An FPT-Algorithm for Longest Common Subsequence Parameterized by the Maximum Number of Deletions

L. Bulteau¹, M. Jones², R. Niedermeier³, T. Tantau⁴

¹ LIGM, CNRS, Université Gustave Eiffel, France

² Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands ³ Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany ⁴ Institute of Theoretical Computer Science, University of Lübeck, Germany

CPM 2022-06-29

This work was initiated during Dagstuhl Seminar 19443, Algorithms and Complexity in Phylogenetics in October 2019.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

In Rolf's Memory

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

< ロ > < 部 > < 注 > < 注 > < 三 < の < ()</p>

In Rolf's Memory

Laurent Bulteau, Mark Jones, Rolf Niedermeier, Till Tantau:

An FPT-Algorithm for Longest Common Subsequence Parameterized by the Maximum Number of Deletions. CPM 2022: 6:1-6:11

Tomohiro Koana , Vincent Froese, Rolf Niedermeier .

Parameterized Algorithms for Matrix Completion with Radius Constraints. CPM 2020: 20:1-20:14

Nathan Schaar, Vincent Froese, Rolf Niedermeier:

Faster Binary Mean Computation Under Dynamic Time Warping. CPM 2020: 28:1-28:13

Sharon Bruckner, Falk Hüffner [®], Christian Komusiewicz [®], Rolf Niedermeier, Sven Thiel, Johannes Uhlmann:

Partitioning into Colorful Components by Minimum Edge Deletions. CPM 2012: 56-69

Rudolf Fleischer, Jiong Guo, Rolf Niedermeier, Johannes Uhlmann, Yihui Wang, Mathias Weller, XI Wu: Extended Islands of Tractability for Parsimony Haplotyping. CPM 2010: 214-226

Christian Komusiewicz ⁽ⁱ⁾, Rolf Niedermeier, Johannes Uhlmann:

Deconstructing Intractability: A Case Study for Interval Constrained Coloring. CPM 2009: 207-220

Nadja Betzler, Michael R. Fellows ^(D), Christian Komusiewicz ^(D), Rolf Niedermeier:

Parameterized Algorithms and Hardness Results for Some Graph Motif Problems. CPM 2008: 31-43

Jochen Alber, Jens Gramm, Jiong Guo, Rolf Niedermeier:

Towards Optimally Solving the LONGEST COMMON SUBSEQUENCE Problem for Sequences with Nested Arc Annotations in Linear Time. CPM 2002: 99-114

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Jens Gramm, Rolf Niedermeier:

Minimum Quartet Inconsistency Is Fixed Parameter Tractable. CPM 2001: 241-256

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

 $\ell = 5$

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

abcabac
$$\ell=5$$

acbabc
ababcba $S^*=ababc$

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

Previous work (in a tiny nutshell)

► For *k* = 2:

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

・ロト ・日・・日・・日・ うへぐ

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

Previous work (in a tiny nutshell)

- For k = 2: very well studied.
 - Solvable in $O(n^2)$ (dynamic programming textbook example),
 - ▶ not in $O(n^{2-\epsilon})$ (under SETH, [Abboud et al. '15]),
 - many possible parameterizations (cf [Bringmann et al.' 18])

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

► For larger k:

LCS

- Given strings S_1, \ldots, S_k , integer ℓ
- Find S^* of length ℓ , S^* subsequence of each S_i

Previous work (in a tiny nutshell)

- For k = 2: very well studied.
 - Solvable in $O(n^2)$ (dynamic programming textbook example),
 - ▶ not in $O(n^{2-\epsilon})$ (under SETH, [Abboud et al. '15]),
 - many possible parameterizations (cf [Bringmann et al.' 18])

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

► For larger k:

- ▶ NP-hard [Maier, '78]
- Aim for FPT algorithms...

a	b	с	a	b	a	с
a	с	b	a	b	с	
a	b	a	b	с	Ъ	a

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle$

¹By exhaustive enumeration

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

・ロト・日本・日本・日本・日本・日本

FPT¹

イロト 不得 トイヨト イヨト ニヨー

¹By exhaustive enumeration +DP ²Even for binary alphabets [Pietrzak '03]

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

¹By exhaustive enumeration +DP ²Even for binary alphabets [Pietrzak '03] ³W[1]-hard for $\ell + k$ [Bodlaender et al. '95], FPT for ℓ + alphabet size

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

<ロ> <回> <回> <三> <三> <三> <三> <三> <三</p>

¹By exhaustive enumeration +DP ²Even for binary alphabets [Pietrzak '03] ³W[1]-hard for $\ell + k$ [Bodlaender et al. '95], FPT for ℓ + alphabet size ⁴[Irving and Fraser, CPM '92]

イロト (日本 (日本 (日本 (日本))) つくつ

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

¹By exhaustive enumeration +DP ²Even for binary alphabets [Pietrzak '03] ³W[1]-hard for $\ell + k$ [Bodlaender et al. '95], FPT for ℓ + alphabet size ⁴[Irving and Fraser, CPM '92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

- Read input string by string
- Maintain a set of candidates
- Pick the longest candidate in the final set

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Read input string by string
- Maintain a set of candidates
- Pick the longest candidate in the final set

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Read input string by string
- Maintain a set of candidates
- Pick the longest candidate in the final set

- Read input string by string
- Maintain a set of candidates
- Pick the longest candidate in the final set

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Read input string by string
- Maintain a set of candidates
- Pick the longest candidate in the final set

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Read input string by string
- Maintain a set of candidates
- Pick the longest candidate in the final set

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

Rough complexity analysis:

- Branching degree $\leq 4^{\Delta}$
- At most Δ branching candidates along each branch
- Everything else is linear in kn

Rough complexity analysis:

- Branching degree $\leq 4^{\Delta}$
- At most Δ branching candidates along each branch
- Everything else is linear in kn
- \Rightarrow Complexity in $O(4^{\Delta^2}kn)$

Rough complexity analysis:

- Branching degree $\leq 4^{\Delta}$
- At most Δ branching candidates along each branch
- Everything else is linear in kn
- \Rightarrow Complexity in $O(4^{\Delta^2} kn)$

(Improved to $O(2^{\delta+\Delta}(\Delta+1)^{\delta}kn)$ with a precise analysis)

Maximal Common Subsequences (MCS)

 $T \in MCS(S_1, ..., S_i)$ if T is a subsequence of each S_i and no character can be added to T

- ► Loop invariant: After reading S_i, candidates contain all strings in MCS(S₁,..., S_i) of length at least l
- LCS is the longest string in $MCS(S_1, \ldots, S_k)$

▲ロト ▲冊 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we have: MCS $(S, S') \subseteq ...$

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we have: MCS $(S, S') \subseteq ...$

• $\{S\}$ if S subsequence of S'

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we have: MCS $(S, S') \subseteq ...$

S S' abcab bab MCS(S, S') bab

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we have: MCS $(S, S') \subseteq ...$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we have: MCS $(S, S') \subseteq ...$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ●

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we define: ×MCS(S, S') := ...

・ロト・日本・ キャー キー シック

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we define: $\times MCS_{\ell}(S, S') := \dots$ • \emptyset if $|S| < \ell$ or $|S'| < \ell$ • {*S*} if *S* subsequence of S' \blacktriangleright {*S*'} if *S*' subsequence of *S* • $u \cdot xMCS_{\ell-1}(T, T')$ if u = u'▶ $xMCS_{\ell}(S, T') \cup xMCS_{\ell}(S', T)$ if $u \neq u'$ S S'c b a b c d abcab $\times MCS_3(S, S')$ cab $xMCS_3({S, bcab})$ $\frac{b a b}{c} \times MCS_3(\{babcd, S'\})$

・ロト・日本・ キャー キー シック

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we define: $\times MCS_{\ell}(S, S') := ...$

- \emptyset if $|S| < \ell$ or $|S'| < \ell$
- $\{S\}$ if S subsequence of S'
- $\{S'\}$ if S' subsequence of S
- $u \cdot \mathsf{xMCS}_{\ell-1}(T, T')$ if u = u'
- $\mathsf{xMCS}_{\ell}(S, T') \cup \mathsf{xMCS}_{\ell}(S', T)$ if $u \neq u'$

Correctness

 $\mathsf{xMCS}_\ell(S,S')$ contains all MCS of S,S' of length at least ℓ

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Complexity

•
$$|\mathsf{xMCS}_{\ell}(S, S')| \leq 2^{|S|+|T|-2\ell} \leq 4^{\Delta}$$

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we define: $\times MCS_{\ell}(S, S') := ...$

- $\blacktriangleright \ \emptyset \ \text{if} \ |S| < \ell \ \text{or} \ |S'| < \ell$
- $\{S\}$ if S subsequence of S'
- $\{S'\}$ if S' subsequence of S
- $u \cdot \mathsf{xMCS}_{\ell-1}(T, T')$ if u = u'
- $\mathsf{xMCS}_{\ell}(S, T') \cup \mathsf{xMCS}_{\ell}(S', T)$ if $u \neq u'$

Correctness

 $\mathsf{xMCS}_\ell(S,S')$ contains all MCS of S,S' of length at least ℓ

Complexity

- $|\mathsf{xMCS}_{\ell}(S, S')| \leq 2^{|S|+|T|-2\ell} \leq 4^{\Delta}$
- Can be computed in O(|×MCS_ℓ(S, S')| · n) using a precomputed table (O(Δn) entries): Is S[i,...n] a subsequence of S'[j,...n] for |i − j| ≤ Δ ?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲ロ ▶ ▲周 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we define: ×MCS_{ℓ}(S, S') := ...

- \emptyset if $|S| < \ell$ or $|S'| < \ell$
- $\{S\}$ if S subsequence of S'
- $\{S'\}$ if S' subsequence of S
- $u \cdot \mathsf{xMCS}_{\ell-1}(T, T')$ if u = u'
- $\mathsf{xMCS}_{\ell}(S, T') \cup \mathsf{xMCS}_{\ell}(S', T)$ if $u \neq u'$

Tree-Bounding Arguments

For any
$$X \in xMCS_{\ell}(S, S')$$
:
 $|X| \leq \min(|S|, |S'|)$
 $|X| < \min(|S|, |S'|)$ if $|xMCS_{\ell}(S, S')| > 1$

For two strings $S = u \cdot T$ and $S' = u' \cdot T'$, we define: ×MCS_{ℓ}(S, S') := ...

- ▶ Ø if $|S| < \ell$ or $|S'| < \ell$
- $\{S\}$ if S subsequence of S'
- $\{S'\}$ if S' subsequence of S
- $u \cdot \mathsf{xMCS}_{\ell-1}(T, T')$ if u = u'
- $\mathsf{xMCS}_{\ell}(S, T') \cup \mathsf{xMCS}_{\ell}(S', T)$ if $u \neq u'$

Tree-Bounding Arguments (precise formulation)

Let $d = |S| - \ell$, $d' = |S'| - \ell$, and N_i be the number of strings in $xMCS_\ell(S, S')$ of length |S'| - i.

$$\sum_{i=0}^{d'} \frac{N_i}{(d+1)^i} \leq 1.$$

(i.e. starting with a single string of length |S'|, a string of length m can be replaced by up to d + 1 strings of length m - 1)

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

・ロト・日本・山田・山田・山口・

Recurrence property

$$MCS(S_1,\ldots S_k) \subseteq \bigcup_{X \in MCS(S_1,\ldots S_{k-1})} MCS(S_k,X)$$

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recurrence property

$$MCS(S_1,...S_k) \subseteq \bigcup_{X \in MCS(S_1,...S_{k-1})} MCS(S_k,X)$$

Algorithm

$$\mathsf{xMCS}_{\ell}(S_1,\ldots,S_k) := \bigcup_{X \in \mathsf{xMCS}_{\ell}(S_1,\ldots,S_{k-1})} \mathsf{xMCS}_{\ell}(S_k,X)$$

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ●

Recurrence property

$$MCS(S_1,...S_k) \subseteq \bigcup_{X \in MCS(S_1,...S_{k-1})} MCS(S_k,X)$$

Algorithm

$$\mathsf{xMCS}_{\ell}(S_1,\ldots,S_k) := \bigcup_{X \in \mathsf{xMCS}_{\ell}(S_1,\ldots,S_{k-1})} \mathsf{xMCS}_{\ell}(S_k,X)$$

Correctness

 $\times MCS_{\ell}(S_1, \dots, S_k)$ contains all MCS of (S_1, \dots, S_k) of length at least ℓ

うつぐ ヨー イヨト イヨト トロト

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

・ロト・日本・日本・日本・日本・日本

Input Strings Length Weight Current candidates $S_1 = \texttt{atcatac}$ $|S_1|=7$ $(\Delta + 1)^{-0}$ $S_2 = \text{atcatca}$ atcata atcatc $(\Delta + 1)^{-1}$ 6 $(\Delta + 1)^{-2}$ 5 $(\Delta + 1)^{-3}$ *ℓ*=4 $(\Delta = 3)$

Total weight: 0.5

Input Strings $S_1 = \text{atcatac}$ $S_2 = \text{atcatca}$ $S_3 = \text{actatca}$

 $S_4 = \texttt{atatcta}$

 $S_5 = \text{cattacc}$

 $S_6 = \texttt{acatcta}$

Total weight: 0.32812

Input Strings

 $S_1 = \texttt{atcatac}$

 $S_2 = \texttt{atcatca}$

 $S_3 = \texttt{actatca}$

 $S_4 = \texttt{atatcta}$

 $S_5 = \text{cattacc}$

Total weight: 0.21875

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Input Strings

$$S_1 = \texttt{atcatac}$$

 $S_2 = \texttt{atcatca}$

 $S_3 = \texttt{actatca}$

 $S_4 = \texttt{atatcta}$

 $S_5 = \texttt{cattacc}$

 $S_6 = \text{acatcta}$

Total weight: 0.04687

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - のへで

Input Strings

$$S_1 = \texttt{atcatac}$$

$$S_2 = \texttt{atcatca}$$

$$S_3 = \texttt{actatca}$$

 $S_4 = \texttt{atatcta}$

$$S_5 = \texttt{cattacc}$$

 $S_6 = \texttt{acatcta}$

Total weight: 0.01562

Length Weight Input Strings Current candidates $S_1 = \text{atcatac}$ $|S_1|=7$ $(\Delta + 1)^{-0}$ $S_2 = \text{atcatca}$ $(\Delta + 1)^{-1}$ 6 $S_3 = \text{actatca}$ $(\Delta + 1)^{-2}$ 5 $S_4 = \texttt{atatcta}$ $(\Delta + 1)^{-3}$ $\ell = 4$ $S_5 = \text{cattacc}$ $(\Delta = 3)$ atta acta atac $S_6 = \text{acatcta}$ Total weight: 0.01562

xMCS size

The total weight is always \leq 1, so $|\mathsf{xMCS}| \leq (\Delta + 1)^{\Delta}$

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

eletions 《 디 › 《 🗗 › 《 톤 › 《 톤 › 🧵 이 이 이 이

Overall Result

Main theorem

All maximal common subsequences (including the LCS) of k strings can be computed in time

 $O((4(\Delta+1))^{\Delta}kn)$

Overall Result

Main theorem

All maximal common subsequences (including the LCS) of k strings can be computed in time

$$O((4(\Delta+1))^{\Delta}$$
kn)

With heterogeneous string length

The shortest input string has length $\ell+\delta:$ the running time becomes

$$O(2^{\delta+\Delta}(\Delta+1)^{\delta}$$
kn $)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

#1: Factorize the MCS

Good memory representation for an exponential number of very similar strings?

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

#1: Factorize the MCS

- Good memory representation for an exponential number of very similar strings?
- \Rightarrow Option: vertex-labelled automaton

#1: Factorize the MCS

- Good memory representation for an exponential number of very similar strings?
- \Rightarrow Option: vertex-labelled automaton

Use the automaton to factorize MCS computations ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Need to filter out short strings (easy enough)
- Filter out non-maximal strings (hard)

#1: Factorize the MCS

- Good memory representation for an exponential number of very similar strings?
- \Rightarrow Option: vertex-labelled automaton

- Use the automaton to factorize MCS computations ?
 - Need to filter out short strings (easy enough)
 - Filter out non-maximal strings (hard)
- Ideas from MCS enumeration for two strings: [Sakai, CPM'18], [Conte et al, SPIRE'19]

Outlooks #2: Parameter δ

Is LCS FPT for parameter δ ?

- At least one "short" string (ℓ + δ), all others may be arbitrarily long
- MCS may not be computed explicitly in this case, as it can be arbitrarily large (examples with k = 2 and |MCS| ≥ (Δ/δ)^δ)

Last-minute update – W[1]-hardness draft for parameter δ from Independent Set

#3: Extend to Edit Distance: Center String

LCS

- Given strings S_1, \ldots, S_k and Δ ,
- Find S^* such that S^* is $\leq \Delta$ deletions away from each S_i

▲□▶▲□▶▲ミ▶▲ミ▶ ミ シ へ ()

#3: Extend to Edit Distance: Center String

Center String – FPT is open

- Given strings S_1, \ldots, S_k and Δ ,
- Find S^* such that S^* is $\leq \Delta$ edits away from each S_i

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

#3: Extend to Edit Distance: Center String

Center String – Tentative approach

Represent all strings at edit distance Δ from each S_i as a union of balls around few "centroids".

 $[\texttt{ABCD}_3 \cap \texttt{ACBD}_3]$

#3: Extend to Edit Distance: Center String

Center String – Tentative approach

Represent all strings at edit distance Δ from each S_i as a union of balls around few "centroids".

 $[\texttt{ABCD}_3 \cap \texttt{ACBD}_3]$

 $= \texttt{A} \cdot [\texttt{BCD}_3 \cap \texttt{CBD}_3]$

#3: Extend to Edit Distance: Center String

Center String – Tentative approach

Represent all strings at edit distance Δ from each S_i as a union of balls around few "centroids".

 $[\texttt{ABCD}_3 \cap \texttt{ACBD}_3]$

- $= \texttt{A} \cdot [\texttt{BCD}_3 \cap \texttt{CBD}_3]$
 - $= \mathbf{A} \cdot [\mathbf{B}\mathbf{C}\mathbf{D}_3 \cap \mathbf{B}\mathbf{D}_2]$

```
 \begin{array}{l} \cup \ A \cdot [BCD_3 \cap BCBD_2] \\ \cup \ A \cdot [BCD_3 \cap BBD_2] \\ \cup \ A \# \cdot [CD_2 \cap BD_2] \\ \cup \ \ldots \end{array}
```

#3: Extend to Edit Distance: Center String

Center String – Tentative approach

Represent all strings at edit distance Δ from each S_i as a union of balls around few "centroids".

```
\begin{bmatrix} ABCD_3 \cap ACBD_3 \end{bmatrix}
= A \cdot \begin{bmatrix} BCD_3 \cap CBD_3 \end{bmatrix}
= A \cdot \begin{bmatrix} BCD_3 \cap BD_2 \end{bmatrix}
= ABD_2
\cup A \cdot \begin{bmatrix} BCD_3 \cap BCBD_2 \end{bmatrix}
\cup A \cdot \begin{bmatrix} BCD_3 \cap BCBD_2 \end{bmatrix}
\cup A \cdot \begin{bmatrix} BCD_3 \cap BBD_2 \end{bmatrix}
\cup A \cdot \begin{bmatrix} CD_2 \cap BD_2 \end{bmatrix}
\cup \dots
```

#3: Extend to Edit Distance: Center String

Center String – Tentative approach

Represent all strings at edit distance Δ from each S_i as a union of balls around few "centroids".

$ABCD_3 \cap ACBD_3$]	Xi	Δ_i
$= \mathbf{A} \cdot [\mathbf{B}\mathbf{C}\mathbf{D}_2 \cap \mathbf{C}\mathbf{B}\mathbf{D}_2]$	ABD	2
$= \mathbf{A} \cdot [\mathbf{B}\mathbf{C}\mathbf{D}_2 \cap \mathbf{B}\mathbf{D}_2]$	ABBD	2
$= ABD_2$	ABCBD	2
$\square A \cdot [BCD_2 \cap BCBD_2]$	ACD	2
$\bigcup \mathbf{A} \cdot [\mathbf{B}\mathbf{C}\mathbf{D}_3 \cap \mathbf{B}\mathbf{B}\mathbf{D}_2]$	ACCD	2
$\cup \mathbf{A\#} \cdot [\mathbf{CD}_2 \cap \mathbf{BD}_2]$	ACBCD	2
U	A##D	1

S at distance \leq 3 from both ABCD, ACBD

$\Leftrightarrow \\ \exists i, S \text{ at distance } \leq \Delta_i \text{ from } X_i$

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

#3: Extend to Edit Distance: Center String

Center String – Tentative approach

Represent all strings at edit distance Δ from each S_i as a union of balls around few "centroids".

Problem: highly repetitive strings yield too many centroids

Example with
$$\Delta = 1$$
:

- $S_1 = BBBBCD$
- $S_2 = BBBCD$
- $S_3 = BBABCE$

Solution: BBABCE

All insertions of A within BBB must be possible after reading S_2

Thank you for your attention !

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Thank you for your attention !

Questions, remarks, nice data structures for MCS and algorithms for Center String are welcome

L. Bulteau - CPM 2022 LCS is FPT wrt Maximum Number of Deletions