
An FPT-Algorithm for Longest Common
Subsequence Parameterized by the

Maximum Number of Deletions

L. Bulteau1, M. Jones2, R. Niedermeier3, T. Tantau4

1 LIGM, CNRS, Université Gustave Eiffel, France
2 Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

3 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
4 Institute of Theoretical Computer Science, University of Lübeck, Germany

CPM 2022-06-29

This work was initiated during Dagstuhl Seminar 19443,
Algorithms and Complexity in Phylogenetics in October 2019.

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

In Rolf’s Memory

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

In Rolf’s Memory

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

ℓ = 5a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

a

a

a

c

b

b

b

c a

a

a

b

b

b

a c

c

c b a

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

ℓ = 5

S∗ = ababc

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

a

a

a

c

b

b

b

c a

a

a

b

b

b

a c

c

c b a

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

ℓ = 5

S∗ = ababc

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

a

a

a

c

b

b

b

c a

a

a

b

b

b

a c

c

c b a

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

Previous work (in a tiny nutshell)
▶ For k = 2:

very well studied.
▶ Solvable in O(n2) (dynamic programming textbook example),
▶ not in O(n2−ϵ) (under SETH, [Abboud et al. ’15]),
▶ many possible parameterizations (cf [Bringmann et al.’ 18])

▶ For larger k:

▶ NP-hard [Maier, ’78]
▶ Aim for FPT algorithms...

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

Previous work (in a tiny nutshell)
▶ For k = 2: very well studied.

▶ Solvable in O(n2) (dynamic programming textbook example),
▶ not in O(n2−ϵ) (under SETH, [Abboud et al. ’15]),
▶ many possible parameterizations (cf [Bringmann et al.’ 18])

▶ For larger k:

▶ NP-hard [Maier, ’78]
▶ Aim for FPT algorithms...

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS
▶ Given strings S1, . . . , Sk , integer ℓ

▶ Find S∗ of length ℓ, S∗ subsequence of each Si

Previous work (in a tiny nutshell)
▶ For k = 2: very well studied.

▶ Solvable in O(n2) (dynamic programming textbook example),
▶ not in O(n2−ϵ) (under SETH, [Abboud et al. ’15]),
▶ many possible parameterizations (cf [Bringmann et al.’ 18])

▶ For larger k:
▶ NP-hard [Maier, ’78]
▶ Aim for FPT algorithms...

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

n max input length FPT1

k number of strings XP1, W[1]-hard2

ℓ
target length XP1, W[2]-hard3

δ min number of deletions

∆ max number of deletions

XP1 (FPT open)

O(∆k−1nk)4

FPT: this talk
1By exhaustive enumeration
2Even for binary alphabets [Pietrzak ’03]
3W[1]-hard for ℓ + k [Bodlaender et al. ’95], FPT for ℓ + alphabet size
4[Irving and Fraser, CPM ’92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

n max input length FPT1

k number of strings XP1, W[1]-hard2

ℓ
target length XP1, W[2]-hard3

δ min number of deletions

∆ max number of deletions

XP1 (FPT open)

O(∆k−1nk)4

FPT: this talk

1By exhaustive enumeration

2Even for binary alphabets [Pietrzak ’03]
3W[1]-hard for ℓ + k [Bodlaender et al. ’95], FPT for ℓ + alphabet size
4[Irving and Fraser, CPM ’92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

n max input length FPT1

k number of strings XP1, W[1]-hard2

ℓ
target length XP1, W[2]-hard3

δ min number of deletions

∆ max number of deletions

XP1 (FPT open)

O(∆k−1nk)4

FPT: this talk

1By exhaustive enumeration +DP
2Even for binary alphabets [Pietrzak ’03]

3W[1]-hard for ℓ + k [Bodlaender et al. ’95], FPT for ℓ + alphabet size
4[Irving and Fraser, CPM ’92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

n max input length FPT1

k number of strings XP1, W[1]-hard2

ℓ
target length XP1, W[2]-hard3

δ min number of deletions

∆ max number of deletions

XP1 (FPT open)

O(∆k−1nk)4

FPT: this talk

1By exhaustive enumeration +DP
2Even for binary alphabets [Pietrzak ’03]
3W[1]-hard for ℓ + k [Bodlaender et al. ’95], FPT for ℓ + alphabet size

4[Irving and Fraser, CPM ’92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

n max input length FPT1

k number of strings XP1, W[1]-hard2

ℓ
target length XP1, W[2]-hard3

δ min number of deletions

∆ max number of deletions

XP1 (FPT open)

O(∆k−1nk)4

FPT: this talk

1By exhaustive enumeration +DP
2Even for binary alphabets [Pietrzak ’03]
3W[1]-hard for ℓ + k [Bodlaender et al. ’95], FPT for ℓ + alphabet size
4[Irving and Fraser, CPM ’92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

a

a

a

b

c

b

c

b

a

a

a

b

b

b

c

a

c

b

c

a

n max input length FPT1

k number of strings XP1, W[1]-hard2

ℓ
target length XP1, W[2]-hard3

δ min number of deletions

∆ max number of deletions

XP1 (FPT open)

O(∆k−1nk)4

FPT: this talk
1By exhaustive enumeration +DP
2Even for binary alphabets [Pietrzak ’03]
3W[1]-hard for ℓ + k [Bodlaender et al. ’95], FPT for ℓ + alphabet size
4[Irving and Fraser, CPM ’92]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
▶ Read input string by string
▶ Maintain a set of candidates
▶ Pick the longest candidate in the final set

S1

S2

S3

S4

S5

S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
▶ Read input string by string
▶ Maintain a set of candidates
▶ Pick the longest candidate in the final set

S1

S2

S3

S4

S5

S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
▶ Read input string by string
▶ Maintain a set of candidates
▶ Pick the longest candidate in the final set

S1

S2

S3

S4

S5

S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
▶ Read input string by string
▶ Maintain a set of candidates
▶ Pick the longest candidate in the final set

S1

S2

S3

S4

S5

S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
▶ Read input string by string
▶ Maintain a set of candidates
▶ Pick the longest candidate in the final set

S1

S2

S3

S4

S5

S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
▶ Read input string by string
▶ Maintain a set of candidates
▶ Pick the longest candidate in the final set

S1

S2

S3

S4

S5
S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
Rough complexity analysis:
▶ Branching degree ≤ 4∆

▶ At most ∆ branching candidates along each branch
▶ Everything else is linear in kn

⇒ Complexity in O(4∆2kn)
(Improved to O(2δ+∆(∆ + 1)δkn) with a precise analysis)

S1

S2

S3

S4

S5
S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
Rough complexity analysis:
▶ Branching degree ≤ 4∆

▶ At most ∆ branching candidates along each branch
▶ Everything else is linear in kn
⇒ Complexity in O(4∆2kn)

(Improved to O(2δ+∆(∆ + 1)δkn) with a precise analysis)

S1

S2

S3

S4

S5
S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
Rough complexity analysis:
▶ Branching degree ≤ 4∆

▶ At most ∆ branching candidates along each branch
▶ Everything else is linear in kn
⇒ Complexity in O(4∆2kn)

(Improved to O(2δ+∆(∆ + 1)δkn) with a precise analysis)

S1

S2

S3

S4

S5
S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

Maximal Common Subsequences (MCS)

T ∈ MCS(S1, . . . , Si) if T is a subsequence of each Si and no
character can be added to T

▶ Loop invariant: After reading Si , candidates contain all strings
in MCS(S1, . . . , Si) of length at least ℓ

▶ LCS is the longest string in MCS(S1, . . . , Sk)

S1

S2

S3

S4

S5
S∗

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we have:
MCS(S, S ′) ⊆ ...

▶ ∅ if |S| < ℓ or |S ′| < ℓ
▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · MCS(T , T ′) if u = u′

▶ MCS(S, T ′) ∪ MCS(S ′, T) if u ̸= u′

S
b a ba b c a ba b a b c dc b a b c d

S ′

a b c a bb a ba c b a d ba b c a b

MCS(S, S ′)xMCS(S, S ′)
b a ba b a b

a b a d
a c d

MCS({babcd, cbadb})
b c

c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we have:
MCS(S, S ′) ⊆ ...

▶ ∅ if |S| < ℓ or |S ′| < ℓ

▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · MCS(T , T ′) if u = u′

▶ MCS(S, T ′) ∪ MCS(S ′, T) if u ̸= u′

S
b a b

a b c a ba b a b c dc b a b c d

S ′

a b c a b

b a ba c b a d ba b c a b

MCS(S, S ′)

xMCS(S, S ′)

b a b

a b a b
a b a d
a c d

MCS({babcd, cbadb})
b c

c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we have:
MCS(S, S ′) ⊆ ...

▶ ∅ if |S| < ℓ or |S ′| < ℓ

▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S

▶ u · MCS(T , T ′) if u = u′

▶ MCS(S, T ′) ∪ MCS(S ′, T) if u ̸= u′

S

b a b

a b c a b

a b a b c dc b a b c d

S ′

a b c a b

b a b

a c b a d ba b c a b

MCS(S, S ′)

xMCS(S, S ′)

b a b

a b a b
a b a d
a c d

MCS({babcd, cbadb})
b c

c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we have:
MCS(S, S ′) ⊆ ...

▶ ∅ if |S| < ℓ or |S ′| < ℓ

▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · MCS(T , T ′) if u = u′

▶ MCS(S, T ′) ∪ MCS(S ′, T) if u ̸= u′

S

b a ba b c a b

a b a b c d

c b a b c d

S ′

a b c a bb a b

a c b a d b

a b c a b

MCS(S, S ′)

xMCS(S, S ′)
b a b

a b a b
a b a d
a c d

MCS({babcd, cbadb})

b c
c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we have:
MCS(S, S ′) ⊆ ...

▶ ∅ if |S| < ℓ or |S ′| < ℓ

▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · MCS(T , T ′) if u = u′

▶ MCS(S, T ′) ∪ MCS(S ′, T) if u ̸= u′

S

b a ba b c a ba b a b c d

c b a b c d
S ′

a b c a bb a ba c b a d b

a b c a b

MCS(S, S ′)

xMCS(S, S ′)
b a ba b a b

a b a d
a c d

MCS({babcd, cbadb})

b c
c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we define:
xMCS(S, S ′) := ...

▶ ∅ if |S| < ℓ or |S ′| < ℓ

▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · xMCS(T , T ′) if u = u′

▶ xMCS(S, T ′) ∪ xMCS(S ′, T) if u ̸= u′

S

b a ba b c a ba b a b c d

c b a b c d
S ′

a b c a bb a ba c b a d b

a b c a b

MCS(S, S ′)

xMCS(S, S ′)

b a ba b a b
a b a d
a c d

MCS({babcd, cbadb})
b c

c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we define:
xMCSℓ(S, S ′) := ...
▶ ∅ if |S| < ℓ or |S ′| < ℓ
▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · xMCSℓ−1(T , T ′) if u = u′

▶ xMCSℓ(S, T ′) ∪ xMCSℓ(S ′, T) if u ̸= u′

S

b a ba b c a ba b a b c d

c b a b c d
S ′

a b c a bb a ba c b a d b

a b c a b

MCS(S, S ′)

xMCS3(S, S ′)

b a ba b a b
a b a d
a c d

MCS({babcd, cbadb})
b c

c a b
b a b
a b c

MCS({S, bcab})

MCS({babcd, S ′})

c a b
b

b a b
b b
b c

a b c

xMCS({S, bcab})

xMCS({babcd, S ′})

c a b
b a b
a b c

xMCS3({S, bcab})

xMCS3({babcd, S ′})

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we define:
xMCSℓ(S, S ′) := ...
▶ ∅ if |S| < ℓ or |S ′| < ℓ
▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · xMCSℓ−1(T , T ′) if u = u′

▶ xMCSℓ(S, T ′) ∪ xMCSℓ(S ′, T) if u ̸= u′

Correctness
xMCSℓ(S, S ′) contains all MCS of S, S ′ of length at least ℓ

Complexity
▶ |xMCSℓ(S, S ′)| ≤ 2|S|+|T |−2ℓ ≤ 4∆

▶ Can be computed in O(|xMCSℓ(S, S ′)| · n)
using a precomputed table (O(∆n) entries):
Is S[i , . . . n] a subsequence of S ′[j , . . . n] for |i − j | ≤ ∆ ?

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we define:
xMCSℓ(S, S ′) := ...
▶ ∅ if |S| < ℓ or |S ′| < ℓ
▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · xMCSℓ−1(T , T ′) if u = u′

▶ xMCSℓ(S, T ′) ∪ xMCSℓ(S ′, T) if u ̸= u′

Correctness
xMCSℓ(S, S ′) contains all MCS of S, S ′ of length at least ℓ

Complexity
▶ |xMCSℓ(S, S ′)| ≤ 2|S|+|T |−2ℓ ≤ 4∆

▶ Can be computed in O(|xMCSℓ(S, S ′)| · n)
using a precomputed table (O(∆n) entries):
Is S[i , . . . n] a subsequence of S ′[j , . . . n] for |i − j | ≤ ∆ ?

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we define:
xMCSℓ(S, S ′) := ...
▶ ∅ if |S| < ℓ or |S ′| < ℓ
▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · xMCSℓ−1(T , T ′) if u = u′

▶ xMCSℓ(S, T ′) ∪ xMCSℓ(S ′, T) if u ̸= u′

Tree-Bounding Arguments
For any X ∈ xMCSℓ(S, S ′):
▶ |X | ≤ min(|S|, |S ′|)
▶ |X | < min(|S|, |S ′|) if |xMCSℓ(S, S ′)| > 1

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S = u · T and S ′ = u′ · T ′, we define:
xMCSℓ(S, S ′) := ...
▶ ∅ if |S| < ℓ or |S ′| < ℓ
▶ {S} if S subsequence of S ′

▶ {S ′} if S ′ subsequence of S
▶ u · xMCSℓ−1(T , T ′) if u = u′

▶ xMCSℓ(S, T ′) ∪ xMCSℓ(S ′, T) if u ̸= u′

Tree-Bounding Arguments (precise formulation)

Let d = |S| − ℓ, d ′ = |S ′| − ℓ,
and Ni be the number of strings in xMCSℓ(S, S ′) of length |S ′| − i .

d ′∑
i=0

Ni
(d + 1)i ≤ 1.

(i.e. starting with a single string of length |S ′|, a string of length m can be
replaced by up to d + 1 strings of length m − 1)

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequence of k strings

Recurrence property

MCS(S1, . . . Sk) ⊆
⋃

X∈MCS(S1,...Sk−1)
MCS(Sk , X)

Algorithm

xMCSℓ(S1, . . . Sk) :=
⋃

X∈xMCSℓ(S1,...Sk−1)
xMCSℓ(Sk , X)

Correctness
xMCSℓ(S1, . . . Sk) contains all MCS of (S1, . . . , Sk) of length at
least ℓ

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequence of k strings

Recurrence property

MCS(S1, . . . Sk) ⊆
⋃

X∈MCS(S1,...Sk−1)
MCS(Sk , X)

Algorithm

xMCSℓ(S1, . . . Sk) :=
⋃

X∈xMCSℓ(S1,...Sk−1)
xMCSℓ(Sk , X)

Correctness
xMCSℓ(S1, . . . Sk) contains all MCS of (S1, . . . , Sk) of length at
least ℓ

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequence of k strings

Recurrence property

MCS(S1, . . . Sk) ⊆
⋃

X∈MCS(S1,...Sk−1)
MCS(Sk , X)

Algorithm

xMCSℓ(S1, . . . Sk) :=
⋃

X∈xMCSℓ(S1,...Sk−1)
xMCSℓ(Sk , X)

Correctness
xMCSℓ(S1, . . . Sk) contains all MCS of (S1, . . . , Sk) of length at
least ℓ

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatacS1 = atcatac

S2 = atcatca

S2 = atcatcaS2 = atcatca

S3 = actatca

S3 = actatcaS3 = actatca

S4 = atatcta

S4 = atatctaS4 = atatcta

S5 = cattacc

S5 = cattaccS5 = cattacc

S6 = acatcta

S6 = acatctaS6 = acatcta

atcatacatcatacatcatac

Total weight: 1.0

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatac

S1 = atcatac

S2 = atcatcaS2 = atcatcaS2 = atcatca

S3 = actatca

S3 = actatcaS3 = actatca

S4 = atatcta

S4 = atatctaS4 = atatcta

S5 = cattacc

S5 = cattaccS5 = cattacc

S6 = acatcta

S6 = acatctaS6 = acatcta

atcatac

atcataatcataatcata atcatcatcatcatcatc

Total weight: 0.5

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatac

S1 = atcatac

S2 = atcatcaS2 = atcatca

S2 = atcatca

S3 = actatcaS3 = actatcaS3 = actatca

S4 = atatcta

S4 = atatctaS4 = atatcta

S5 = cattacc

S5 = cattaccS5 = cattacc

S6 = acatcta

S6 = acatctaS6 = acatcta

atcatac

atcata atcatc

aataaataaata attcattcattc

atatcatatcatatc acataacataacata

aatcaatcaatc

atataatataatata

atcaatcaatca

acatcacatcacatc

attaattaatta

Total weight: 0.32812

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatac

S1 = atcatac

S2 = atcatcaS2 = atcatca

S2 = atcatca

S3 = actatcaS3 = actatca

S3 = actatca

S4 = atatctaS4 = atatctaS4 = atatcta

S5 = cattacc

S5 = cattaccS5 = cattacc

S6 = acatcta

S6 = acatctaS6 = acatcta

atcatac

atcata atcatc

aataaata attcattc

atatcatatc acata

aatcaatc

atataatata

atcaatca

acatc

attaatta actaactaacta

Total weight: 0.21875

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatac

S1 = atcatac

S2 = atcatcaS2 = atcatca

S2 = atcatca

S3 = actatcaS3 = actatca

S3 = actatca

S4 = atatctaS4 = atatcta

S4 = atatcta

S5 = cattaccS5 = cattaccS5 = cattacc

S6 = acatcta

S6 = acatctaS6 = acatcta

atcatac

atcata atcatc

aata attcattc

atatc acata

aatc

atata

atca

acatc

attaatta acta atacatacatac

Total weight: 0.04687

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatac

S1 = atcatac

S2 = atcatcaS2 = atcatca

S2 = atcatca

S3 = actatcaS3 = actatca

S3 = actatca

S4 = atatctaS4 = atatcta

S4 = atatcta

S5 = cattaccS5 = cattacc

S5 = cattacc

S6 = acatctaS6 = acatctaS6 = acatcta

atcatac

atcata atcatc

aata attc

atatc acata

aatc

atata

atca

acatc

attaatta acta atac

Total weight: 0.01562

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Length Current candidates WeightInput Strings

|S1|=7

6

5

ℓ=4
(∆=3)

(∆+1)−3

(∆+1)−2

(∆+1)−1

(∆+1)−0S1 = atcatacS1 = atcatac

S1 = atcatac

S2 = atcatcaS2 = atcatca

S2 = atcatca

S3 = actatcaS3 = actatca

S3 = actatca

S4 = atatctaS4 = atatcta

S4 = atatcta

S5 = cattaccS5 = cattacc

S5 = cattacc

S6 = acatctaS6 = acatcta

S6 = acatcta

atcatac

atcata atcatc

aata attc

atatc acata

aatc

atata

atca

acatc

attaatta acta atac

Total weight: 0.01562

xMCS size
The total weight is always ≤ 1, so |xMCS| ≤ (∆ + 1)∆

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Overall Result

Main theorem
All maximal common subsequences (including the LCS) of k
strings can be computed in time

O
(
(4(∆ + 1))∆kn

)

With heterogeneous string length
The shortest input string has length ℓ + δ: the running time
becomes

O
(
2δ+∆(∆ + 1)δkn

)

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Overall Result

Main theorem
All maximal common subsequences (including the LCS) of k
strings can be computed in time

O
(
(4(∆ + 1))∆kn

)

With heterogeneous string length
The shortest input string has length ℓ + δ: the running time
becomes

O
(
2δ+∆(∆ + 1)δkn

)

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

▶ Good memory representation for an exponential number of
very similar strings?

⇒ Option: vertex-labelled automaton

a

a

t

c c

t

a

g

▶ Use the automaton to factorize MCS computations ?
▶ Need to filter out short strings (easy enough)
▶ Filter out non-maximal strings (hard)

▶ Ideas from MCS enumeration for two strings: [Sakai,
CPM’18], [Conte et al, SPIRE’19]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

▶ Good memory representation for an exponential number of
very similar strings?

⇒ Option: vertex-labelled automaton

a

a

t

c c

t

a

g

▶ Use the automaton to factorize MCS computations ?
▶ Need to filter out short strings (easy enough)
▶ Filter out non-maximal strings (hard)

▶ Ideas from MCS enumeration for two strings: [Sakai,
CPM’18], [Conte et al, SPIRE’19]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

▶ Good memory representation for an exponential number of
very similar strings?

⇒ Option: vertex-labelled automaton

a

a

t

c c

t

a

g

▶ Use the automaton to factorize MCS computations ?
▶ Need to filter out short strings (easy enough)
▶ Filter out non-maximal strings (hard)

▶ Ideas from MCS enumeration for two strings: [Sakai,
CPM’18], [Conte et al, SPIRE’19]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

▶ Good memory representation for an exponential number of
very similar strings?

⇒ Option: vertex-labelled automaton

a

a

t

c c

t

a

g

▶ Use the automaton to factorize MCS computations ?
▶ Need to filter out short strings (easy enough)
▶ Filter out non-maximal strings (hard)

▶ Ideas from MCS enumeration for two strings: [Sakai,
CPM’18], [Conte et al, SPIRE’19]

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#2: Parameter δ

Is LCS FPT for parameter δ?
▶ At least one "short" string (ℓ + δ), all others may be

arbitrarily long
▶ MCS may not be computed explicitly in this case, as it can be

arbitrarily large (examples with k = 2 and |MCS| ≥ (∆/δ)δ)
Last-minute update – W[1]-hardness draft for parameter δ from
Independent Set

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

LCS
▶ Given strings S1, . . . , Sk and ∆,
▶ Find S∗ such that S∗ is ≤ ∆ deletions away from each Si

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – FPT is open

▶ Given strings S1, . . . , Sk and ∆,
▶ Find S∗ such that S∗ is ≤ ∆ edits away from each Si

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – Tentative approach
Represent all strings at edit distance ∆ from each Si as a union of
balls around few "centroids".

[ABCD3 ∩ ACBD3]

= A · [BCD3 ∩ CBD3]

= A · [BCD3 ∩ BD2]

= ABD2

∪ A · [BCD3 ∩ BCBD2]
∪ A · [BCD3 ∩ BBD2]
∪ A# · [CD2 ∩ BD2]
∪ . . .

Xi ∆i
ABD 2
ABBD 2
ABCBD 2
ACD 2
ACCD 2
ACBCD 2
A##D 1

S at distance ≤ 3 from both ABCD, ACBD
⇔

∃i , S at distance ≤ ∆i from Xi

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – Tentative approach
Represent all strings at edit distance ∆ from each Si as a union of
balls around few "centroids".

[ABCD3 ∩ ACBD3]
= A · [BCD3 ∩ CBD3]

= A · [BCD3 ∩ BD2]

= ABD2

∪ A · [BCD3 ∩ BCBD2]
∪ A · [BCD3 ∩ BBD2]
∪ A# · [CD2 ∩ BD2]
∪ . . .

Xi ∆i
ABD 2
ABBD 2
ABCBD 2
ACD 2
ACCD 2
ACBCD 2
A##D 1

S at distance ≤ 3 from both ABCD, ACBD
⇔

∃i , S at distance ≤ ∆i from Xi

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – Tentative approach
Represent all strings at edit distance ∆ from each Si as a union of
balls around few "centroids".

[ABCD3 ∩ ACBD3]
= A · [BCD3 ∩ CBD3]

= A · [BCD3 ∩ BD2]

= ABD2

∪ A · [BCD3 ∩ BCBD2]
∪ A · [BCD3 ∩ BBD2]
∪ A# · [CD2 ∩ BD2]
∪ . . .

Xi ∆i
ABD 2
ABBD 2
ABCBD 2
ACD 2
ACCD 2
ACBCD 2
A##D 1

S at distance ≤ 3 from both ABCD, ACBD
⇔

∃i , S at distance ≤ ∆i from Xi

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – Tentative approach
Represent all strings at edit distance ∆ from each Si as a union of
balls around few "centroids".

[ABCD3 ∩ ACBD3]
= A · [BCD3 ∩ CBD3]

= A · [BCD3 ∩ BD2]
= ABD2

∪ A · [BCD3 ∩ BCBD2]
∪ A · [BCD3 ∩ BBD2]
∪ A# · [CD2 ∩ BD2]
∪ . . .

Xi ∆i
ABD 2
ABBD 2
ABCBD 2
ACD 2
ACCD 2
ACBCD 2
A##D 1

S at distance ≤ 3 from both ABCD, ACBD
⇔

∃i , S at distance ≤ ∆i from Xi

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – Tentative approach
Represent all strings at edit distance ∆ from each Si as a union of
balls around few "centroids".

[ABCD3 ∩ ACBD3]
= A · [BCD3 ∩ CBD3]

= A · [BCD3 ∩ BD2]
= ABD2

∪ A · [BCD3 ∩ BCBD2]
∪ A · [BCD3 ∩ BBD2]
∪ A# · [CD2 ∩ BD2]
∪ . . .

Xi ∆i
ABD 2
ABBD 2
ABCBD 2
ACD 2
ACCD 2
ACBCD 2
A##D 1

S at distance ≤ 3 from both ABCD, ACBD
⇔

∃i , S at distance ≤ ∆i from Xi
L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String – Tentative approach
Represent all strings at edit distance ∆ from each Si as a union of
balls around few "centroids".
Problem: highly repetitive strings yield too many centroids
Example with ∆ = 1:
S1 =BBBBCD
S2 =BBBCD
S3 =BBABCE

Solution: BBABCE

All insertions of A within BBB must be possible after reading S2

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Thank you for your attention !

Questions, remarks, nice data structures for MCS
and algorithms for Center String are welcome

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Thank you for your attention !

Questions, remarks, nice data structures for MCS
and algorithms for Center String are welcome

L. Bulteau – CPM 2022 LCS is FPT wrt Maximum Number of Deletions

	Introduction

