Refining SFDC Compression Scheme with Block
Text Segmentation

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

Refining SFDC Compression Scheme with Block
Text Segmentation

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

ADAACADACADACDBAADADAABAAACACADDA

COMPRESSION

PSC 2024 Refining SFDC Compression Scheme with Block

The Praga Text Segmentation
Stringology

Conference

Prague
Czech Republic
August 26-27, 2024

Simone Faro and Alfio Spoto
Universita di Catania, Dipartimento di Matematica e Informatica

\'DIVM
o' 'S

w «
Z
g
:%‘3
- >
N

0
$.2 ADAACADACADACDBAADADAABAAACACADDA

: 7434

COMPRESSION

00000000 —

Refining SFDC Compression Scheme with Block
Text Segmentation

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

ADAACADACADACDBAADADAABAAACACADDA

o Qw»
M B O O
H O R O

PSC 2024 Refining SFDC Compression Scheme with Block

The Praga Text Segmentation
Stringology

Conference

Prague
Czech Republic
August 26-27, 2024

Simone Faro and Alfio Spoto
Universita di Catania, Dipartimento di Matematica e Informatica

\'DIVM
o' 'S

w «
Z
g
:%9
- >
N

0
$.2 ADAACADACADACDBAADADAABAAACACADDA

: 7434

A: 00 A: O
B: 01 B: 101 A
C: 10 C: 100 D
D: 11 D: 11
B C

Refining SFDC Compression Scheme with Block
Text Segmentation

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

ADAACADACADACDBAADADAABAAACACADDA

constant time

query:
n-lenth string
I-th position

Refining SFDC Compression Scheme with Block
Text Segmentation

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

ADAACADACADACDBAADADAABAAACACADDA

query:
n-lenth string
I-th position

PSC 2024 Refining SFDC Compression Scheme with Block

The Praga Text Segmentation
Stringology

Conference

Prague
Czech Republic
August 26-27, 2024

Simone Faro and Alfio Spoto
Universita di Catania, Dipartimento di Matematica e Informatica

\'DIVM
o' 'S

w «
Z
g
:%9
- >
N

0
$.2 ADAACADACADACDBAADADAABAAACACADDA

: 7434

Direct Access
Compression Scheme

query:
n-lenth string ADADAABA

[-th position |

Refining SFDC Compression Scheme with Block
Text Segmentation

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

Method Overall Space Access to yli]

Sparse Sampling N + [n/h][log(N)] O(hpmaz)

Dense Sampling N + n(loglog N + loglog o) O(lp(y[i])])
Interpolative Coding N + O(nlog(N)/log(n)) O(logn)

Wavelet Tree N + o(N) O(lp(y[i))])

DACs O((N loglog N)/(1/No/nlog N) +1logo) | O(N/(n(y/No/n)))
SFDC N + O(n) O(|lp(y[i])|) Expected

PSC 2024 Refining SFDC Compression Scheme with Block

The Praga Text Segmentation
Stringology

Conference

Prague
Czech Republic
August 26-27, 2024

Simone Faro and Alfio Spoto

Universita di Catania, Dipartimento di Matematica e Informatica

‘\| DI V/h
2 0“\
&
z

g
2 Q\/ :
°,® 0/'3 Abstract. The Succinct Format with Direct Accessibility (SFDC) is an encoding

S e scheme originally designed for efficient data compression and quick access to elements

within compressed sequences. While SFDC performs well under stable character fre-
quency conditions, its efficacy diminishes in text corpora with high variability in char-
acter frequencies, typical of natural language environments. Addressing this limitation,
this paper presents three variant of SFDC based on block segmentation methods, each
offering unique enhancements over the original SFDC representation. By tailoring the
segmentation process to the distribution of characters within the text, these methods
aim to optimize compression efficiency and decoding performance. The paper presents
experimental results demonstrating the effectiveness of these approaches, highlighting
their ability to improve upon the original scheme in several scenarios. The findings
underscore the potential of these advanced segmentation strategies to provide superior
compression and performance across a range of text datasets.

Succint Format with Direct Accessibility

SFDC (Succinct Format with Direct aCcesibility) is based on variable-length codes obtained
from existing compression methods. For presentation purposes, in this paper we show how to
construct our SFDC from Huffman codes.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

SFDC (Succinct Format with Direct aCcesibility) is based on variable-length codes obtained
from existing compression methods. For presentation purposes, in this paper we show how to
construct our SFDC from Huffman codes.

The SFDC encoding is relevant for the following reasons:

— it allows direct access to text characters in (expected) constant time;

Fast
Direct
Access

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

SFDC (Succinct Format with Direct aCcesibility) is based on variable-length codes obtained
from existing compression methods. For presentation purposes, in this paper we show how to
construct our SFDC from Huffman codes.

The SFDC encoding is relevant for the following reasons:

— it allows direct access to text characters in (expected) constant time;
— it achieves compression ratios that, under suitable conditions, are superior to other solutions;

Fast Good
Direct Compression
Access Ratios

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

SFDC (Succinct Format with Direct aCcesibility) is based on variable-length codes obtained
from existing compression methods. For presentation purposes, in this paper we show how to
construct our SFDC from Huffman codes.

The SFDC encoding is relevant for the following reasons:

— it allows direct access to text characters in (expected) constant time;
— it achieves compression ratios that, under suitable conditions, are superior to other solutions;
— it offers a flexible representation that can be adapted to efficiency or to space consumption;

Fast Good Flexibility
Direct Compression And
Access Ratios Adaptability

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

SFDC (Succinct Format with Direct aCcesibility) is based on variable-length codes obtained
from existing compression methods. For presentation purposes, in this paper we show how to
construct our SFDC from Huffman codes.

The SFDC encoding is relevant for the following reasons:

— it allows direct access to text characters in (expected) constant time;

— it achieves compression ratios that, under suitable conditions, are superior to other solutions;
— it offers a flexible representation that can be adapted to efficiency or to space consumption;
— it is designed to allow parallel and adaptive access to multiple data and parallel-computation;

Fast Good Flexibility Computational
Direct Compression And Friendly
Access Ratios Adaptability Scheme
Refining SFDC Compression Scheme with Block Text Segmentation §\, %
Simone Faro and Alfio Spoto NG

Succint Format with Direct Accessibility

The SFDC codes any string y of length n as an ordered collection of A binary strings representing
A — 1 fized layers and an additional dynamic layer.

The first A — 1 binary strings have length n; we denote them by ?0, ?1, e ,?)_2. Specifically, the
i-th binary string Y; is the sequence of the i-th bits (if present, 0 otherwise) of the encodings of
the characters in y, in the order in which they appear in y.

Yi = (pyOD) i, ([, - -, p(y[n — 1)),

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

The SFDC codes any string y of length n as an ordered collection of A binary strings representing
A — 1 fized layers and an additional dynamic layer.

The first A — 1 binary strings have length n; we denote them by ?0, ?1, e ,?)_2. Specifically, the
i-th binary string Y; is the sequence of the i-th bits (if present, 0 otherwise) of the encodings of
the characters in y, in the order in which they appear in y.

Y; = (p(y[OD[], ([, - .-, plyln — 1])[i]),
p(yli])
Yo
Y
Ys
Yao
Yp

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

The SFDC codes any string y of length n as an ordered collection of A binary strings representing
A — 1 fized layers and an additional dynamic layer.

The first A — 1 binary strings have length n; we denote them by ?0, ?1, e ,l//\}‘_z. Specifically, the
i-th binary string Y; is the sequence of the i-th bits (if present, 0 otherwise) of the encodings of
the characters in y, in the order in which they appear in y.

Yi = (pyOD) i, ([, - -, p(y[n — 1)),

p(yli]) p(y[J])

Yo

Yy

Ys

Va2

7]
d e?lg,y

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

char code length

s 001 3

e 01 2

n 010 3 .

b 0110101 - C (o m P r e s s 1 (¢ n

m 101 i 1100011010- 1100111 -101 - 0110101 - 11101 - 01 - 001 - 001 - 11010 - 1100111 - 010

C 1100011010 10

o 1100111 7

i 11010 5}

r 11101 5)

_ 00001 5
R_efining SFDC Compression Scheme with Block Text Segmentation §\, %
Simone Faro and Alfio Spoto NG

Succint Format with Direct Accessibility

1100011010-1100111-101-0110101-11101-01-001-001-11010-1100111-010

0123456789 10
char code length
s 001 3 Compression
e 01 2 Yo 11101000110
n 010 3 Y, [11011100111
p 0110101 ! ¥, [00111-11000
m 101 3 Y, -
C 1100011010 10 Y 00-00---10 -
o 1100111 7 v, [01-11---01-
i 11010 5
r 11101 5 1 1 1

00001 5 =

B Yp| O

1

0

Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %

Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

R length 0123456789 10
s 001 3 Compression
e 01 2 Yo[11101000110
n 010 3 ¥.[11011100111
p 0110101 7 .
o 101 3 ¥, [00111-11000
C 1100011010 10 Y[00-00---10 -
o 1100111 7 v, [01-11---01-
;1101 8 e Ey
00001 5 . |14 TT 1

B Yp | O

1

0

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

char code length 012345678910 012345678910
s 001 3 Compression Compression
e 01 2 Yo[11101000110 Yo [11101000110
n 010 3 Vi [11011100111 v, [11011100111
p 0110101 7 ~ N
n 101 3 112 00111-11000 Y, 00111-11000
C 1100011010 10 Y3 |[00-00---10 - Y [00-00---10 -
o 1100111 7 v, [01-11---01- P, [01-11---01_-
li,ﬂgécl) g 11/. ‘_1/. Yp[111 101011
00001 5 . |14 TT .

- 7,10

1

0

Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %

Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

IDLE BiTs (THEORETICAL)

IDLE BiTs (EXPERIMENTAL)

Ao 10 20 30 Ao 10 20 30
) 2.42 2.38 2.38 5 2.29 2.26 2.27
6 3.42 3.38 3.38 6 3.29 3.27 3.27
7 4.42 4.38 4.38 7 4.30 4.29 4.29
8 5.42 5.38 5.38 8 5.30 5.31 5.31

A— (Fa+3 - 3)/Fo+1
AVERAGE DELAY (THEORETICAL) AVERAGE DELAY (EXPERIMENTAL)

Ao | 10 15 20 25 30 Ao | 10 15 20 25 30
) 020 0.23 0.24 0.24 0.24 5 0.31 0.37 037 0.39 0.39
6 0.11 0.14 0.15 0.15 0.15 6 0.15 020 0.18 0.17 0.21
7 0.06 0.09 0.09 0.09 0.09 7 0.07 0.11 0.1 0.11T 0.11
8 0.02 0.05 0.06 0.06 0.06 8 0.02 0.06 0.06 0.07 0.06

Fa—)\+3 —3
Fa—l—l

Refining SFDC Compression Scheme with Block Text Segmentation

Simone Faro and Alfio Spoto

Succint Format with Direct Accessibility

TEXT o Max{|p(y[i])|} AvG{|p(y[z])|}
PROTEIN 25 11 4.22
DBLP 96 21 5.26
ENGLISH 94 20 4.59
TEXT WT DACs SFDC
A 5 6 7 8
E SPACE 6.16 6.45 5.00 | 6.00| 7.00 | 8.00
g DECODE 5.47 0.86 1.24 | 1.11 | 1.17 | 1.26
= | ACCEss 0.95 0.07 0.83 | 0.73] 0.72 | 0.74
DELAY - - 1.05 | 0.51| 0.29 | 0.12
.~ | Space 7.68 7.23 5.26 | 6.00 | 7.00 | 8.00
= | DECODE 5.87 0.93 1.66 | 1.42 | 1.39| 1.45
2 | ACCESs 1.05 0.07 - 1079 0.77] 0.74
DELAY - - = 2.19 | 0.41] 0.12
= | SPACE 6.72 7.42 5.00 | 6.00 | 7.00 | 8.00
= | DECODE 5.62 0.85 1.76 | 1.53 | 1.34 | 1.38
S | Access 0.96 0.06 625 | 134 | 12.7 | 4.17
9 | DELAY - - 49K | 7.2K | 870 | 436

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

The LIFO Delay Amplification (LDA) phenomenon in SFDC refers to the unintended
increase in decoding delay for characters appearing in a block that precedes a rare
character in the text.

This phenomenon actually occurs because rare characters can induce significant delay
to characters preceding them due to their long decoding paths. Such behavior is ex-
acerbated by the LIFO strategy adopted in the SFDC scheme which assigns decoding
priority to the rightmost characters in the text.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

The LIFO Delay Amplification (LDA) phenomenon in SFDC refers to the unintended

increase in decoding delay for characters appearing in a block that precedes a rare
character in the text.

This phenomenon actually occurs because rare characters can induce significant delay
to characters preceding them due to their long decoding paths. Such behavior is ex-
acerbated by the LIFO strategy adopted in the SFDC scheme which assigns decoding
priority to the rightmost characters in the text.

9
6
3
0
yi] | p o o r _ p o o r _ ¢ o m p r e s s i o nmn
ol |7 7 7 5 6 7 7 7 5 6 4 7 3 7 5 2 3 3 5 7 3
di)| 32 1 0 432 103010100000 10

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

The LIFO Delay Amplification (LDA) phenomenon in SFDC refers to the unintended

increase in decoding delay for characters appearing in a block that precedes a rare
character in the text.

This phenomenon actually occurs because rare characters can induce significant delay
to characters preceding them due to their long decoding paths. Such behavior is ex-
acerbated by the LIFO strategy adopted in the SFDC scheme which assigns decoding
priority to the rightmost characters in the text.

9
6
3
0
yi] | p o o r _ p o o r _ C o m p r e s s i o

n
lpl)| |7 7 7 5 6 7 7 7 5 6 107 3 7 5 2 3 3 5 7 3
di)| 23211 0 1513111 0 8 7 1 0 1 0 0 0 0 0 1 O

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

The LIFO Delay Amplification (LDA) phenomenon in SFDC refers to the unintended

increase in decoding delay for characters appearing in a block that precedes a rare
character in the text.

This phenomenon actually occurs because rare characters can induce significant delay
to characters preceding them due to their long decoding paths. Such behavior is ex-
acerbated by the LIFO strategy adopted in the SFDC scheme which assigns decoding
priority to the rightmost characters in the text.

9
6
3
0
yi] | p o o r _ p o o r _ C o m p r e s s i o

n
lpl)| |7 7 7 5 6 7 7 7 5 6 107 3 7 5 2 3 3 5 7 3
di)| 23211 0 1513111 0 8 7 1 0 1 0 0 0 0 0 1 O

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

TEXT o Max{|p(y[i])|} AvG{|p(y[z])|}
PROTEIN 25 11 4.22
DBLP 96 21 5.26
ENGLISH 94 20 4.59
TEXT WT DACs SFDC
A 5 6 7 8
E SPACE 6.16 6.45 5.00 | 6.00| 7.00 | 8.00
g DECODE 5.47 0.86 1.24 | 1.11 | 1.17 | 1.26
= | ACCEss 0.95 0.07 0.83 | 0.73] 0.72 | 0.74
DELAY - - 1.05 | 0.51| 0.29 | 0.12
.~ | Space 7.68 7.23 5.26 | 6.00 | 7.00 | 8.00
= | DECODE 5.87 0.93 1.66 | 1.42 | 1.39| 1.45
2 | ACCESs 1.05 0.07 - 1079 0.77] 0.74
DELAY - - = 2.19 | 0.41] 0.12
= | SPACE 6.72 7.42 5.00 | 6.00 | 7.00 | 8.00
= | DECODE 5.62 0.85 1.76 | 1.53 | 1.34 | 1.38
S | Access 0.96 0.06 625 | 134 | 12.7 | 4.17
9 | DELAY - - 49K | 7.2K | 870 | 436

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

Dataset english - Decoding Delay per Characters

2e + 07 A

le + 07 1

le + 07 1

le + 07 1

8e + 06 1

6e + 06 1

Decoding delay

4e + 06

2e + 06 1 J\

| - | . ol L - LB AN L MU

0 2e + 07

4e +07 6e + 07 8e + 07

Characters in text

LDA

Refining SFDC Compression Scheme with Block Text Segmentation

Simone Faro and Alfio Spoto

<

\citlag

ypivy,
i 1

)
04

/4
a
7"&3"9

LIFO Delay Amplification

Dataset english - Decoding Delay per Characters

2e + 07 A

le + 07 1

le + 07 1

le + 07 1

8e + 06 1

6e + 06 1

Decoding delay

4e + 06 1

2e + 06 1

‘L,V.J\Jk.,,.A Lk L S 18 4 N &y | .] - .Lu_L_.’ ~ia 18

2e + 07 4e +07 6e + 07 8e + 07

Characters in text

Dataset protein - Decoding Delay per Characters

le + 08

2e + 07

le + 07 1

le + 07 -

le + 07 1

8e + 06 1

6e + 06

Decoding delay

4e + 06 1

2e + 06 1

|

2e + 07 4e + 07 6e + 07 8e + 07

Characters in text

le + 08

Refining SFDC Compression Scheme with Block Text Segmentation

Simone Faro and Alfio Spoto

yplvy,
X ©

4

cillag
A &
Toyan?

‘1434

LIFO Delay Amplification

We discuss some approaches based on text segmentation to address the challenges
faced by LDA, which partitions the text into smaller blocks and compresses each block
separately using the SFDC method. As a general effect, dividing the text into blocks
can mitigate the effects of the LDA phenomenon by allowing the pending bits in the
stack to be processed in advance. Therefore, closing a block enables the placement of
all pending bits, thereby reducing the waiting times for the characters in the stack.

rare characters may wait
until the end of the text
to place their pending bits

y
;}[Silsnsgusf?igcrirel;?ttfly?zgi ¢ a segmentation of the text
until the end of the block introduces a certain overhead
in the processing phase
y

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

LIFO Delay Amplification

We discuss some approaches based on text segmentation to address the challenges
faced by LDA, which partitions the text into smaller blocks and compresses each block
separately using the SFDC method. As a general effect, dividing the text into blocks
can mitigate the effects of the LDA phenomenon by allowing the pending bits in the
stack to be processed in advance. Therefore, closing a block enables the placement of
all pending bits, thereby reducing the waiting times for the characters in the stack.

We evaluate the following three primary segmentation strategies:
Fixed Length Block Segmentation
Adaptive Huffman Encoding in Fixed Length Block Segmentation

Rare Markers Block Segmentation

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Fixed Length Block Segmentation

The Fixed Length Block (FLB) is a segmentation strategy designed to divide text
into blocks of a fixed length. This approach employs a single Huffman tree that
is constructed over the entire dataset to define the codeword set used across all
the blocks. By referncing this single Huffman tree, the encoding process remains
consistent throughout the entire text.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Fixed Length Block Segmentation

The Fixed Length Block (FLB) is a segmentation strategy designed to divide text
into blocks of a fixed length. This approach employs a single Huffman tree that
is constructed over the entire dataset to define the codeword set used across all
the blocks. By referncing this single Huffman tree, the encoding process remains
consistent throughout the entire text.

/O\

/ \ Computation of the Huffman codes on the text y
<A

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Fixed Length Block Segmentation

The Fixed Length Block (FLB) is a segmentation strategy designed to divide text
into blocks of a fixed length. This approach employs a single Huffman tree that
is constructed over the entire dataset to define the codeword set used across all
the blocks. By referncing this single Huffman tree, the encoding process remains
consistent throughout the entire text.

/O\

/ \ Computation of the Huffman codes on the text y
<A

Text Partitioning

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Fixed Length Block Segmentation

The Fixed Length Block (FLB) is a segmentation strategy designed to divide text
into blocks of a fixed length. This approach employs a single Huffman tree that
is constructed over the entire dataset to define the codeword set used across all
the blocks. By referncing this single Huffman tree, the encoding process remains
consistent throughout the entire text.

/\ Computation of the Huffman codes on the text y
SN
Yy
Text Partitioning
Yy
SFDC SFDC SFDC SFDC SFDC SFDC SFDC
[|1] 1 I] 1 11 1 1 |
7! ! ! ee ! ee i e
| 11] 1 |1][|1 1 1 |
Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %
Simone Faro and Alfio Spoto BN

Fixed Length Block Segmentation

Block Size Number

(in KB) Average Delay of Blocks

Z 100 0.26 104,858
> 10! 0.45 10,486
o) 102 0.94 1,049
g 103 1.02 105
104 1.01 11

10° 1.06 2

SFDC Avg Delay: 1.02

Refining SFDC Compression Scheme with Block Text Segmentation

Simone Faro and Alfio Spoto

Fixed Length Block Segmentation

Block Size Number

(in KB) Average Delay of Blocks

é 100 0.26 104,858
10! 0.45 10,486

[5 102 0.94 1,049
g 103 1.02 105
104 1.01 11

10° 1.06 2

Block Size Number

(in KB) Average Delay of Blocks

o 10° 2.07 104,858
= 10t 2.15 10,486
g 102 2.18 1,049
103 2.17 105

104 2.16 11

10° 2.84 2

SFDC Avg Delay: 1.02

SFDC Avg Delay: 2.19

Refining SFDC Compression Scheme with Block Text Segmentation

Simone Faro and Alfio Spoto

Fixed Length Block Segmentation

Block Size Number

(in KB) Average Delay of Blocks

Z 10° 0.26 104,858
> 10! 0.45 10,486
®) 102 0.94 1,049
g 103 1.02 105
104 1.01 11

10° 1.06 2

Block Size Number

(in KB) Average Delay of Blocks

o 100 2.07 104,858
. 10t 2.15 10,486
g 102 2.18 1,049
103 2.17 105

104 2.16 11

10° 2.84 2

Block Size Number

- (in KB) Average Delay of Blocks
2 109 10.06 104,858
- 10t 63.08 10,486
CZD 102 502.03 1,049
@ 103 2,852.33 105
10% 16,957.22 11

10° 59,829.62 2

SFDC Avg Delay: 1.02

SFDC Avg Delay: 2.19

SFDC Avg Delay: 44,387.30

Refining SFDC Compression Scheme with Block Text Segmentation

Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

Y

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

Y

Text Partitioning

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

y
Text Partitioning
Y
Computation of the Huffman codes
/Q\, . W AN : /*>O A \O AN : /O\
AR S A R < < R A R AR
Y

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

y
Text Partitioning
Y
Computation of the Huffman codes
A A A A A A A
AR LR AR R LR AR £ R
Y
SFDC SFDC SFDC SFDC SFDC SFDC SFDC
|] | 11 11] 1] [1 | |
|] | 11 11] 1] [1 | |
Y | I 1 | 1 I | I
| 11 1 | |

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

We adopt the cosine distance metric to compute the similarity between the trees of
two adjacent blocks. In the context of AFLB, cosine distance is employed to evaluate
the similarity between Huffman trees derived from continuous text blocks.

T, T

A A

< |n £ R
Ya Yo

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

We adopt the cosine distance metric to compute the similarity between the trees of
two adjacent blocks. In the context of AFLB, cosine distance is employed to evaluate
the similarity between Huffman trees derived from continuous text blocks.

T, Ty
/o> />\ 0(To, Tp) = ||fa]|0|ax]|(l|)fb||
AR AR
| N2
Ya Yo 7= N-1 Zé(ThTiﬂ)

1=0

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

The idea of Adaptive Huffman Encoding in FLB Segmentation is to create a new
Huffman tree for each block obtained from the segmentation of the text. This strategy
ensures that the frequency function used for tree construction more accurately reflects
the character frequencies within that specific block, thereby enabling more eflicient
character encoding and consequently reducing the average delay within the block.

We adopt the cosine distance metric to compute the similarity between the trees of
two adjacent blocks. In the context of AFLB, cosine distance is employed to evaluate
the similarity between Huffman trees derived from continuous text blocks.

T, T, fo- f T,
a' Jb
9 5N A TATEITTATIE
{OR AR A R
1 N-—-2
Ya Yo TN Z 0(Ti, Ti) Ya Y

1=0

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Adaptive Huffman Encoding in FLB Segmentation

DBLP PROTEIN

ENGLISH

Block Size Avg. Delay Number | Huffman | Tree Size Space
(in KB) FLB AFLB of Blocks Trees | (in Byte) | Overhead
109 0.26 0.16 104,858 39,610 6,378,498 | 11.760 %
10t 0.45 0.15 10,486 2,525 417,090 0.760 %
102 0.94 0.21 1,049 289 50,034 0.090 %
103 1.02 0.66 105 54 10,072 0.020 %
104 1.01 0.98 11 4 876 0.012 %
10° 1.06 1.07 2 2 448 | 0.004 %
Block Size Avg. Delay Number | Huffman Tree Size Space
(in KB) FLB AFLB of Blocks Trees | (in Byte) | Overhead
109 2.07 1.16 104,858 104,437 | 76,249,148 | 112.810 %
10t 2.15 1.48 10,486 8,915 9,405,724 13.780 %
102 2.18 1.63 1,049 815 991,310 1.450 %
103 2.17 2.03 105 98 138,124 0.200 %
104 2.16 2.02 11 7 11,520 0.020 %
10° 2.84 2.82 2 2 3,334 | 0.005 %
Block Size Avg. Delay Number | Huffman | Tree Size Space
(in KB) FLB AFLB of Blocks Trees | (in Byte) | Overhead
10° 10.06 3.71 104,858 104,559 | 55,760,356 | 95.420 %
10! 63.08 21.36 10,486 9,391 9,156,926 | 15.470 %
102 502.03 197.77 1,049 655 802,572 | 1.350 %
103 2,852.33 2,122.98 105 88 129,328 0.220 %
10% 16,957.22 | 12,615.84 11 8 13,070 | 0.020 %
10° 59,829.62 | 59,016.76 2 2 3,368 | 0.015 %

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Rare Marker Block Segmentation

The RMB segmentation formally identifies characters ¢ € X with a frequency f(c)
below a predefined threshold, termed rare markers. These rare markers are used to
determine the points at which the text is segmented into blocks. Thus, the text y is
divided into blocks such that each block ends immediately after the next occurrence
of any rare marker.

To prevent the creation of excessively small blocks when rare markers occur in close
proximity, we introduce a parameter 8 > 0, which sets a minimum block size. For-
mally, a block is closed at the position of a rare marker only if the next rare marker
is at least § characters away.

The RMB segmentation offers several advantages:

— Efficiency: The segmentation adapts to the inherent structure of the text, opti-
mizing compression performance by aligning block boundaries with the distribu-
tion of low-frequency characters.

— Scalability: The method scales effectively with text size and complexity, adjusting
dynamically to variations in text composition and character distribution.

— Simplicity: The use of clearly defined markers simplifies both the encoding and
decoding processes, making the method practical for large datasets.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Rare Marker Block Segmentation

Yy
Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %
Simone Faro and Alfio Spoto ERING

Rare Marker Block Segmentation

Yy
Rare Markers
Identification
Yy
Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %
Simone Faro and Alfio Spoto ERING

Rare Marker Block Segmentation

Yy
Rare Markers
Identification
Yy
Text Partitioning
Yy
Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %
Simone Faro and Alfio Spoto ERING

Rare Marker Block Segmentation

y
Rare Markers
Identification
Yy
Text Partitioning
y
Computation of the Huffman codes
A AL A
A R A R R
Y

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Rare Marker Block Segmentation

y
Rare Markers
Identification
Yy
Text Partitioning
y
Computation of the Huffman codes
/Q\m /Q\\ /(>C /Q\()
2R A R < R E@
Y
SFDC SFDC SFDC SFDC
| 1 1] | 1 | |
o |] | 1 | 1 | |
Y | 1 | | :
|] | 1 | 1 | |

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Rare Marker Block Segmentation

PROTEIN

Block Size Avg. Delay Number | Huffman | Tree Size Space

v | (in KB) FLB AFLB of Blocks Trees | (in Byte) | Overhead
§ 10° 0.26 0.16 104,858 39,610 6,378,498 | 11.760 %
m 10! 0.45 0.15 10,486 2,525 417,090 0.760 %
a 10 0.94 1,049 289 50,034 | 0.090 %
< 103 1.02 0.66 105 54 10,072 0.020 %
= 104 1.01 0.98 11 4 876 | 0.012 %
10° 1.06 1.07 2 2 448 0.004 %

” Rare Number | Huffman | Tree Size Space
2 | Elements Average Delay of Blocks Trees | (in Byte) | Overhead
o 2 0.77 114 70 13,316 0.02 %
= 4 0.61 4,244 1,495 258,920 0.34 %
= 6 0.45 19,900 12,033 487,114 0.79 %
é 8 0.39 22,794 19,458 863,314 1.26 %
10 (0.21) 35,395 31,147 1,223,612 1.96 %

Table 4. Experimental results obtained on the PROTEIN text using 5 layers. The results must be
evaluated considering the standard version of SFDC shows an average delay equal to 1.02, and that
the compressed text has a size of 55.36 MB.

Refining SFDC Compression Scheme with Block Text Segmentation Q\/ %
Simone Faro and Alfio Spoto

Rare Marker Block Segmentation

DBLP

Block Size Avg. Delay Number | Huffman Tree Size Space

v | (in KB) FLB AFLB of Blocks Trees (in Byte) | Overhead
§ 109 2.07 1.16 104,858 104,437 | 76,249,148 | 112.810 %
m 10! 2.15 1.48 10,486 8,915 9,405,724 13.780 %
Q 102 2.18 1.63 1,049 815 991,310 1.450 %
< 10° 2.17 105 98 138,124 | 0.200 %
- 10* 2.16 2.02 11 7 11,520 | 0.020 %
10° 2.84 2.82 2 2 3,334 | 0.005 %

o2 Rare Number | Huffman Tree Size Space
2 | Elements Average Delay of Blocks Trees (in Byte) | Overhead
- 2 1.93 59 49 69,746 0.09 %
= 4 1.80 223 185 235,690 0.30 %
o 6 1.81 323 273 331,508 0.42 %
3 8 643 529 620,926 0.74 %
10 1.66 1,171 1,002 | 1,021,286 1.19 %

Table 2. Experimental results obtained on the DBLP text using 6 layers. The results must be
evaluated considering the standard version of SFDC shows an average delay equal to 2.19, and that

the compressed text has a size of 68.91 MB.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

uPivy,
X S
@
z
<
E g\/ ;
3 3
9 A
“ »
T 1438

Rare Marker Block Segmentation

ENGLISH

Block Size Avg. Delay Number | Huffman | Tree Size Space

v | (in KB) FLB AFLB of Blocks Trees | (in Byte) | Overhead
§ 10° 10.06 3.71 104,858 104,559 | 55,760,356 | 95.420 %
m 101 63.08 21.36 10,486 9,391 9,156,926 | 15.470 %
o 10 502.03 1,049 655 802,572 | 1.350 %
< 103 2,852.33 2,122.98 105 88 129,328 0.220 %
P~ 104 16,957.22 | 12,615.84 11 8 13,070 0.020 %
10° 59,829.62 | 59,016.76 2 2 3,368 0.015 %

» Rare Number | Huffman | Tree Size Space
§ Elements Average Delay of Blocks Trees | (in Byte) Overhead
ﬁé 2 9,680.20 24 15 16,650 0.02 %
= 4 568.66 263 200 246,444 0.33 %
= 6 1,048.50 464 368 415,620 0.56 %
= 8 1,749 1,398 | 1,275,560 1.47 %
10 114.41 2,372 1,947 1,621,346 1.83 %

Table 3. Experimental results obtained on the ENGLISH text using 5 layers. The results must be
evaluated considering the standard version of SFDC shows an average delay equal to 44, 387.30, and

that the compressed text has a size of 60.1 MB.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

uPivy,
X S
@

z

<
E g\/ ;
3 3
9, A
“ »

T 1438

Conclusions

In this article, we have explored three primary text compression strategies: Fixed-
Length Block (FLB) segmentation, Adaptive Fixed-Length Block (AFLB) segmen-
tation, and Rare Marker Block (RMB) segmentation. Each approach offers unique
benefits and addresses different aspects of the text compression challenge.

Looking forward, several promising directions for future research have been identified.
One avenue is to investigate the use of rare markers as starting points of blocks rather
than ending points.

Additionally, exploring the efficacy of a First-In, First-Out (FIFO) strategy as op-
posed to the Last-In, First-Out (LIFO) strategy currently used could provide insights
into improving the decoding efficiency.

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

Conclusions

In this article, we have explored three primary text compression strategies: Fixed-
Length Block (FLB) segmentation, Adaptive Fixed-Length Block (AFLB) segmen-
tation, and Rare Marker Block (RMB) segmentation. Each approach offers unique
benefits and addresses different aspects of the text compression challenge.

Looking forward, several promising directions for future research have been identified.
One avenue is to investigate the use of rare markers as starting points of blocks rather
than ending points.

Additionally, exploring the efficacy of a First-In, First-Out (FIFO) strategy as op-
posed to the Last-In, First-Out (LIFO) strategy currently used could provide insights
into improving the decoding efficiency.

Thanks

Refining SFDC Compression Scheme with Block Text Segmentation
Simone Faro and Alfio Spoto

