
DETERMINISTIC CATERPILLAR
EXPRESSIONS

Kai Salomaa(2) Sheng Yu(1) Jinfeng Zan(2)

(1)Department of Computer Science, Univesity of Western Ontario,

London, Ontario, Canada

(2)School of Computing, Queen’s University, Kingston, Ontario, Canada

Deterministic Caterpillar Expressions CIAA 2007, Prague



Background

• Caterpillar expressions (Brüggemann-Klein & Wood, 2000) have
been used for the specification of context in structured documents.

• A caterpillar expression is a regular expression built from atomic
instructions that defines the computation of a tree walking
automaton.

• An atomic instruction consists of a move to an adjacent node or a
test instruction (a test on the label of the current node, or e.g. a test
whether the node is a leaf).

Deterministic Caterpillar Expressions CIAA 2007, Prague



• A caterpillar expression defines the operation of a tree walking
automaton, or sequential tree automaton:

– at a given time the finite state control is located at one node of the
tree.

• “Parallel” bottom-up or top-down tree automata define the regular
tree languages.

• Bojańczyk and Colcombet (STOC 2005) have shown that
(sequential) tree walking automata cannot recognize all regular tree
languages.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• Classical applications of tree automata use trees over ranked
alphabets: each node label has a rank that determines the number
of children.

• The new applications (like the manipulation of XML documents) use
trees over unranked alphabets: there is no apriori upper bound for
the number of children of a node (but the number of children is finite).

• In the unranked case, a finite transition function cannot directly
specify an arbitrary child node where the automaton moves to:
Caterpillar expressions provide a convenient mechanism to specify
the operation of the tree walking automaton.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Definition. Let Σ be the (unranked) alphabet used to label nodes of
the trees.

The set of atomic caterpillar expressions is

∆ = Σ ∪ {isF irst, isLast, isLeaf, isRoot,

Up, Left, Right, F irst, Last}.

• An instruction a ∈ Σ tests whether the label of the current node is a.

• The instructions isF irst, isLast, isLeaf and isRoot test whether the
current node is the first (leftmost) sibling of its parent, the last sibling,
a leaf node or the root node.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• The move instructions Up, Left, Right, First and Last, respectively,
instruct the caterpillar to move from the current node to its parent, the
next sibling to the left, the next sibling to the right, the leftmost child
of the current node, or the rightmost child of the current node.

• A caterpillar expression is a regular expression α over ∆.

• Computations of α are defined by all sequences of instructions in the
language denoted by α, L(α).
(The formal definition of the computations is given in the
proceedings.)

Deterministic Caterpillar Expressions CIAA 2007, Prague



Example. Let Σ = {a, b}.

α1 = (First · Right∗)∗ · isF irst · (isLeaf · a · Right) ·

(isLeaf · b · Right) · (isLeaf · a · isLast)

• α1 defines the set of trees that contain a node with precisely three
children that are all leaves and labeled, respectively, by a, b, a.

• The subexpression (First · Right∗)∗ moves the caterpillar
(nondeterministically) to an arbitrary node of the tree.

• The remaining part of α1 checks the required property.

Deterministic Caterpillar Expressions CIAA 2007, Prague



a b a

F

F
R

F R R

F

F

F

R

R

F
F

R

F

Figure 1: Example continued: Instructions defined by
(First ·Right∗)∗ find an arbitrary first child in the tree. Here “F” denotes
“First”, “R” denotes “Right”.

Deterministic Caterpillar Expressions CIAA 2007, Prague



The computation of the caterpillar α1 uses nondeterminism to find
an arbitrary node of the tree.

Theorem 1. Caterpillar expressions define the same family of tree
languages as nondeterministic tree walking automata.

Proof idea. Given a tree walking automaton A, we can define a
caterpillar expression αA such that an instruction sequence encoded
by αA can be successfully executed on a tree t iff it corresponds to a
valid computation of A on t, with state information deleted.
The proof can be found in the proceedings.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• Nondeterministic tree walking automata are strictly more powerful
than deterministic tree walking automata (Bojańczyk & Colcombet,
ICALP 2004)

• Crucial question: Is the computation defined by a given caterpillar
expression deterministic?

• In their original paper, Brüggemann-Klein & Wood considered
only the “operational” definition of determinism: a caterpillar
is deterministic if the tree walking automaton simulating the
computation is deterministic.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• In order to algorithmically decide determinism of given caterpillar
expressions, we need a more direct definition of determinism:

– determinism is defined in terms of the sequences of instructions
denoted by an expression.

Intuitively, we say that two distinct atomic instructions c, c′ ∈ ∆ are
mutually exclusive if at any node of an arbitrary tree at most one of
the instructions c and c′ can be successfully executed.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Definition. Let c, c′ ∈ ∆.

We say that instructions c and c′ are mutually exclusive if either

(i) c, c′ ∈ Σ and c 6= c′, that is, c and c′ are tests on distinct symbols of
Σ, or,

(ii) {c, c′} is one of the sets {First, isLeaf}, {Last, isLeaf},
{Up, isRoot}, {Left, isF irst}, or {Right, isLast}.

The above are exactly all pairs of instructions that cannot both be
successfully executed at any node.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Definition of determinism:

A caterpillar expression α is deterministic if:

Whenever wc1w1 and wc2w2 are in L(α) where w,w1, w2 ∈ ∆∗,
c1, c2 ∈ ∆, c1 6= c2, then c1 and c2 are mutually exclusive.

Interpretation: for any instruction sequences w and w′ defined by α that
are not prefixes of one another, the pair of instructions following the
longest common prefix of w and w′ has to be mutually exclusive.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Example

Define

αtrav = First∗ · isLeaf · (Right · First∗ · isLeaf)∗ · isLast ·

(Up · (Right · First∗ · isLeaf)∗ · isLast)∗ · isRoot

• αtrav is deterministic: possible choices for the next instruction are
{First, isLeaf}, {Right, isLast} and {Up, isRoot} and these are all
mutually exclusive.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• The subexpression First∗ · isLeaf finds the leftmost leaf of the tree.

• The next subexpression (Right · First∗ · isLeaf)∗ · isLast finds the
leftmost leaf of the current subtree that is the last child of its parent.

• The process is then iterated by going one step up in the
subexpression (Up · . . . · isLast)∗.

• We can verify: The instruction sequences of αtrav force the caterpillar
to traverse an arbitrary input tree in depth-first left-to-right order.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Question: Given a caterpillar expression α, how can we test whether
or not α is deterministic?

Can we use some existing algorithms?

• (Possibly) related notions for regular expressions include unambiguity
and one-unambiguity.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Unambiguity:

• Mark different occurrences of the same symbol with subscripts. For
example, expression (a + b)∗aa∗ becomes (a1 + b1)

∗a2a
∗

3.

• Now the word baa has two witnesses: b1a1a2 and b1a2a3.

• A regular expression is unambiguous if no word has more than one
witness.

• Thus, (a + b)∗aa∗ is ambiguous. The same language is denoted by
the unambiguous regular expression (a + b)∗a.

Deterministic Caterpillar Expressions CIAA 2007, Prague



One-ambiguity:

• We additionally require that the choice for the match of the next
symbol has to be made without looking at the following symbols in
the word.

There exist efficient algorithms to test for

• unambiguity: Book et al., 1971,

• one-unambiguity: Brüggemann-Klein & Wood, 1998.

Deterministic Caterpillar Expressions CIAA 2007, Prague



However: it turns out that deterministic caterpillar expressions need not
be (one-)unambiguous or vice versa.

• For example, the expression (a+Up)∗First is one-unambiguous but
it is not deterministic.
(Other cases verified similarly.)

In order to test for determinism, we need to look for other approaches
. . .

Deterministic Caterpillar Expressions CIAA 2007, Prague



We develop two polynomial time algorithms to test determinism of
caterpillar expressions:

• Algorithm 1 relies only on structural properties of the expression
and works for a restricted class of caterpillar expressions (that define
instruction languages having polynomial density).

• Algorithm 2 relies on techniques that have been previously used to
test code properties of regular languages. Algorithm 2 places no
restrictions on the input expressions.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Recall (Szilard, Yu, Zhang, Shallit 1992):

Proposition. A regular language R over ∆ has density in O(nk), k ≥ 0,
iff R can be denoted by a finite union of regular expressions of the form

w0u
∗

1w1u
∗

2 . . . u∗

m+1wm+1, m ≤ k (1)

where wi, uj ∈ ∆∗, i = 0, . . .m + 1, j = 1, . . .m + 1.

We call finite unions of regular expressions as in (1), k-bounded
regular expressions.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Algorithm 1:

• The input expressions are restricted to be k-bounded (with fixed k).

• The input expression is transformed to a sum of normalized
expressions for which determinism can be decided easily.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• We consider expressions of the form

x0y
∗

1x1y
∗

2x2 · · · y
∗

m+1xm+1, xi, yj ∈ ∆∗, m ≤ k. (2)

• Without loss of generality yj 6= λ, j = 1, . . . , m+1, (possible empty yj’s
can be omitted).

Definition. An expression (2) is normalized if

1. for each 1 ≤ i ≤ m + 1, longest common prefix of xi and yi is λ, and

2. xi 6= λ, for each 1 ≤ i ≤ m.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Lemma 1. An arbitrary k-bounded expression

α = x0y
∗

1x1y
∗

2x2 · · · y
∗

m+1xm+1,

m ≤ k, can be written as the sum of O(nk) normalized expressions
each having length O(k · n).
Here n is the length of α.

The proof of Lemma 1 is included in the full version of the paper.
The proof uses techniques from combinatorics on words (the Lyndon-
Schützenberger theorem).

Deterministic Caterpillar Expressions CIAA 2007, Prague



Definition. An expression α = x0y
∗

1x1y
∗

2x2 · · · y
∗

m+1xm+1 is well-
behaved if xi 6= λ implies that first(yi) and first(xi) are mutually
exclusive, 1 ≤ i ≤ m + 1.

Lemma 2. If α (as above) is normalized and deterministic, then α is
well-behaved.

Proof: After executing yi, the next instruction is first(yi) or first(xi).
Since α is normalized, these are distinct. Hence they have to be
mutually exclusive. 2

Deterministic Caterpillar Expressions CIAA 2007, Prague



Algorithm 1:

• Due to Lemmas 1 and 2, in order to test determinism of k-
bounded expressions, it is sufficient to consider sums of well-
behaved normalized expressions.

• Rough idea: The algorithm looks for prefixes of two well-behaved
normalized expressions where the next symbols would not be
mutually exclusive. Since the expressions contain at most k

consecutive stars, where k is fixed, the running time can be bounded
by a polynomial.
The details of the algorithm are given in the proceedings.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• The previous algorithm assumes that the input expressions define an
instruction language of polynomial density.

• It would not be difficult to decide determinism of a caterpillar
expression α if we could construct a DFA for the instruction language
of α (. . . this requires exponential time).

• The general algorithm (Algorithm 2 ) constructs an NFA Aα

equivalent with α and then tests a property of the state-pair graph
of Aα,
(or the square of Aα (Berstel & Perrin, 1985)).

Deterministic Caterpillar Expressions CIAA 2007, Prague



Let A = (Ω, Q, q0, F, δ) be an NFA.

Definition. The state-pair graph of A is the directed graph GA = (V,E)
where the set of nodes is V = Q × Q and the set of Ω-labeled edges is

E = {((p, q), b, (p′, q′)) | (p, b, p′) ∈ δ, (q, b, q′) ∈ δ, b ∈ Ω}.

Intuitively, the edges connect pairs of states of A that can be reached
from each other on a transition with the same symbol.

Deterministic Caterpillar Expressions CIAA 2007, Prague



Note: our definition of determinism refers to the instruction language
(⊆ ∆∗) defined by a caterpillar expression, i.e.,

• determinism is a property of subsets of ∆∗.

Lemma 3. Assume A = (∆, Q, q0, F, δ) is a reduced NFA (where ∆ is a
caterpillar alphabet).

Deterministic Caterpillar Expressions CIAA 2007, Prague



The language L(A) is not deterministic iff there exist p, q ∈ Q such
that

(i) The state-pair graph GA has a path from (q0, q0) to (p, q).

(ii) There exist c1, c2 ∈ ∆, c1 6= c2, such that (p, c1, p
′) ∈ δ and

(q, c2, q
′) ∈ δ for some p′, q′ ∈ Q, and c1, c2 are not mutually exclusive.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• The proof of Lemma 3 is given in the proceedings.

• Given a caterpillar expression α we can construct in time O(n2 log4 n)
the state-pair graph of an NFA that recognizes the instruction
language L(α).

• Hence using a standard graph reachability algorithm we have the
following:

Theorem 2. Given a caterpillar expression α over ∆ we can decide in
polynomial time whether or not α is deterministic.

Deterministic Caterpillar Expressions CIAA 2007, Prague



• In Theorem 1, we have shown that general caterpillar expressions
can simulate arbitrary nondeterministic tree walking automata. (The
converse simulation is obvious.)

• When applying the construction to a deterministic tree walking
automaton the resulting caterpillar is, in general, not deterministic.

Open problem: Do the deterministic tree walking automata define a
strictly larger family of tree languages than the deterministic caterpillar
expressions?

Deterministic Caterpillar Expressions CIAA 2007, Prague


