Theoretical perspectives on algorithmic choices made in
programming languages

Cyril Nicaud
LIGM — Université Gustave-Eiffel & CNRS

The Prague Stringology Conference, August 2023

. Introduction

Introduction

All programming languages (or their standard libraries) include classical
solutions and data structures: sorting algorithms, lists, hashmaps, . ..

The algorithms behind these tools are studied since the beginning of
computer science:

e Very well-known (optimal) solutions
@ Detailed theoretical analysis

@ Decades of practical uses

Question: if you were to create a new programming language,
which sorting algorithm would you choose?

Which sorting algorithm would you choose?

Remarks:
@ The chosen sorting algorithm has to be generic
@ Other choices: stable? in place?

@ It may just be a matter of benchmarking

From classical textbooks, two main candidates:
@ QuickSort
» in place, usually unstable
» O(n?) worst case, O(nlog n) in average
o MergeSort

» not in place, stable
» O(nlog n) worst case

Which sorting algorithms are chosen (examples)?

QuickSort-like:

@ Javascript V8: QuickSort, using InsertionSort if size < 10
PHP: QuickSort, using InsertionSort if size < 16, pivot at position g
C++: IntroSort a mix of QuickSort, HeapSort and InsertionSort

Java primitive types: dual-pivot QuickSort

Rust wunstable: PDQSort, pattern-defeating quicksort

TimSort-like (MergeSort-like?):
@ Python: TimSort (until 2021) in cpython
@ Java objects: TimSort

@ Rust stable: variant of TimSort

= cpython nowadays uses an implementation of PowerSort (Munro &
Wild)

Is there room for theoretical analysis?

@ Some new algorithms were designed by engineers, ready to be
theoretically studied (TimSort, PDQSort, ...)

@ Some choices are motivated by modern computer architecture, we
can enhanced our computational models with cache, branch
prediction, vectorization, ... (dual-pivot QuickSort of Java)

@ Data may have some typical structures or patterns in practice: how
can we quantify that for a theoretical analysis?

Let us look at TimSort in details to illustrate these ideas

Il. TimSort

with N. Auger, V. Jugé & C. Pivoteau

This describes an adaptive, stable, natural
mergesort, modestly called timsort (hey, I earned

it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1g(N!)
comparisons needed, and as few as N-1), yet as fast

as Python’s previous highly tuned samplesort hybrid on
random arrays.

timsort.txt, Tim Peters

Monotonic runs

To take some presortedness into account, TimSort first splits the array
into sequences of monotonics runs:

@ They can be non-decreasing or decreasing

@ They are maximal

0 1 2 3 4 5 6 7 8 9 10 11 12 13
w|lt|d|b|c|c|d|ala|d|x]|h|k]|m
Rl R2 R3 R4
@ They are computed greedily from left to right in time O(n)
@ Decreasing runs are reversed on the fly

= we obtain a sequence of non-decreasing runs to merge

Merge cost and merge tree

e R; and R; can be merged as in MergeSort, using |Ri| + |Rj| — 1
comparisons in the worst case. We use c(R;, R;) = |R;| + |Rj]
o We denote R; @ R; the result of the merge of R; and R;

The merge tree represents the merges performed by the algorithm:

S S
VRN VRN
Ri®eR R3DRy R3 RiIOR DR
/ N\ / N\ ¢ /N

Ry Ry R3 Ry Ri® Ry R>

4 3 4 3 / \ 3
Ri Ry
4 3

Total cost = Z |R;| x height(R;)
R

Merge cost and merge tree

e R; and R; can be merged as in MergeSort, using |Ri| + |Rj| — 1
comparisons in the worst case. We use c(R;, R;) = |R;| + |Rj]
o We denote R; @ R; the result of the merge of R; and R;

The merge tree represents the merges performed by the algorithm:

S S
VRN VRN
Ri®eR R3DRy R3 RiIOR DR
/ N\ / \ 4 / N\
R R Rs R4 RROoR: R
4 3 4 3 / \ 3
R Ry
4 3
Cost = 28 Cost = 31

Total cost = Z |R;| x height(R;)
R

An additional condition

S Total cost = Z |Ri| x height(R;)
VRN R;
Rz Ri®R R
¢ /N o Huffman construction optimizes the cost
Ri® Ry R> ..
7\ 5 @ It can be computed efficiently
Ri R @ Discovered several times, Takaota'09, Barbay &
2 2 Navarro'l3, ...
Cost = 30

o Not used in programming languages

Additional condition: only merge consecutive runs!
@ stability
@ it is easier to manage memory

@ runs can be merged when discovered (if needed)

°

cache-friendly

Merging consecutive runs

An optimal solution with this new constraint can be computed using
dynamic programming, but the cost is prohibitive.

= Algorithms of that kind are approximations of the optimal solution

Several ideas:

@ Knuth's NaturalMergeSort: as MergeSort, starting with the run
decomposition

Greedily merge the two consecutive runs of smallest total length
TimSort by Peters (2001)

PowerSort by Munro and Wild (2018)

Several others: AdaptativeShiverSort Jugé (2020), ...

Merging consecutive runs

An optimal solution with this new constraint can be computed using
dynamic programming, but the cost is prohibitive.

= Algorithms of that kind are approximations of the optimal solution

Several ideas:

@ Knuth's NaturalMergeSort: as MergeSort, starting with the run
decomposition — can be really suboptimal

Greedily merge the two consecutive runs of smallest total length
— 2-approximation, cannot be performed as runs are discovered

TimSort by Peters (2001)
PowerSort by Munro and Wild (2018)
Several others: AdaptativeShiverSort Jugé (2020), ...

TimSort algorithm

Lalclelrfblwlk]ifefd]u]n]

@ The input is split into runs, which are monotonic subsequences

@ Every discovered run is added to a stack, then some consecutive

runs can be merged
|d|e|i|k|w|
|b|r| blr —> [d]e]i]|k]|w
|a|c|t| alc|t alcl|t alblclr]|t

@ Merges occur by only looking at the run lengths, not the values within

@ When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don't consider
here (especially in the merge procedure)

Legacy TimSort's Merging Rules

P Notations:
P @ the run R; has length r;
"o @ the stack has height h

@ the topmost run is Ry,

Merges after adding a new run:

r; e While true

» if r, > r,_» then merge R,_1 and Ry_»

» else if r, > r,_1 then merge R, and Ry_1

» else if r, +r,_1 > r,_> then merge R, and Ry,

r3 > else break
r2 Remarks:
n @ we only consider the three topmost runs

STACK @ we only merge R, and Ry_1, or Rp—_1 and Ry_»

TimSort's Merging Rules

rn
rh—1

rh—2

r3
r2

rn

STACK

Merges after adding a new run:
e While true
» if r, > r,_» then merge Ry_1 and Ry_»
else if r, > r,_1 then merge R, and R,
else if r, + ry,_1 > r,_> then merge R, and Ry
else break

vvYyy

timsort.txt:

"Note that, by induction, it implies the lengths
of pending runs form a decreasing sequence. It
implies that, reading the lengths right to left,
the pending-run lengths grow at least as fast as
the Fibonacci numbers. Therefore the stack can
never grow larger than about /og,(/N) entries"

TimSort's Merging Rules

'
rh—1

rh—2

r3

rn
n

STACK

Merges after adding a new run:
e While true

> if r, > r,_> then merge R,_1 and Ry_»

» else if r, > r,_; then merge R, and Ry

» else if r, + r,_1 > r,_> then merge R, and Ry,

> else break
timsort.txt:
"Note that, by indgctio ies the lengths
of pending runs for g sequence. It
implies that, readin ths right to left,
the pending-run l¢hg ast as fast as

An error in timsort.txt

o While true
> if r, > r,_> then merge R,_1 and Ry_»
» else if r, > r,_; then merge R, and Ry_1
> else if r, + r,_1 > r,_> then merge R, and Ry_1
» else break

A The invariant r; o + ri 1 < r; does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java's TimSort, using KeY (formal verification tool)

An error in timsort.txt

o While true

> if r, > r,_> then merge R,_1 and Ry_»

» else if r, > r,_; then merge R, and Ry_1

> else if r, + r,_1 > r,_> then merge R, and Ry_1
» else break

A The invariant r; o + ri 1 < r; does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java's TimSort, using KeY (formal verification tool)

Is it a real problem?
@ In Python: not really, the algorithm is still efficient and correct

@ In Java: they use the invariant to fix the maximum size of the stack,
implemented with a static array = de Gouw et al (2015) built an array
that produces an error for Java's sort()!

Two versions of TimSort

de Gouw et al (2015) proposed two solutions to fix the problem:

1. Adding a new rule (implemented in Python)
@ While true

>

>
>
>
>

if r, > r,_»> then merge R,_1 and R,_»

else if r, > r,_; then merge R, and Ry_1

else if r, + ry,_1 > r,_> then merge R, and Ry_1
else if r,_1 + rp_2 > r,_3 then merge Ry and R,_1
else break

The invariant now holds, the algorithm is certified in KeY.

2. Computing correct maximal heights for the stack (implemented in Java)

Lemma

Throughout execution of TimSort, the invariant cannot be violated at two
consecutive positions in the stack.

Running time

This describes an adaptive, stable, natural
mergesort, modestly called timsort (hey, I earned

it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1g(N!)
comparisons needed, and as few as N-1), yet as fast
as Python’s previous highly tuned samplesort hybrid on
random arrays.

timsort.txt — Tim Peters

Theorem (Auger, Nicaud, Pivoteau 2015)

TimSort has a worst-case running time of O(nlog n).

@ Our first proof (preprint in 2015) was not very difficult, but hard to
read (and to teach!)

@ A better proof in ESA'18 proceedings

Running time analysis of TimSort: O(nlog n)

We focus on the main loop: other parts are done in O(n) comparisons.
@ While there are remaining runs

(#1) Add a new run to the stack
Repeat until stabilized

#2) if ry > ra_» then merge Ry_1 and Ry_>

#3) else if r, > ryn_1 then merge R, and Ru_1

#4) else if r, + ra_1 > rn—> then merge R, and Ry_1
#5) else if rp_1 + rh—2 > rp—3 then merge Ry and Ry_1

Amortized analysis:
e {-tokens and O-tokens are given to the elements of the input
@ tokens are used to pay for comparisons
@ the total number of tokens granted is our upper bound
Tokens' rules: an element gets two <> and one ©
@ when its run enters the stack

@ when its height in the stack decreases

Running time analysis: Case #2

(#2) if r, > rp_o then merge Ry_1 and Rp_»

Every element of R, and R,_1 pays one {>: the merge cost is
rh—1+ rh—o < rp—1 + rp, hence it is fully paid

| Rn |
Rh—l — R;,

Rh1 ® Ry

The height of every element that paid one {5 decreases by one: they all
gain two < and one O, regaining what they paid

Running time analysis: Case #3

(#3) else if r, > r,_1 then merge Ry and Rp,_1

Every element of Rj, pays two <{>: the merge cost is r, + rp_1 < 2rp, hence
it is fully paid.

Rh—1 — | RL,OR;
| Rh—2 | [

The height of every element that paid two <> decreases by one: they all
gain two <> and one O, regaining what they paid

Running time analysis: Case #4 (Case #5 is similar)
(#4) else if ry, + rp_1 > r,_» then merge Ry and Rp_1

Every element of Ry, pays one <, every element of R,_1 pays one ©: the
merge cost is r, + rp_1, hence it is fully paid.

Rp—1 — [R BR,
| Rh—2 | Ry_2

The height of the elements of R}, decreases by one: ok for {
@ Elements that paid one © are now in the topmost run
@ Elements in the topmost run never pay with ©
o After the merge, r, > rp_1 so #2 or #3 is going to occur immediately
°

The height of the new topmost run is going to decrease during this
new merge, its elements will regain their © (and also two)

Running time analysis: O(nlog n)
Summary:

e Computing the run decomposition takes O(n)

e For the main loop:

» each element gets 2 and 10 when entering the stack

» each merge is paid with) and ©

» when an element pays with <, it get it (them) back immediately after

» when an element pays with ©, another merge occurs just after, during
which it get it back

@ The final merges are done in O(n) by direct computation

Lemma
At any moment during TimSort, the stack has height in O(log n).

Proof: the invariant holds.

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(nlog n).

Running Time

= TimSort is optimal with a O(nlog n) running time

What makes it favored to other optimal algorithms?

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

timsort.txt, Tim Peters

@ We want to formalize this from a theoretical point of view
o ldea: parameterized complexity to take presortedness into account

Let p denote the number of runs, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nlog p).

Run lengths entropy

If the runs have size r1, ..., r,, then the run lengths entropy of the array is

p

=S s ()

i=1

@ For run lengths 73, ... 771 H = log, 11 ~ 3.46

90n _n n_. ~
e For run lengths 350, 165 - - - 100: H ~ 0.80

e For run lengths /n,...\/n: H = Jlog,n
@ For run lengths n —2,/n,2,2,...2: H = O('Ogn”

Remark:
H < log,p <log,n

Timsort running time parameterized by entropy

Theorem (Auger, Jugé, Nicaud, Pivoteau. Talk ESA 2018)

TimSort has a worst-case running time of O(n+ nH).

Theorem (Barbay, Navarro 2013)

Sorting by comparisons algorithms use more than n{ — O(n) comparisons.
o

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019) J

TimSort uses 1.5nH + O(n) comparisons in the worst case.

@ Lower bound by Buss and Knop

@ We proved the upper bound

Running time analysis: O(n + nH)

Recall: #1 is the insertion of a new run in the stack
. — i ri
Recall: H =~ “log ¥

We use the following decomposition of the sequence of events:
HLH2H242 #3#AH#2H#DH3 #1#2#2 #AFH24243
starting‘srequence ending;gquence

starting sequence ending sequence
pay with & pay with $and © pay with & pay with {$and ©

Two lemmas (both consequences of the invariant):
@ The total cost in #-tokens is linear

@ The height of the stack at the beginning of the ending sequence after
inserting a run of length r is O(log 7).

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + n#H).

And for Legacy TimSort?

For the legacy version of TimSort, we just have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of LegacyTimSort is in O(n + nlog p).

but wait a minute . . .

Another bug in Java's TimSort

Lemma

Throughout execution of TimSort, the invariant cannot be violated at two
consecutive positions in the stack.

Another bug in Java's TimSort

Lemma

Throughout execution of TimSort,%ﬁvariant cannot be violated at two
consecutive positions in the stack. S @~

The lemma is incorrect!

= We built an array that produces an error to Java's (patched) TimSort!

Another bug in Java's TimSort

Lemma

Throughout execution of TimSort,%ﬁvariant cannot be violated at two
consecutive positions in the stack. S @~

The lemma is incorrect!

= We built an array that produces an error to Java's (patched) TimSort!

Down for Maintenance on Friday January 25 from 35 PM PST

fu JOK 1 JDK:8203864
. Uhal Execution error in Java's Timsort

People

Created
20180527 23:04

Update
2018-07-07 00:07
Resalved:

2018-06:25 1012

Another bug in Java's TimSort
Lemma

Throughout execution of TimSort, Qvariant cannot be violated at two

consecutive positions in the stack. S\

The lemma is incorrect!

= We built an array that produces an error to Java's (patched) TimSort!

Down for Maintenance on Friday January 25 from 35 PM PST

2 g
‘

Ules! Execution error in Java's Timsort

[he
& Details
®

et
e
wome ™ em
\\m:;mw
wont o
e s s o>
ompenert BB oo ,uw o oW
Introduced I nw\‘“’?o«a s W«;ﬁ‘ 4 @ms““

ion e ™
Resolved in Bulld:

Backports
Fix
tssue PR Assignee

Doug Lea 1
Doug Lea P.

a0 s
s S i O
D092 Led ©
T e

Description .“‘m Tao

Carine Pivoteau wrote:
While working on a proper complexity ana
Was an error I the last paper reporting suc
2 orting pa. This
ina Timsort stech.

Another bug in Java's TimSort
Lemma

Throughout execution of TimSort, Quariant cannot be violated at two
consecutive positions in the stack. S @~

The lemma is incorrect!

= We built an array that produces an error to Java's (patched) TimSort!

* Thig p,
ethog
* so the ; 8 calj,
inva, °d each ¢;
6 * en Flants t
Down for Maintenance on Friday January + tr, ¢ AT€ guar,, 2 new ry, .
+ 'ethog, Nteeq ¢, holq ¢ PUsheq ey
e o oeszesees) L , [Thankg o for i ¢ Stacksy, ® Stack,
’;x thled Execution error in Java's Timsort L1g , * Richarg btzyn de Goyy) 26 upop
: * el oUW, Jury.
ico, €, thig s s.
& petails ,colas auge, the Horg, his jg ¢4 de Boey,
* Vincens ~Case ¢ °d with .
® Private o, 91 Cyriy yyorPlexity op . FOSPect ¢
4
) mer, ” ort
w Co nd oy
e (otacysy, o 1o ¢ O Piyogqr,
int 5 o >1 .
0 g 7
Introduced In it & rungy,
(2> g g rirlenpn.y) .
Resolved In Bull: n> g o Mnbenry ;) : nLen(y,
Backports if (runge, LE"(n—z, _ “Len[n] o Alnt1)) (
ackports = on
e assignee ~; 1< rungen . PIA) 4 gy oMt
A,) T9eAt(n), S 10 ¢
DougLea P. e if “’"nLen[n
wler “gent ()] <
Description s + } el1s

Carine Pivoteau wrote:

While working on a proper complexity ana

Was an error I the last paper reporting suc

contentiupioads/2015/02/sorting.pd). Thi |
ina Timsort stech.

Conclusion on TimSort

@ TimSort is an efficient algorithm, in theory and in practice
@ It is not entropy-optimal, but not far from it

@ There are many optimisation, for instance on merges (Ghasemi, Jugg,
& Khalighinejad [ICALP'22])

@ There were two consecutive bugs in Java's version, due to improper
analysis of the algorithm

@ Every new (used) algorithm deserves a fine grain analysis

@ run lengths entropy plays a major role

Epilogue for sorting algorithms

@ There is a gap in the leading asymptotic term between TimSort in
~ 1.5 nH and the lower bound in ~ nH

@ Several algorithm are tight for this measure of complexity n + O(n):
» Takaota [MFCS'09] Huffman
» Barbay & Navarro [TCS'13] Huffman with contiguous runs
» Jugé [SODA'20] AdaptativeShiverSort

@ in 2021, cpython programmers decided to change their sorting
algorithm to PowerSort Munro & Wild [ESA'18], also in nH + O(n)

I1l. Lua’s Table

with C. Martinez & P. Rotondo

Maps

A map (associative array, dictionary,) is a data structure to encode a
partial mapping from a set of keys to a set of values

It supports the operations of initialization, insertion of k — v, search for
the value associated to a key, and delete a key

Maps are usually encoded using Hashtables (more rarely, balanced trees)

Question: if you were to create a new programming language,
what kind of hashtables would you implement?

Hashtables

o We assume that we have efficient hash functions
@ The load factor o := % where M is the size of the hashtable, and N
is the number of keys it contains

@ The table has a given starting size (capacity), which is doubled
whenever we reach a given load factor «

Dealing with collisions:
@ separate chaining: use a linked list in each bucket

@ open adressing: put the key somewhere else if its bucket is already
taken: linear probing, quadratic probing, double hashing, ...

How are they implemented (examples)?

Separate chaining:
@ PHP, a =1
@ C++ unordered map in std, a =1

e Java, a = 3/4, balanced trees if too many keys

Open-addressing:
@ Javascript V8: Deterministic Hash Tables, quadratic probing
@ Python dictionary: random probing, o = 2/3
@ Rust: clusters of 16 entries (SIMD)

— let us look at LUA’s tables

Lua: wikipedia

Lua (programming language)
From Wikipedia, the free encyclopedia

The article is about the Lua programming language itself. For its use in Wikipedia, see Wikipedia:Lua.

Lua (/luza/ LOO-s; from Portuguese: /ua ['lu.(w)e] meaning moon) is a lightweight, high-level, multi-paradigm programming
language designed primarily for embedded use in applications.[®! Lua is cross-platform, since the interpreter of compiled
bytecode is written in ANSI C,[4l and Lua has a relatively simple C API to embed it into applications.!5!

Lua was originally designed in 1993 as a language for extending software applications to meet the increasing demand for
customization at the time. It provided the basic facilities of most procedural programming languages, but more complicated or
domain-specific features were not included; rather, it included mechanisms for extending the language, allowing programmers
to implement such features. As Lua was intended to be a general embeddable extension language, the designers of Lua
focused on improving its speed, portability, extensibility, and ease-of-use in development.

Lua: website

< What is Lua?

Lua is a powerful, efficient, lightweight, embeddable scripting language. It
supports procedural programming, object-oriented programming, functional
programming, data-driven programming, and data description.

Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is
dynamically typed, runs by interpreting bytecode with a register-based
virtual machine, and has automatic memory management with incremental
garbage collection, making it ideal for configuration, scripting, and rapid
prototyping.

Lua is fast

Lua has a deserved reputation for performance. To claim to be "as fast as
Lua" is an aspiration of other scripting languages. Several benchmarks
show Lua as the fastest language in the realm of interpreted scripting
languages. Lua is fast not only in fine-tuned benchmark programs, but in
real life too. Substantial fractions of large applications have been written in

Lua.

Lua's Tables

e Tables are the main (only) data structuring mechanism in Lua

@ Until Lua 4.0 — Hashmaps
@ Lua 5.0 — hybrid data-structure with an array part and a hash part

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H |20 PR | WF | EF | CM CP | VJ | ZS FK

20 8 8 21 | 11 4 8 7 7
1 2 3 4 5 6 7 8

Al 6 7 |16 | 21| 22 4

F(CM)=11 f(CP)=4 f(GC)=nil
f(5) =21 £(120) =20 f(7) =nil

In the array part A, the keys are the indices.

Lua’'s hashmaps

Internal chaining: each spot contains the index of the next key in the list

0 1 2 3 4 5 6 7
120 PR | WF ZS | EF | CM
H | 20 8 8 12 | 21 | 11
7 5 nil nil nil 6

N7

e Internal chaining is also classical (in textbooks TAOCP vol. 3)

@ Several ways to handle collisions leading to coalescent chaining, or
separate chaining

Insertion in Lua's hashmap

Insertion of key x:

e If spot h(x) is available: insert there
e If y is already at spot h(x) :

» if h(y) = h(x) then add x to a free spot and change the chain

y—z—...intoy >x—>z—... [y at its main position]
» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the

successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7

Insertion in Lua's hashmap

Insertion of key x:

e If spot h(x) is available: insert there
e If y is already at spot h(x) :
» if h(y) = h(x) then add x to a free spot and change the chain
y—z—...intoy >x—>z—... [y at its main position]

» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the
successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7
Zs

H 12

nil

Insertion in Lua's hashmap

Insertion of key x:

e If spot h(x) is available: insert there
e If y is already at spot h(x) :
» if h(y) = h(x) then add x to a free spot and change the chain
y—z—...intoy >x—>z—... [y at its main position]

» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the
successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7
zs FK
H 12 11
nil nil

Insertion in Lua's hashmap

Insertion of key x:
o If spot h(x) is available: insert there
o If y is already at spot h(x) :
» if h(y) = h(x) then add x to a free spot and change the chain
y—z—...intoy >x—z—... [y at its main position]
» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the
successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7

PR
44

17

nil

Insertion in Lua's hashmap

Insertion of key x:
o If spot h(x) is available: insert there
o If y is already at spot h(x) :
» if h(y) = h(x) then add x to a free spot and change the chain
y—z—...intoy >x—z—... [y at its main position]
» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the
successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7

FK \"A) PR
11 42 44
7 nil nil

Insertion in Lua's hashmap

Insertion of key x:

o If spot h(x) is available: insert there
e If y is already at spot h(x) :
» if h(y) = h(x) then add x to a free spot and change the chain
y—z—...intoy>x—>z—... [y at its main position]

» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the
successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7
zs FK | WrF | vJ | PR
H 12 11 | 2 | 42 | a4
nil 5 7 nil nil
h(ZS) =2 h(FK) h(PR) = 4

Insertion in Lua's hashmap
Insertion of key x:

e If spot h(x) is available: insert there
o If y is already at spot h(x) :

» if h(y) = h(x) then add x to a free spot and change the chain

y—z—...intoy ->x—>z— ... [y at its main position]
» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the

successor of w and place x at its main position h(x)

0 1 2 3 4 5 6 7
zs PR | FK | WF | VJ CcP

H 12 | 44 | 11 | 2 | 42 | 0O
nil nil 5 3 nil nil

=

h(ZS)=2 h(FK)=4 h(PR)=4
h(VJ)=6 h(WF)=4 h(CP)=7

Insertion in Lua's hashmap

Insertion of key x:
o If spot h(x) is available: insert there
e If y is already at spot h(x) :
» if h(y) = h(x) then add x to a free spot and change the chain
y—z—...intoy >x—z—... [y at its main position]

» if h(y) # h(x) find the predecessor w of y, y in a free spot, update the
successor of w and place x at its main position h(x)

@ Use an index to find a free position: it starts at the end and move step
by step to the right until it finds a free spot (or exit the array)

@ A newly inserted key is either in its main position, or at the second
position in its list

Lua's hashmap analysis (insertion/search)

This is a classical setting, under the uniform hashing assumption, the
expected number of probes is:

o Unsuccessful search: U, ~ 1+ ehf#

e Successful search: S, ~ L(e® —1)

— Efficient even if the hashtable is fulll

Lua's hashmap analysis (insertion/search)

This is a classical setting, under the uniform hashing assumption, the
expected number of probes is:

@ Unsuccessful search: U, ~ 1+ ehf#

e Successful search: S, ~ L(e® —1)

— Efficient even if the hashtable is fulll

What about deletions?

Deletion in Lua’'s hashmap

o To delete the key x, just set its value to nil

0 1 2 3 4 5 6 7
120 PR WF zs EF CM
20 8 8 12 | 21 | ni1
7 5 | ni1 nil | nil | 6 delete(C/\/l)

S~

Deletion in Lua’'s hashmap

@ To delete the key x, just set its value to nil

0 1 2 3 4 5 6 7
120 PR WF Zs EF CM
20 8 8 12 | 21 | ni1
7 5 | ni1 nil | nil | 6 delete(CM)

S~

Insertion of key x:
e If spot h(x) is free or the value is nil: insert there
@ Otherwise, proceed as previously

@ When looking for a free spot do not consider spots with a nil value

Deletion in Lua’'s hashmap

@ To delete the key x, just set its value to nil

0 1 2 3 4 5 6 7

120 PR WF Zs EF CM

270 g n?l 111121 112111 nél delete(CM)
S~

0 1 2 3 4 5 6 7

120 PR WF zs EF CcP

7 5 | an i |wa|s | F(CP)=7

~o— 7

— The lists of hashvalue 0 and 7 coalesce!
— No more separate chaining if there are deletions

Rehashing

@ When the pointer exit the hashmap (values —1), a rehash occurs

@ The hashtable is then full (possibly with some nil values)
@ To rehash:

» compute the number n of used keys (with no nil value)

» build a new hashtable of size M = 2™, where m is the smallest integer
such that n+1 < 2™ < +1 for the newly inserted key

» reinsert all used keys

Rehashing

@ When the pointer exit the hashmap (values —1), a rehash occurs

@ The hashtable is then full (possibly with some nil values)
@ To rehash:

» compute the number n of used keys (with no nil value)
» build a new hashtable of size M = 2™, where m is the smallest integer

such that n+1 < 2™ « +Whe newly inserted key

» reinsert all used keys \

Rehashing

@ When the pointer exit the hashmap (values —1), a rehash occurs

@ The hashtable is then full (possibly with some nil values)
e To rehash:

» compute the number n of used keys (with no nil value)
» build a new hashtable of size M = 2™, where m is the smallest integer

such that n+1 < 2™ « +Whe newly inserted key
» reinsert all used keys

\
Bad worst-case scenario:
@ insert until reaching a hashtable of size M = 2™
o alternate M deletion/insertion
@ Each insertion induces a rehash (if not right in the deleted bucket)
o Complexity of ©(M?) for 3M operations.

— That's bad, but it's not a very realistic scenario in practice

A randomized scenario

We considered the following process:
o fix some p € (3,1)
@ at each of the n steps

» add a new element with probability p (or 1 if the map is empty)
» remove an element of the map, uniformly, with probability 1 — p

Not necessarily realistic, but we do want a hashtable to perform well for
this scenario

A randomized scenario

We considered the following process:
o fix some p € (3,1)
@ at each of the n steps

» add a new element with probability p (or 1 if the map is empty)
» remove an element of the map, uniformly, with probability 1 — p

Not necessarily realistic, but we do want a hashtable to perform well for
this scenario

Theorem (Martinez, Nicaud, Rotondo 2021)
With high probability, Lua uses Q(nlog n) time for this process

— not good, obviously!

Proof sketch

Theorem (Martinez, Nicaud, Rotondo 2021)
With high probability, Lua uses Q(nlog n) time for this process

@ The number of keys in the hashmap after ¢ operations is ~ (2p — 1)t
@ So we reach some size linear in t for the hashmap

o the first time we reach a size of 2™, the hashmap contains 27! + 1
keys and 2™~1 — 1 free spots

Proof sketch

Theorem (Martinez, Nicaud, Rotondo 2021)
With high probability, Lua uses Q(nlog n) time for this process

@ The number of keys in the hashmap after ¢ operations is ~ (2p — 1)t
@ So we reach some size linear in t for the hashmap

o the first time we reach a size of 2™, the hashmap contains 27! + 1
keys and 2™~1 — 1 free spots

Lemma

If the hashmap has size M and just after a rehash it contains f > /M free
spots, then at the next rehash it still has size M and contains at least 1
free spots (whp).

— Requires log M iterations to increase the hashmap size

Proof sketch

Lemma

If the hashmap has size M and just after a rehash it contains f > v M free
spots, then at the next rehash it still has size M and contains at least ~f
free spots (whp).

@ J; the number of deleted spots (nil value)

@ at rehash time ty we have 6y =0

0 —1 with probability pv‘sf [insertion in a deleted key],
Ot41 = { O¢ with probability p (1 - ‘5—,\},) [insertion in a free cell],
0+ +1 with probability 1 — p [deletion].

Rehash before we reach the equilibrium point at §; ~ kTpM

Lua’s hybrid tables

0 1 3 4 5 6 7 8 9 10 11 12 13 14
H 120 PR | WF EF CcM CcP \Al Zs FK
20 8 8 21 11 4 8 7 7

@ the array part is used for keys that are small integers
@ the hash part for all other keys

@ idea: automatically use an array if more convenient, the details are
hidden to the programmer (simplicity & efficiency)

@ we need a mechanism to choose the length of A

Lua’s hybrid tables

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15
H |10 PR | WF | EF | CM CP | VJ | Zs FK

20 8 8 21 | 11 4 8 7 7

1 2 3 4 5 6 7 8
Al 6 7 |16 | 21 | 22 4

@ Size of the array part chosen only when there is a rehash

o Find the largest size 27 s.t. there are more than 2771 keys in [1...27]

Analysis with only insertions

Even with no deletion, we have the same kind of problems as before
First example: insert —(2X — 1), —(2k -2),...-1,0, 1, ...2k
— this is done in ©(k2kK) = ©(nlog n) time

Proposition J

Lua's hybrid table needs O(nlog n) time to insert n keys, in the worst case.

Permutations and random permutations

Second example: inserting a permutation of [1,...,n]
Take n = 3 - 2% and consider the order

2.2k41,2.2k42,... 3...2Kk 1,2,...3. 2K

Permutations and random permutations

Second example: inserting a permutation of [1,...,n]
Take n = 3 - 2% and consider the order

2.2k41,2.2k42,... 3...2Kk 1,2,...3. 2K
@ The 2 first keys create a full hash-part of size 2%

@ With the insertion of 1, 2, ... it behaves as for the previous example

o Need ©(nlogn) time

Permutations and random permutations

Second example: inserting a permutation of [1,...,n]
Take n = 3 - 2% and consider the order
2.2k41,2.2k42,... 3...2Kk 1,2,...3. 2K
@ The 2 first keys create a full hash-part of size 2%

@ With the insertion of 1, 2, ... it behaves as for the previous example
o Need ©(nlogn) time

Third example: uniform random permutation

Theorem (Martinez, Nicaud, Rotondo 2021)

For any sequence g(n) — +oo, with high probability Lua's hybrid table
insert a uniform random order on [1,..., n] in time O(n - g(n)).

— not so bad for oncel

Experiments — random insertions/deletions

Theorem (Martinez, Nicaud, Rotondo 2021)

With high probability, Lua uses Q(nlog n) time when inserting with
probability p € (%, 1) and deleting with probability 1 — p (n operations)

1.6

1.4

1.2

0.8

0.6

amortized time per operation (us/op)

215 él7 218 219 220 221 222 223

number of operations (logscale)

p=075 p=09

Experiments — array part

m = 1<<24
tab = {}

for i=(-m+1) ,m do
tab[i] = 1
end

LUA code for Example 1

o We insert ~ 34 - 10° integer keys
@ On a personal laptop: 21 seconds

@ Ensuring at least 20% free space after
a rehash: 3.5 seconds

= Just change the number of used keys n to 5n/4 before rehashing

Lua's tables: conclusion

@ The hybrid data-structure is an interesting idea

@ The problems in the hash algorithms can be fixed by allowing more
room when rehashing

@ This would also fix the hybrid part

From a theoretical point of view:
@ We had to find convincing models

@ Develop the probabilistic tools to analyze it

General conclusion

There were surprises in the implementation choices made

These innovations are often interesting

Lots of them are motivated by recent changes in computer
architecture

A theoretical analysis seems mandatory to prevent bugs &

Not alway easy to be convincing: programmers are reluctant to modify
algorithms used by lots of users

General conclusion

There were surprises in the implementation choices made

These innovations are often interesting

Lots of them are motivated by recent changes in computer
architecture

A theoretical analysis seems mandatory to prevent bugs &

Not alway easy to be convincing: programmers are reluctant to modify
algorithms used by lots of users

Thank you!

DD DD ¢

The Art Of Computer Programming, vol. 3: Sorting And Searching. Knuth.
Addison-Wesley, (1973)

Partial solution and entropy. Takaoka. MFCS'19
On compressing permutations and adaptive sorting. Barbay, Navarro. TCS (2013)

OpenJDK's Java.utils.Collection.sort() is broken: The good, the bad and the worst
case.De Gouw, Rot, de Boer, Bubel, Hihnle. CAV'15

On the Worst-Case Complexity of TimSort. Auger, Jugé, Nicaud, Pivoteau. ESA'18

Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally Adapt
to Existing Runs. Munro, Wild. ESA'18

Strategies for stable merge sorting. Buss, Knop. SODA'19
Adaptive Shivers Sort: An alternative sorting algorithm. Jugé. SODA’20

Galloping in fast-growth natural merge sorts. Jugé, Khalighinejad, Ghasemi.
ICALP'22

A Probabilistic Model Revealing Shortcomings in Lua's Hybrid Tables. Martinez,
Nicaud, Rotondo. COCOON'22

