Compact Text Indexing for Advanced Pattern Matching
Problems: Parameterized, Order-isomorphic, 2D, etc.

Sharma Thankachan

University of Central Florida, Orlando

CPM 2022: 33rd Annual Symposium on Combinatorial Pattern Matching
Prague, Czech Republic, June 27-29, 2022

Basic Text/String Indexing Problem

Find all occurrences of a pattern P[1,m] in a text T[1,n]

T=acattbcattc
P=att

Occurrences = {3, 8}

Mapping “reads” to a

reference genome
Index T in space propotional to “n” and

answer queries in time propotional to “m”

String Indexing using Suffix Tree

S = cattattagga$

ST:

“geSeyzezen)

Suffix Tree = Suffix Array + Tree Structure + ...
Space = O(n log n) bits

Text's space = n log |Z] bits

Suffix Trees & its (1000++) Applications

S = cattattagga$

>

ST: -— >
| 1\@‘) Z‘ >

2 >

pas >

E: >

& >

[~ >

>

>

>

>

SA: >

longest repeat finding

longest common substring

Indexed pattern/substring matching
Matching statistics

Shortest unique substring

Longest palindromic substring

Optimal/LINEAR time
solutions for EXACT

matching
version

MEMs/MUMs

All pairs Suffix prefix overlaps
Clustering

Compression Algorithms

O
®

The Challenge is Space

S = cattattagga$ Consider indexing a human genome

(3.2 billion symbols from {A,C,G,T})
ST:

text’s space = 0.8 GB
Index space = 30 to 40 GB

$esejjelied

Suffix Tree = Suffix Array + Tree Structure + ...

Space = O(n log n) bits

Text's space = n log |Z| bits

String Indexing using Suffb—Free Suffix Array

S = cattattagga$

"R

seYololele

S

Sufftree—= Suffix Array ~Free-Stracture
Space = StrHteg+r>r nlog n bits +text

Text's space = n log |Z| bits

Consider indexing a human genome
(3.2 billion symbols from {A,C,G,T})

text’s space = 0.8 GB
Index space = 12 GB (15 times)

Pattern matching via Binary Search in time O(P log n +occ)
P=att

A Big Open Problem in Late 90's

Indexing in Space close to text's space?

A Big Open Problem in Late 90's

Indexing in Space close to text's space?

The answer is “YES”

We can simultaniously encode the text and the suffix array/tree in text's space

The Compressed Suffix Array [Grossi and Vitter, STOC 2000]
FM-index [Ferragina and Manzini, FOCS 2000]
LCP Array Compression (Compressed ST) [Sadakane, SODA 2002]

r-index and Suffix Trees in Space propotional to BWT-runs
[Gagie, Prezza, Navarro, SODA 2018]

(Compressed)
Text Indexing
for

Problems Beyond Exact Matching
?

Problems Beyond Exact Matching

Approximate PM (under mismatches/edits/gaps, etc)
Jumbled PM
Parameterized PM
Order-isomorphic PM

2D (multi-dimensional) PM
Cartesian Tree Matching
Structural PM

Circular PM

Episode Matching
Functional PM

Blocked PM

Permuterm PM

VVVVVVYVYYVYVVVYYYY

Suffix Trees with Missing Suffix Links

» Parameterized pattern matching
» Order-isomorphic pattern matching

» 2D (multi-dimensional) pattern matching

Q

G

Suffix Tree Like Solutions exist
BUT

Compressed Space Solutions?

Indexing for Parameterized Matching (P-matching)

Text=abbacatbbabca
Pattern = x y x

Two strings are p-match IFF there exists a one-to-one
function that renames the characters in one to another

E.g,x—a,y—cin xyzgivesaca

Indexing for Parameterized Matching (P-matching)

Text=abbacatbbabca Main idea: Prev encoding !!!
Pattern = x y x Prev(ababb) = 00221

Two strings are p-match IFF there exists a one-to-one

Two strings are p-match IFF
function that renames the characters in one to another

they have the same Prev encoding

E.g,x—a,y—cin xyzgivesaca Prev(xy x) =00 1 = Prev(a c a)

Parameterized Suffix Trees

« Motivation: find duplication in software systems

*pmintt = *pmaxtt; *pmintt = *pmaxtt;

ababb$ > 00221$
babb$ > 0021$

copy number {epmin, spmax,
pfi->min bounds.lbearing,
pfi->max_bounds.rbearing) :

X14ns yoes jo ()ad

koM

*puintt = *praztt; abb$ 9 OO'I $
Brenda Baker, Bell Labs bb$ 9 01 $
http://em.bell-labs. com/ cm/cs/who/bsb/index. html
Parameterized Duplications in Strings: Algorithms and b$ 9 O$

an Application to Sotware Maintenance
Siam J. Computing, Qclobsar 1957

— TO— Compressed Index via Parameterized BWT --- Efficient and Elegant [SODA 17, ICALP 2022]

(Compact) Indexing for Order-isomorphic Matching
(notoriously difficult)

ol ..i...“%u- o}
anl” ...i.u.i-u 20§

ol ".i.u.;uu 704
611 u.é.n.i..u &0l
Su - “‘:““?I" ju N
40 o a SUCIE 1] °
el ...;....i.... kL] B
al : ..i....;.... n
10 k- .-.i.-. -..§..--.| 10 R-

P~ 33 42 73 57 63 87 95 79 T 11 15 33 21 24 50 29 36 73 85 63 69 78 &% 44 62
o) 1 2 5 3 4 7 8 6 Ty 1 2 6 3 4 9 5 7131511121416 & 10
weP) 1 2 3 3 4 86 7 6

T o1 2 1 2 3 3 1

Picture Courtesy: Kim et al. [TCS 2014]
Order Isomorphic Suffix Trees [Crochemore, SPIRE 2013]

Compressed version [LF-successor, ICALP 2021] - Messy and Somewhat Slow :(

Indexing for 2D matching (2D Suffix Array)

« There are m+n-1 diagonals in m x n array

_ COMPACT indexing?
» For each diagonal form a square array

» For each square array, decomposing in a
“I”shapes, ?

« Each “4” is mapped to a number (Giancarlo[7]), and a « Qa
square is a string num(s), forming quasi-suffix collection
(each with different ending symbol) ~

« since m+n-1 diagonals, m+n-1 square for a 94\

multiple quasi-suffix collection

|
S

Compressed Inverse Suffix Array [Patel and Shah, ISAAC 2021]

Next:

Parameterized BWT and
Parameterized Suffix Array Compression

Lets start with a quick review of BWT, LF mapping, etc

Encoding the Suffix Array ~ S_TERES - aan -

1 2 3 4 5 6 T 8 9 (10 | 11 | 12

LF[9]=11
Text=mississippid

Suffix Array 12 11 | 8 5 2 1 110 9 7 4 6 3

Encoding the Suffix Array ~ STEPRS o cai

Text=mississippi$

Suffix Array

Sampled SA 12
(sampling factor D = 3)

Suffix Array = LF mapping + sampled suffix array

how to encode?

LF[9]=11
LF[3]=9
|
1|1 2| 3| 4 6 | 7| 8|9 |10]| 11|12
12 |11 8 | 5 1 /10| 9 | 7 | 4 6 3
O Ok
Computing SA[3]
e LF[3]=9
_ o LF[9]=11
(n/D) log n bits e SA[11]=6is stored
e SA[3]=6+2=8

Encoding the Suffix Array

12 (11 |8) 2 1 10 |9 7 4
1 mississippi$ 12 $mississippi $
2 ississippi$m 11 i$mississipp i
3 ssissippi$mi 8 ippi$mississ £ 3
4 sissippi$mis S5 issippi$miss i
S5 issippi$miss 2 ississippi$m i
6 ssippi$missi sort 1 mississippi$ m
7 sippi$missis = 10 pi$mississip p
8 ippi$mississ 9 ppi$mississi p
9 ppi$mississi 7 sippi$missis s
10 pi$mississip 4 sissippi$mis s
11 i$mississipp 6 ssippi$missi S
12 $mississippi 3 ssissippi$mi S

If BWT[i] = c & # of ¢ in BWT[1,i] = k

then LF[i] = kth position in c’s range

Text=mississippi$

BWT=ipssm$pissii

4
P
s
s
m

-
e

i
s

-

4

o’

Burrows Wheeler Transform
(BWT)

Another way of looking at LF Mapping and BWT

» Letiandj, wherei <jare two leaves in the suffix tree.
We say (i, j) is an inversion if L[i] > L[j] and non-inversion otherwise.

VAR

1 2 3 4 5 6 7 8 9 100 11 | 12

Suffix Array 12 11 8 5 | 2 1/10| 9 |7 |1 4| 6 | 3

n1 = # of i n2=#of
non-inversions inversions on
on left of i the right of i

LF[i] = n1+n2+1

LF can be implemented via inversion counting

Another way of looking at LF Mapping and BWT

» Letiandj, wherei <jare two leaves in the suffix tree.
We say (i, j) is an inversion if L[i] > L[j] and non-inversion otherwise.

IRV

1 2 3 4 5 6 7 8 9 100 11 | 12

Suffix Array 12.11.8.5-2.1.10.9.7-4-6 3
» Can we store some (succinct) information with each leaf, n1 =# of i n2=#of
so that given an (i, j) pair, we can quickly decide if it is an inversion. non-inversions inversions on
on left of i the right of i
> This is exactly BWT, inversion IFF BWTIi] > BWT][j] LF[i] = n1+n2+1

LF can be implemented via inversion counting

Lets move on to parameterized suffix array

Parameterized Suffix Tree/Array

Prev Encoding of a string S: for each character,

> replace the first occurrence by “0” and

» any other occurrence by the distance to its right

most previous occurrence

Example: Prev(ababb) = 00221

1 T; rev(]} ev(Tpsasi)) Toesaj: PSA|1]
1 | xyzxzwz$ | 0003202 00020285 yzxzwzhx 2
2 | yzxzwz$x | 00020285 | 00028504 | xzwzdxyz 4
3 | zxzwz$ 00202550 | 0003202S XYZXZWZS 1
4 | xzawzSxyz | 00025504 | 002028550 | zxzwzdxy 3
5 | zwalxyzx | 00250043 | ZWZIXyzZX 5
| 6 | wazlxyzxz | 00500432 | 00800432 | wzSxyzxz 6
7 | z8xyzxzw | 05004320 | 05004320 | z¥xyzxzw 7
8 | Sxyzxzwz | 30003202 | 90003202 | Sxyzxzwz 8

Figure 1 The text is T'[1, 8] = zyzzzwz$, where £ = {w, z,y, 2, $}

Parameterized Suffix Tree

Prev Encoding of a string S: for each character,

> replace the first occurrence by “0” and

» any other occurrence by the distance to its right
most previous occurrence

Example: Prev(ababb) = 00221

PLF mapping
PLF[2] =4

PSA I N N O A
5 6 7 8

2 4 1 3

Parameterized Suffix Tree

Prev Encoding of a string S: for each character,

> replace the first occurrence by “0” and

» any other occurrence by the distance to its right
most previous occurrence

Example: Prev(ababb) = 00221

PLF mapping
PLF[2] =4

I N N O A
PSA 2 4 1 3 S} 6 7 8

What (succinct) information can be associated with the leaves, so that
order inversion (and hence PLF) can be computed? pBWT and tree topology, etc

BWT vs pBWT

BWT
Let T[x, n] be the string corresponding to i-th leaf in (standard) suffix tree, then BWT(i] records edits
between strings corresponding to i-th and LF[i]-th leaves. i.e., BWT[i] = T[x-1].

BWT vs pBWT

BWT
Let T[x, n] be the string corresponding to i-th leaf in (standard) suffix tree, then BWT(i] records edits
between strings corresponding to i-th and LF[i]-th leaves. i.e., BWT[i] = T[x-1].

pBWT
Let Prev(T[x, n]) be the string corresponding to i-th leaf in parameterized suffix tree, then pBWTIi]
records edits between strings corresponding to i-th and pLF[i]-th leaves.

Example: Let T[x, nN]=aababcadb... and T[x-1] = c, then

pBWT]i] = 3, since the 3rd “0” is
changed ---- to the largest value
possible at its location

Prev(T[x, n]) =Prev(aababcadb..

) 0220304 ...
Prev(T[x-1,n])=Prev(c aababcadb...)

01
0010226304 ...

BWT vs pBWT

BWT

Let T[x, n] be the string corresponding to i-th leaf in (standard) suffix tree, then BWT(i] records edits
between strings corresponding to i-th and LF[i]-th leaves. i.e., BWT[i] = T[x-1].

pBWT
Let Prev(T[x, n]) be the string corresponding to i-th leaf in parameterized suffix tree, then pBWTIi]

records edits between strings corresponding to i-th and pLF[i]-th leaves.

Example: Let T[x, nN]=aababcadb... and T[x-1] = c, then

pBWTIi] = 3, since the 3rd “0” is
changed ---- to the largest value
possible at its location

Prev(T[x, n]) =Prev(aababcadb..

) 0220304 ...
Prev(T[x-1,n])=Prev(c aababcadb...)

01
0010226304 ...

Given (i, j, pPBWTI[i], pBWT[j]), where i < j, can we quickly decide if pLF[i] > pLF[j] (i.e., inversion)?

Inversion or NOT?

Given (i, j, pBWT]Ii], pBWT][j]), where i < j, can we quickly decide if pLF[i] > pLF[j] (i.e., inversion)?

root of PST Q alphabet-depth(LCA(i,j)) =
3, the # of O's on its path
o
o
o

here “x” is the
leading char

.
.
. :
g
.

i, pPBWTII] J, PBWTIj]

Inversion or NOT?

Given (i, j, pBWT]Ii], pBWT][j]), where i < j, can we quickly decide if pLF[i] > pLF[j] (i.e., inversion)?

(3,2) isanon-inversion
(4,4) isanon-inversion

root of PST Q alphabet-depth(LCA(i,j)) = See the following examples for
3, the # of 0's on its path (PBWTIi], pBWTIj]) (assume x # 0)
o
E = (2,3)isaninversion
:O = (2,4)isaninversion
o .

(1]

here “x” is the
leading char

= =7

In short, inversion IFF “i" change before “j” before LCA
i.e, pBWTIJi] < pBWT]Jj], alphabet-depth(LCA)
KN

If (x =0), there is an additional CASE: inversion if
i, pPBWTIi] j, PBWTIj] pBWT][i] = alphabet-depth(LCA)+1 < pBWT]j]

» Inversion or NOT in PST can be Computed Quickly
PUtt|ng thlngS together » Implement inversion counting via batch queries (mostly

using standard techniques from succinct data structures)

» LF mapping LF[i] = n1+n2+1

n1 =# of i n2 = # of
non-inversions inversions
on left of i on the right of i

» Inversion or NOT in PST can be Computed Quickly
PUtt|ng thlngS together » Implement inversion counting via batch queries (mostly

using standard techniques from succinct data structures)

» LF mapping LF[i] = n1+n2+1

LF mapping in time O(log |Z|) via
pBWT+tree topology+ etc. in space n log |Z| + l.0.t (in bits)

Therefore,
: Compressed PSA in space n log |Z|+ O((n log n)/ D)+ l.o.t bits
nt=#of i n2=#of SA/ISA queries in time O(D log |Z|) [SODA 17]

non-inversions inversions
on left of i ontherightofi | je. O(nlog |Z|) bits space and O(log n) time by fixing D

» Inversion or NOT in PST can be Computed Quickly
PUtt|ng thlngS together » Implement inversion counting via batch queries (mostly

using standard techniques from succinct data structures)

» LF mapping LF[i] = n1+n2+1

LF mapping in time O(log |Z|) via
pBWT+tree topology+ etc. in space n log |Z| + l.0.t (in bits)

Therefore,
Compressed PSA in space n log |Z|+ O((n log n)/ D)+ l.o.t bits
ni=#of i n2=#of SA/ISA queries in time O(D log |Z|) [SODA 17]
non-inversions inversions
on left of i ontherightofi | je. O(nlog |Z|) bits space and O(log n) time by fixing D

v O(nlog |Z|) bits space and O(logc n) time
v' O(nlog |Z| log log |5, n) bits space and O(log log 5, n) time
v' O(nlog |Z| log 5 ¢ n) bits space and O(1) time

More Space-time Trade-offs
and LCP Compression.
i.e., compact PST

[ICALP 2022] This matches the best space-time trade-offs for suffix trees

Next is

Order-isomorphic Suffix Array/Tree Compression

Order-isomorphic Suffix Tree

Key idea is Pred Encoding.
Pred(S) replace each character by the (closest) distance to its predecessor (and 0 is there is not
predecessor)

Order-isomorphic ST is a compact trie of all Pred enoded suffixes of the text.
Linear space and pattern matching can be done efficiently

Compressed Indexing is hard, because of the main changes in Pred encoding. Example,
LetT[x,n]=765432... and T[x-1] =1

Pred(T[x,n]))= 000000...
Pred(T[x-1,n])=0123456 ... (i.e.,, many changes)

Order-isomorphic Suffix Tree

New idea for Compression: LF sccessor,
j = LF-succesor(i) IFF LF[j] = LF[i]+1
» We showed that LF-succesor can be implemented in O(log sigma) time

» Then LF via multiple LF-successors in O(log n) time
» Finally SA/ISA queries via multiple LF queries in O(log 2 n) time [ICALP 2021]

Next we have

2D Suffix Array/Tree Compression

Summary and Open Problems

e Compression of
o Parameterized Suffix Arrays/Trees (well solved)
o Order-isomorphic Suffix Arrays/trees (we have some solution, but messy and less efficient)
o 2D Suffix Arrays/Trees (Wide Open for research)

e Repetition-aware Compression
e Efficient Construction
e Indexing for other/newer problems

Thank you for listening

Questions?

