# Finite State Automata Representing Two-Dimensional Subshifts

JONI BURNETTE PIRNOT

Department of Mathematics Manatee Community College 5840 26<sup>th</sup> Street West Bradenton, FL 34207, USA pirnotj@mccfl.edu NATAŠA JONOSKA

Department of Mathematics University of South Florida 4202 East Fowler Avenue Tampa, FL 33620, USA jonoska@math.usf.edu

#### **Overview**

- Background and Motivation
- Automata Representing 2D Sofic Shifts
- Uniform Horizontal Transitivity and Periodicity
- State Merging
- Open Questions

## 2D Shift of Finite Type

- $\Sigma$  is a finite alphabet.
- Q is a set of  $k \times k$  states:  $[0, k-1] \times [0, k-1] \rightarrow \Sigma$ .
- Shift of finite type defined by Q is  $X \subseteq \Sigma^{\mathbb{Z}^2}$  such that

$$\forall x \in X, \{x_{[i,i+k-1]\times[j,j+k-1]} \mid i,j \in \mathbb{Z}\} \in \mathbb{Q}.$$









| a | a |
|---|---|
| a | b |

















































- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.
- Incorrect proof of affirmative hinges on assumption that any set of tiles capable of tiling the plane must admit a periodic tiling.

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.
- There exists a set of Wang tiles that can only tile the plane aperiodically. (R. Berger, 1966)

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.
- There exists a set of Wang tiles that can only tile the plane aperiodically. (R. Berger, 1966)
- The Emptiness Problem: Wang's question is now known to be undecidable.

#### Factors vs. Allowed Blocks

- Factors of X: For subshift X, F(X) denotes set of all blocks that appear in some point of the subshift.
- Allowed blocks: A(X) denotes set of all blocks that can be constructed from finite set Q which defines X.

#### Factors vs. Allowed Blocks

- Factors of X: For subshift X, F(X) denotes set of all blocks that appear in some point of the subshift.
- Allowed blocks: A(X) denotes set of all blocks that can be constructed from finite set Q which defines X.
- In 1D, F(X) = A(X) for all shifts of finite type.
- In 2D,  $F(X) \subseteq A(X)$  for all shifts of finite type, but F(X) = A(X) is undecidable (Emptiness Problem).

### **Automata for 2D Sofic Subshifts**

- Two separate graphs (matrices) have been used to represent horizontal and vertical movement in a 2D shift of finite type X.
- However, sofic subshifts that are the image of X under a block code generally can not be represented by simply relabeling the underlying pair of graphs that represent X.

## **Motivation**

 Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images

### **Motivation**

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images
- Investigate periodicity in 2D subshifts having property A(X) = F(X)

## **Motivation**

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images
- Investigate periodicity in 2D subshifts having property A(X) = F(X)
- Initiate state merging to reduce graph size

Let X be a 2D shift of finite type defined by set of  $k \times k$  states Q where X has the property A(X) = F(X). The finite state automaton  $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$  defined by Q is a finite directed graph such that:

Let X be a 2D shift of finite type defined by set of  $k \times k$  states Q where X has the property A(X) = F(X). The finite state automaton  $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$  defined by Q is a finite directed graph such that:

- Vertex set of  $\mathcal{M}_{F(X)}$  is Q; and
- Edge set is  $E = E_h \cup E_v$ , where ...

Let X be a 2D shift of finite type defined by set of  $k \times k$  states Q where X has the property A(X) = F(X). The finite state automaton  $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$  defined by Q is a finite directed graph such that:

- Vertex set of  $\mathcal{M}_{F(X)}$  is Q; and
- Edge set is  $E = E_h \cup E_v$ , where ...

 $e_h: q \rightarrow r \in E_h$  if and only if

Let X be a 2D shift of finite type defined by set of  $k \times k$  states Q where X has the property A(X) = F(X). The finite state automaton  $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$  defined by Q is a finite directed graph such that:

- Vertex set of  $\mathcal{M}_{F(X)}$  is Q; and
- Edge set is  $E = E_h \cup E_v$ , where ...

 $e_v: q \mid r \in E_v$  if and only if

























## **Acceptance of Non-block Factors**

If X is given by a set Q of  $k \times k$  blocks then a k-phrase is a shape obtained by repeated extension of rows and/or columns of width k.

## **Acceptance of Non-block Factors**

If X is given by a set Q of  $k \times k$  blocks then a k-phrase is a shape obtained by repeated extension of rows and/or columns of width k.



A k-phrase is said to be *accepted* by  $\mathcal{M}_{F(X)}$  if there is a path in  $\mathcal{M}_{F(X)}$  having P as its label.

# Block Acceptance, Shifts of Finite Type

Block  $B_{m,n}$  is said to be *accepted* by  $\mathcal{M}_{F(X)}$  if all k-phrases of  $B_{m,n}$  are accepted.

# Block Acceptance, Shifts of Finite Type

Block  $B_{m,n}$  is said to be *accepted* by  $\mathcal{M}_{F(X)}$  if all k-phrases of  $B_{m,n}$  are accepted.

(Check all k-phrases of  $B_{m,n}$  that start with  $\beta_{\alpha}$  and terminate in  $\beta_{\omega}$  after a sequence of n-k horizontal transitions and m-k vertical transitions.)



## **Proposition**

For a 2D shift of finite type X having property F(X) = A(X), automaton  $\mathcal{M}_{F(X)}$  is such that

$$F(X) = L(\mathcal{M}_{F(X)}) = \{B : B \in \Sigma^{**}, B \text{ is accepted by } \mathcal{M}_{F(X)}\}.$$

| a | a |
|---|---|
| a | a |

| b | a |
|---|---|
| a | a |

| a | b |
|---|---|
| a | a |

| a | a |
|---|---|
| b | a |

| a | a |
|---|---|
| a | b |



## **Block Acceptance, Alternate Definition**

 An m × n block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.

## **Block Acceptance, Alternate Definition**

 An m × n block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.

$$q_{[0,m-k+1]} \longrightarrow q_{[1,m-k+1]} \longrightarrow \cdots q_{[n-k+1,m-k+1]}$$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ 
 $1 \qquad 1 \qquad 1$ 
 $q_{[0,1]} \longrightarrow q_{[1,1]} \longrightarrow \cdots q_{[n-k+1,1]}$ 
 $1 \qquad 1 \qquad 1$ 
 $q_{[0,0]} \longrightarrow q_{[1,0]} \longrightarrow \cdots q_{[n-k+1,0]}$ 

#### **Block Acceptance, Alternate Definition**

- An m × n block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.
- The original definition of block acceptance for shifts of finite type is a special case of this since all states bear distinct labels.

#### **Grid-Infinite Paths**

 A configuration of the plane is represented by a grid-infinite path.

#### **Grid-Infinite Paths**

 A configuration of the plane is represented by a grid-infinite path.

• For a 2D shift of finite type X, there is a 1-1 correspondence between points in X and grid-infinite paths in  $\mathcal{M}_{F(X)}$ .

#### **Proposition**

Let X be represented by  $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$ , and let Y be the image of X under the block map  $\Phi$ .

If  $\mathcal{M}_{F(X)}^{\Phi}$  is the automaton having underlying graph  $\mathcal{M}_{F(X)}$  with state set Q' and edge set E' relabeled according to  $\Phi$ , then  $L(\mathcal{M}_{F(X)}^{\Phi}) = F(Y)$ .

#### **Proposition**

Let X be represented by  $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$ , and let Y be the image of X under the block map  $\Phi$ .

If  $\mathcal{M}_{F(X)}^{\Phi}$  is the automaton having underlying graph  $\mathcal{M}_{F(X)}$  with state set Q' and edge set E' relabeled according to  $\Phi$ , then  $L(\mathcal{M}_{F(X)}^{\Phi}) = F(Y)$ .

- The sofic shift Y need not be shift of finite type.
- There need no longer exist a 1-1 correspondence between points in Y and grid-infinite paths in  $\mathcal{M}_{F(X)}^{\Phi}$ .

# **Example: Strictly Sofic Subshift**



## **Example: Strictly Sofic Subshift**



Notice q always appears in  $2 \times 2$  tiles as  $\begin{array}{c} q_4 & q_3 \\ q_2 & q_1 \end{array}$ .

## **Example: Strictly Sofic Subshift**



Automaton represents all configurations of the plane that

can be obtained by tiling with 
$$p$$
 and  $\begin{pmatrix} q & q \\ q & q \end{pmatrix}$ 

## **2D Uniform Horizontal Transitivity**

For a 2D subshift X, we say the factor language F(X) has horizontal transitivity if for every pair of blocks  $B', B'' \in F(X)$  the block B' meets B'' along direction vector  $\langle 1, 0 \rangle$  within some larger block  $B \in F(X)$ .



## **2D Uniform Horizontal Transitivity**

For a 2D subshift X, we say the factor language F(X) has uniform horizontal transitivity if there is a positive integer K such that for every pair of blocks  $B', B'' \in F(X)$  that meet along direction vector  $\langle 1, 0 \rangle$  there is a block  $B \in F(X)$  that encloses B' and B'' in a way that d(B', B'') < K.



#### **Theorem**

Let X be 2D subshift represented by  $\mathcal{M}_{F(X)}^{\Phi}$ .

Given distance K, there is algorithm which decides whether F(X) has uniform horizontal transitivity at distance K.

#### **Automaton Facilitates Proof**





We seek block path  $\beta$  that overlaps final and initial states of block paths representing B' and B'', respectively.

#### **Automaton Facilitates Proof**





We seek block path  $\beta$  that overlaps final and initial states of block paths representing B' and B'', respectively.

Uniformity condition permits application of well-known results from 1D automata theory.

#### **2D Periodic Points**

Given 2D shift space X,  $x \in X$  is periodic of period  $(a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}$  iff  $x_{(i,j)} = x_{(i+a,j+b)}$  for every  $(i,j) \in \mathbb{Z}^2$ .

#### **Theorem**

Let X be 2D subshift represented by  $\mathcal{M}_{F(X)}^{\Phi}$ .

If F(X) exhibits uniform horizontal transitivity at some distance K, then X has a periodic point of period (a, b) for some  $a \le K + k$ .

#### Follower-Separated Graphs

The <u>follower set</u> of state  $q_i \in Q$  is the set of all blocks that have bottom-left corner  $\beta_{\alpha} = q_i$ .

## **Follower-Separated Graphs**

The <u>follower set</u> of state  $q_i \in Q$  is the set of all blocks that have bottom-left corner  $\beta_{\alpha} = q_i$ .

Graphs with distinct follower sets for each state are called follower-separated graphs.

#### **Ex: Follower-Separated Graphs**

 Graphs representing 2D shifts of finite type X are inherently follower-separated.



# **Ex: Follower-Separated Graphs**

 2D (strictly) sofic shift can also have follower-separated graph.



## **Ex: Follower-Separated Graphs**

 2D (strictly) sofic shift can also have follower-separated graph.



• Intersect follower sets with set  $B = \{B_0, B_1, B_2\}$ , where

## **Proposition**

The graph size of  $\mathcal{M}_{F(X)}^{\Phi}$  can be reduced by combining states having the same follower sets without affecting the represented factor language F(X).

Graph is follower-separated.



Relabeled graph is not follower-separated.



Reduced graph represents same subshift.



• Further reduced; same subshift



 When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by  $\mathcal{M}_{F(X)}^{\Phi}$ ?

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by  $\mathcal{M}_{F(X)}^{\Phi}$ ?
- Is there an analog to the 1D idea of minimal deterministic presentations for  $\mathcal{M}_{F(X)}^{\Phi}$ ?

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by  $\mathcal{M}_{F(X)}^{\Phi}$ ?
- Is there an analog to the 1D idea of minimal deterministic presentations for  $\mathcal{M}_{F(X)}^{\Phi}$ ?
- Is there a notion of 2D synchronizing words for subshifts having property F(X) = A(X)?