

Repetition-Bounded LCS problem (RBLCS)

Let occ(W,σ) be the number of occurrences of σ ∈ Σ in a sequence W .

Let Cocc be an occurrence constraint on a solution sequence, i.e., a function
Cocc : Σ → N assigning an upper bound on the number of occurrences of
each symbol in Σ.

RBLCS [Asahiro et al. COCOA 2019 & TCS 2020]

Input: A pair of sequences X and Y , and an occurrence constraint Cocc.

Goal: Find a longest common subsequence Z of X and Y such that
occ(Z, σ) ≤ Cocc(σ) is satisfied for every σ ∈ Σ.

Example: RBLCS

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩
Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩
Cocc(a) = 1, Cocc(c) = 1, Cocc(g) = 2, Cocc(t) = 1

Z = ⟨g, c, t, g, a⟩ of length 5 is an optimal solution since occ(Z, a) = 1,
occ(Z, c) = 1, occ(Z, g) = 2, occ(Z, t) = 1

Note that ⟨t, g, c, a, t, g, a, a, g⟩ of length 9 is an original LCS solution.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 6 / 25

Repetition-Bounded LCS problem (RBLCS)

Let occ(W,σ) be the number of occurrences of σ ∈ Σ in a sequence W .

Let Cocc be an occurrence constraint on a solution sequence, i.e., a function
Cocc : Σ → N assigning an upper bound on the number of occurrences of
each symbol in Σ.

RBLCS [Asahiro et al. COCOA 2019 & TCS 2020]

Input: A pair of sequences X and Y , and an occurrence constraint Cocc.

Goal: Find a longest common subsequence Z of X and Y such that
occ(Z, σ) ≤ Cocc(σ) is satisfied for every σ ∈ Σ.

[Asahiro et al. COCOA 2019 & TCS 2020] previously proved

NP-hard (APX-hard)

RBLCS can be solved in O(1.442n) time by a DP-based algorithm.

New result

Result 2 (exact exponential algorithms)

RBLCS can be solved in O(1.415n) time by using a smaller DP-table.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 7 / 25

Multiset-Restricted Common Subsequence problem (MRCS)

MRCS [Mincu et al. SPIRE 2018]

Input: A pair of sequences X and Y , and a multiset M.

Goal: Find a common subsequence Z of X and Y such that Z contains
the maximum number of symbols from M.

Example: MRCS

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩
Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩
M = {a, c, g, g, t}

Z = ⟨g, c, t, g, a⟩ of length 5 is an optimal solution since |M| = 5 and Z has
one a, one c, two g’s, and one t.

Z ′ = ⟨g, c, t, g, a, a, g⟩ of length 7 is another optimal solution since
|M ∩ Z| = 5 and Z ′ also has one a, one c, two g’s, and one t.

Note that the solution value is at most |M|.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 8 / 25

Warm-up: Equivalence of RBLCS and MRCS

Simple Observation

A multiset M of MRCS can be seen as an occurrence constraint Cocc of
RBLCS.

An occurrence constraint Cocc of RBLCS can be seen as a multiset M of
MRCS.

MRCS X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩
Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩
M = {a, c, g, g, t}
Z = ⟨g, c, t, g, a⟩

⇓ ⇑
RBLCS X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩

Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩
Cocc(a) = 1, Cocc(c) = 1, Cocc(g) = 2, Cocc(t) = 1

Z = ⟨g, c, t, g, a⟩

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 9 / 25

Warm-up: Equivalence of RBLCS and MRCS

Theorem
Consider a pair of a multiset M in an input for MRCS and an occurrence
constraint Cocc of symbols in Σ in an input for RBLCS such that
Cocc(σ) = occ(M, σ) for every σ ∈ Σ.

Then, the followings hold:

1 Given an optimal solution ZR for an input (X,Y,Cocc) of RBLCS, we can
obtain an optimal solution for an input (X,Y,M) of MRCS in polynomial
time.

2 Given an optimal solution ZM for an input (X,Y,M) of MRCS, we can
obtain an optimal solution for an input (X,Y,Cocc) of RBLCS in polynomial
time.

Namely,

(Part of) Result 1 (polynomial-time equivalence)

MRCS is polynomially equivalent to RBLCS.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 10 / 25

One-Side-Filled LCS problem (1FLCS)

1FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of a complete sequence X and an incomplete sequence Y ,
and a multiset MY of missing symbols.

Goal: Find a filling Y ∗ such that the length of LCS(X,Y ∗) is the
longest among the length of LCS(X,Y +) over all fillings Y +.

Example: 1FLCS
Input:

(Complete) reference sequence X = ⟨a, c, a, g, t⟩;
Incomplete sequence Y = ⟨g, c, g, a⟩; and
Multiset MY = {a, a, t} of missing symbols.

Goal

Find a omplete sequence Y ∗ = ⟨a, g, c, a, g, t, a⟩ by filling missing symbols in
MY to Y ; and

Find a LCS LCS(X,Y ∗) = ⟨a, c, a, g, t⟩ of two sequences X and Y ∗.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 11 / 25

Two-Side-Filled LCS problem (2FLCS)

2FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of incomplete sequences X and Y , and a pair of multisets
MX and MY of missing symbols.

Goal: Find two fillings X∗ and Y ∗ such that the length of LCS(X∗, Y ∗)
is the longest among the lengths of LCS(X+, Y +) over all pairs of
X+ and Y +.

Incomplete sequence X = ⟨g, t, c, a, c, t, g, a⟩
MX = {g, t}

Incomplete sequence Y = ⟨g, a, t, c, c, g, t, g⟩
MY = {c, t, t}

Filling X +MX X∗ = ⟨t, g, t, c, a, c, g, t, g, a⟩
Filling Y +MY Y ∗ = ⟨t, g, t, c, a, t, c, c, g, t, g⟩

LCS(X∗, Y ∗) = ⟨t, g, t, c, a, c, g, t, g⟩

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 12 / 25

4 types of matches

Let “match” be a common symbol of two fillings X∗ and Y ∗.

X = ⟨g, t, c, a, c, t, g, a⟩
Y = ⟨g, a, t, c, c, g, t, g⟩

MX = {g, t}
MY = {c, t, t}
X∗ = ⟨t, g, t, c, a, c, g, t, g, a⟩
Y ∗ = ⟨t, g, t, c, a, t, c, c, g, t, g⟩

LCS(X∗, Y ∗) = ⟨t, g, t, c, a, c, g, t, g⟩

Each match is one of the following 4 types:

(MX -symbol, MY -symbol)-match (e.g., 1st symbol “t”)

(X-symbol, Y -symbol)-match (e.g., 2nd symbol “g”)

(X-symbol, MY -symbol)-match (e.g., 3rd symbol “t”)

(MX -symbol, Y -symbol)-match (e.g., 7th symbol “g”)

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 13 / 25

Match Exchanging

Observation

Every symbol σ ∈ MY (resp. MX) can be matched to σ at any position in
X (resp. Y) without restrictions.

Match exchanging

(X, Y)-match and (MX , MY)-match can be exchanged to
(X, MY)-match and (MX , Y)-match.

X = ⟨· · · aX · · · aMX
· · · ⟩

Y + = ⟨· · · aY · · · aMY
· · · ⟩

⇓
X = ⟨· · · aX aMX

· · · · · · ⟩
Y + = ⟨· · · aMY

aY · · · · · · ⟩

By repeating match-exchanging methods, (X,Y)-match-free
(or (MX ,MY)-match-free) sequence can be obtained.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 14 / 25

Symbol Deleting

Symbol deleting

A filling-procedure of a symbol σ ∈ MY into Y to match some σ in X can
be seen as a deleting-procedure of the matched σ from X.

X = ⟨· · · a g c · · · ⟩
MY = {· · · , c, g, g, t, · · · }
Y + = ⟨· · · t g c · · · ⟩ (filling g ∈ MY between t and c in Y)

⇓
X− = ⟨· · · a □ c · · · ⟩ (deleting g between a and c from X)

M−
Y = {· · · , c,□, g, t, · · · } (deleting one g from MY)

Y = ⟨· · · t c · · · ⟩

Longest length on (X,Y,MX ,MY) = Longest length on (X−, Y,MX ,M−
Y) +1

Similarly,

Longest length on (X,Y,MX ,MY) = Longest length on (X,Y −,M−
X ,MY) +1

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 15 / 25

Polynomial-time equivalence of RBLCS and 1FLCS

Repetition-Bounded LCS problem

Occurrence constraint on the output sequence

RBLCS [Asahiro et al. COCOA 2019 & TCS 2020]

Input: A pair of sequences X and Y , and an occurrence constraint Cocc.

Goal: Find a longest common subsequence Z of X and Y such that
occ(Z, σ) ≤ Cocc(σ) is satisfied for every σ ∈ Σ.

One-Side-Filled LCS problem

One complete, one incomplete sequences and missing symbols

1FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of a complete sequence X and an incomplete sequence Y ,
and a multiset MY of missing symbols.

Goal: Find a filling Y ∗ such that the length of LCS(X,Y ∗) is the
longest among the length of LCS(X,Y +) over all fillings Y +.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 16 / 25

Polynomial-time equivalence of RBLCS and 1FLCS

Observations
After all σ’s in MY are matched in 1FLCS, the number of remaining
unmatched σ’s in X is occ(X,σ)− occ(MY , σ), which can be seen as the
occurrence constraint Cocc(σ) of the input (X,Y,Cocc) for RBLCS.

The number occ(X,σ)− Cocc(σ) of σ’s in X for RBLCS can be seen as the
number of σ’s in MY for 1FLCS.

1FLCS X = ⟨a c a g c g a c t⟩
MY = {c, c, g, t}

Y = ⟨a c g a g a c t⟩
⇓ ⇑

RBLCS X = ⟨a c a g c g a c t ⟩

Y = ⟨a c g a g a c t⟩
Cocc(a)= 3, Cocc(c) = 1, Cocc(g) = 1, Cocc(t) = 0

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 17 / 25

Polynomial-time equivalence of RBLCS and 1FLCS

Lemma

Given an input triple (X,Y,MY) of 1FLCS, we can construct an input triple
(X,Y,Cocc) of RBLCS satisfying Cocc(σ) = occ(X,σ)− occ(MY , σ) for
every σ ∈ Σ in polynomial time.

Given an input triple (X,Y,Cocc) of RBLCS, we can construct an input triple
(X,Y,MY) of 1FLCS satisfying occ(MY , σ) = occ(X,σ)− Cocc(σ) for
every σ ∈ Σ in polynomial time.

1FLCS X = ⟨a c a g c g a c t⟩
MY = {c, c, g, t}

Y = ⟨a c g a g a c t⟩
⇓ ⇑

RBLCS X = ⟨a c a g c g a c t ⟩

Y = ⟨a c g a g a c t⟩
Cocc(a)= 3, Cocc(c) = 1, Cocc(g) = 1, Cocc(t) = 0

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 18 / 25

Polynomial-time equivalence of RBLCS and 1FLCS

Consider a pair of inputs (X,Y,MY) for 1FLCS and (X,Y,Cocc) for RBLCS
such that Cocc(σ) = occ(X,σ)− occ(MY , σ) holds for every σ ∈ Σ.

Let ZF = LCS(X,Y,MY) and Y ∗ be an optimal filling for 1FLCS.

Let ZR = LCS(X,Y,Cocc) be an optimal solution for RBLCS.

Theorem
1 Given an optimal solution ZR for RBLCS, we can obtain an optimal solution

for 1FLCS in polynomial time.

2 Given an optimal filling Y ∗ (or solution ZF) for 1FLCS, we can obtain an
optimal solution for RBLCS in polynomial time.

Namely,

(Part of) Result 1 (polynomial-time equivalence)

1FLCS is polynomially equivalent to RBLCS.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 19 / 25

Polynomial-time equivalence of RBLCS and 2FLCS

2FLCS [Castelli et al. CPM 2017 & TCS 2019]

Input: A pair of incomplete sequences X and Y , and a pair of multisets
MX and MY of missing symbols.

Goal: Find two fillings X∗ and Y ∗ such that the length of LCS(X∗, Y ∗)
is the longest among the lengths of LCS(X+, Y +) over all pairs of
X+ and Y +.

For an input (X,Y,MX ,MY) of 2FLCS, consider an occurrence constraint
Cocc(σ) = min {occ(X,σ)− occ(MY , σ), occ(Y, σ)− occ(MX , σ)} for every
σ ∈ Σ.

Theorem

Given an optimal solution ZR of RBLCS on (X,Y,Cocc), we can obtain optimal
fillings X∗ and Y ∗ of 2FLCS on (X,Y,MX ,MY) in polynomial time.

(Part of) Result 1 (polynomial-time equivalence)

2FLCS is polynomially equivalent to RBLCS.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 20 / 25

Exact Algorithms for RBLCS

Result 2 (exact exponential algorithms)

RBLCS can be solved in O(1.415n) time.

Proof.

The basic ideas are very similar to the previous O(1.443n)-time DP-based
algorithm; but

we can show the DP-table size can be reduced to O(1.415n) from
O(1.443n).

Corollary

MRCS, 1FLCS, and 2FLCS can be also solved in O(1.415n) time.

Proof. Polynomial-time equivalences + O(1.415n)-time algorithm for
RBLCS.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 21 / 25

Approximation Algorithm for 2FLCS

Consider an input (X,Y,MX ,MY) of 2FLCS.

X = ⟨g, t, c, a, c, t, g, a⟩
Y = ⟨g, a, t, c, c, g, t, g⟩

MX = {g, t}
MY = {t, c, t}

Algorithm ALG

1 Find ⟨t, c, t⟩ by scanning X from left to right, and construct a filling
Y + = ⟨MY ⟩ ◦ Y = ⟨t, c, t⟩ ◦ Y .

2 Find ⟨g, t⟩ by scanning Y from left to right, and construct a filling
X+ = X ◦ ⟨MX⟩ = X ◦ ⟨g, t⟩.

3 Find a LCS of two fillings X+ and Y + (denoted by LCS(X+, Y +)).

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 22 / 25

Approximation Algorithm for 2FLCS

Theorem
Algorithm ALG is a polynomial-time 2-approximation algorithm for 2FLCS on an
input (X,Y,MX ,MY).

Proof.

By repeating the symbol-deleting methods, we can show:

OPT ≤ |LCS(X,Y)|+ |MX |+ |MY |.

Let ALG be the length obtained by our algorithm ALG. Namely,

ALG = |LCS(X ◦ ⟨MX⟩, ⟨MY ⟩ ◦ Y)|.

Therefore, ALG ≥ |LCS(X,Y)| and ALG ≥ |MX |+ |MY |.
The approximation ratio is:

OPT

ALG
≤ |LCS(X,Y)|+ |MX |+ |MY |

max{|LCS(X,Y)|, |MX |+ |MY |} ≤ 2(|LCS(X,Y)|+ |MX |+ |MY |)
|LCS(X,Y)|+ |MX |+ |MY | = 2

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 23 / 25

Symbol Deleting (revisited)

Symbol deleting

A filling-procedure of a symbol σ ∈ MY into Y to match some σ in X can
be seen as a deleting-procedure of the matched σ from X.

X = ⟨· · · a g c · · · ⟩
MY = {· · · , c, g, g, t, · · · }

Y + = ⟨· · · t g c · · · ⟩ (filling g ∈ MY between t and c in Y)

⇓

X− = ⟨· · · a □ c · · · ⟩ (deleting g between a and c from X)

M−
Y = {· · · , c,□, g, t, · · · }
Y = ⟨· · · t c · · · ⟩

Longest length on (X,Y,MX ,MY)
= Longest length on (X−, Y,MX ,M−

Y) +1
= Longest length on (X−, Y −,M−

X ,M−
Y) +2

= · · · = Longest length on (X ′, Y ′, ∅, ∅) +|MX |+ |MY |
≤ |LCS(X,Y)|+ |MX |+ |MY |

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 24 / 25

Summary

New results:

Polynomial-time equivalences among RBLCS, MRCS, 1FLCS, and 2FLCS.

O(1.413n)-time algorithm for RBLCS, MRCS, 1FLCS, and 2FLCS.

Polynomial-time 2-approximation algorithm for 2FLCS.

Previous results:

O(1.442n)-time algorithm for RBLCS.

O(|X||Y |(t+ 1)|Σ|)-time algorithm for MRCS,
▶ where t is the maximum multiplicity of symbols in M, and
▶ Σ is the alphabet set.

O(|X||Σ|+2|Y |)-time algorithm for 1FLCS.

O(2O(k)poly(|X|+ |Y |+ |MY |))-time algorithm for 1FLCS,
▶ where k is the number of (X, MY)-matches in LCS(X,Y ∗).

Polynomial-time 1.667-approximation algorithm for 1FLCS.

No results on algorithms for 2FLCS.

Eiji MIYANO (Kyutech) Polynomial-Time Equivalences of LCS Variants CPM2022 25 / 25

