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Sync hronizing automata

We consider DFA:
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.

The DFA is called synchronizing if there exists a
word whose action resets , that is, leaves
the automaton in one particular state no matter which
state in it started at.

. Here stands for .

Any word with this property is said to be a reset
word for the automaton.
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A reset sequence of actions is . Applying it at
any state brings the automaton to the state 2.
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Sync hronizing Automata

The notion was formalized in 1964 in a paper by Jan
Černý (Poznámka k homogénnym eksperimentom s
konecnými automatami, Mat.-Fyz. Cas. Slovensk.
Akad. Vied. 14 (1964) 208–216) though implicitly it
had been studied since 1956.

The idea of synchronization is pretty natural and of
obvious importance: we aim to restore control over a
device whose current state is not known.
Think of a satellite which loops around the Moon and
cannot be controlled from the Earth while “behind” the
Moon (Černý’s original motivation).
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Černý (Poznámka k homogénnym eksperimentom s
konecnými automatami, Mat.-Fyz. Cas. Slovensk.
Akad. Vied. 14 (1964) 208–216) though implicitly it
had been studied since 1956.
The idea of synchronization is pretty natural and of
obvious importance: we aim to restore control over a
device whose current state is not known.
Think of a satellite which loops around the Moon and
cannot be controlled from the Earth while “behind” the
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Engineering Applications

In the 80s, the notion was reinvented by engineers
working in robotics or, more precisely, robotic
manipulation which deals with part handling problems
in industrial automation such as part feeding, fixturing,
loading, assembly and packing (and which is therefore
of utmost and direct practical importance).

Suppose that one of the parts of a certain device has
the following shape:

Such parts arrive at manufacturing sites in boxes and
they need to be sorted and oriented before assembly.
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Engineering Applications

Assume that only four initial orientations of the part
shown above are possible, namely, the following ones:

Suppose that prior the assembly the part should take
the “bump-left” orientation (the second one on the
picture). Thus, one has to construct an orienter which
action will put the part in the prescribed position
independently of its initial orientation.
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Engineering Applications

We put parts to be oriented on a conveyer belt which
takes them to the assembly point and let the stream of
the details encounter a series of passive obstacles of
two types (high and low ) placed along the belt.

A high obstacle is high enough so that any part on the
belt encounters this obstacle by its rightmost low
angle.

Being curried by the belt, the part then is forced to turn
clockwise.
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Engineering Applications

A low obstacle has the same effect whenever the part
is in the “bump-down” orientation; otherwise it does
not touch the part which therefore passes by without
changing the orientation.

The following schema summarizes how the obstacles
effect the orientation of the part in question:
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lowlow
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Engineering Applications

We met this picture a few slides ago:

1 2

34

– this was our example of a synchronizing automaton,
and we saw that is a reset sequence of
actions. Hence the series of obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low
yields the desired sensorless orienter.

CIAA 2007, Prague, Finland, 16.07.07 – p.9/25



Engineering Applications

We met this picture a few slides ago:

1 2

34

K
L

L
L

L

K
KK

– this was our example of a synchronizing automaton,
and we saw that K L L L K L L L K is a reset sequence of
actions.

Hence the series of obstacles
low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low

yields the desired sensorless orienter.

CIAA 2007, Prague, Finland, 16.07.07 – p.9/25



Engineering Applications

We met this picture a few slides ago:

1 2

34

M
N

N
N

N

M
MM

– this was our example of a synchronizing automaton,
and we saw that M N N N M N N N M is a reset sequence of
actions. Hence the series of obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low
yields the desired sensorless orienter.

CIAA 2007, Prague, Finland, 16.07.07 – p.9/25



Fur ther Applications

In DNA-computing, there is a fast progressing work by
Ehud Shapiro’s group on “soup of automata”
(Programmable and autonomous computing machine
made of biomolecules, Nature 414, no.1 (November
22, 2001) 430–434; DNA molecule provides a
computing machine with both data and fuel, Proc.
National Acad. Sci. USA 100 (2003) 2191–2196, etc).

They have produced a solution containing
identical DNA-based automata per l. These
automata can work in parallel on different inputs (DNA
strands), thus ending up in different and unpredictable
states. One has to feed the automata with an reset
sequence (again encoded by a DNA-strand) in order
to get them ready for a new use.
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The Černý conjecture

Clearly, from the viewpoint of the above applications
(as well as from the mathematical point of view) the
following question is of importance:

Suppose a synchronizing automaton has states.
What is the length of its shortest reset sequence?
In the example above the automaton has 4 states and
there is a reset sequence of length 9. In fact, this was
the shortest possible reset sequence.
In 1964, Černý conjectured that every synchronizing
automaton with states has a reset sequence of
length — as in our example where .

The simply looking conjecture is still open in general!!
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The Černý conjecture

The best upper bound known so far is
y{z |~} z ���

(J.-E. Pin, 1983).

It is also known that the problem is
hard from the computational complexity point of view.
Given a DFA and a positive integer , the problem
whether or not has a reset word of length is
NP-complete (D. Eppstein, 1990; P. Goralčik and
V. Koubek, 1995; A. Salomaa, 2003).
Given a DFA and a positive integer , the problem
whether or not the shortest reset word for has
length is co-NP-hard (W. Samotij, 2007).
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Aperiodic Automata

Some progress has been achieved for various
restricted classes of synchronizing automata.

In
particular, consider the class of aperiodic
automata.
Recall that the transition monoid of a DFA

consists of all transformations
induced by words . A

monoid is said to be aperiodic if all its subgroups are
singletons. A DFA is called aperiodic (or
counter-free) if its transition monoid is aperiodic.
Synchronization issues remain difficult when restricted
to .

CIAA 2007, Prague, Finland, 16.07.07 – p.13/25



Aperiodic Automata

Some progress has been achieved for various
restricted classes of synchronizing automata. In
particular, consider the class

��� of aperiodic
automata.

Recall that the transition monoid of a DFA
consists of all transformations

induced by words . A
monoid is said to be aperiodic if all its subgroups are
singletons. A DFA is called aperiodic (or
counter-free) if its transition monoid is aperiodic.
Synchronization issues remain difficult when restricted
to .

CIAA 2007, Prague, Finland, 16.07.07 – p.13/25



Aperiodic Automata

Some progress has been achieved for various
restricted classes of synchronizing automata. In
particular, consider the class

 �¡ of aperiodic
automata.
Recall that the transition monoid of a DFA¢�£ ¤¥�¦ §¦ ¨ ©

consists of all transformations¨ ª¬«¦ ® ¯±° ¥ ² ¥ induced by words ® ³ § ´

.

A
monoid is said to be aperiodic if all its subgroups are
singletons. A DFA is called aperiodic (or
counter-free) if its transition monoid is aperiodic.
Synchronization issues remain difficult when restricted
to .

CIAA 2007, Prague, Finland, 16.07.07 – p.13/25



Aperiodic Automata

Some progress has been achieved for various
restricted classes of synchronizing automata. In
particular, consider the class

µ�¶ of aperiodic
automata.
Recall that the transition monoid of a DFA·�¸ ¹º�» ¼» ½ ¾

consists of all transformations½ ¿¬ÀÁ» Â Ã±Ä º Å º induced by words Â Æ ¼ Ç

. A
monoid is said to be aperiodic if all its subgroups are
singletons.

A DFA is called aperiodic (or
counter-free) if its transition monoid is aperiodic.
Synchronization issues remain difficult when restricted
to .

CIAA 2007, Prague, Finland, 16.07.07 – p.13/25



Aperiodic Automata

Some progress has been achieved for various
restricted classes of synchronizing automata. In
particular, consider the class

È�É of aperiodic
automata.
Recall that the transition monoid of a DFAÊ�Ë ÌÍ�Î ÏÎ Ð Ñ

consists of all transformationsÐ Ò¬ÓÔÎ Õ Ö±× Í Ø Í induced by words Õ Ù Ï Ú

. A
monoid is said to be aperiodic if all its subgroups are
singletons. A DFA is called aperiodic (or counter-free)
if its transition monoid is aperiodic.

Synchronization issues remain difficult when restricted
to .

CIAA 2007, Prague, Finland, 16.07.07 – p.13/25



Aperiodic Automata

Some progress has been achieved for various
restricted classes of synchronizing automata. In
particular, consider the class

Û�Ü of aperiodic
automata.
Recall that the transition monoid of a DFAÝ�Þ ßà�á âá ã ä

consists of all transformationsã å¬æçá è é±ê à ë à induced by words è ì â í

. A
monoid is said to be aperiodic if all its subgroups are
singletons. A DFA is called aperiodic (or counter-free)
if its transition monoid is aperiodic.
Synchronization issues remain difficult when restricted
to

Û�Ü .

CIAA 2007, Prague, Finland, 16.07.07 – p.13/25



Aperiodic Automata

Good news: Recently A. Trakhtman has proved that
every synchronizing aperiodic automaton with î states
admits a reset word of length at most

ï ð ïòñ ó ôõ .

Bad news: No precise bound for , the minimum
length of reset words for synchronizing aperiodic
automata with states, has been found so far.

(Trakhtman) (Ananichev)

The gap between the upper and the lower bounds is
rather drastic.
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Aperiodic Automata
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Aperiodic Automata

Producing lower bounds for

5 6 5 798 :

is difficult because
it is quite difficult to produce aperiodic automata.

The
question of whether or not a given DFA
is aperiodic is PSPACE-complete (Cho and Huynh,
1991). Practically, there is no way to check the
aperiodicity of avoiding the calculation of its
transition monoid, and the cardinality of the monoid
can reach . Hence, no hope that experiments
can help. On the other hand, all attempts to reduce
the upper bound have failed so far.

An idea: consider certain properties that guarantee
aperiodicity and are easier to check.

CIAA 2007, Prague, Finland, 16.07.07 – p.15/25
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Monotonicity

A DFA

�B� ��F� �� � �

is monotonic if

�

admits a linear
order

�

such that, for � � �

, the transformation� ����� � � of

�

preserves

�

:

� ��� � � � �� � � � � �� � � ���

Monotonic automata are aperiodic (known and easy).

– contradiction!
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Monotonicity
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Monotonicity

A DFA

0�1 23�4 54 6 7

is monotonic if

3

admits a linear
order

8

such that, for 9 : 5

, the transformation6 ;�<=4 9 > of

3

preserves

8

:
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Monotonicity

For monotonic automata the synchronization problem
is easy: Ananichev and K (2004) observed that every
monotonic synchronizing automaton with L states has
a reset word of length

M LON P

and the bound is tight.

A much more difficult case of so-called 0-monotonic
automata was analyzed by Ananichev in 2005. A
DFA is 0-monotonic if it has a unique
sink and admits a linear order
preserved by the restrictions of the transformations

to . Clearly, 0-monotonic automata
are in a 1-1 correspondence with incomplete
monotonic automata. Again, it is known and easy to
check that 0-monotonic automata are aperiodic.

CIAA 2007, Prague, Finland, 16.07.07 – p.17/25



Monotonicity

For monotonic automata the synchronization problem
is easy: Ananichev and Q (2004) observed that every
monotonic synchronizing automaton with R states has
a reset word of length

S ROT U

and the bound is tight.

A much more difficult case of so-called 0-monotonic
automata was analyzed by Ananichev in 2005.

A
DFA is 0-monotonic if it has a unique
sink and admits a linear order
preserved by the restrictions of the transformations

to . Clearly, 0-monotonic automata
are in a 1-1 correspondence with incomplete
monotonic automata. Again, it is known and easy to
check that 0-monotonic automata are aperiodic.

CIAA 2007, Prague, Finland, 16.07.07 – p.17/25



Monotonicity

For monotonic automata the synchronization problem
is easy: Ananichev and V (2004) observed that every
monotonic synchronizing automaton with W states has
a reset word of length

X WOY Z

and the bound is tight.

A much more difficult case of so-called 0-monotonic
automata was analyzed by Ananichev in 2005. A DFA[�\ ]^�_ `_ a b

is 0-monotonic if it has a unique sinkc d ^ and

^ ef c g

admits a linear order

h

preserved
by the restrictions of the transformations

a i�jk_ l m to^ e f c g

.

Clearly, 0-monotonic automata are in a 1-1
correspondence with incomplete monotonic automata.
Again, it is known and easy to check that 0-monotonic
automata are aperiodic.

CIAA 2007, Prague, Finland, 16.07.07 – p.17/25



Monotonicity

For monotonic automata the synchronization problem
is easy: Ananichev and n (2004) observed that every
monotonic synchronizing automaton with o states has
a reset word of length

p oOq r

and the bound is tight.

A much more difficult case of so-called 0-monotonic
automata was analyzed by Ananichev in 2005. A DFAs�t uv�w xw y z

is 0-monotonic if it has a unique sink{ | v and

v }~ { �

admits a linear order

�

preserved
by the restrictions of the transformations

y ����w � � tov } ~ { �

. Clearly, 0-monotonic automata are in a 1-1
correspondence with incomplete monotonic automata.

Again, it is known and easy to check that 0-monotonic
automata are aperiodic.

CIAA 2007, Prague, Finland, 16.07.07 – p.17/25



Monotonicity

For monotonic automata the synchronization problem
is easy: Ananichev and � (2004) observed that every
monotonic synchronizing automaton with � states has
a reset word of length

� �O� �

and the bound is tight.

A much more difficult case of so-called 0-monotonic
automata was analyzed by Ananichev in 2005. A DFA��� ���� �� � �

is 0-monotonic if it has a unique sink� � � and

� �� � �

admits a linear order

�

preserved
by the restrictions of the transformations

� ����� � � to� � � � �

. Clearly, 0-monotonic automata are in a 1-1
correspondence with incomplete monotonic automata.
Again, it is known and easy to check that 0-monotonic
automata are aperiodic.

CIAA 2007, Prague, Finland, 16.07.07 – p.17/25



Monotonicity

1 2 3 4 5 6
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This 0-monotonic automaton is the first in Ananichev’s
series that yields the lower bound .
It has 7 states and its shortest reset word is of
length .
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Monotonicity
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0

¶

¶

¶¶¶

· · · · ·

·

¶
¶¡¸ ·

This 0-monotonic automaton is the first in Ananichev’s
series that yields the lower bound

¹ º ¹ »©¼ ½¬¾ ¼ ¿ À°ÁÂ Ã´Ä Å
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It has 7 states and its shortest reset word is ¶ Æ · Ç ¶ of
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Generaliz ed Monotonicity

A binary relation Í on the state set

Î

of a DFAÏ�Ð ÑÒ�Ó ÔÓ Õ Ö

is a stable if

×ËØÓ Ù ÚÜÛ Ý impliesÞ Õ ×ËØÓ ß ÚÓ Õ × ÙÓ ß Ú à Û Ý for all ØÓ ÙÛ Ò
and ßÛ Ô

.

A congruence is a stable equivalence. For being a
congruence, is the -class containing the state .
The quotient is the DFA where

and the function is defined
by the rule .

1

3

2

4

1,2

3,4
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Generaliz ed Monotonicity
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Generaliz ed Monotonicity

A binary relation . on the state set

/

of a DFA0�1 23�4 54 6 7

is a stable if

8�94 : ;$< = implies> 6 8�94 ? ;4 6 8 :4 ? ; @ < = for all 94 :< 3
and ?< 5

.
A congruence is a stable equivalence. For A being a
congruence,

B : C�D is the A-class containing the state :.
The quotient

0 E A is the DFA
23 E A4 54 6D 7

where3 E A 1 F B : C�D G :< 3 H
and the function

6D is defined
by the rule

6D 8 B : C�D4 ? ; 1 B 6 8 :4 ? ; C�D .
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I I
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Generaliz ed Monotonicity

A binary relation J on the state set

K

of a DFAL�M NO�P QP R S

is a stable if

T�UP V W$X Y impliesZ R T�UP [ WP R T VP [ W \ X Y for all UP VX O
and [X Q

.
A congruence is a stable equivalence. For ] being a
congruence,

^ V _�` is the ]-class containing the state V.
The quotient

L a ] is the DFA
NO a ]P QP R` S

whereO a ] M b ^ V _�` c VX O d
and the function

R` is defined
by the rule

R` T ^ V _�`P [ W M ^ R T VP [ W _�` .

1

3

2

4

[ [

[ [

e e

ee

]

1,2

3,4

e

[

[ e
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Generaliz ed Monotonicity

We call a DFA

f

generalized monotonic of level

g

if it
has a strictly increasing chain of stable binary relationshi j hk jml l l j hnpo satisfying the following conditions:

is the equality;
for each , the congruence

generated by is contained in and the relation
is a linear order on each -class;

is the universal relation.
Monotonic automata are precisely generalized
monotonic automata of level 1.
The automaton in the previous example is a
generalized monotonic automaton of level 2.
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Generaliz ed Monotonicity

1

3

2

4

Å Å

Å Å

Æ Æ

ÆÆ
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1,2

3,4

Æ

Å

Å Æ

Endowing with the order such that and
, we get a linear order on each -class. If we

order by letting , the quotient
automaton becomes monotonic.
It can be shown that the automaton is not monotonic.
Moreover, it cannot be emulated by any monotonic
automaton.

CIAA 2007, Prague, Finland, 16.07.07 – p.21/25



Generaliz ed Monotonicity
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Generaliz ed Monotonicity
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Generaliz ed Monotonicity

1

3

2

4

å å

å å

æ æ

ææ

çè
1,2

3,4

æ

å

å æ

Endowing

é

with the order
ê è such that

ëÑì è í

andîì è ï

, we get a linear order on each çè -class. If we
order

é ð çè by letting
ñ ë�ò í óì ô ñ îò ï ó

, the quotient
automaton becomes monotonic.
It can be shown that the automaton is not monotonic.

Moreover, it cannot be emulated by any monotonic
automaton.

CIAA 2007, Prague, Finland, 16.07.07 – p.21/25



Generaliz ed Monotonicity
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Generaliz ed Monotonicity

1. The hierarchy of generalized monotonic automata is
strict: there are automata of each level

� � ��	 
	� � � .

2. Every generalized monotonic automaton is
aperiodic.
3. Every star-free language can be recognized by a
generalized monotonic automaton.

However, generalized monotonic automata are not
representative for the class from the
synchronization point of view: Ananichev and (2005)
proved that every generalized monotonic
synchronizing automaton with states has a reset
word of length .
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Yet Another Generalization

Surprisingly, a slight relaxation of the definition of a
generalized monotonic automaton gives a much larger
class of automata that strictly includes

& ' .

We call a DFA weakly monotonic of level if it has a
strictly increasing chain of stable binary relations

satisfying the following conditions:
is the equality relation;

for each , the congruence generated
by is contained in and the relation is a
(partial) order on ;

is the universal relation.
Thus, we just dropped the restriction that the order

is linear on each -class.
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Yet Another Generalization

Examples:

every aperiodic automaton is weakly monotonic;
every automaton with a unique sink state is weakly

monotonic (of level 1).
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Yet Another Generalization

Main results:

Every weakly monotonic automaton with a strongly
connected underlying digraph is synchronizing. (A
non-trivial generalization of the corresponding result
for aperiodic automata.)

Every weakly monotonic automaton with a strongly
connected underlying digraph and states has a reset

word of length . (This upper bound is new

even for the aperiodic case – recall that Trakhtman’s
bound was 3 times higher, namely, .)
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