
Using Automata and a Decision Procedure
to Prove Results in Pattern Matching

Jeffrey Shallit

School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1 Canada
shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit/

Joint work with Luke Schaeffer, Institute for Quantum Computing,
University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 1 / 50

The role of famous infinite words

Famous infinite words such as the Thue-Morse word

t = 0110100110010110 · · ·

and the Fibonacci word

f = 010010100100101001010 · · ·

have played a role in combinatorial pattern matching from the very
beginning of the field.

Example: in the Knuth-Morris-Pratt string-matching algorithm (1977),
finite prefixes of the infinite Fibonacci word play a special role as
worst-cases of the algorithm.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 2 / 50

Excerpt from Knuth-Morris-Pratt, 1977

Jeffrey Shallit Automata and Decision Procedure CPM 2022 3 / 50

Thue-Morse and Fibonacci in CPM Papers

The Thue-Morse word and Fibonacci word appear, for example, in the
following CPM papers:

Karpinski et al., Pattern-matching for strings with short descriptions, CPM 1995
Rytter, Application of Lempel-Ziv factorization..., CPM 2002
Kolpakov and Kucherov, Searching for gapped palindromes, CPM 2008
Amir et al., Quasi-distinct parsing and optimal compression methods, CPM 2009
Xu, A minimal periods algorithm with applications, CPM 2010
Kärkkäinen et al., Linear time Lempel-Ziv factorization, CPM 2013
Belazzougui et al., Composite repetition-aware data structures, CPM 2015
Alamro et al., Computing the antiperiod(s) of a string, CPM 2019
Pape-Lange, On maximal repeats in compressed strings, CPM 2019

{ Mieno et al., RePair grammars are the smallest grammars..., CPM 2022

Jeffrey Shallit Automata and Decision Procedure CPM 2022 4 / 50

Proving properties of words like f and t: the usual method

In CPM we often want to illustrate our ideas by proving properties of
words like f and t as examples.

Doing so often involves a long case-based argument, often involving
induction.

These kinds of long arguments are rarely enlightening and are prone to
error.

It would be nice to have a hard-working assistant to help create the proofs
for these examples!

Jeffrey Shallit Automata and Decision Procedure CPM 2022 5 / 50

A new approach to proving properties of words like f and t

In this talk I will speak about a method for mechanically proving
properties of words like f and t, and their finite prefixes, with applications
to combinatorial pattern-matching.

The method itself is not new—the ideas go back to Presburger (1929) and
Büchi (1960), and refined more recently by Bruyère et al. (1994)—but
modern computers make it possible to actually implement and run the
method on many examples.

The method involves a decision procedure—an algorithm—that takes an
assertion ϕ phrased in a logical language, and produces a rigorous proof or
disproof of the statement.

The ideas are applicable to a class of sequences called automatic.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 6 / 50

What are automatic sequences?

A sequence x = (an)n≥0 is automatic if there exists a DFAO (deterministic
finite automaton with output) that, given a representation of n in a
suitable numeration system as input, outputs an as a function of the last
state reached.

Example #1: The Thue-Morse sequence t. Here the numeration system is
base 2, and the automaton is as follows:

0

0

11
1

0

Here the output is the name of the state.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 7 / 50

What are automatic sequences?

Example #2: The Fibonacci sequence f. Here we have to use an “exotic”
numeration system, the so-called Zeckendorf representation.

In this system we represent a natural number n as a sum of Fibonacci
numbers with coefficients 0, 1, namely

n =
∑

2≤i≤t

eiFi ,

subject to the requirement that eiei+1 6= 1.

Then f is generated by the following automaton:

0

0

11
0

Jeffrey Shallit Automata and Decision Procedure CPM 2022 8 / 50

The main ideas

The first main theorem:

Theorem. There is a decision procedure that, given an automatic
sequence x and ϕ, a first-order logical statement about x, with no free
variables, over the natural numbers with addition, will terminate and
answer TRUE if ϕ holds and FALSE otherwise.

free = not bound to any quantifier

allowed operations: the usual logical operations, comparisons of integers,
addition, subtraction, indexing into x, multiplication and integer division
by constants.

not allowed: multiplication and division of two variables, recursive
definitions, counting.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 9 / 50

Some examples of what can be decided

Examples of the kinds of things we can phrase in first-order logic:

x is eventually periodic:

∃N, p (p ≥ 1) ∧ ∀i (i ≥ N) =⇒ x[i] = x[i + p].

Jeffrey Shallit Automata and Decision Procedure CPM 2022 10 / 50

Some examples

x contains a square (aka repetition, aka tandem repeat—a nonempty block
of the form yy):

∃i , n (n ≥ 1) ∧ ∀t (t < n) =⇒ x[i + t] = x[i + t + n].

Jeffrey Shallit Automata and Decision Procedure CPM 2022 11 / 50

Some examples

x contains arbitrarily large palindromes:

∀M ∃i , n (n ≥ M) ∧ ∀t (t < n) =⇒ x[i + t] = x[(i + n)− (t + 1)].

Jeffrey Shallit Automata and Decision Procedure CPM 2022 12 / 50

Alternate formulas

This last formula for palindromes could also have been expressed

∀M ∃i , n (n ≥ M) ∧ ∀t (t < n/2) =⇒ x[i + t] = x[(i + n)− (t + 1)].

There are often many different ways to express the same assertion.

Some may run more quickly than others in the decision procedure.

It is hard to determine ahead of time which query is likely to run
fastest.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 13 / 50

The second main result

The second main theorem:

Theorem. There is a procedure that, given an automatic sequence x and
first-order logical statement ϕ about x with some free variables z1, . . . , zn,
over the natural numbers with addition, produces a finite automaton that
accepts, in parallel, the values of the free variables z1, . . . , zn that make
the formula ϕ true.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 14 / 50

An example of the second theorem

Orders of squares in the Thue-Morse sequence:

(n ≥ 1) ∧ ∃i ∀t (t < n) =⇒ x[i + t] = x[i + t + n].

The method produces the following automaton:

0

0

11 20
1

0

Notice that it accepts the base-2 representation of 2i for i ≥ 0 and 3 · 2i
for i ≥ 0.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 15 / 50

How the two theorems are proved

Main ideas:

Compile the first-order logic statement into a series of transformations on
automata.

Start with the automaton for the sequence x itself; use basic theorems of
automata theory to carry out “and” (intersection), “or” (union), etc.

An “adder automaton” is needed to check the relation x + y = z .

Jeffrey Shallit Automata and Decision Procedure CPM 2022 16 / 50

How the two theorems are proved

The existential quantifier ∃ is carried out by projection of transitions,
followed by determinization and minimization.

Projection can cause the automaton to become nondeterministic.

Such an automaton needs to be determinized, which can blow up the
number of states exponentially.

The universal quantifier ∀ is handled by ∀x p(x) replaced by ¬∃x ¬p(x).

Jeffrey Shallit Automata and Decision Procedure CPM 2022 17 / 50

From infinite words to finite words

Most theorems in combinatorial pattern-matching concern finite strings,
not infinite ones.

Typically in CPM one is interested in special prefixes of Thue-Morse (of
length 2n) or Fibonacci (of length Fn).

We can use the logical approach to prove results about finite strings if
they are (i) prefixes of an appropriate automatic sequence or (ii) factors
(contiguous substrings) of an appropriate automatic sequence or (iii)
simple modifications of these.

In particular, we can prove results for all prefixes of t and f, not just those
of special lengths.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 18 / 50

The old paradigm for research in discrete mathematics

decide on
properties
 to study

look at lots
of examples

formulate nice
conjecture

from examples

try to prove
conjecture

 conjecture fails

 keep trying!

fame and
fortune!

 proof works

Jeffrey Shallit Automata and Decision Procedure CPM 2022 19 / 50

A new paradigm for research in discrete mathematics

decide on
properties
 to study

have computer
generate lots
of examples

find appropriate
decidable

logical theory

formulate nice
conjecture

from examples
software for

decision procedure implement it

 conjecture
translated into

logical language

 conjecture
disproved! fame and

fortune!
 conjecture proved!

Jeffrey Shallit Automata and Decision Procedure CPM 2022 20 / 50

String Attractors

Recently, the Thue-Morse word played a role as an example in the study of
“string attractors”.

Definition. (Kempa & Prezza, 2018) Let w = w [0..n − 1] be a finite
word. A string attractor of w is a subset S ⊆ {0, 1, . . . , n − 1} such that
every nonempty factor f of w has an occurrence in w that touches one of
the indices of S .

For example, {2, 3, 4} is a string attractor for the word w = ALFALFA, and
there is no smaller string attractor for w .

A L Ḟ Ȧ L̇ F A

0 1 2 3 4 5 6

Jeffrey Shallit Automata and Decision Procedure CPM 2022 21 / 50

String attractors and automatic sequences

Applying the logical decision procedure to string attractors gives us the
following results:

Theorem.
(a) It is decidable, given an automatic sequence x and a constant c ,

whether all prefixes of x have a string attractor of size at most c .

(b) Furthermore, if this is the case, we can construct a finite automaton
that, for each n, provides the lexicographically least, minimal string
attractor for the length-n prefix of x.

Proof. It suffices to provide first-order logical formulas for (a) and (b).

Jeffrey Shallit Automata and Decision Procedure CPM 2022 22 / 50

A logical formula for string attractors

Let us create a first-order formula ϕ asserting that the length-n prefix of x
has a string attractor of size at most c .

We construct ϕ in several stages.

First, a formula comparing two different factors of x.

Next, a formula asserting that position i is touched by some occurrence of
a given factor.

Finally, a formula asserting that all factors are touched by some i in the
string attractor set S .

Jeffrey Shallit Automata and Decision Procedure CPM 2022 23 / 50

A logical formula for string attractors

First, we need a formula asserting that the factors x[k..`] and x[r ..s]
coincide. We can do this as follows:

faceq(k , `, r , s) := (`− k = s − r)∧
∀j (r + j ≤ s) =⇒ x[r + j] = x[k + j].

Jeffrey Shallit Automata and Decision Procedure CPM 2022 24 / 50

A logical formula for string attractors

Next, we need a formula asserting that the factor x[k..`] has some
occurrence x[r ..s] in the prefix x[0..n − 1] that touches position i :

stringa(i , k , `, n) := ∃r , s (s < n) ∧ faceq(k , `, r , s) ∧ r ≤ i ∧ i ≤ s.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 25 / 50

A logical formula for string attractors

Next, let us create a set of formulas, indexed by c , asserting that
i1 ≤ i2 ≤ i3 ≤ · · · ≤ ic < n is a string attractor for the length-n prefix of x.
We can do this as follows:

sac(i1, i2, . . . , ic , n) := (i1 ≤ i2) ∧ (i2 ≤ i3) ∧ · · · ∧ (ic−1 ≤ ic) ∧ (ic < n) ∧
∀k, ` (k ≤ ` ∧ ` < n) =⇒
(stringa(i1, k, `, n) ∨ stringa(i2, k , `, n) ∨ · · · ∨ stringa(ic , k, `, n)).

Notice here that we do not demand that the ij be distinct, which explains
why this formula is designed to check that the string attractor size is ≤ c ,
rather than just equal to c .

Jeffrey Shallit Automata and Decision Procedure CPM 2022 26 / 50

A logical formula for string attractors

Finally, we can create a formula with no free variables asserting that every
nonempty prefix of x has a string attractor of cardinality ≤ c as follows:

∀n (n ≥ 1) =⇒ ∃i1, i2, . . . , ic sac(i1, i2, . . . , ic , n).

Suppose we have found a c such that there exists a string attractor of size
c . By checking successively the truth of the formulas

∀n (n ≥ 1) =⇒ ∃i1 sa1(i1, n)

∀n (n ≥ 1) =⇒ ∃i1, i2 sa2(i1, i2, n)

...

∀n (n ≥ 1) =⇒ ∃i1, i2, . . . , ic sac(i1, i2, . . . , ic , n)

we can find the minimum such c = c0.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 27 / 50

A logical formula for string attractors

In order to actually find the string attractors, we create a formula asserting
that i1 ≤ i2 ≤ · · · ≤ ic is the lexicographically least tuple that is a string
attractor for x[0..n − 1]:

lexleast(i1, i2, . . . , ic , n) := sac(i1, i2, . . . , ic , n)∧
∀j1, j2, . . . , jc (sac(j1, j2, . . . , jc , n) =⇒
((ic ≤ jc)∧
((ic = jc) =⇒ (ic−1 ≤ jc−1))∧
((ic−1 = jc−1 ∧ ic = jc) =⇒ (ic−2 ≤ jc−2))∧
· · · ∧

((i2 = j2 ∧ i3 = j3 ∧ · · · ∧ ic = jc) =⇒ i1 ≤ j1))).

Jeffrey Shallit Automata and Decision Procedure CPM 2022 28 / 50

Walnut

Walnut is a free software package for deciding the truth of logical
assertions about automatic sequences and for creating the automaton
accepting satisfying values of the free variables (if there are any).

It is available at https://cs.uwaterloo.ca/~shallit/walnut.html .

When Walnut halts and produces a result TRUE or FALSE, then the answer
is guaranteed to be correct.

Queries are given in first-order logic, basically the same as given previously,
with some translations.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 29 / 50

https://cs.uwaterloo.ca/~shallit/walnut.html

Walnut syntax

Translation:

∀ is represented by A

∃ is represented by E

=⇒ is represented by =>

∧ is represented by &

∨ is represented by |

¬ is represented by ~

eval – evaluates a formula as TRUE/FALSE
def – defines an automaton that can be reused

T – the Thue-Morse sequence t
F – the Fibonacci sequence f

Jeffrey Shallit Automata and Decision Procedure CPM 2022 30 / 50

Examples of the two theorems in Walnut

Example: does Thue-Morse contain arbitrarily large palindromes?

logical formula:

∀M ∃i , n (n ≥ M) ∧ ∀t (t < n) =⇒ x[i + t] = x[(i + n)− (t + 1)].

translation into Walnut:

eval tmpal "Am Ei,n n>=m & At (t<n) =>

T[i+t]=T[(i+n)-(t+1)]":

Returns TRUE.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 31 / 50

Examples of the two theorems in Walnut

Example: what are the orders of squares in the Fibonacci sequence?

Logical formula:

(n ≥ 1) ∧ ∃i ∀t (t < n) =⇒ f[i + t] = f[i + t + n].

translation into Walnut:

def fibsquares "?msd_fib (n>=1) &

Ei At (t<n) => F[i+t]=F[i+t+n]":

Walnut returns a 2-state automaton accepting the orders of squares,
expressed in the Zeckendorf numeration system: namely, it accepts 10∗, so
the orders of squares are Fn for n ≥ 2.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 32 / 50

Example: the period-doubling sequence

Now let’s attack the string attractor problem.

The so-called period-doubling sequence is an infinite binary sequence

pd = 1011101010111011 · · ·

that is the fixed point of the morphism

1→ 10, 0→ 11.

It can be obtained from the Thue-Morse sequence by taking the xor (or
sum (mod 2)) of a window of size 2 moving through t:

0110100110010110→ 1011101010111011 · · · .

Let us use Walnut to determine the string attractors for all prefixes of pd.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 33 / 50

Determining the string attractors for the period-doubling
sequence with Walnut

def faceq "s+k=r+l & Aj (r+j<=s) => PD[r+j]=PD[k+j]"

19 states, 433 ms

def stringa "Er,s (s<n) & $faceq2(k,l,r,s) & r<=i & i<=s":

57 states, 82 ms

def sa1 "i1<n & Ak,l (k<=l & l<n) => $stringa(i1,k,l,n)":

2 states, 104 ms

eval test1 "An (n>=1) => Ei1 $sa1(i1,n)":

273 ms, returns FALSE,

so no string attractor of size 1 (of course)

Jeffrey Shallit Automata and Decision Procedure CPM 2022 34 / 50

Determining the string attractors for the period-doubling
sequence with Walnut

def sa2 "i1<=i2 & i2<n & Ak,l (k<=l & l<n) =>

($stringa(i1,k,l,n)|$stringa(i2,k,l,n))":

14 states, 3971372ms

involved minimizing a DFA of 6091705 states

eval test2 "An (n>=1) => Ei1,i2 $sa2(i1,i2,n)":

1 ms, returns TRUE

eval lexleast "$sa2(i1,i2,n) & Aj1,j2 $sa2(j1,j2,n) =>

(i2<=j2 & (i2=j2 => i1<=j1))":

5 states, 9 ms

Jeffrey Shallit Automata and Decision Procedure CPM 2022 35 / 50

Determining the string attractors for the period-doubling
sequence with Walnut

The lexleast command gives the following automaton:

0

[0,0,0]

1[0,0,1]

2[0,1,0]

3[0,1,1]

4

[1,0,0]
[1,0,1]

[1,1,0]
[1,1,1][0,1,0]

[0,1,1]

For example, let’s find the lexicographically least string attractor for the
prefix of length n = 8.

An accepting path is labeled

[0, 0, 1][0, 1, 0][1, 0, 0], [0, 1, 0]

corresponding to the triple (i1, i2, n) = (2, 5, 8).

Jeffrey Shallit Automata and Decision Procedure CPM 2022 36 / 50

Determining the string attractors for the period-doubling
sequence with Walnut

An accepting path is labeled

[0, 0, 1][0, 1, 0][1, 0, 0], [0, 1, 0]

corresponding to the triple (i1, i2, n) = (2, 5, 8) and the string attractor
{2, 5}:

1 0 1̇ 1 1 0̇ 1 0

0 1 2 3 4 5 6 7

Jeffrey Shallit Automata and Decision Procedure CPM 2022 37 / 50

Determining the string attractors for the period-doubling
sequence with Walnut

From inspection of the automaton we can obtain an explicit formula for
the string attractors of pd.

Theorem. Let n ≥ 6. Then a string attractor of minimum size for
pd[0..n − 1] is given by{

{3 · 2i−3 − 1, 3 · 2i−2 − 1}, if 2i ≤ n < 3 · 2i ;
{2i − 1, 2i+1 − 1}, if 3 · 2i ≤ n < 2i+1.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 38 / 50

Determining the string attractors for the infinite Fibonacci
word with Walnut

0

[0,0,0]

1[0,0,1]

2[0,0,0]

3

[0,1,0]

4
[0,1,0]

5

[0,1,1]

6

[1,0,1]

7
[1,0,0]

8

[1,0,1]

[1,0,0]

[0,1,0]

[0,1,0]
9[0,1,1]

[0,1,0]

[1,0,0]

This was a big calculation for Walnut, using 12229013 ms and 356 Gigs of
storage. It involved minimizing a DFA of 41532816 states.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 39 / 50

Bad news and good news

We have seen how powerful this logical approach is.

However, it’s now time for the bad news: the worst-case running time of
this method is enormous.

It is

22..
.2p(N)

,

where the number of 2’s in the exponent is equal to the number of
quantifier alternations, p is a polynomial in the length of the particular
statement being decided, and N is the number of automaton states
needed to describe the underlying sequence.

Good news: even so, we have been successful on something like 90% of
the queries we’ve tried, even with as many as 6 quantifier alternations.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 40 / 50

Thue-Morse

When we try to apply the logical method directly to the Thue-Morse
sequence, we run up against exponential blowup, and Walnut doesn’t
terminate in a reasonable length of time.

Nevertheless, we can still use it!

The idea is to guess what a string attractor would look like (by looking at
examples) and then use Walnut to verify the guess.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 41 / 50

Thue-Morse

With this, we can prove the following result:

Theorem.

(a) {2i − 1, 3 · 2i−1 − 1, 2i+1 − 1, 3 · 2i − 1} is a string attractor for
t[0..n − 1] for 13 · 2i−2 − 1 ≤ n ≤ 5 · 2i and i ≥ 2;

(b) {3 · 2i−1 − 1, 2i+1 − 1, 3 · 2i − 1, 2i+2 − 1} is a string attractor
for t[0..n − 1] for 9 · 2i−1 − 1 ≤ n ≤ 3 · 2i+1 and i ≥ 1;

(c) {3 · 2i−1 − 1, 2i+1 − 1, 2i+2 − 1, 5 · 2i − 1} is a string attractor
for t[0..n − 1] for 3 · 2i+1 − 1 ≤ n ≤ 13 · 2i−1 and i ≥ 1.

Corollary. t[0..n − 1] has a string attractor of size 4 for n ≥ 25.

(Previously only known for n a power of 2.)

Jeffrey Shallit Automata and Decision Procedure CPM 2022 42 / 50

Going further: span

The advantage to this formulation of string attractors is that it is easy to
explore other aspects, simply by defining new formulas.

For example, Marinella Sciortino defined the notion of span of a string
attractor: it is the difference between the smallest and largest element of a
string attractor of minimum size for n. We can then investigate the
minimum and maximum possible span of string attractors for x[0..n − 1].

We can create formulas for these as follows:

span(n, r) := ∃i1, i2, . . . , ic sa(i1, i2, . . . , ic , n) ∧ ic = i1 + r

minspan(n, r) := span(n, r) ∧ ∀s (s < r) =⇒ ¬ span(n, s)

maxspan(n, r) := span(n, r) ∧ ∀s (s > r) =⇒ ¬ span(n, s)

Jeffrey Shallit Automata and Decision Procedure CPM 2022 43 / 50

Going further: span

Using Walnut we can show:

Theorem. For the period-doubling sequence the minspan of the length-n
prefix equals

0, for n = 1;

1, for 2 < n < 5;

2i , for 3 · 2i ≤ n < 3 · 2i+1 and i ≥ 1 .

The maxspan of the length-n prefix equals
0, for n = 1;

1, for 2 ≤ n ≤ 3;

2i , if 5 · 2i−1 − 1 ≤ n < 6 · 2i−1 − 2 and i ≥ 1;

3 · 2i , if 6 · 2i − 1 ≤ n ≤ 5 · 2i+1 − 2 and i ≥ 0.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 44 / 50

Other kinds of properties

Walnut can be used to check dozens of other combinatorial properties:

recurrence: whether a given block occurs finitely many times or
infinitely often

recurrence constant: minimum and maximum distance separating two
consecutive occurrences of a length-n factor

critical exponent: largest degree of repetition of a factor

and many many others...

Jeffrey Shallit Automata and Decision Procedure CPM 2022 45 / 50

Enumeration

Walnut can also be used to enumerate various kinds of properties:

Count the number of distinct factors of length n (aka subword
complexity)

Count the number of squares (or cubes or palindromes) in a prefix of
length n

and many others...

It produces a linear representation for the enumeration function.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 46 / 50

Conclusions

The decision algorithm implemented in Walnut can often
“automatically” prove interesting and novel combinatorial claims
about famous sequences like Thue-Morse or Fibonacci

Walnut now used in more than 50 papers on combinatorics on words,
often to prove entirely new results, sharpen existing results, and
sometimes to correct incorrect published results.

An example of a false claim in the literature found and corrected by
Walnut: “Every length k factor of Thue-Morse appears as a factor of
every length 8k − 1 factor of Thue-Morse.”

Jeffrey Shallit Automata and Decision Procedure CPM 2022 47 / 50

Conclusions

Walnut removes the drudgery of long case-based proofs

Although the worst-case running time is astronomical, in many
(most?) cases it runs rather quickly.

But there are limitations on what sequences can be investigated and
what kinds of properties can be proved.

For a complete list of papers using it and to download Walnut, see
https://cs.uwaterloo.ca/~shallit/walnut.html

Jeffrey Shallit Automata and Decision Procedure CPM 2022 48 / 50

https://cs.uwaterloo.ca/~shallit/walnut.html

For further reading

L. Schaeffer and J. Shallit, Arxiv preprint 2012.06840 [cs.FL], January
7 2021. Available at https://arxiv.org/abs/2012.06840.

S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino, A
combinatorial view on string attractors, Theoret. Comput. Sci. 850
(2021), 236–248.

K. Kutsukake, T. Matsumoto, Y. Nakashima, S. Inenaga, H. Bannai,
and M. Takeda. On repetitiveness measures of Thue-Morse words. In
C. Boucher and S. V. Thankachan, editors, SPIRE 2020, Vol. 12303
of Lecture Notes in Computer Science, pp. 213–220. Springer-Verlag,
2020.

Jeffrey Shallit Automata and Decision Procedure CPM 2022 49 / 50

https://arxiv.org/abs/2012.06840

For further reading

Coming soon
to a fine bookstore

near you!

Jeffrey Shallit Automata and Decision Procedure CPM 2022 50 / 50

