Reducing acyclic cover transducers

J.-M. Champarnaud¹, F. Guingne² and J. Farré²

¹Laboratoire LITIS, Université de Rouen, France

²Laboratoire I3S, Université de Nice - Sophia Antipolis & CNRS, France

Prague, July 16, 2007 / CIAA 2007

Outline

An overview

- State of the art
- New algorithms

- Algorithm 1
- Algorithm 2

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Introduction

Cover automata

- C. Câmpeanu, N. Sântean, and S. Yu, *Minimal Cover-automata for Finite Languages*, Theoret. Comput. Sci. 267 (2001), 3–16.
- H. Körner, A Time and Space Efficient Algorithm for Minimizing Cover Automata for Finite Languages, Int. J. of Foundations of Comput. Sci. 14 (2003), 1071–1086.

Extension to cover transducers

 J.-M. Champarnaud, F. Guingne and G. Hansel, Cover Transducers for Functions with Finite Domain, Intern. J. of Foundations of Comp. Sc., 16–5(2005), 851–865.

Motivation

- compact representation of dictionaries
- reducing lexicons in NLP

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Preliminaries

- subsequential transducer and subsequential function
- longest common prefix and prefix transducer
- right function, k-function and prefix k-function

< /₽ ▶

∃ ► < ∃ ►</p>

Subsequential function and subsequential transducer

- A subsequential transducer is a tuple
 - $\mathcal{S} = (\Sigma, \Omega, Q, \textbf{\textit{q}}_{-}, \textbf{\textit{F}}, \texttt{i}, \texttt{t}, \cdot, \star)$ where:
 - $-\Sigma$ (resp. Ω) is the *input* (resp. *output*) alphabet,
 - Q is the finite set of states;
 - $-q_{-} \in Q$ is the *initial state*,
 - $\mathtt{i}\in \Omega^*$ is the initialization value
 - $-\,t\,:\,Q\to\Omega^*$ is the termination function,
 - -F = dom(t) is the set of *final states*,
 - \cdot is the *transition function*: $Q \times \Sigma \rightarrow q \cdot a \in Q$,
 - \star is the *output function*: $\mathsf{Q} \times \Sigma \to q \star a \in \Omega^*$.
- A subsequential function $S:\Sigma^*\to \Omega^*$ is realized by a subsequential transducer ${\cal S}$

$$S(x) = i(q_{-} \star x)t(q_{-} \cdot x)$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Example of subsequential transducer

$\operatorname{dom}(\alpha)$	α
а	abba
ab	abbaba
ba	babba
aaa	abbababba
abb	abbababa
bab	babbaba
bba	bbabba

Tab. 1. The function $\alpha \dots$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Example of subsequential transducer

$\operatorname{dom}(\alpha)$	α
а	abba
ab	abbaba
ba	babba
aaa	abbababba
abb	abbababa
bab	babbaba
bba	bbabba

Tab. 1. The function $\alpha \dots$

Figure: ... and a subsequential transducer for α .

Longest common prefix and prefix transducer

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Longest common prefix and prefix transducer

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Longest common prefix and prefix transducer

イロト イヨト イヨト

Longest common prefix and prefix transducer

イロト イヨト イヨト

Longest common prefix and prefix transducer

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

Longest common prefix and prefix transducer

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

Longest common prefix and prefix transducer

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

Longest common prefix and prefix transducer

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

Longest common prefix and prefix transducer

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

Longest common prefix and prefix transducer

Figure: ... to the prefix transducer \mathcal{P}_{α} .

< 一 →

Right function, *k*-function and prefix *k*-function

Figure: Prefix-tree transducer.

Right function, *k*-function and prefix *k*-function

Figure: Prefix-tree transducer.

Figure: Right-functions of states *aa* and *b*.

< □ > < 同 >

A B > A B >

Right function, *k*-function and prefix *k*-function *k*-function

Figure: 1-functions of states *aa* and *b*.

프 () 이 프 ()

Right function, *k*-function and prefix *k*-function *k*-function

Figure: 1-functions of states *aa* and *b*.

Figure: Prefix 1-functions of states *aa* and *b*.

< 17 ▶

aa

ale

aaa

b

a

ba

∃ ► < ∃ ►</p>

State of the art New algorithms

Overview

state of the art

- prefix-tree transducer
- minimal transducer
- approximate reduction w.r.t. k-functions
- new algorithms
 - exact reduction w.r.t. k-functions
 - a further reduction via prefix k-functions

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

State of the art New algorithms

Prefix-tree transducer

$\operatorname{dom}(\alpha)$	α
а	abba
ab	abbaba
ba	babba
aaa	abbababba
abb	abbababa
bab	babbaba
bba	bbabba

Tab. 1. The function $\alpha \dots$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

State of the art New algorithms

Prefix-tree transducer

		$-\varepsilon$
$\operatorname{dom}(\alpha)$	α	
а	abba	(a) (b)
ab	abbaba	abba 🖌 📉
ba	babba	
aaa	abbababba	
abb	abbababa	│ abɓaba∖ babba∖ │
bab	babbaba	(aaa) (abb) (bab) (bba)
bba	bbabba	abbababba abbababa babbaba bbabba

Tab. 1. The function $\alpha \dots$

Figure: ... and its prefix-tree transducer S_{α} .

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

æ

State of the art New algorithms

Minimal transducer

Figure: Partitioning \mathcal{P}_{α} according to right functions.

Figure: Minimal transducer \mathcal{M}_{α} .

< □ > < 同 >

State of the art New algorithms

Approximate reduction w.r.t. k-functions

Figure: Approximate *k*-function partitioning of \mathcal{P}_{α} .

国际 化国际

State of the art New algorithms

Approximate reduction w.r.t. k-functions

Figure: Approximate *k*-function partitioning of \mathcal{P}_{α} .

Figure: Reduced cover transducer \mathcal{R}^1_{α} .

< □ > < 同 >

State of the art New algorithms

Exact reduction w.r.t. *k*-functions (1)

Figure: Construction of the prefix 2-function for state ϵ .

State of the art New algorithms

Exact reduction w.r.t. *k*-functions (1)

Figure: Construction of the prefix 2-function for state ϵ .

State of the art New algorithms

Exact reduction w.r.t. *k*-functions (1)

Figure: Prefix 2-function for state ϵ .

Figure: Prefix 2-function for state *b*.

▶ < ⊒ ▶

An	overview
А	lgorithms
C	onclusion

State of the art New algorithms

Exact reduction w.r.t. k-functions (2)

Figure: Exact *k*-function partitioning of \mathcal{P}_{α} via prefix *k*-functions.

Figure: Reduced cover transducer \mathcal{R}^2_{α} .

< □ > < 同 >

A B > A B >

An overview Algorithms Conclusion
State of the art New algorithms
A further reduction via prefix *k*-functions (1)

Figure: Prefix 1-functions of states *b* and *aa*.

▶ < ⊒ ▶

< 一 →

State of the art New algorithms

A further reduction via prefix k-functions (1)

Figure: Prefix 1-functions of states *b* and *aa*.

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

State of the art New algorithms

A further reduction via prefix *k*-functions (1)

Figure: Prefix 1-functions of states *b* and *aa*.

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

State of the art New algorithms

A further reduction via prefix *k*-functions (1)

Figure: Prefix 1-functions of states *b* and *aa*.

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

State of the art New algorithms

A further reduction via prefix *k*-functions (1)

Figure: Prefix 1-functions of states *b* and *aa*.

Figure: Merging *b* and *aa* in \mathcal{P}_{α} w.r.t. prefix 1-functions.

State of the art New algorithms

A further reduction via prefix *k*-functions (2)

Figure: Exact *k*-function partitioning of \mathcal{P}_{α} via prefix *k*-functions.

프 () 이 프 ()

State of the art New algorithms

A further reduction via prefix *k*-functions (2)

Figure: Exact *k*-function partitioning of \mathcal{P}_{α} via prefix *k*-functions.

Figure: A further reduction: merging of states *aa* and *b*.

Figure: Partitioning \mathcal{P}_{α} according to prefix *k*-functions.

Figure: Reduced cover transducer \mathcal{R}^3_{α} .

프 🖌 🔺 프 🕨

Algorithm 1 Algorithm 2

Several relations on states

Definitions

Let p, q be two states of Q, and h = min(height(p), height(q))

- $p \cong_k q$, $0 \le k \le h \iff p$ and q have identical prefix *k*-functions
- *p* ∼_ε *q* ⇔ *p* and *q* have identical *h*-functions
 ⇔ p and q have identical prefix *h*-functions and the associated lcps are identical
- *p* ~ *q* ⇔ *p* and *q* have identical prefix *h*-functions and the associated lcp of *p* is a suffix of the weight of any incoming transition of state *q*

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Algorithm 1 Algorithm 2

relations on states

On our Example

	ε	b	aa	bb	а	ab	ba	aaa	abb	bab	bba
\simeq_0	0	0	0	0	1	1	1	1	1	1	1
$\nu_P(p,0)$	0	0	0	0	ε	ε	ε	ε	ε	ε	ε
\sim_{ε}	0	0	0	0	1	1	1	1	1	1	1
~	0	0	0	0	1	1	1	1	1	1	1
≅ ₁	0	0	0	0	1	1	1				
$\nu_P(p, 1)$	abba	abba	ε	ε	ε	ε	ε				
\sim_{ε}	2	2	0	0	1	1	1	1	1	1	1
~	0	0	0	0	1	1	1	1	1	1	1
≅ ₂	0	0			1						
$\nu_P(p,2)$	ε	ε			ε						
\sim_{ε}	2	2	0	0	1	1	1	1	1	1	1
~	0	0	0	0	1	1	1	1	1	1	1

J.-M Champarnaud, F. Guingne, J. Farré Reducing acyclic cover transducers

ヘロト 人間 とくほ とくほ とう

æ –

Algorithm 1 Algorithm 2

Algorithm 1

- 1: Input: $\mathcal{P} = (\Sigma, \Omega, Q, q_{-}, F, i, t, \cdot, \star)$, the prefix of the prefix-tree transducer of α .
- 2: Output: the partition C_k of Q_k w.r.t. \cong_k , $\forall 0 \le k < l$.
- 3: Comments: N[p, k] is the rank of the class of p in C_k $(0 \le N[p, k] \le |C_k| 1)$.
- 4: Initializations: $\nu_{\mathcal{P}}(p, 0) = t[p], \forall p \in Q; C_0 = \{Q \setminus F, F\}.$

ヘロン 人間と 人間と 人間と

Algorithm 1 Algorithm 2

Algorithm 1

1:	Input: $\mathcal{P} = (\Sigma, \Omega, Q, q, F, i, t, \cdot, \star)$, the prefix of the prefix-tree transducer of α .
2:	Output: the partition C_k of Q_k w.r.t. \cong_k , $\forall 0 \le k < l$.
3:	Comments: $N[p, k]$ is the rank of the class of p in C_k ($0 \le N[p, k] \le C_k - 1$).
4:	Initializations: $\nu_{\mathcal{P}}(p, 0) = t[p], \forall p \in Q; C_0 = \{Q \setminus F, F\}.$
5:	for all $k \in 1 \dots l - 1$ do
6:	Computation of the relation \cong_k
7:	for all $C \in C_{k-1}$ do
8:	$C^+ = \{p \in C \mid \operatorname{height}(p) \geq k\}$
9:	for all $p \in C^+$ do
10:	$\nu_{\mathcal{P}}(\mathbf{p},\mathbf{k}) = \bigwedge_{\mathbf{a}\in\Sigma} (t[\mathbf{p}], (\mathbf{p}\star\mathbf{a})\nu_{\mathcal{P}}(\mathbf{p}\cdot\mathbf{a},\mathbf{k}-1))$
11:	Computation of the key keya of p
12:	IF $\nu_{\mathcal{P}}(p, k) = 0$ THEN $A[p] = 0$; $\forall a \in \Sigma, B[p, a] = 0$
13:	ELSE
14:	$A[p] = \nu_{\mathcal{P}}(p,k)^{-1} t[p]$
15:	for all $a \in \Sigma$ do
16:	$B[p, a] = \nu_{\mathcal{P}}(p, k)^{-1}(p \star a)$
17:	end for
18:	FI
19:	$\operatorname{keya}[p] = ((N[p \cdot a, k-1])_{a \in \Sigma}, A[p], (B[p, a])_{a \in \Sigma})$
20:	end for
21:	$C^+ = Partition(C^+, keya)$
22:	Insert the blocks of $\widehat{C^+}$ into the set C_k .
23:	end for
24:	end for

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

₹.

An	overview
A	Igorithms
C	onclusion

Algorithm 1 Algorithm 2

- 1: Initializations: $\nu_{\mathcal{P}}(p, 0) = t[p], \forall p \in Q.$
- 2: Initializations: $D_0 = \{Q \setminus F, F_1, F_2\}$, with $F_1 = \{p \in F \mid \nu_{\mathcal{P}}(p, 0) = \varepsilon\}$ and $F_2 = F \setminus F_1$.
- 3: for all $k \in 1 \dots \tilde{l} 1$ do
- 4: Computation of the partition D_k

Algorithm 1 Algorithm 2

- 1: Initializations: $\nu_{\mathcal{P}}(p, 0) = t[p], \forall p \in Q.$
- 2: Initializations: $D_0 = \{Q \setminus F, F_1, F_2\}$, with $F_1 = \{p \in F \mid \nu_{\mathcal{P}}(p, 0) = \varepsilon\}$ and $F_2 = F \setminus F_1$.
- 3: for all $k \in 1 \dots \tilde{l} 1$ do
- 4: Computation of the partition D_k
- 5: for all $D \in D_{k-1}$ do
- 6: IF $D^+ = \emptyset$ THEN Insert D into the partition D_k
- 7: ELSE
- 8: for all $p \in D^+$ do
- 9: Computation of a partition of D^+ w.r.t. \simeq_k

Algorithm 1 Algorithm 2

- 1: Initializations: $\nu_{\mathcal{P}}(p, 0) = t[p], \forall p \in Q.$ Initializations: $D_0 = \{Q \setminus F, F_1, F_2\}$, with $F_1 = \{p \in F \mid \nu_{\mathcal{P}}(p, 0) = \varepsilon\}$ and $F_2 = F \setminus F_1$. 2: 3: for all $k \in 1 \dots l - 1$ do 4: Computation of the partition D_k 5: for all $D \in D_{k-1}$ do IF $D^+ = \emptyset$ THEN Insert D into the partition D_k 6: 7. FLSF 8: for all $p \in D^+$ do 9: Computation of a partition of D^+ w.r.t. \simeq_k $\overline{\nu_{\mathcal{P}}(\boldsymbol{p},\boldsymbol{k})} = \bigwedge_{\boldsymbol{a}\in\boldsymbol{\Sigma}} (t[\mathbf{p}], (\mathbf{p}\star \mathbf{a})\nu_{\mathcal{P}}(\mathbf{p}\cdot \mathbf{a}, \mathbf{k}-1))$ 10: 11: $keyb[p] = Pref(\nu_{\mathcal{P}}(p, k))$ 12: Compute keya[p] according to Lines 11-19 of the Algorithm 1
- 13: end for
- 14: $\widehat{D^+} = \operatorname{Partition}(D^+, \operatorname{keya})$
- 15: linked = false
- 16: for all $C \in D^+$ do
- 17: Computation of a partition of C w.r.t. \sim_{ε}

Algorithm 1 Algorithm 2

1:	Initializations: $\nu_{\mathcal{P}}(p, 0) = t[p], \forall p \in Q.$
2:	Initializations: $D_0 = \{Q \setminus F, F_1, F_2\}$, with $F_1 = \{p \in F \mid \nu_{\mathcal{P}}(p, 0) = \varepsilon\}$ and $F_2 = F \setminus F_1$.
3:	for all $k \in 1 \dots I - 1$ do
4:	Computation of the partition D _k
5:	for all $D \in D_{k-1}$ do
6:	IF $D^+ = \emptyset$ THEN Insert D into the partition D_k
7:	ELSE
8:	for all $p \in D^+$ do
9:	Computation of a partition of D^+ w.r.t. \cong_k
10:	$ u_{\mathcal{P}}(\boldsymbol{p}, \boldsymbol{k}) = \bigwedge_{\boldsymbol{a} \in \boldsymbol{\Sigma}} (\mathtt{t}[\mathtt{p}], (\mathtt{p} \star \mathtt{a}) \nu_{\mathcal{P}}(\mathtt{p} \cdot \mathtt{a}, \mathtt{k} - 1)) $
11:	$\operatorname{keyb}[\rho] = \operatorname{Pref}(\nu_{\mathcal{P}}(\rho, k))$
12:	Compute keya[p] according to Lines 11–19 of the Algorithm 1
13:	end for
14:	$D^+ = Partition(D^+, keya)$
15:	linked = false
16:	for all $C \in D^+$ do
17:	Computation of a partition of C w.r.t. \sim_{ϵ}
18:	$IF \exists p \in C \mid height(p) = k$
19:	THEN \widehat{C} = Partition(C, keyb)
20:	$\widehat{C} = \{E_1, E_2\}, \text{ with } E_2 = \{p \mid \nu_{\mathcal{P}}(p, k) \succ \varepsilon\}$
21:	IF \neg linked THEN $E_1 = E_1 \cup D^-$; linked = true FI
22:	Insert E_1 into the partition D_k
23:	ELSE IF \neg linked THEN $C = C \cup D^-$; linked = true FI
24:	Insert C into the partition D_k
25:	FI; end for; FI; end for; end for

An	overview
А	lgorithms
C	onclusion

s Algorithm 1 Algorithm 2

Complexity

- -s = sizeof(int),
- $t_{max} = \max_{p \in Q} \{ \text{length}(t[p]) \}$
- $-k_{max} = (|\Sigma| + 1)t_{max} + |\Sigma| + s$
- / is the order of the subsequential function,
- n is the number of states of the transducer,

The Algorithm 2 computes a minimal partition of Q w.r.t. the relation \sim_{ε} in $O(k_{max}nl)$ time.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

3

- improvement of a previous algorithm for reducing cover transducers
- further work:
 - develop experimental study
 - find heuristics to compute a partionning as small as possible w.r.t the relation \sim
 - extend this study to possibly cyclic cover transducers

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・