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I. Introduction



Introduction

All programming languages (or their standard libraries) include classical
solutions and data structures: sorting algorithms, lists, hashmaps, . . .

The algorithms behind these tools are studied since the beginning of
computer science:

Very well-known (optimal) solutions
Detailed theoretical analysis
Decades of practical uses

Question: if you were to create a new programming language,
which sorting algorithm would you choose?



Which sorting algorithm would you choose?

Remarks:
The chosen sorting algorithm has to be generic
Other choices: stable? in place?
It may just be a matter of benchmarking

From classical textbooks, two main candidates:
QuickSort

▶ in place, usually unstable
▶ O(n2) worst case, O(n log n) in average

MergeSort
▶ not in place, stable
▶ O(n log n) worst case



Which sorting algorithms are chosen (examples)?

QuickSort-like:
Javascript V8: QuickSort, using InsertionSort if size ≤ 10
PHP: QuickSort, using InsertionSort if size ≤ 16, pivot at position n

2

C++: IntroSort a mix of QuickSort, HeapSort and InsertionSort
Java primitive types: dual-pivot QuickSort
Rust unstable: PDQSort, pattern-defeating quicksort

TimSort-like (MergeSort-like?):
Python: TimSort (until 2021) in cpython

Java objects: TimSort
Rust stable: variant of TimSort

⇒ cpython nowadays uses an implementation of PowerSort (Munro &
Wild)



Is there room for theoretical analysis?

Some new algorithms were designed by engineers, ready to be
theoretically studied (TimSort, PDQSort, . . . )

Some choices are motivated by modern computer architecture, we
can enhanced our computational models with cache, branch
prediction, vectorization, . . . (dual-pivot QuickSort of Java)

Data may have some typical structures or patterns in practice: how
can we quantify that for a theoretical analysis?

Let us look at TimSort in details to illustrate these ideas



II. TimSort
with N. Auger, V. Jugé & C. Pivoteau

This describes an adaptive, stable, natural
mergesort, modestly called timsort (hey, I earned
it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than lg(N!)
comparisons needed, and as few as N-1), yet as fast
as Python’s previous highly tuned samplesort hybrid on
random arrays.

timsort.txt, Tim Peters



Monotonic runs

To take some presortedness into account, TimSort first splits the array
into sequences of monotonics runs:

They can be non-decreasing or decreasing
They are maximal

w t d b c c d a a d x h k m
0 1 2 3 4 5 6 7 8 9 10 11 12 13

R1 R2 R3 R4

They are computed greedily from left to right in time O(n)
Decreasing runs are reversed on the fly

⇒ we obtain a sequence of non-decreasing runs to merge



Merge cost and merge tree
Ri and Rj can be merged as in MergeSort, using |Ri |+ |Rj | − 1
comparisons in the worst case. We use c(Ri ,Rj) = |Ri |+ |Rj |
We denote Ri ⊕ Rj the result of the merge of Ri and Rj

The merge tree represents the merges performed by the algorithm:

S

R1 ⊕ R2 R3 ⊕ R4

R1
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Total cost =
∑
Ri

|Ri | × height(Ri )



Merge cost and merge tree
Ri and Rj can be merged as in MergeSort, using |Ri |+ |Rj | − 1
comparisons in the worst case. We use c(Ri ,Rj) = |Ri |+ |Rj |
We denote Ri ⊕ Rj the result of the merge of Ri and Rj

The merge tree represents the merges performed by the algorithm:

S

R1 ⊕ R2 R3 ⊕ R4

R1
4

R2
3

R3
4

R4
3

emptyCost = 28

S

R3
4

R1 ⊕ R4 ⊕ R2

R1 ⊕ R4 R2
3

R1
4

R4
3

emptyCost = 31

Total cost =
∑
Ri

|Ri | × height(Ri )



An additional condition

S

R3
8

R1 ⊕ R4 ⊕ R2

R1 ⊕ R4 R2
5

R1
2

R4
2

Cost = 30

Total cost =
∑
Ri

|Ri | × height(Ri )

Huffman construction optimizes the cost
It can be computed efficiently
Discovered several times, Takaota’09, Barbay &
Navarro’13, . . .
Not used in programming languages

Additional condition: only merge consecutive runs!
stability
it is easier to manage memory
runs can be merged when discovered (if needed)
cache-friendly



Merging consecutive runs

An optimal solution with this new constraint can be computed using
dynamic programming, but the cost is prohibitive.

⇒ Algorithms of that kind are approximations of the optimal solution

Several ideas:
Knuth’s NaturalMergeSort: as MergeSort, starting with the run
decomposition
Greedily merge the two consecutive runs of smallest total length
TimSort by Peters (2001)
PowerSort by Munro and Wild (2018)
Several others: AdaptativeShiverSort Jugé (2020), ...



Merging consecutive runs

An optimal solution with this new constraint can be computed using
dynamic programming, but the cost is prohibitive.

⇒ Algorithms of that kind are approximations of the optimal solution

Several ideas:
Knuth’s NaturalMergeSort: as MergeSort, starting with the run
decomposition → can be really suboptimal
Greedily merge the two consecutive runs of smallest total length
→ 2-approximation, cannot be performed as runs are discovered
TimSort by Peters (2001)
PowerSort by Munro and Wild (2018)
Several others: AdaptativeShiverSort Jugé (2020), ...



TimSort algorithm

a c t r b w k i e d u n

The input is split into runs, which are monotonic subsequences
Every discovered run is added to a stack, then some consecutive
runs can be merged

a c t a c t
b r

a c t
b r

d e i k w
d e i k w
a b c r t

Merges occur by only looking at the run lengths, not the values within
When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don’t consider
here (especially in the merge procedure)



Legacy TimSort’s Merging Rules

STACK

r1

r2

r3

...

ri

...

rh−2

rh−1

rh
Notations:

the run Ri has length ri

the stack has height h
the topmost run is Rh

Merges after adding a new run:
While true

▶ if rh > rh−2 then merge Rh−1 and Rh−2
▶ else if rh ≥ rh−1 then merge Rh and Rh−1
▶ else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
▶ else break

Remarks:
we only consider the three topmost runs
we only merge Rh and Rh−1, or Rh−1 and Rh−2



TimSort’s Merging Rules
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rh Merges after adding a new run:
While true

▶ if rh > rh−2 then merge Rh−1 and Rh−2
▶ else if rh ≥ rh−1 then merge Rh and Rh−1
▶ else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
▶ else break

timsort.txt:
"Note that, by induction, it implies the lengths
of pending runs form a decreasing sequence. It
implies that, reading the lengths right to left,
the pending-run lengths grow at least as fast as
the Fibonacci numbers. Therefore the stack can
never grow larger than about logϕ(N) entries"



TimSort’s Merging Rules

STACK

r1

r2

r3

...

ri

...

rh−2

rh−1

rh Merges after adding a new run:
While true

▶ if rh > rh−2 then merge Rh−1 and Rh−2
▶ else if rh ≥ rh−1 then merge Rh and Rh−1
▶ else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
▶ else break

timsort.txt:
"Note that, by induction, it implies the lengths
of pending runs form a decreasing sequence. It
implies that, reading the lengths right to left,
the pending-run lengths grow at least as fast as
the Fibonacci numbers. Therefore the stack can
never grow larger than about logϕ(N) entries"



An error in timsort.txt

While true
▶ if rh > rh−2 then merge Rh−1 and Rh−2
▶ else if rh ≥ rh−1 then merge Rh and Rh−1
▶ else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
▶ else break

The invariant ri+2 + ri+1 < ri does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java’s TimSort, using KeY (formal verification tool)

Is it a real problem?
In Python: not really, the algorithm is still efficient and correct
In Java: they use the invariant to fix the maximum size of the stack,
implemented with a static array ⇒ de Gouw et al (2015) built an array
that produces an error for Java’s sort()!
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▶ else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
▶ else break

The invariant ri+2 + ri+1 < ri does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java’s TimSort, using KeY (formal verification tool)

Is it a real problem?
In Python: not really, the algorithm is still efficient and correct
In Java: they use the invariant to fix the maximum size of the stack,
implemented with a static array ⇒ de Gouw et al (2015) built an array
that produces an error for Java’s sort()!



Two versions of TimSort

de Gouw et al (2015) proposed two solutions to fix the problem:

1. Adding a new rule (implemented in Python)
While true

▶ if rh > rh−2 then merge Rh−1 and Rh−2
▶ else if rh ≥ rh−1 then merge Rh and Rh−1
▶ else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
▶ else if rh−1 + rh−2 ≥ rh−3 then merge Rh and Rh−1
▶ else break

The invariant now holds, the algorithm is certified in KeY.

2. Computing correct maximal heights for the stack (implemented in Java)

Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive positions in the stack.



Running time

This describes an adaptive, stable, natural
mergesort, modestly called timsort (hey, I earned
it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than lg(N!)
comparisons needed, and as few as N-1), yet as fast
as Python’s previous highly tuned samplesort hybrid on
random arrays.

timsort.txt – Tim Peters

Theorem (Auger, Nicaud, Pivoteau 2015)
TimSort has a worst-case running time of O(n log n).

Our first proof (preprint in 2015) was not very difficult, but hard to
read (and to teach!)
A better proof in ESA’18 proceedings



Running time analysis of TimSort: O(n log n)
We focus on the main loop: other parts are done in O(n) comparisons.

While there are remaining runs
(#1) Add a new run to the stack

Repeat until stabilized
(#2) if rh > rh−2 then merge Rh−1 and Rh−2

(#3) else if rh ≥ rh−1 then merge Rh and Rh−1

(#4) else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1

(#5) else if rh−1 + rh−2 ≥ rh−3 then merge Rh and Rh−1

Amortized analysis:
♢-tokens and ♡-tokens are given to the elements of the input
tokens are used to pay for comparisons
the total number of tokens granted is our upper bound

Tokens’ rules: an element gets two ♢ and one ♡
when its run enters the stack
when its height in the stack decreases



Running time analysis: Case #2

(#2) if rh > rh−2 then merge Rh−1 and Rh−2

Every element of Rh and Rh−1 pays one ♢: the merge cost is
rh−1 + rh−2 ≤ rh−1 + rh, hence it is fully paid

Rh−2

Rh−1

Rh

R ′
h

R ′
h−1 ⊕ R ′

h−2

The height of every element that paid one ♢ decreases by one: they all
gain two ♢ and one ♡, regaining what they paid



Running time analysis: Case #3

(#3) else if rh ≥ rh−1 then merge Rh and Rh−1

Every element of Rh pays two ♢: the merge cost is rh + rh−1 ≤ 2rh, hence
it is fully paid.

Rh−2

Rh−1

Rh

R ′
h−1 ⊕ R ′

h

R ′
h−2

The height of every element that paid two ♢ decreases by one: they all
gain two ♢ and one ♡, regaining what they paid



Running time analysis: Case #4 (Case #5 is similar)

(#4) else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1

Every element of Rh pays one ♢, every element of Rh−1 pays one ♡: the
merge cost is rh + rh−1, hence it is fully paid.

Rh−2

Rh−1

Rh

R ′
h−1 ⊕ R ′

h

R ′
h−2

The height of the elements of Rh decreases by one: ok for ♢
Elements that paid one ♡ are now in the topmost run
Elements in the topmost run never pay with ♡
After the merge, rh ≥ rh−1 so #2 or #3 is going to occur immediately
The height of the new topmost run is going to decrease during this
new merge, its elements will regain their ♡ (and also two ♢)



Running time analysis: O(n log n)
Summary:

Computing the run decomposition takes O(n)
For the main loop:

▶ each element gets 2♢ and 1♡ when entering the stack
▶ each merge is paid with ♢ and ♡
▶ when an element pays with ♢, it get it (them) back immediately after
▶ when an element pays with ♡, another merge occurs just after, during

which it get it back

The final merges are done in O(n) by direct computation

Lemma
At any moment during TimSort, the stack has height in O(log n).

Proof: the invariant holds.

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n log n).



Running Time

⇒ TimSort is optimal with a O(n log n) running time

What makes it favored to other optimal algorithms?

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

timsort.txt, Tim Peters

We want to formalize this from a theoretical point of view
Idea: parameterized complexity to take presortedness into account

Let ρ denote the number of runs, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + n log ρ).



Run lengths entropy

If the runs have size r1, . . . , rρ, then the run lengths entropy of the array is

H := −
ρ∑

i=1

ri
n
log2

( ri
n

)

For run lengths n
11 , . . . n

11 : H = log2 11 ≈ 3.46
For run lengths 90n

100 , n
100 . . .

n
100 : H ≈ 0.80

For run lengths
√
n, . . .

√
n: H = 1

2 log2 n

For run lengths n − 2
√
n, 2, 2, . . . 2: H = O( log n√

n
)

Remark:
H ≤ log2 ρ ≤ log2 n



Timsort running time parameterized by entropy

Theorem (Auger, Jugé, Nicaud, Pivoteau. Talk ESA 2018)
TimSort has a worst-case running time of O(n + nH).

Theorem (Barbay, Navarro 2013)
Sorting by comparisons algorithms use more than nH−O(n) comparisons.

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019)
TimSort uses 1.5nH+O(n) comparisons in the worst case.

Lower bound by Buss and Knop
We proved the upper bound



Running time analysis: O(n + nH)
Recall: #1 is the insertion of a new run in the stack
Recall: H = −

∑ ri
n log ri

n

We use the following decomposition of the sequence of events:

#1#2#2#2︸ ︷︷ ︸
starting sequence

pay with ♠

#3#4#2#5#3︸ ︷︷ ︸
ending sequence
pay with ♢and ♡

#1#2#2︸ ︷︷ ︸
starting sequence

pay with ♠

#4#2#2#3︸ ︷︷ ︸
ending sequence
pay with ♢and ♡

Two lemmas (both consequences of the invariant):
The total cost in ♠-tokens is linear
The height of the stack at the beginning of the ending sequence after
inserting a run of length r is O(log n

r ).

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nH).



And for Legacy TimSort?

For the legacy version of TimSort, we just have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of LegacyTimSort is in O(n + n log ρ).

but wait a minute . . .



Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive positions in the stack.

The lemma is incorrect!

⇒ We built an array that produces an error to Java’s (patched) TimSort!
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Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive positions in the stack.

The lemma is incorrect!

⇒ We built an array that produces an error to Java’s (patched) TimSort!



Conclusion on TimSort

TimSort is an efficient algorithm, in theory and in practice
It is not entropy-optimal, but not far from it
There are many optimisation, for instance on merges (Ghasemi, Jugé,
& Khalighinejad [ICALP’22])
There were two consecutive bugs in Java’s version, due to improper
analysis of the algorithm

Every new (used) algorithm deserves a fine grain analysis
run lengths entropy plays a major role



Epilogue for sorting algorithms

There is a gap in the leading asymptotic term between TimSort in
∼ 1.5 nH and the lower bound in ∼ nH

Several algorithm are tight for this measure of complexity nH+O(n):
▶ Takaota [MFCS’09] Huffman
▶ Barbay & Navarro [TCS’13] Huffman with contiguous runs
▶ Jugé [SODA’20] AdaptativeShiverSort

in 2021, cpython programmers decided to change their sorting
algorithm to PowerSort Munro & Wild [ESA’18], also in nH+O(n)



III. Lua’s Table
with C. Martìnez & P. Rotondo



Maps

A map (associative array, dictionary, . . . ) is a data structure to encode a
partial mapping from a set of keys to a set of values

It supports the operations of initialization, insertion of k → v , search for
the value associated to a key, and delete a key

Maps are usually encoded using Hashtables (more rarely, balanced trees)

Question: if you were to create a new programming language,
what kind of hashtables would you implement?



Hashtables

We assume that we have efficient hash functions
The load factor α := N

M , where M is the size of the hashtable, and N
is the number of keys it contains
The table has a given starting size (capacity), which is doubled
whenever we reach a given load factor α

Dealing with collisions:
separate chaining: use a linked list in each bucket
open adressing: put the key somewhere else if its bucket is already
taken: linear probing, quadratic probing, double hashing, . . .



How are they implemented (examples)?

Separate chaining:
PHP, α = 1
C++ unordered map in std, α = 1
Java, α = 3/4, balanced trees if too many keys

Open-addressing:
Javascript V8: Deterministic Hash Tables, quadratic probing
Python dictionary: random probing, α = 2/3
Rust: clusters of 16 entries (SIMD)

→ let us look at LUA’s tables



Lua: wikipedia



Lua: website



Lua’s Tables

Tables are the main (only) data structuring mechanism in Lua
Until Lua 4.0 → Hashmaps
Lua 5.0 → hybrid data-structure with an array part and a hash part

H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PR
8

CM
11

CP
4

VJ
8

WF
8

EF
21

ZS
7

FK
7

120
20

A

1 2 3 4 5 6 7 8

6 7 16 21 22 4

f (CM) = 11 f (CP) = 4 f (GC ) = nil
f (5) = 21 f (120) = 20 f (7) = nil

In the array part A, the keys are the indices.



Lua’s hashmaps

Internal chaining: each spot contains the index of the next key in the list

H

0 1 2 3 4 5 6 7

PR
8
5

CM
11
6

WF
8
nil

EF
21
nil

120
20
7

ZS
12
nil

Internal chaining is also classical (in textbooks TAOCP vol. 3)
Several ways to handle collisions leading to coalescent chaining, or
separate chaining



Insertion in Lua’s hashmap

Insertion of key x :
If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

H

0 1 2 3 4 5 6 7

h(ZS) = 2 h(FK ) = 4 h(PR) = 4
h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap

Insertion of key x :
If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)
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h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap

Insertion of key x :
If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

H

0 1 2 3 4 5 6 7

ZS
12
nil

FK
11
nil

h(ZS) = 2 h(FK ) = 4 h(PR) = 4
h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap
Insertion of key x :

If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

H

0 1 2 3 4 5 6 7

ZS
12
nil

FK
11
7

PR
44
nil

h(ZS) = 2 h(FK ) = 4 h(PR) = 4
h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap
Insertion of key x :

If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

H

0 1 2 3 4 5 6 7

ZS
12
nil

FK
11
7

PR
44
nil

VJ
42
nil

h(ZS) = 2 h(FK ) = 4 h(PR) = 4
h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap

Insertion of key x :
If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

H

0 1 2 3 4 5 6 7

ZS
12
nil

FK
11
5

PR
44
nil

VJ
42
nil

WF
-2
7

h(ZS) = 2 h(FK ) = 4 h(PR) = 4
h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap
Insertion of key x :

If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

H

0 1 2 3 4 5 6 7

ZS
12
nil

CP
0
nil

FK
11
5

PR
44
nil

VJ
42
nil

WF
-2
3

h(ZS) = 2 h(FK ) = 4 h(PR) = 4
h(VJ) = 6 h(WF ) = 4 h(CP) = 7



Insertion in Lua’s hashmap

Insertion of key x :
If spot h(x) is available: insert there
If y is already at spot h(x) :

▶ if h(y) = h(x) then add x to a free spot and change the chain
y → z → . . . into y → x → z → . . . [y at its main position]

▶ if h(y) ̸= h(x) find the predecessor w of y , y in a free spot, update the
successor of w and place x at its main position h(x)

Use an index to find a free position: it starts at the end and move step
by step to the right until it finds a free spot (or exit the array)
A newly inserted key is either in its main position, or at the second
position in its list



Lua’s hashmap analysis (insertion/search)

This is a classical setting, under the uniform hashing assumption, the
expected number of probes is:

Unsuccessful search: Uα ≈ 1 + e2α−1−2α
4

Successful search: Sα ≈ 1
α(e

α − 1)
→ Efficient even if the hashtable is full!

What about deletions?
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4

Successful search: Sα ≈ 1
α(e

α − 1)
→ Efficient even if the hashtable is full!

What about deletions?



Deletion in Lua’s hashmap

To delete the key x , just set its value to nil

0 1 2 3 4 5 6 7

PR
8
5

CM
nil
6

WF
8
nil

EF
21
nil

120
20
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ZS
12
nil delete(CM)



Deletion in Lua’s hashmap

To delete the key x , just set its value to nil
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nil delete(CM)

Insertion of key x :
If spot h(x) is free or the value is nil: insert there
Otherwise, proceed as previously
When looking for a free spot do not consider spots with a nil value



Deletion in Lua’s hashmap

To delete the key x , just set its value to nil
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nil delete(CM)
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7

ZS
12
nil f (CP) = 7

→ The lists of hashvalue 0 and 7 coalesce!
→ No more separate chaining if there are deletions



Rehashing

When the pointer exit the hashmap (values −1), a rehash occurs
The hashtable is then full (possibly with some nil values)
To rehash:

▶ compute the number n of used keys (with no nil value)
▶ build a new hashtable of size M = 2m, where m is the smallest integer

such that n + 1 ≤ 2m ← +1 for the newly inserted key
▶ reinsert all used keys

Bad worst-case scenario:
insert until reaching a hashtable of size M = 2m

alternate M deletion/insertion
Each insertion induces a rehash (if not right in the deleted bucket)
Complexity of Θ(M2) for 3M operations.

→ That’s bad, but it’s not a very realistic scenario in practice
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A randomized scenario

We considered the following process:
fix some p ∈ (1

2 , 1)
at each of the n steps

▶ add a new element with probability p (or 1 if the map is empty)
▶ remove an element of the map, uniformly, with probability 1− p

Not necessarily realistic, but we do want a hashtable to perform well for
this scenario

Theorem (Martìnez, Nicaud, Rotondo 2021)
With high probability, Lua uses Ω(n log n) time for this process

→ not good, obviously!
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Proof sketch

Theorem (Martìnez, Nicaud, Rotondo 2021)
With high probability, Lua uses Ω(n log n) time for this process

The number of keys in the hashmap after t operations is ≈ (2p − 1)t
So we reach some size linear in t for the hashmap
the first time we reach a size of 2m, the hashmap contains 2m−1 + 1
keys and 2m−1 − 1 free spots

Lemma
If the hashmap has size M and just after a rehash it contains f ≫

√
M free

spots, then at the next rehash it still has size M and contains at least γf
free spots (whp).

→ Requires logM iterations to increase the hashmap size
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Proof sketch

Lemma
If the hashmap has size M and just after a rehash it contains f ≫

√
M free

spots, then at the next rehash it still has size M and contains at least γf
free spots (whp).

δt the number of deleted spots (nil value)
at rehash time t0 we have δt0 = 0

δt+1 =


δt − 1 with probability pδt

M [insertion in a deleted key],
δt with probability p

(
1− δt

M

)
[insertion in a free cell],

δt + 1 with probability 1− p [deletion].

Rehash before we reach the equilibrium point at δt ≈ 1−p
p M



Lua’s hybrid tables

H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PR
8

CM
11

CP
4

VJ
8

WF
8

EF
21

ZS
7

FK
7

120
20

A

1 2 3 4 5 6 7 8

6 7 16 21 22 4

the array part is used for keys that are small integers
the hash part for all other keys
idea: automatically use an array if more convenient, the details are
hidden to the programmer (simplicity & efficiency)
we need a mechanism to choose the length of A



Lua’s hybrid tables

H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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A

1 2 3 4 5 6 7 8

6 7 16 21 22 4

Size of the array part chosen only when there is a rehash
Find the largest size 2a s.t. there are more than 2a−1 keys in [1 . . . 2a]



Analysis with only insertions

Even with no deletion, we have the same kind of problems as before

First example: insert −(2k − 1), −(2k − 2), . . .−1, 0, 1, . . . 2k

→ this is done in Θ(k2k) = Θ(n log n) time

Proposition
Lua’s hybrid table needs O(n log n) time to insert n keys, in the worst case.



Permutations and random permutations

Second example: inserting a permutation of [1, . . . , n]
Take n = 3 · 2k and consider the order

2 · 2k + 1, 2 · 2k + 2, . . . , 3 · · · 2k , 1, 2, · · · 3 · 2k

The 2k first keys create a full hash-part of size 2k

With the insertion of 1, 2, . . . it behaves as for the previous example
Need Θ(n log n) time

Third example: uniform random permutation

Theorem (Martìnez, Nicaud, Rotondo 2021)
For any sequence g(n)→ +∞, with high probability Lua’s hybrid table
insert a uniform random order on [1, . . . , n] in time O(n · g(n)).

→ not so bad for once!
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Experiments – random insertions/deletions

Theorem (Martìnez, Nicaud, Rotondo 2021)
With high probability, Lua uses Ω(n log n) time when inserting with
probability p ∈ (1

2 , 1) and deleting with probability 1− p (n operations)

p = 0.75 p = 0.9



Experiments – array part

LUA code for Example 1

We insert ≈ 34 · 106 integer keys
On a personal laptop: 21 seconds
Ensuring at least 20% free space after
a rehash: 3.5 seconds

⇒ Just change the number of used keys n to 5n/4 before rehashing



Lua’s tables: conclusion

The hybrid data-structure is an interesting idea
The problems in the hash algorithms can be fixed by allowing more
room when rehashing
This would also fix the hybrid part

From a theoretical point of view:
We had to find convincing models
Develop the probabilistic tools to analyze it



General conclusion

There were surprises in the implementation choices made
These innovations are often interesting
Lots of them are motivated by recent changes in computer
architecture

A theoretical analysis seems mandatory to prevent bugs

Not alway easy to be convincing: programmers are reluctant to modify
algorithms used by lots of users

Thank you!
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