
Compact Text Indexing for Advanced Pattern Matching
Problems: Parameterized, Order-isomorphic, 2D, etc.

Sharma Thankachan
University of Central Florida, Orlando

Basic Text/String Indexing Problem

Find all occurrences of a pattern P[1,m] in a text T[1,n]

T = a c a t t b c a t t c
P = a t t
Occurrences = {3, 8}

Index T in space propotional to “n” and
answer queries in time propotional to “m”

Suffix Trees & its (1000++) Applications

 longest repeat finding
 longest common substring
 Indexed pattern/substring matching
 Matching statistics
 Shortest unique substring
 Longest palindromic substring

 MEMs/MUMs
 All pairs Suffix prefix overlaps
 Clustering
 Compression Algorithms

Optimal/LINEAR time
solutions for EXACT

matching
version

A Big Open Problem in Late 90's

A Big Open Problem in Late 90's

(Compressed)
Text Indexing

 for
Problems Beyond Exact Matching

?

Problems Beyond Exact Matching

 Approximate PM (under mismatches/edits/gaps, etc)
 Jumbled PM
 Parameterized PM
 Order-isomorphic PM
 2D (multi-dimensional) PM
 Cartesian Tree Matching
 Structural PM
 Circular PM
 Episode Matching
 Functional PM
 Blocked PM
 Permuterm PM

Suffix Trees with Missing Suffix Links

 Parameterized pattern matching

 Order-isomorphic pattern matching

 2D (multi-dimensional) pattern matching

Suffix Tree Like Solutions exist

BUT

Compressed Space Solutions?

Indexing for Parameterized Matching (P-matching)

Text = a b b a c a t b b a b c a
Pattern = x y x
Two strings are p-match IFF there exists a one-to-one
function that renames the characters in one to another

E.g., x → a, y → c in x y z gives a c a

Indexing for Parameterized Matching (P-matching)

Text = a b b a c a t b b a b c a
Pattern = x y x
Two strings are p-match IFF there exists a one-to-one
function that renames the characters in one to another

E.g., x → a, y → c in x y z gives a c a

Compressed Index via Parameterized BWT --- Efficient and Elegant [SODA 17, ICALP 2022]

Main idea: Prev encoding !!!
Prev(ababb) = 00221

Two strings are p-match IFF
 they have the same Prev encoding

Prev(x y x) = 0 0 1 = Prev(a c a)

Picture Courtesy: Kim et al. [TCS 2014]

Order Isomorphic Suffix Trees [Crochemore, SPIRE 2013]

Compressed version [LF-successor, ICALP 2021] - Messy and Somewhat Slow :(

Indexing for 2D matching (2D Suffix Array)

Compressed Inverse Suffix Array [Patel and Shah, ISAAC 2021]

Next:
Parameterized BWT and

Parameterized Suffix Array Compression

Lets start with a quick review of BWT, LF mapping, etc

Another way of looking at LF Mapping and BWT

 Let i and j, where i < j are two leaves in the suffix tree.
We say (i, j) is an inversion if L[i] > L[j] and non-inversion otherwise.

i n1 = # of
non-inversions
on left of i

n2 = # of
inversions on
the right of i

LF[i] = n1+n2+1
LF can be implemented via inversion counting

Another way of looking at LF Mapping and BWT

 Let i and j, where i < j are two leaves in the suffix tree.
We say (i, j) is an inversion if L[i] > L[j] and non-inversion otherwise.

 Can we store some (succinct) information with each leaf,
 so that given an (i, j) pair, we can quickly decide if it is an inversion.

 This is exactly BWT, inversion IFF BWT[i] > BWT[j]

i n1 = # of
non-inversions
on left of i

n2 = # of
inversions on
the right of i

LF[i] = n1+n2+1
LF can be implemented via inversion counting

Lets move on to parameterized suffix array

Parameterized Suffix Tree/Array
Prev Encoding of a string S: for each character,

 replace the first occurrence by “0” and

 any other occurrence by the distance to its right
most previous occurrence

Example: Prev(ababb) = 00221

Parameterized Suffix Tree

1 2 3 4 5 6 7 8

2 4 1 3 5 6 7 8

PLF mapping
PLF[2] = 4

Prev Encoding of a string S: for each character,

 replace the first occurrence by “0” and

 any other occurrence by the distance to its right
most previous occurrence

Example: Prev(ababb) = 00221

Parameterized Suffix Tree

1 2 3 4 5 6 7 8

2 4 1 3 5 6 7 8

PLF mapping
PLF[2] = 4

What (succinct) information can be associated with the leaves, so that
order inversion (and hence PLF) can be computed? pBWT and tree topology, etc

Prev Encoding of a string S: for each character,

 replace the first occurrence by “0” and

 any other occurrence by the distance to its right
most previous occurrence

Example: Prev(ababb) = 00221

BWT vs pBWT

BWT vs pBWT

pBWT[i] = 3, since the 3rd “0” is
changed ---- to the largest value
possible at its location

BWT vs pBWT

pBWT[i] = 3, since the 3rd “0” is
changed ---- to the largest value
possible at its location

Given (i, j, pBWT[i], pBWT[j]), where i < j, can we quickly decide if pLF[i] > pLF[j] (i.e., inversion)?

Inversion or NOT?
Given (i, j, pBWT[i], pBWT[j]), where i < j, can we quickly decide if pLF[i] > pLF[j] (i.e., inversion)?

0 .. . 0 ...0 ...

root of PST

 3

alphabet-depth(LCA(i,j)) =
3, the # of 0's on its path

i, pBWT[i] j, PBWT[j]

 x .. . 0 ..0 ...

 ..
....

.. 0
 ..0

....
.

here “x” is the
leading char

Inversion or NOT?
Given (i, j, pBWT[i], pBWT[j]), where i < j, can we quickly decide if pLF[i] > pLF[j] (i.e., inversion)?

0 .. . 0 ...0 ...

root of PST

 3

alphabet-depth(LCA(i,j)) =
3, the # of 0's on its path

i, pBWT[i] j, PBWT[j]

 x .. . 0 ..0 ...

 ..
....

.. 0
 ..0

....
.

here “x” is the
leading char

See the following examples for
(pBWT[i], pBWT[j]) (assume x ≠ 0)

 (2, 3) is an inversion
 (2, 4) is an inversion
 (3, 2) is a non-inversion
 (4, 4) is a non-inversion

In short, inversion IFF “i” change before “j” before LCA
i.e., pBWT[i] < pBWT[j], alphabet-depth(LCA)

If (x =0), there is an additional CASE: inversion if
pBWT[i] = alphabet-depth(LCA)+1 ≤ pBWT[j]

Putting things together

i n1 = # of
non-inversions

on left of i

n2 = # of
inversions
on the right of i

 Inversion or NOT in PST can be Computed Quickly

 Implement inversion counting via batch queries (mostly
using standard techniques from succinct data structures)

 LF mapping LF[i] = n1+n2+1

Putting things together

i n1 = # of
non-inversions

on left of i

n2 = # of
inversions
on the right of i

 Inversion or NOT in PST can be Computed Quickly

 Implement inversion counting via batch queries (mostly
using standard techniques from succinct data structures)

 LF mapping LF[i] = n1+n2+1

LF mapping in time O(log |Σ|) via
pBWT+tree topology+ etc. in space n log |Σ| + l.o.t (in bits)

Therefore,
Compressed PSA in space n log |Σ|+ O((n log n)/ D)+ l.o.t bits
SA/ISA queries in time O(D log |Σ|) [SODA 17]

i.e., O(n log |Σ|) bits space and O(log n) time by fixing D

Putting things together

i n1 = # of
non-inversions

on left of i

n2 = # of
inversions
on the right of i

 Inversion or NOT in PST can be Computed Quickly

 Implement inversion counting via batch queries (mostly
using standard techniques from succinct data structures)

 LF mapping LF[i] = n1+n2+1

LF mapping in time O(log |Σ|) via
pBWT+tree topology+ etc. in space n log |Σ| + l.o.t (in bits)

Therefore,
Compressed PSA in space n log |Σ|+ O((n log n)/ D)+ l.o.t bits
SA/ISA queries in time O(D log |Σ|) [SODA 17]

i.e., O(n log |Σ|) bits space and O(log n) time by fixing D

More Space-time Trade-offs
and LCP Compression.

i.e., compact PST
[ICALP 2022]

 O(n log |Σ|) bits space and O(log� n) time
 O(n log |Σ| log log |Σ| n) bits space and O(log log |Σ| n) time
 O(n log |Σ| log |Σ|

� n) bits space and O(1) time

This matches the best space-time trade-offs for suffix trees

Next is

Order-isomorphic Suffix Array/Tree Compression

Order-isomorphic Suffix Tree

Key idea is Pred Encoding.
Pred(S) replace each character by the (closest) distance to its predecessor (and 0 is there is not
predecessor)

Order-isomorphic ST is a compact trie of all Pred enoded suffixes of the text.
Linear space and pattern matching can be done efficiently

Compressed Indexing is hard, because of the main changes in Pred encoding. Example,

Let T[x, n] = 7 6 5 4 3 2 ... and T[x-1] = 1
 Pred(T[x,n]) = 0 0 0 0 0 0 ...
Pred(T[x-1, n]) = 0 1 2 3 4 5 6 ... (i.e., many changes)

Order-isomorphic Suffix Tree

New idea for Compression: LF sccessor,

j = LF-succesor(i) IFF LF[j] = LF[i]+1

 We showed that LF-succesor can be implemented in O(log sigma) time
 Then LF via multiple LF-successors in O(log n) time
 Finally SA/ISA queries via multiple LF queries in O(log 2 n) time [ICALP 2021]

Next we have

2D Suffix Array/Tree Compression

Summary and Open Problems

● Compression of
○ Parameterized Suffix Arrays/Trees (well solved)
○ Order-isomorphic Suffix Arrays/trees (we have some solution, but messy and less efficient)
○ 2D Suffix Arrays/Trees (Wide Open for research)

● Repetition-aware Compression
● Efficient Construction
● Indexing for other/newer problems

