
SEQ-IC-LCS Computation
of Labeled Graphs

1

Yuki Yonemoto, Yuto Nakashima
and Shunsuke Inenaga

Kyushu Univ.

Outline

•Labeled Graphs
•SEQ-IC-LCS (Constrained LCS)
•Computing SEQ-IC-LCS of Acyclic
Labeled Graphs
•Computing SEQ-IC-LCS of Cyclic
Labeled Graphs
•Conclusions and Future works

2

Outline

•Labeled Graphs
•SEQ-IC-LCS (Constrained LCS)
•Computing SEQ-IC-LCS of Acyclic
Labeled Graphs
•Computing SEQ-IC-LCS of Cyclic
Labeled Graphs
•Conclusions and Future works

3

Labeled Graphs 4

𝑉 = {	v1, c2, v3, v4, v5, v6, v7, v8, v9 }	
𝐸 ={	(v1,	v2),	(v2,	v3),	(v2,	v7),	(v3,	v4),	(v4,	v5),

(v5,	v6),	(v6,	v7),	(v6,	v8),	(v7,	v8),	(v8,	v9) }

Labeled Graph 𝐺 = 𝑉, 𝐸, 𝐿

A directed graph with vertices labeled by characters.

𝐿 ∶ 𝑉 → Σ ∶ a labeling function
E ∶ the set of edges
V ∶ the set of vertices

e.g.

ca
b

baac

ba
1 2

3 4 5 6

7
98

𝐺

subseq(L(π)) : the set of subsequences of strings in L(π) .

Labeled Graphs 5

e.g.
G

L(v) : the character label of vertex v .

L(v7) = b

aca ∈ subseq(L(P(G)))

L(π) : the set of strings spelled by paths in π (: the set of paths) .

P(G) : the set of paths in G. (P(G) = {P(v) | v ∈ V })

P(v) : the set of paths that end at vertex v.

P(v7) = {v3v4v5v6v7 , v1v2v7 , … }

L(P(v7)) = {caabb , abb, … }

L(P(v)) : the set of strings spelled by paths in P(v) .

ca
b

baac

ba
1 2

3 4 5 6

7
98

problem text pattern time complexity

Pattern Matching

acyclic graph string O(n+m|E|) [Park ＆ Kim, 1995]

tree string O(n) [Akutsu, 1993]

graph string O(n+m|E|) [Amir et al, 1997]

Approximate
Matching

graph with edit
operations string NP-complete [Amir et al, 1997]

graph string with edit
operations O(m(n+|E|)) [Navarro, 2000]

Known Algorithms on Labeled Graphs 6

|Ei| : the number of edges in text i, |Vi| : the number of vertices in text i, |Σ| : the alphabet size.

problem text 1 text 2 time complexity

Longest Common
Substring

acyclic graph acyclic graph
O(|E1||E2|) [Shimohira et al., 2011]

graph acyclic graph

Longest Common
Subsequence

acyclic graph acyclic graph O(|E1||E2|) [Shimohira et al., 2011]

graph graph O(|E1||E2|+|V1||V2|log|Σ|)
[Shimohira et al., 2011]

n : sum of the length of strings in the text, m : length of the pattern.

Outline

•Labeled Graphs
•SEQ-IC-LCS (Constrained LCS)
•Computing SEQ-IC-LCS of Acyclic
Labeled Graphs
•Computing SEQ-IC-LCS of Cyclic
Labeled Graphs
•Conclusions and Future works

7

Constrained LCS [Chen et al., 2011]

In the field of molecular biology,
there are cases where the same sequence appears
between different species, and there are demand to
incorporate this into similarity measurements.

In recent years,
Constrained LCS problems for string inputs
derived from the LCS problem are considered.

8

Constrained LCS [Chen et al., 2011]

There exist four variants of the Constrained LCS problems.

Each of them is to compute a longest string 𝑍 such that
𝑍 includes/excludes the constraint pattern 𝑃 as a
substring/subsequence and 𝑍 is a common
subsequence of the two target strings 𝐴 and 𝐵.

Each problem is called,
STR-IC-LCS （substring, include）
STR-EC-LCS （substring, exclude）
SEQ-IC-LCS （subsequence, include）
SEQ-EC-LCS （subsequence, exclude）

9

Previous Work of Constrained LCS and Our Work 10

problem text 1 text 2 text 3 time complexity

STR-IC-LCS string string string O(|E1||E2|)
[Deorowicz, 2012]

STR-EC-LCS string string string O(|E1||E2||E3|)
[Wang et al., 2013]

SEQ-IC-LCS

string string string O(|E1||E2||E3|)
[Chin et al., 2004]

acyclic graph acyclic graph acyclic graph
O(|E1||E2||E3|)

(this work)

graph graph acyclic graph
O(|E1||E2||E3|+|V1||V2||V3|log|Σ|)

(this work)

SEQ-EC-LCS string string string O(|E1||E2||E3|)
[Chen and Chao, 2011]

|Ei| : the number of edges in text i , |Vi | : the number of vertices in text i ,
|Σ| : the alphabet size .

Previous Work of Constrained LCS and Our Work 11

problem text 1 text 2 text 3 time complexity

STR-IC-LCS string string string O(|E1||E2|)
[Deorowicz, 2012]

STR-EC-LCS string string string O(|E1||E2||E3|)
[Wang et al., 2013]

SEQ-IC-LCS

string string string O(|E1||E2||E3|)
[Chin et al., 2004]

acyclic graph acyclic graph acyclic graph
O(|E1||E2||E3|)

(this work)

graph graph acyclic graph
O(|E1||E2||E3|+|V1||V2||V3|log|Σ|)

(this work)

SEQ-EC-LCS string string string O(|E1||E2||E3|)
[Chen and Chao, 2011]

|Ei| : the number of edges in text i , |Vi | : the number of vertices in text i ,
|Σ| : the alphabet size .

SEQ-IC-LCS 12

SEQ-IC-LCS of strings 𝐴, 𝐵 and 𝑃 is a longest string 𝑍
such that 𝑍 includes 𝑃 as a subsequence
and 𝑍 is a common subsequence of 𝐴 and 𝐵.

SEQ-IC-LCS 13

e.g. 𝐴 = b c d a b a b

𝐵 = c b a c b a a b a

𝑃 = c a a

is an SEQ-IC-LCS of string 𝐴, 𝐵 and 𝑃. c a b a b

SEQ-IC-LCS of strings 𝐴, 𝐵 and 𝑃 is a longest string 𝑍
such that 𝑍 includes 𝑃 as a subsequence
and 𝑍 is a common subsequence of 𝐴 and 𝐵.

c a b a b

SEQ-IC-LCS 14

e.g.

is an SEQ-IC-LCS of string 𝐴, 𝐵 and 𝑃.

SEQ-IC-LCS of strings 𝐴, 𝐵 and 𝑃 is a longest string 𝑍
such that 𝑍 includes 𝑃 as a subsequence
and 𝑍 is a common subsequence of 𝐴 and 𝐵.

𝐴 = b c d a b a b

𝐵 = c b a c b a a b a

𝑃 = c a a

Algorithm for SEQ-IC-LCS of strings [Chin et al., 2004] 15

j 0 1 |𝐵|
i
0
1

|𝐴|

× 𝑃 + 1
tables

Let 𝐶 denote the three-dimensional table which stored the length
of the SEQ-IC-LCS of 𝐴 1. . 𝑖 , 𝐵 1. . 𝑗 and 𝑃 1. . 𝑘 in 𝐶(𝑖,𝑗,𝑘) for
any 0 ≤ 𝑖 ≤ 𝐴 , 0 ≤ 𝑗 ≤ 𝐵 , 0 ≤ 𝑘 ≤ 𝑃 .

𝐶 |𝐴|, 𝐵 , 𝑃 is the solution.

𝐶

Previous work of the SEQ-IC-LCS problem for string inputs
is based on dynamic programming.

computing all 𝐶(𝑖,𝑗,𝑘)
by using the recurrence.

Recurrence of SEQ-IC-LCS algorithm of strings [Chin et al., 2004] 16

𝐶 𝑖, 𝑗, 𝑘 : the length of SEQ-IC-LCS of 𝐴 1. . 𝑖 , 𝐵 1. . 𝑗 and 𝑃 1. . 𝑘 .

if 𝑖, 𝑗, 𝑘 > 0 and𝐴 𝑖 = 𝐵 𝑗 = 𝑃 𝑘 ;

𝐶 𝑖, 𝑗, 𝑘

=

0
−∞

𝐶 𝑖 − 1, 𝑗 − 1, 𝑘 − 1
𝐶 𝑖 − 1, 𝑗 − 1, 𝑘

max 𝐶 𝑖 − 1, 𝑗, 𝑘 , 𝐶 𝑖, 𝑗 − 1, 𝑘

if 𝑘 = 0 and 𝑖 = 0 or 𝑗 = 0 ;
if 𝑘 ≠ 0 and 𝑖 = 0 or 𝑗 = 0 ;

if 𝑖, 𝑗 > 0 and𝐴 𝑖 = 𝐵 𝑗 ≠ 𝑃 𝑘 ;
if 𝑖, 𝑗 > 0 and𝐴 𝑖 ≠ 𝐵 𝑗 ;

This algorithm computes the solution in 𝑂 𝐴 𝐵 𝑃 time.

Outline

•Labeled Graphs
•SEQ-IC-LCS (Constrained LCS)
•Computing SEQ-IC-LCS of Acyclic
Labeled Graphs
•Computing SEQ-IC-LCS of Cyclic
Labeled Graphs
•Conclusions and Future works

17

Definition about Labeled Graphs 18

e.g. Vs = {v1 , v4} Ve = {v3 , v5}

MP(v) : the set of paths that start at vs in Vs and end at vertex v .

Vs : the set of vertices which has no in-coming edges.

Ve : the set of vertices which has no out-going edges.

MP(G) = { v1v2v3 ,	v1v5 , v4v5 }

MP(v5) = { v1v5 , v4v5 }

L(MP(v4)) = { dc, cc }

G

MP(G) : the set of paths that start at vs in Vs and end at vertex ve
in Ve in G (= maximal paths).

d

c

a

c

1

5

2

4

a
3

G1 G2 a c

d b a

d

SEQ-IC-LCS Problem for Acyclic Labeled Graphs 19

G3a c

c d a

b d

c

a

c

Input : Acyclic labeled graphs G1 = (V1, E1, L1), G2 = (V2, E2, L2)
and G3 = (V3, E3, L3)

Output : Length of the longest string in the set 𝑧 ∃𝑞 ∈ 𝐿! 𝑀𝑃 𝐺!
such that 𝑞 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝑧 and 𝑧 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# }

Problem 1

MP(G) : the set of maximal paths in G.

e.g.
subseq(G) : the set of subsequences of strings in G .

G2 d

c

a

c

SEQ-IC-LCS Problem for Acyclic Labeled Graphs 20

𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" = {a, b, c, d, aa,
ab, ac, ad, ba, ca, cb, cc, cd,
da, db, dc, aba, aca, acb,
ada, adb, adc, cba, cca, cda,
dba, dca, acba, adba, ccba,
cdba, cdca, adcba, cdcba}

𝐿! 𝑀𝑃 𝐺!
= {cc, da, dc}

Problem 1

MP(G) : the set of maximal paths in G.

𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# = {a, b, c, d, aa,
ab, ac, ad, ba, ca, cb, cd,
da, db, aba, aca, acb, acd,
ada, adb, cba, cda, cdb, dba,
acba, adba, cdba, acdba}

a c

d b a

d G3G1 a c

c d a

be.g.
subseq(G) : the set of subsequences of strings in G .

Input : Acyclic labeled graphs G1 = (V1, E1, L1), G2 = (V2, E2, L2)
and G3 = (V3, E3, L3)

Output : Length of the longest string in the set 𝑧 ∃𝑞 ∈ 𝐿! 𝑀𝑃 𝐺!
such that 𝑞 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝑧 and 𝑧 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# }

G2G1

SEQ-IC-LCS Problem for Acyclic Labeled Graphs 21

𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" = {a, b, c, d, aa,
ab, ac, ad, ba, ca, cb, cc, cd,
da, db, dc, aba, aca, acb,
ada, adb, adc, cba, cca, cda,
dba, dca, acba, adba, ccba,
cdba, cdca, adcba, cdcba}

𝐿! 𝑀𝑃 𝐺!
= {cc, da, dc}

Problem 1

MP(G) : the set of maximal paths in G.

𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# = {a, b, c, d, aa,
ab, ac, ad, ba, ca, cb, cd,
da, db, aba, aca, acb, acd,
ada, adb, cba, cda, cdb, dba,
acba, adba, cdba, acdba}

The solution is 4. (cdba)

d

c

a

c

a c

d b a

d G3a c

c d a

be.g.
subseq(G) : the set of subsequences of strings in G .

Input : Acyclic labeled graphs G1 = (V1, E1, L1), G2 = (V2, E2, L2)
and G3 = (V3, E3, L3)

Output : Length of the longest string in the set 𝑧 ∃𝑞 ∈ 𝐿! 𝑀𝑃 𝐺!
such that 𝑞 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝑧 and 𝑧 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# }

22Main Idea of the Algorithm for SEQ-IC-LCS of Acyclic Labeled Graphs

1. Sort vertices of 𝐺!, 𝐺" and 𝐺# in topological order.

Topological Sort 23

e.g.

G3

sort a c d b ad

G2

1 42 53 6

a c c b ad

G1

1 42 53 6

d a cc

G3

1 42 3

1. Sort vertices of 𝐺!, 𝐺" and 𝐺# in topological order.

24

× 𝑉! + 1
tables

𝐶

Main Idea of the Algorithm for SEQ-IC-LCS of Acyclic Labeled Graphs

𝑣!,# ∈ 𝑉!, 𝑣$,% ∈ 𝑉$, 𝑣&,' ∈ 𝑉&

max
!$%$ &! , !$($ &" ,)#,%

𝐶 𝑖, 𝑗, 𝑘

is the solution.
(𝑣#,* has no out-going edges in 𝑉#.)

2. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the
recurrence.

1. Sort vertices of 𝐺!, 𝐺" and 𝐺# in topological order.
Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 𝐿! 𝑃 𝑣!,# , 𝐿$ 𝑃 𝑣$,% and 𝐿& 𝑃 𝑣&,' in
𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 𝑉! , 1 ≤ 𝑗 ≤ 𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .

Recurrence of SEQ-IC-LCS of Acyclic Labeled Graphs 25

𝑓 𝑣!,# = 𝑓 𝑣$,% = 𝑓 𝑣&,'

𝑓 𝑣!,# ≠ 𝑓 𝑣$,%

𝐶#,%,'

𝐶(,),*

𝐶(,),'

𝐶(,%,'
𝐶#,),'

[Shimohira et al., 2011]
of LCS of Acyclic Labeled Graph

26Main Idea of the Algorithm for SEQ-IC-LCS of Acyclic Labeled Graph

max
!$%$ &! , !$($ &" ,)#,%

𝐶 𝑖, 𝑗, 𝑘

is the solution.
(𝑣#,* has no out-going edges in 𝑉#.)

G3

d

c

a

c

𝐿# 𝑀𝑃 𝐺#
= {cc, da, dc}

1

4

2

3

𝑣!,# ∈ 𝑉!, 𝑣$,% ∈ 𝑉$, 𝑣&,' ∈ 𝑉&

2. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the
recurrence.

1. Sort vertices of 𝐺!, 𝐺" and 𝐺# in topological order.
Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 𝐿! 𝑃 𝑣!,# , 𝐿$ 𝑃 𝑣$,% and 𝐿& 𝑃 𝑣&,' in
𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 𝑉! , 1 ≤ 𝑗 ≤ 𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .

Tables computed by using the recurrence 27

G3

d

c

a

c

1

4

2

3

Tables computed by using the recurrence 28

G3

d

c

a

c

1

4

2

3

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 𝐿! 𝑃 𝑣!,# , 𝐿$ 𝑃 𝑣$,% and 𝐿& 𝑃 𝑣&,' in
𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 𝑉! , 1 ≤ 𝑗 ≤ 𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .

× 𝑉! + 1
tables

𝑣!,# ∈ 𝑉!, 𝑣$,% ∈ 𝑉$, 𝑣&,' ∈ 𝑉&

2. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the
recurrence.

1. Sort vertices of 𝐺!, 𝐺" and 𝐺# in topological order.

𝐶

29

𝐶

Time Complexity

max
!$%$ &! , !$($ &" ,)#,%

𝐶 𝑖, 𝑗, 𝑘

is the solution.
(𝑣#,* has no out-going edges in 𝑉#.)

linear time

𝑂 𝐸! 𝐸" 𝐸# time

Outline

•Labeled Graph
•SEQ-IC-LCS (Constrained LCS)
•Computing SEQ-IC-LCS of Acyclic
Labeled Graphs
•Computing SEQ-IC-LCS of Cyclic
Labeled Graphs
•Conclusions and Future works

30

SEQ-IC-LCS Problem for Cyclic Labeled Graphs 31

G3G2

a

c

b

c

Input : Cyclic labeled graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2),
and Acyclic labeled graphs G3 = (V3, E3, L3)

Output : - ∞ (if some z are infinite.)
- Length of longest string in the set 𝑧 ∃𝑞 ∈ 𝐿! 𝑀𝑃 𝐺!
such that 𝑞 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝑧 and 𝑧 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# }
(otherwise)

Problem 2

G1e.g. 1
a b

b d a

a a c

a a b

d

SEQ-IC-LCS Problem for Cyclic Labeled Graphs 32

G3G2

Problem 2

G1e.g. 1

𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# = {a, b, d, … , aba∞, …}

The solution is ∞. (aba∞)

𝐿! 𝑀𝑃 𝐺!
= {ab, ac, cc}

Input : Cyclic labeled graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2),
and Acyclic labeled graphs G3 = (V3, E3, L3)

Output : - ∞ (if some z are infinite.)
- Length of longest string in the set 𝑧 ∃𝑞 ∈ 𝐿! 𝑀𝑃 𝐺!
such that 𝑞 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝑧 and 𝑧 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# }
(otherwise)

a

c

b

c

a b

b d a

a a c

a a b

d

SEQ-IC-LCS Problem for Cyclic Labeled Graphs 33

G3G1 G2

Problem 2

e.g. 2

𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# = {a, b, d, … , aab, …}
𝐿! 𝑀𝑃 𝐺!
= {ab, ac, cc}

The solution is 3. (aab)

Input : Cyclic labeled graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2),
and Acyclic labeled graphs G3 = (V3, E3, L3)

Output : - ∞ (if some z are infinite.)
- Length of longest string in the set 𝑧 ∃𝑞 ∈ 𝐿! 𝑀𝑃 𝐺!
such that 𝑞 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝑧 and 𝑧 ∈ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺" ∩ 𝑆𝑢𝑏𝑠𝑒𝑞 𝐺# }
(otherwise)

a

c

b

c

a a

b d a

a a c

a a b

d

34Main Idea of the Algorithm for SEQ-IC-LCS of Cyclic Labeled Graphs

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

G1

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

＾

Strongly Connected Components 35

G1

G2

a a

b d a

a

a c

a a b

d

transform

Cyclic Labeled Graphs Acyclic Labeled Graphs

a a

b {a, d}

{a} c

{a, b}

dG2^

36Main Idea of the Algorithm for SEQ-IC-LCS of Cyclic Labeled Graphs

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

37Main Idea of the Algorithm for SEQ-IC-LCS of Cyclic Labeled Graphs

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

× 𝑉! + 1
tables

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .

38Main Idea of the Algorithm for SEQ-IC-LCS of Cyclic Labeled Graphs

3. Precompute the result of conditional expression of
recurrence for all 1 ≤ 𝑖 ≤ G𝑉" , 1 ≤ 𝑗 ≤ G𝑉# , 0 ≤ 𝑘 ≤ G𝑉! .

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .

Precompute the Result of Conditional Expressions of Recurrence 39

G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% = ∅

𝐿 𝑣 : the character label of vertex 𝑣 .

G𝐿 H𝑣 : the set of characters labeled to vertex H𝑣 .
H𝑣 : the vertex transformed 𝐺" based on the strongly connected components.

G
1 2 3

4

＾
=𝐿 >𝑣! = { a }{a} c

{a, b}

d
=𝐿 >𝑣, = { a, b }
=𝐿 >𝑣! ∩ =𝐿 >𝑣, = { a }

Precompute the Result of Conditional Expressions of Recurrence 40

1 2 3 4
○ × × ○

1
○ × × ○

2
× × × ○

3
○ × ○ ○

4

a

a

b

{a,d}

{a} c {a,b}d
G2^
G1^

G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% = ∅

Compute 3𝐿! 4𝑣!,# ∩ 3𝐿$ 4𝑣$,%
for all 1 ≤ 𝑖 ≤ 3𝑉! and 1 ≤ 𝑖 ≤ 3𝑉$
using balanced tree.

Precompute the Result of Conditional Expressions of Recurrence 41

1 2 3 4
○ × × ○

1
○ × × ○

2
× × × ○

3
○ × ○ ○

4

a

a

b

{a,d}

{a} c {a,b}d
G2^
G1^

G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% = ∅

Compute 3𝐿! 4𝑣!,# ∩ 3𝐿$ 4𝑣$,%
for all 1 ≤ 𝑖 ≤ 3𝑉! and 1 ≤ 𝑖 ≤ 3𝑉$
using balanced tree.

(If both H𝑣",% and H𝑣#,& are cyclic vertices
and G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ≠ ∅, the value
𝐶%,&,' is incremented by ∞.)

+∞ +∞

G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' ≠ ∅

Precompute the Result of Conditional Expressions of Recurrence 42

1 2 3 4
○ × × ○

1
○ × × ○

2
× × × ×

3
○ × × ○

4

a

a

b

{a,d}

{a} c {a,b}d
G2^
G1^

G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% ≠ ∅
G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,' = ∅ and $𝐿! &𝑣!,# ∩ $𝐿$ &𝑣$,% = ∅

Compute G𝐿" H𝑣",% ∩ G𝐿# H𝑣#,& ∩ 𝐿! 𝑣!,'
for all 1 ≤ 𝑖 ≤ 3𝑉! , 1 ≤ 𝑗 ≤ 3𝑉$
and 1 ≤ 𝑘 ≤ 𝑉& using balanced tree.

G3

a

c

b

c

1

4

2

3

𝑘 = 1

43Main Idea of the Algorithm for SEQ-IC-LCS of Cyclic Labeled Graphs

3. Precompute the result of conditional expression of
recurrence for all 1 ≤ 𝑖 ≤ G𝑉" , 1 ≤ 𝑗 ≤ G𝑉# , 0 ≤ 𝑘 ≤ G𝑉! .

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

4. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the recurrence.

max
!-.- /! , !-1- /" , 2#,%

𝐶 𝑖, 𝑗, 𝑘 is the solution.
(𝑣!,' has no out-going edges in 𝑉!.)

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .
1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

44Recurrence of SEQ-IC-LCS of Cyclic Labeled Graphs
𝐶#,%,'

𝐶!,#,$

𝐶%,#,$
𝐶!,&,$

𝐶%,&,'

𝐶%,&,$

𝐶%,#,$
𝐶!,&,$

45Tables computed by using the recurrence

G3

a

c

b

c

1

4

2

3

46Tables computed by using the recurrence

G3

a

c

b

c

1

4

2

3

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .

47Time Complexity

max
!-.- /! , !-1- /" , 2#,%

𝐶 𝑖, 𝑗, 𝑘 is the solution.
(𝑣!,' has no out-going edges in 𝑉!.)

linear time

3. Precompute the result of conditional expression of
recurrence for all 1 ≤ 𝑖 ≤ G𝑉" , 1 ≤ 𝑗 ≤ G𝑉# , 0 ≤ 𝑘 ≤ G𝑉! .

4. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the recurrence.

1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

linear time

3. Precompute the result of conditional expression of
recurrence for all 1 ≤ 𝑖 ≤ G𝑉" , 1 ≤ 𝑗 ≤ G𝑉# , 0 ≤ 𝑘 ≤ G𝑉! .

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

4. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the recurrence.

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .
1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

48Time Complexity

max
!-.- /! , !-1- /" , 2#,%

𝐶 𝑖, 𝑗, 𝑘 is the solution.
(𝑣!,' has no out-going edges in 𝑉!.)

linear timelinear time𝑂 =𝑉! =𝑉" 𝑉# log Σ time
(Balanced tree can search a character

in 𝑂 log Σ time.)

3. Precompute the result of conditional expression of
recurrence for all 1 ≤ 𝑖 ≤ G𝑉" , 1 ≤ 𝑗 ≤ G𝑉# , 0 ≤ 𝑘 ≤ G𝑉! .

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

4. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the recurrence.

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .
1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

49Time Complexity

max
!-.- /! , !-1- /" , 2#,%

𝐶 𝑖, 𝑗, 𝑘 is the solution.
(𝑣!,' has no out-going edges in 𝑉!.)

linear time

𝑂 =𝐸! =𝐸" 𝐸# time

linear time𝑂 =𝑉! =𝑉" 𝑉# log Σ time
(Balanced tree can search a character

in 𝑂 log Σ time.)

3. Precompute the result of conditional expression of
recurrence for all 1 ≤ 𝑖 ≤ G𝑉" , 1 ≤ 𝑗 ≤ G𝑉# , 0 ≤ 𝑘 ≤ G𝑉! .

2. Sort vertices of =𝐺!, =𝐺" and 𝐺# in topological order.

1. Transform 𝐺! and 𝐺" into =𝐺! and =𝐺" based on the strongly
connected components.

4. Calculate 𝐶 𝑖, 𝑗, 𝑘 using the recurrence.

Let 𝐶 denote the three-dimensional table which stored the length of

the SEQ-IC-LCS of 2𝐿! 𝑃 1𝑣!,# , 2𝐿$ 𝑃 1𝑣$,% and 𝐿& 𝑃 𝑣&,' in

𝐶(𝑖,𝑗,𝑘) for any 1 ≤ 𝑖 ≤ 2𝑉! , 1 ≤ 𝑗 ≤ 2𝑉$, 0 ≤ 𝑘 ≤ 𝑉& .
1𝑣!,# ∈ 2𝑉!, 1𝑣$,% ∈ 2𝑉$, 𝑣&,' ∈ 𝑉&

50Time Complexity

max
!-.- /! , !-1- /" , 2#,%

𝐶 𝑖, 𝑗, 𝑘 is the solution.
(𝑣!,' has no out-going edges in 𝑉!.)

linear time

𝑂 =𝐸! =𝐸" 𝐸# time

linear time𝑂 =𝑉! =𝑉" 𝑉# log Σ time
(Balanced tree can search a character

in 𝑂 log Σ time.)

The total time complexity is
O(|E1||E2||E3|+|V1||V2||V3|log|Σ|) time.

Outline

•Labeled Graphs
•SEQ-IC-LCS (Constrained LCS)
•Computing SEQ-IC-LCS of Acyclic
Labeled Graphs
•Computing SEQ-IC-LCS of Cyclic
Labeled Graphs
•Conclusions and Future works

51

Conclusions 52

problem text 1 text 2 text 3 Time complexity

STR-IC-LCS string string string O(|E1||E2|)
[Deorowicz, 2012]

STR-EC-LCS string string string O(|E1||E2||E3|)
[Wang et al., 2013]

SEQ-IC-LCS

string string string O(|E1||E2||E3|)
[Chin et al., 2004]

acyclic graph acyclic graph acyclic graph
O(|E1||E2||E3|)

(this work)

graph graph acyclic graph
O(|E1||E2||E3|+|V1||V2||V3|log|Σ|)

(this work)

SEQ-EC-LCS string string string O(|E1||E2||E3|)
[Chen and Chao, 2011]

|Ei | : the number of edges in text i , |Vi | : the number of vertices in text i ,
|Σ| : the alphabet size .

Conclusions 53

problem text 1 text 2 text 3 Time complexity

STR-IC-LCS string string string O(|E1||E2|)
[Deorowicz, 2012]

STR-EC-LCS string string string O(|E1||E2||E3|)
[Wang et al., 2013]

SEQ-IC-LCS

string string string O(|E1||E2||E3|)
[Chin et al., 2004]

acyclic graph acyclic graph acyclic graph
O(|E1||E2||E3|)

(this work)

graph graph acyclic graph
O(|E1||E2||E3|+|V1||V2||V3|log|Σ|)

(this work)

SEQ-EC-LCS string string string O(|E1||E2||E3|)
[Chen and Chao, 2011]

It is likely that these SEQ-IC-LCS algorithms are optimal as we proved 𝑂 𝑛!() (ε > 0)
time conditional lower bound based on SETH (Strongly Exponential Time Hypothesis).

|Ei | : the number of edges in text i , |Vi | : the number of vertices in text i ,
|Σ| : the alphabet size .

Future work 54

problem text 1 text 2 text 3 Time complexity

STR-IC-LCS string string string O(|E1||E2|)
[Deorowicz, 2012]

STR-EC-LCS string string string O(|E1||E2||E3|)
[Wang et al., 2013]

SEQ-IC-LCS

string string string O(|E1||E2||E3|)
[Chin et al., 2004]

acyclic graph acyclic graph acyclic graph
O(|E1||E2||E3|)

(this work)

graph graph acyclic graph
O(|E1||E2||E3|+|V1||V2||V3|log|Σ|)

(this work)

SEQ-EC-LCS string string string O(|E1||E2||E3|)
[Chen and Chao, 2011]

・STR-IC/EC-LCS problems for labeled graphs are open.

・SEQ-EC-LCS problem for labeled graphs could be solved
by similar methods.

