
Quantum Leap Pattern Matching

A New High Performance Quick Search-Style Algorithm

Bruce W. Watson1,2, Derrick G. Kourie1,2, and Loek Cleophas1,3

1 FASTAR Research Group, Department of Information Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa

2 Centre for Artificial Intelligence Research,
CSIR Meraka Institute, Republic of South Africa

3 Department of Computer Science, Ume̊a University,
SE-901 87 Ume̊a, Sweden

{bruce,derrick,loek}@fastar.org

Abstract. Quantum leap matching is introduced as a generic pattern matching strat-
egy for the single keyword exact pattern matching problem, that can be used on top
of existing Boyer-Moore-style string matching algorithms. The cost of the technique is
minimal: an additional shift table (of one dimension, for shifts in the opposite direc-
tion to the parent algorithm’s shifts), and the replacement of a simple table lookup
assignment statement in the original algorithm with a similar conditional assignment.
Together with each of the conventional shift table lookups, the additional shift table
is typically also indexed on the text character that is at a distance of z away from the
current sliding window. Under conditions that are identified, the returned values from
the two shift tables allow a “quantum leap” of distance more than the length of the
keyword for the next matching attempt. If the conditions are not met, then there is a
fall back is to the traditional shift.
Quick Search (by Sunday) is used as a case study to illustrate the technique. The per-
formance of the derived “Quantum Leap Quick Search” algorithm is compared against
Quick Search. When searching for shorter patterns over natural language and genomic
texts, the technique improves on Quick Search’s time for most values of z. Improvements
are also sometimes seen for various values of z on larger patterns. Most interestingly,
under best case conditions it performs, on average, at about three times faster than
Quick Search.

Keywords: high-speed pattern matching single keyword matching, Boyer-Moore al-
gorithms, Sunday’s algorithm, faster pattern matching

1 Introduction

We consider the well-known single keyword string matching problem. We adopt the
convention that string s is treated as an array whose length is |s|. Its first element
is at index 0 and the element at index i is denoted by s[i]. A substring of length n
starting at index i is denoted1 by s[i, i+ n).

Given an alphabet Σ, a text string t ∈ Σ∗ and a single keyword or pattern string
p ∈ Σ+ of length |p| = m, the string matching problem is to find all indices of t where
a match of p occurs. A match of p at index i occurs if p[0,m) = t[i, i+m).

Following Cantone and Faro [1], we call t[i, i + m) the current window of the
text when p[0] is aligned with t[i]. To solve the string matching problem, ‘Boyer-
Moore style’ algorithms slide (or ‘shift’) the current window in t in a given direction

1 A set of successive integers {i, i+ 1, . . . j} is commonly represented in interval notation format as
one of the following: [i, j], [i, j + 1), (i − 1, j + 1) or (i − 1, j]. Our motivation for this substring
notation is to simplify +1 and −1 subscript expressions using square and round parentheses.

Bruce W. Watson, Derrick G. Kourie, Loek Cleophas: Quantum Leap Pattern Matching, pp. 104–117.
Proceedings of PSC 2015, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05787-2 c© Czech Technical University in Prague, Czech Republic

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 105

— normally in a forward direction (from left to right), but it could also be in a
backward direction (from right to left). After shifting the current window to index i
a match attempt at i is made. If the match attempt is successful then i is recorded
as a match location. Regardless of whether the attempt is successful, an offset value
from i (to the right of i in classical algorithms proceeding from left to right) is found
to indicate where the next match attempt should take place. Naturally, such an offset
must not miss any intervening matches, and it is called a safe offset or shift.

The offset is usually given by a shift table that is precomputed from the structure
of p — see [6] for examples of such a shift functions. The simplest such table is
accessed by indexing by a character in the substring t[i,m + 2), although certain
algorithms instead use more information, such as two characters in this range and
use a two-dimensional shift table. Due to its simplicity and efficiency, we specifically
focus on Sunday’s Quick Search shift table [9]. Shift tables are covered in books such
as [2,4,8]. See [1] for a recent survey of related algorithms and shift tables, while [3]
gives a calculus for arriving at all of the known shift tables as well as designing new
ones.

When a current window at i is slid in a forward direction, a forward shift table
provides an integer shf ∈ [1,m + 2) indicating that the next match attempt should
be at a window at i + shf. The heuristics used to set up the shift table guarantees
that no match is missed — there is no match in the index range [i+ 1, i+ shf). Note
this must hold regardless of previous match attempts in the range [0, i+ 1).

Dually, if we were sliding the current window at i in a backward (right to left)
direction, a backward shift table provides an integer shb ∈ [1,m + 2) indicating that
the next match attempt may be made at a window at i − shb, since no match at
an index in the range (i − shb, i) is possible. Again, the validity of this assertion is
independent of whether match attempts have previously been made at indices in the
range [i, |t|+ 1).

Some algorithms partition the search space over t at one or more indices of t —
see [10]. Windows are placed to the right and left of such indices and, after match
attempts, they are slid in a forward and backward direction respectively. The scenario
is loosely depicted in Figure 1a. The figure assumes that the indices in the interval
(j, i) have already been checked. It further assumes that the offset shb results from a
match attempt at j followed by a backward table lookup, while the offset shf results
from a match attempt at i followed by a forward table lookup.

Suppose that Figure 1b, a variant of Figure 1a, is the result of executing some
abstract string matching algorithm. (Ignore for the moment the entries at the top of
the figure that refer to z. They shall be addressed in Section 2.) The figure was inspired
by our experience that algorithms based on Figure 1a incur penalties (including cache
miss penalties) because of the bookkeeping required in respect of the partitions over t.
Figure 1b assumes that a forward scan has already checked all indices in the interval
[0, i) for matches, thus avoiding the cache miss problem encountered by algorithms
based on the latter figure. Additionally, this figure assumes that all information in
Figure 1a is available and that i < j.

Clearly, if the predicate

i+ shf ≥ j − shb + 1 (1)

was true, then the abstract algorithm could safely resume further processing at j,
thus making a right shift that is larger than shf. If predicate (1) is false, then i+ shf
serves as a fall back position from which to resume further processing.

106 Proceedings of the Prague Stringology Conference 2015

t

· · · i i+ 1 · · · i+ shf− 1

No matches here

i+ shf

Checked

· · ·jj − 1· · ·j − shb + 1

No matches here

j − shb

(a) Dead Zone

t

p

← Checked → i i+ 1 · · · i+ shf− 1

No matches here

i+ shf · · · · · ·jj − 1· · ·j − shb + 1

No matches here

i+ zz

(b) The Quantum Leap Matching Concept

Figure 1: Dead Zone vs Quantum Leap Matching Concept

The intuition reflected in Figure 1b served as the starting point for exploring
whether and how an algorithm can be developed to exploit the possibility of leapfrog-
ging over shf to produce larger shifts. Because this is a possibility and not a given,
we call our approach the quantum leap strategy.

Reliance on dual shift tables may be used to update existing string matching
algorithms. In Section 2 we outline how this can be done for the well-known Quick
Search (QS) algorithm proposed by Sunday [9]. We call this the Quantum Leap QS
algorithm (QLQS). Then Section 3 describes the empirical results yielded by this
algorithm. Reflections on these results are presented in a final concluding section.

2 The QLQS Algorithm

An abstract algorithm that relies on predicate (1) is entirely generic in that it does
not depend on how shf and shb are obtained. All that matters is that their values
should ensure that matches are not possible in the two regions in Figure 1b marked
“No matches here”. As mentioned earlier, to derive the concrete QLQS algorithm,
we decided to rely on QS’s forward and backward shift tables as the dual shift tables
needed for shf and shb. We compare our results against QS.

2.1 QLQS derived from QS

After a match attempt at i, QS uses the character at t[i + m] as an index into its
(forward) shift table to find shf—the offset from i for the next match attempt. It is
well-known that for QS, shf will lie in the range [1,m+ 2).

To proceed, an abstract algorithm based on QS would determine the value of shb
by indexing into QS’s backward shift table at the character t[j−1], where j has some
suitably chosen value. Unfortunately, it is not clear how to choose such a value for
j. It would be pleasant if a “magical” choice of j guaranteed two conditions at every

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 107

match attempt: firstly, that the length of the interval [i+ 1, j) is at a maximum; and
secondly, that for the chosen j the predicate (1) continues to hold. To guarantee just
the first condition would mean to have foreknowledge of the next match index and to
choose j exactly at that index—something which is clearly infeasible. To guarantee
the second condition without incurring the expense of additional probes between i
and j is only possible for trivial choices of j. (Subsection 2.2 will examine possible
ranges of j.) To avoid such computational expense, a compromise action is to rely
on some fixed offset ahead of i whose compliance with predicate (1) is stochastically
determined.

Let us call this offset z, and assume that j = i+ z. This is depicted at the top of
Figure 1b. In principle, at every new match attempt in a search, a different value for
z could be selected according to some criterion. However, to keep things simple, our
research is based on a preselected z value over the entire search. Empirical results
discussed in Section 3 examine the consequences of selecting various values for z.

With elementary algebraic manipulation, predicate (1) can be rewritten in terms
of z as

shf > z − shb (2)

or equivalently shf + shb > z

After every match attempt, it is now necessary to check whether predicate (2) holds
for the preselected value of z. To carry out this check the value of shb has to be
obtained by looking up QS’s backward shift table for the character t[i + z − 1] and
then evaluating the revised predicate (2). If predicate (2) turned out to be true,
then the next match attempt could take place at i + z; otherwise the next match
attempt must necessarily be at i + shf. Note, however, that to save on algorithmic
computations during run time, the minus operation can be avoided in predicate (2)
by precomputing and storing shb′ = z−shb instead of shb as the backward shift table.

A new algorithm can now be very simply derived from QS by carrying out the
following four steps.

1. Select a suitable value for z;

2. Precompute the table for shb′;

3. Replace the QS assignment statement that unconditionally increments i by shf for
the next match attempt index with a conditional statement incrementing i by z
if (shf > shb′) or by shf otherwise.

4. Pad the tail end of t as necessary to ensure that the reference to t[i+ z − 1] does
not cause an array bound error in the last iteration of the main algorithm loop.

Figure 2 gives the resulting C code for this revised algorithm. It contains a counter,
count, for the number of matches. The array shf stores the precomputed forward
table and the array shb stores the precomputed values for the shb′ values. The in-
structions differ from the conventional QS algorithm only in that the conditional
assignment statement in lines 9 to 11 has replaced a conventional assignment state-
ment, i += shf[T[i+m]], that would be used in QS. The variable z is global to the
code.

We conjecture that these simple steps, appropriately adapted, could be used to
modify practically any of the common string matching algorithms.

108 Proceedings of the Prague Stringology Conference 2015

1 stat ic int search (const unsigned char ∗P, int m, const unsigned char ∗T, int n) {
2 int k , i , count ;
3 i = 0 ;
4 count = 0 ;
5 while (i<=n−m) {
6 k=0;
7 while (k<m && P[i]==T[i+k]) i++;
8 i f (k==m) count++;
9 i += (sh f [T[i+m]] > shb [T[i+z−1]]

10 ? z
11 : sh f [T[i+m]]) ;
12 }
13 return count ;
14 }

Figure 2: C Code for QLQS

z < 1

z = 1

z ∈ [2,m+ 2)

z = m+ 2

z ∈ [m+ 2, 2m+ 2)

z = 2m+ 1

z > 2m+ 1

Figure 3: z Ranges Considered

2.2 Range of z Values

In QLQS outlined above, z is a constant. Variants of this algorithm might adjust
the value of z dynamically to reflect text characteristics that manifest as it is be-
ing searched. It is therefore important to consider the range of values that z may
legitimately and meaningfully assume, whether chosen as a constant or dynamically
changed during a variant of the algorithm. In the discussion to follow, without loss
of generality and for the sake of simplicity, reference to backward tables should be
construed to mean those whose values are represented by shb and not those whose
values are represented by shb′.

For given values of shf and shb, it is easy to see that z = shf + shb − 1 is the
largest value of z that complies with predicate (2). Since the range of possible values
for both shf and shb in QS shift tables is [1,m + 2), the minimum and maximum of
these largest possible z values are respectively attained when shf = shb = 1 and when
shf = shb = m + 1. In the former instances, shf + shb − 1 evaluates to 1 and in the
latter case shf + shb − 1 evaluates to 2m + 1. The points, z = 1 and z = 2m + 1,
are indicated in Figure 3, as well as various other points and ranges that will visually
support the discussion that follows.

Clearly, if z > 2m+1 then predicate (2) cannot be satisfied for any values assumed
by shf and shb, and consequently QLQS will always slide the current window ahead to
i+shf. It will therefore execute in exactly the same way as QS, but with an additional
overhead.

On the other hand, if z is selected in the range [1, 2m + 2) then for some values
of shf and shb within their permissible ranges predicate (2) may be satisfied, and for
others, not. Whenever the predicate is satisfied, QLQS will slide its window to i+ z,
and otherwise to i+ shf.

However, satisfying this predicate does not necessarily mean that z > shf and
so in these instances QLQS will not slide the window as far to the right as QS. A
necessary and sufficient condition for QLQS to slide further than QS is a conjunction

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 109

of the predicates (2) and z > shf, namely the predicate

(z < shf + shb) ∧ (z > shf)

or equivalently z ∈ [shf + 1, shf + shb) (3)

Since the maximal QS value for shf is m+ 1, any selection of z in the range [m+
2, 2m+2) guarantees compliance with the lower bound of the interval in predicate (3).
If, in addition, the current values for shf and shb result in compliance with the upper
bound—equivalently, if predicate (2) is satisfied—then QLQS will slide the window
further than QS.

If z ∈ [1,m+ 2) then the current values for shf and shb may or may not render z
compliant with predicate (3). If the predicate is indeed satisfied, then QLQS will slide
further than QS from the current window. If predicate (3) is false but predicate (2)
is satisfied, then QLQS will slide less than (or the same as, if z = shf) QS from the
current window.

If z = 1, then predicate (2) is always satisfied, but predicate (3) is never satisfied.
As a result, the window will always slide to i + z = i + 1. Thus, QLQS degenerates
to the most näıve string matching algorithm—one that merely slides the window by
one position in each iteration.

Finally, if z < 1 then inspection will confirm that predicate (2) is satisfied for all
possible values of shf and shb, while predicate (3) is never satisfied. QLQS executed
with z < 1 will therefore always slide to i + z < i + 1. If z = 0 then this means
staying in the same window as before. The algorithm effectively ends up in an infinite
loop, carrying out a match attempt in the same place. If z < 0 and the current value
of i + z ≥ 0 then the slides to the left and a region already checked before will be
rechecked—the region marked Checked in Figure 1b. This is obviously redundant. If
z < 0 and the i + z < 0, then the next match attempt will involve an out-of-range
index of t. This will be the case if z < 0 is used in the first iteration of the algorithm.
Any algorithm built around a dynamically changing value of z should account for
these boundary problems.

Table 1 summarises the foregoing discussion. Columns represent differing possible
choices of z as given in the column heading. The first three rows indicate whether
the predicate in the row heading (on the left) is always true, always false, or possibly
either depending on the specific values of shf and shb, indicated by true, false or
depends respectively. (Note that row 2 corresponds to predicate (2) and row 3 cor-
responds to predicate (3).) Row 4 indicates whether the offset from i will definitely
be z, or definitely shf or either one of these values, depending on whether or not
predicate (2) is satisfied. The final row indicates the worst outcome for the z in each
respective column.

z is < 0 = 0 = 1 ∈ [2,m+ 2) ∈ [m+ 2, 2m+ 2) > 2m+ 1

z > shf false false false depends true true
z < shf + shb true true true depends depends false
z ∈ [shf + 1, shf + shb) false false false depends depends false
Offset of i z z z z or shf z or shf shf
Worst case Array Loop Näıve (z < shf) ∧ (z ≥ shf + shb) ∧ Needless
outcome error error alg i = i+ z i = i+ shf work

Table 1: Consequences of different z value choices

110 Proceedings of the Prague Stringology Conference 2015

2.3 QLQS Behaviour

The foregoing provides a basis for theoretically assessing the behaviour of QLQS.
Note that, in comparison to QS, every shift of this QLQS algorithm requires an addi-
tional table lookup and the execution of a conditional statement instead of a simple
assignment statement. The potential gain for the extra computational workload is
longer shifts.

For illustrative purposes, Figure 4 shows an example (taken from from [2]) of four
match attempts that occur when searching for matches of p = GCAGAGAG in a string
t ∈ {A, C, G, T}24. Note that t is appropriately padded at the end with X’s and the
forward and backward shift tables are provided in Table 2.

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

t: G C A T C G C A G A G A G T A T A C A G T A C G X X

p: G C A G A G A G

Action: sh_f(position:8,:G):=:1:sh_b(position:16?1,:T):=:9,:so:1+9:<=:16:and:no:big:shift,:only:the:sh_f:shift:of:1
p: G C A G A G A G

Action: sh_f(position:9,:A):=:2:sh_b(position:17?1,:A):=:3,:so:2+3:<=:16:and:no:big:shift,:only:the:sh_f:shift:of:2
p: G C A G A G A G

Action: sh_f(position:11,:A):=:2:sh_b(position:19?1,:A):=:3,:so:2+3:<=:11:and:no:big:shift,:only:the:sh_f:shift:of:2
p: G C A G A G A G

Action: sh_f(position:13,:T):=:9:sh_b(position:21?1,:T):=:9,:so:9+9:>:16:and:BIG:SHIFT:of:z=16,:but:off:the:end,:so:stop
Stop p: G C A G A

Attempt/4

Attempt/3

Attempt/2

Attempt/1

Figure 4: An example from [2]

Σ A C G T X
shf 2 7 1 9 9
shb 3 2 1 9 9

Table 2: Shift tables for p = gcagagag

Clearly, in the best case, the maximum shift should occur at every iteration. This
will be the case if z is at its maximum (2m+1) and t and p are such that predicate (3)
is satisfied in each iteration. Such a scenario can be constructed by choosing t and
p to have disjoint character sets. In such a case, each shift of QLQS will be 2m + 1,
exceeding QS’s maximal shift of m+ 1 by m. The upper bound on the total number

of shifts is d |t|
(2m+1)

e compared to d |t|
(m+1)

e for QS.

Figure 5 illustrates how windows slide under best conditions, both for QS and
QLQS . Text t = a23 is padded at the end with X’s and p = 01234 is used. The four
match attempts required by QS are shown, where shf is is looked up at t[5], t[11], t[17]
and t[23]. QLQS requires two match attempts. The first needs shf and shb lookups at
t[5] and t[11] respectively; and the second at t[16] and t[22] respectively.

Worst case behaviour is manifested in both QLQS and QS if every window in
t matches p. This is the case for both algorithms when |Σ| = 1. We have already
pointed out that this worst case behaviour will also be exhibited if QLQS is run with
z chosen as 1. In such instances, both algorithms can slide ahead by only one position
at each iteration, each therefore execute (|t| − |p|) iterations.

For randomly chosen t and p when |Σ| > 1, behaviour will be consistent with the
analysis given in Subsection 2.2 and summarised in Table 1. Randomness implies that
the values for shf and shb are randomly distributed over the interval [1,m + 2)—i.e.
choosing a random character from Σ and indexing either shift table on this character,
is equally likely to return any of the integers in the interval [1,m+ 2).

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 111

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
QS: t: a X X X

p: 0 1 2 3 4
Action: shift_qs(position85,8a)8=86

p: 0 1 2 3 4
Action: shift_qs(position811,8a)8=86

p: 0 1 2 3 4
Action: shift_qs(position817,8a)8=86

p: 0 1 2 3 4
Action: shift_qs(position823,8a)8=86

Stop p: 0 1

Big1shifter:
p: 0 1 2 3 4

Action: sh_f(position85,8a)8=868sh_b(position811=1,8a)8=86,8so86+68>8118so8BIG8SHIFT8of8z=11
p: 0 1 2 3 4

Action: sh_f(position811,8a)8=868sh_b(position822=1,8a)8=86,8so86+68>8118so8BIG8SHIFT8of8z=118and8off8the8right8end,8so8DONE
Stop p: 0 1 2 3

Attempt12

Attempt11

Attempt12

Attempt13

Attempt14

Attempt11

Figure 5: Example of best case behaviour

Noting that shf and shb are bound from above, and that predicate (2) is satisfied
if their sum exceeds z, it is clear that the larger z that is chosen, the smaller is the
probability that shf + shb > z will hold and thus, the smaller the chance that z will
be used as the offset for the next match attempt. This observation mitigates against
using large z values in the presence of randomness. On the other hand, as indicated
in Table 1, if z < m + 2 then z < shf may be selected as the offset. The smaller the
value of z that is chosen, the more likely this is to happen, whereas it definitely does
not happen if z ∈ [m + 2, 2m + 2). This observation mitigates against using small
values of z.

It is beyond the scope of this research to take further these observations about
random behaviour and derive symbolic expressions for statistical metrics such as
the expected value or standard deviation. Instead, Section 3 reports on the empiri-
cal analysis undertaken in respect of the performance of QLQS on commonly used
benchmarking data.

2.4 Degenerate Forms of QLQS

It is instructive to consider in more detail the behaviour of QLQS in the degenerate
case when |p| = 1. Table 3 reflects this behaviour. It shows the shifts when z = q, . . . 4,
the pattern is the single character c and the current window in t is at i and t[i, i+4) =
c1c2c3c4. Under these circumstances, shf and shb can ony assume the values 1 (when
indexed by c) or 2 (when indexed by anything other than c). The table then shows
the various possible outcomes.

– As pointed out above, when z = 1(= m) the shift is always 1. Sometimes this will
be when QS could do a shift by 2 and so a non-optimal shift will occur.

– When z = 2(= m+ 1) then QLQS shifts always correspond to QS shifts.

– When z = 3(= 2m+ 1) then QLQS in one instance shifts ahead by 3 positions—
something that QS could not do.

– When z = 4(= 2m+2) then behaviour is as expected: only conventional QS shifts
can be made, at slightly additional computational expense.

112 Proceedings of the Prague Stringology Conference 2015

z shf = 1 ∧ shb = 1 shf = 1 ∧ shb = 2 shf = 2 ∧ shb = 1 shf = 2 ∧ shb = 2

z = 1 c2 = c ∧ c1 = c c2 = c ∧ c1 6= c c2 6= c ∧ c1 = c c2 6= c ∧ c1 6= c
Shift z z z Non-optimal z
z = 2 c2 = c Infeasible Infeasible c2 6= c
Shift shf z? z? z
z = 3 c2 = c ∧ c3 = c c2 = c ∧ c3 6= c c2 6= c ∧ c3 = c c2 6= c ∧ c3 6= c
Shift shf shf shf z
z = 4 c2 = c ∧ c4 = c c2 = c ∧ c4 6= c c2 6= c ∧ c4 = c c2 6= c ∧ c4 6= c
Shift shf shf shf shf

Table 3: QLQS shifts for m = 1, p = c and t[i, i+ 4) = c1c2c3c4 .

3 The Results

3.1 Experimental Design

The hardware platform used for this study is a 17-inch Macbook Pro (early 2011),
2.2 GHz (peaks at 3.0 GHz turbo) Intel Core i7 Quad-core (with another 4 virtual
cores), 8 GB of 1333 MHz DDR3 RAM, 256 KB of L2 Cache per core, 6 MB of L3
Cache. C Code was compiled with Gnu g++ Apple LLVM version 6.1.0 using opti-
misation -O3 and also optimisations unroll-loops and unit-at-a-time for perfor-
mance.

A software framework reads the text, t, from a specified file. Each pattern, p,
needed in the test is a substring of t of a designated length that starts at an index
whose value is determined by a pseudo-random number generator. An arbitrary string
matching function for a given t and p can be plugged into the framework, as well as
routines to set up forward and backward shift tables based on p. The framework
allows for specifying the number runs to take over the same data, for specifying the
number of random patterns of a given length to generate and for specifying a range
of different pattern lengths to use.

The framework was configured to always execute 5 runs over the same data and to
generate 30 randomly selected patterns for each specified length. This configuration
is in line with findings reported in [7] about appropriate statistical sample sizes and
appropriate times to repeat a run over given data. It was additionally configured to
generate patterns of length m = 1, . . . , 32, 256, 1024.

C-coded versions of both QS and of QLQS (slightly altered for display purposes
in Figure 2) were provided. In the case of QLQS, runs were executed for all z values
in the range [m, 2m+3). This provides data about scenarios described in the last two
columns of Table 1, headed “∈ [m+ 2, 2m+ 2)” and “> 2m+ 1” respectively. It also
provides for limited data about scenarios described in the preceding two columns of
the table, namely those headed “= 1” and “∈ [2,m + 2)”. Although the boundary
cases (i.e. when z = m and z = m+ 1) are always covered, data for z ∈ [1,m) is only
available for limited values of m.

We realised ex post facto that more complete data for z ∈ [1,m) over all pattern
lengths could also be of interest (albeit somewhat marginal) to investigate empirically
how frequently QLQS selects shifts smaller than QS for such z values. Such data will
be included in future investigations. Of course, there is no practical value in empir-
ically investigating QLQS behaviour when z < 1 since that will lead to algorithmic
errors — as indicated in the first two columns of Table 1.

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 113

As text data sources, the Bible file (approximately 4MB) and the Ecoli file (ap-
proximately 4MB) from the SMART corpus were used [5] were used. The distribution
of alphabet symbols over the indices of the text from the latter file is conjectured to
be random and so may be characterised as a random text. We shall refer to it as ts to
indicate that its alphabet is relatively small. The text based on the Bible file could be
said to approximate randomness with respect to English text, but not with respect
to the distribution of its alphabet symbols of text index positions. Since it contains
63 different symbols — roughly eight times more than the Ecoli file — it serves to
represent QLQS behaviour over a (relatively) large alphabet and so we refer to it as
t`. For convenience, the shift tables needed for QS and QLQS were implemented as
arrays of size 256 for both these texts. It is conjectured that the speed and space
implications for these overly large tables are negligible.

In addition to the foregoing arrangements for measuring “random” behaviour, the
behaviour of QLQS and QS on best case data was also measured. Such data for both
algorithms is easily constructed by using disjoint alphabets for p and t. Here a 4MB
text was used and pattern lengths ranged over m ∈ [1, 257). The theoretical best case
performance for QLQS, is when z = 2m + 1. However, as a sanity check, times were
taken for all z values in the range [1, 2m+ 2).

All timing data is gathered in nanoseconds but for reporting purposes these times
are converted into milliseconds. In all our reporting we use the minimum time over
the 5 runs on the same data item to eliminate possible outlier timings caused by
unscheduled operating system effects.

The timing for these runs excludes precomputational time required to set up the
shift tables — in contrast to benchmarking frameworks such as SMART. In practical
use-cases, such as network security, antivirus, etc., the precomputation of the shift
tables is done once (per keyword, often offline on a server), while the string matching
is conducted repeatedly over large (sometimes unending) input strings. As a result,
the time required is quickly overwhelmed by the string processing time for a large
input string.

3.2 Outcomes: The Broad Picture

The subfigures of Figures 6 and 7 have been selected to illustrate one or more repre-
sentative features of the data. Each subfigure contains, for a specified pattern length,
several box-and-whisker plots. Such a plot indicates the median, quartiles and outlier
regions in relation to measurements (in y-axis units) over a sample. Generally these
measurements pertain to a sample of QLQS data for the z value given on the x-axis.
Where the measurements relate instead to QS, this is also indicated on the x-axis.
In the present instance, the sample is the set of 30 randomly generated patterns of
the length under consideration in the subfigure. These lengths are m = 1, 5, 1024 and
1024 for Subfigures 6a, 6b, 7a and 7b respectively.

The plots in Subfigure 6a on the left hand side refer to time performance of
QLQS and QS for runs over t`. The same plots are given on the right hand side
for runs over ts. In each case m = 1 and z = 1, . . . , 4. Subfigures 6b and 7a give
similar plots for time performance for QLQS and QS, but for m = 5 and m =
1024 respectively. Subfigures 6b and 7b incorporate plots for data described in the
captions as %QLQS shifts. By this is meant the percentage of all shifts in a run to
the window t[i + z] instead of the conventional QS shift to t[i + shf]. (Note that the

114 Proceedings of the Prague Stringology Conference 2015

data in Subfigure 6b has been scaled by a factor of 10 to keep within the range of the
performance data in the same subfigure.

As a visual aid, plots of particular interest are coloured according to the following
guidelines: plots relating to time performance are in blue, gold or green and plots
relating to %QLQS shift data are in red or pink. The blue and red plots relate to
z values that merit particular attention. Plots for z = 2m + 2 are coloured in light
green and QS plots are coloured in dark green. The plots in Subfigure 6a are for

●

●

●●

●

●

●

●

●

●

Z=1 Z=2 Z=3 Z=4 QS Z=1 Z=2 Z=3 Z=4 QS

5
10

15
20

25

T
im

e
in

 m
ill

is
ec

on
ds

(a) t` vs ts times
m = 1 and z = 1, . . . , 4

●

Z=5 Z=7 Z=9 Z=11 QS Z=6 Z=8 Z=10 Z=12

0
2

4
6

8
10

T
im

e
in

 m
ill

is
ec

on
ds

P
er

ce
nt

ag
e

/ 1
0

(b) Time compare to % QLQS shifts
m = 5 and z = 5, . . . , 12

Figure 6: QLQS performance for smaller patterns

patterns of length 1. There are undoubtedly more efficient single character search
algorithms than these degenerate instances of QS and QLQS. Nevertheless, the data
usefully illustrates a number of relevant broader trends and issues. Median times
for t` range between about 50 and 130 milliseconds compared to a range of about
160 to 240 milliseconds for ts. Also, ts plots show data spread over shorter ranges
than corresponding t` plots. These differences in behaviour in respect of strings from
small and large alphabets is consistent with other string matching algorithms and
can be explained from first principles. However, the subfigure also illustrates that,
despite these differences, trends in the data from ts to t` are similar. For example,
the ranking of the medians for z = 1, . . . 4 and QS is exactly the same for the ts and
t` data. Comparison of the other ts and t` data confirmed this broad correspondence.
Consequently, nothing of interest is missed by limiting further discussion here to the
t`-derived data.

Subfigure 6a shows that QLQS significantly improves on the speed of QS for z = 2
and 3, more than doubling it for z = 3. Its speed is more or less the same as QS for
z = 1 and worse for z = 4. This is consistent with the following generalisation about
data from all pattern lengths:

QLQS’s best performance over all z values tends to be better than QS for
relatively small m but that advantage is eventually lost as m increases.

By the time m = 1024, Subfigure 7a confirms that QS outperforms QLQS for all
values of z. (At m = 32, QLQS outperforms QS for several z values. This data is not
shown here.)

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 115

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1024 1026 1224 1424 1624 1824 2024 QS

0.
4

0.
6

0.
8

1.
0

1.
2

T
im

e
in

 m
ill

is
ec

on
ds

(a) Time for m = 1024,
z = 1024, 1025, 1026, 1124, . . . , 2024, 2050

●●

●● ●
● ●●●

1024 1026 1224 1424 1624 1824 2024

0
1

2
3

4

P
er

ce
nt

ag
e

(b) % QLQS shifts for m = 1024,
z = 1024, 1025, 1026, 1124, . . . , 2024, 2050

Figure 7: QLQS performance for larger patterns

Visual inspection of the subfigures that the median of the light green plot is
always greater than that of the dark green plot. This points to a general feature that
is evident in all the data, namely that QS always outperforms QLQS when z = m+2.
Of course, this is to be expected because, as observed in the last column of Table 1,
when z > m + 1 no QLQS shifts are made. Thus the QLQS algorithm behaves just
as QS, but incurs additional computational complexity.

The %QLQS plots in Subfigures 6b and 7b show explicitly that there are no
QLQS shifts when z = 2m + 2. Furthermore, both these subfigures show that as z
increases, the probability diminishes of doing a %QLQS shift. There is one exception
to this trend and that is when z = m+ 1. Once again the subfigures are typical of all
pattern sizes. The general trend is explicable. As z increases it becomes less and less
likely to comply with predicate (2), i.e. large values of z are less likely to be smaller
than shf + shb, and therefore less likely to be selected for the next shift.

When z = m+1, there is a significant dip in %QLQS shifts, and there is an accom-
panying worsening of QLQS time performance. This peculiar behaviour is manifested
in all the data for QLQS when m ≥ 4. It can be seen in the performance plots in
Subfigures 6b and 7a as well as in the %QLQS plots in Subfigures 6b and 7b.

To explain the dip in %QLQS shifts, note that when z = m+ 1 then the same
character, say c, in t is being used to index into the forward and backward
shift tables and retrieve a value for shf and shb. If c does not occur in p then
shf = shb = m+ 1 so that z < shf+ shb = 2m+ 2. Since predicate (2) holds, z
will be used as the offset for the next move.
Suppose c occurs one or more times in p. By definition shf is the length of the
suffix in p that begins at the leftmost occurrence of c and shb the length of
the prefix of p that has the leftmost occurrence of c as its last element. The
maximal value of shf+ shb = m+ 1 and occurs when there is only one instance
of c in p. In this case predicate (2) is not satisfied (equality holds) and so the
offset used for the next move is shf.
We conjecture that the dip in time performance relates to the way in which
the operating system and compiler handle the aliasing that arises in line 9 of

116 Proceedings of the Prague Stringology Conference 2015

the code in Figure 2 — the same location in text vector T is referenced by two
different index expressions.

The foregoing means that all the plots for %QLQS shifts when z = m+ 1 reflects
the percentage of times that a character does not appear in the pattern but appears
just to the right of a window used in the text.

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

1# 11# 21# 31# 41# 51# 61# 71# 81# 91# 101# 111# 121# 131# 141# 151# 161# 171# 181# 191# 201# 211# 221# 231# 241# 251#
Pa#ern'Size'

Figure 8: Best Case Performance Ratios: QLQS
QS

% for m ∈ [1, 257)

Figure 8 graphs the performance ratio of QLQS time divided by QS time under
the best case data previously outlined — disjoint pattern and text alphabets and
z = 2m + 1. The average and standard deviation of these observations is 23% and
9% respectively, with maximum and minimum values of about 58% and 9%. Thus,
QLQS on average performs at about one third of QS’s speed over all pattern lengths
tested.

4 Conclusion

We have presented a new algorithm for single-keyword string pattern matching. The
algorithm has a number of interesting properties:

– It outperforms Sunday’s QS algorithm in most cases with an appropriate choice
of z.

– QLQS significantly outperforms QS when the pattern consists of letters not ap-
pearing in the input text. In the best case, the two subalphabets are disjoint and
the QLQS double’s QS’s performance, making half the number of match attempts.

– While large z choices appear to violate the principle that safe shifts larger than
m+ 1 are not possible, QLQS in fact makes the same number of table lookups as
QS — though uses them considerably more efficiently thanks to instruction-level
parallelism.

– Significant instruction-level parallelism is used by modern processors (in this case
Intel i7) to enable simultaneous shift lookups and simple arithmetic.

– The algorithm structure is as simple as Sunday’s QS, and considerably simpler
than many similar recent algorithms.

– The shift tables are easily computed and closely related to Sunday’s QS.
– This appears to be the first left to right algorithm using a backward shift distance.
– QLQS is an example of a speculative execution (take a Quantum Leap/shift, then

check if it was valid) algorithm.

There are several possible enhancements to this algorithm, as well as other areas
to use the Quantum Leap principle:

B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 117

– Simplify QLQS to be a probabilistic algorithm in which the validity of a z shift
is not checked. Measure such an algorithm over a range of z to determine the
probability of missed matches.

– Explore opportunities for coarse-grained parallelism in this style of algorithm.
– Benchmark QLQS using two dimensional shift tables (as opposed to two one

dimensional tables).
– Characterize the performance of QLQS on processors unable to use instruction-

level parallelism or with vastly different cache memory sizes (compared to the
i7).

– Apply the Quantum Leap principle to Boyer-Moore style algorithms in other pat-
tern matching areas such as multiple-keyword, regular expression, tree, and multi-
dimensional pattern matching.

– The shift tables used in QLQS should be formally derived in a correctness-by-
construction algorithm formalism.

References

1. D. Cantone and S. Faro: Improved and self-tuned occurrence heuristics, in Proceedings of the
Prague Stringology Conference 2013, J. Holub and J. Žďárek, eds., Czech Technical University
in Prague, Czech Republic, 2013, pp. 92–106.

2. C. Charras and T. Lecroq: Handbook of exact string matching algorithms, King’s College
Publications, 2004.

3. L. Cleophas, B. W. Watson, and G. Zwaan: A new taxonomy of sublinear right-to-left
scanning keyword pattern matching algorithms. Science of Computer Programming, 75 2010,
pp. 1095–1112.

4. M. A. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing
Company, 2003.

5. S. Faro and T. Lecroq: 2001–2010: Ten years of exact string matching algorithms, in Pro-
ceedings of the Prague Stringology Conference 2011, J. Holub and J. Žďárek, eds., Czech Tech-
nical University in Prague, Czech Republic, 2011, pp. 1–2.

6. A. Hume and D. Sunday: Fast string searching. Software — Practice & Experience, 21(11)
1991, pp. 1221–1248.

7. D. G. Kourie, B. W. Watson, T. Strauss, L. Cleophas, and M. Mauch: Empirically
assessing algorithm performance, in Proceedings of the Southern African Institute for Computer
Scientist and Information Technologists Annual Conference 2014, SAICSIT ’14, New York, NY,
USA, 2014, ACM, pp. 115–125.

8. W. F. Smyth: Computing Patterns in Strings, Addison-Wesley, 2003.
9. D. M. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) Aug. 1990,

pp. 132–142.
10. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation of

dead-zone single keyword pattern matching, in IWOCA, S. Arumugam and W. F. Smyth, eds.,
vol. 7643 of Lecture Notes in Computer Science, Springer, 2012, pp. 236–248.

	Quantum Leap Pattern Matching by Bruce W. Watson cl@@auth, and Derrick G. Kourie cl@@auth, and Loek Cleophas

