
Finding Long and Multiple Repeats with
Edit Distance

M. Federico1,P.Peterlongo2,N.Pisanti3,M.− F .Sagot4

1. Dip. di Ingegneria dell’Informazione, University of Modena and Reggio Emilia

2. INRIA Rennes

3. Dip. di Informatica, University of Pisa

4. INRIA Rhone Alpes

Prague, August 2011



Biological Problem

• Lots of data: seeking information for comparisons and
annotation.

• Analysis of biological sequences in order to find regularities
such as repeats.

Repeat size changes
according to the type of
signal:

• TFBS (5 - 25 bases)

• Satellites (>100 bases)

• Transposable elements,
LTRs (1.5 - 10 Kbases
and hundreds, resp.)

• Homolog genes (from
hundreds to thousands
bases)



Algorithmical Problem we want to address

Input: one or more genomes/chromosomes/DNA fragments

Output: repeats that are

• long: > 100 bp

• multiple: number of occurrences ≥ 2

• approximate: each pair of occurrences may show substitutions,
insertions or deletions in up to 10 to 15% of their length



Motivations

Multiple local alignment is a computationally expensive task

• Dynamic Programming complexity is exponential with the
number of input sequences

• Pairwise DP or DP of a sequence against itself (for finding
repetitions within a single sequence) are not practical for
input size as big as whole genomes

• Heuristics exist, but there is no guarantee of complete results



Filters

Tools that quickly discard fragments of
sequences that are guaranteed not to
contain any occurrence of a repeat, as
they do not fulfill a necessary condition

The necessary condition must be:

• as strong as possible

• fast to check



Filters

Tools that quickly discard fragments of
sequences that are guaranteed not to
contain any occurrence of a repeat, as
they do not fulfill a necessary condition

Lossy
inexact

vs Lossless
exact



Lossless Filters

lossless filters allow biologists to have exact results in reasonable time

input sequences
ACTGAAAA
CTTTGTGA
AACATACT

FILTER filtered sequences*
AAAA

AACATACT
repeat finding 

algorithm

output

T
F

T'
i

T
i

* all the repeats  +  false positives

TF + T ′
i � Ti



Lossless Filters for multiple repetitions: state of the art

• Hamming distance NIMBUS [1] [2]

• Edit distance TUIUIU [3] [4]

[1] P.Peterlongo, N.Pisanti, F.Boyer, M.-F. Sagot, SPIRE 2005.
[2] P.Peterlongo, N.Pisanti, F.Boyer, A.Pereira do Lago, M.-F.
Sagot, Journal of Discrete Algorithms 2008.
[3] P.Peterlongo, G.A.T.Sacomoto, A.Pereira do Lago, N.Pisanti,
M.-F.Sagot, BMC Algorithms for Molecular Biology 2009.
[4] M.Federico, N.Pisanti, P.Peterlongo: AICCSA 2010.



Basic idea of filters with edit distance

If two L long sequences are identical then they share exactly
L− q + 1 q-grams.

T A
AT

e.g. L=10 and q=2, the 9 q-grams are AT, TA, AA, AA, AT, TA,
AT, TT, TT.



Basic idea of filters with edit distance

If two L long sequences are identical then they share exactly
L− q + 1 q-grams.

T A
AT

e.g. L=10 and q=2, the 9 q-grams are AT, TA, AA, AA, AT, TA,
AT, TT, TT.



Basic idea of filters with edit distance

If two sequences are similar then they must still share at least a
certain number of q-grams.

ATTAAAATTT
ATAAATATTT

If two sequences do not share enough exactly conserved parts,
then they cannot be similar



Basic idea of filters with edit distance

If two sequences are similar then they must still share at least a
certain number of q-grams.

ATTAAAATTT
ATAAATATTT

If two sequences do not share enough exactly conserved parts,
then they cannot be similar



tuiuiu: target

Given:

• L > 0: lenght of repeats

• r ≥ 2: minimum number of repeat occurrences

• 0 ≤ d < L: maximum number of insertions, substitutions,
deletions between each pair of repeat occurrences

• S : a set of one or more input sequences

tuiuiu keeps fragments from S that may be part of an
(L, r , d)-Erepeat:

a set {w1, . . . ,wr} of r pairwise non overlapping words of length in
range [L− d , L + d ] such that dE (wi ,wj) ≤ d

dE (wi ,wj) = edit distance between wi and wj



tuiuiu: necessary condition

• Based on the minimal number of portions of fixed length q
shared by the occurrences of a repeat (q-grams)

ATTAAAATTT
ATAAATATTT

• good
the minimum number of q-grams that occurrences of a repeat
must share is

p = L - q + 1 - qd

first introduced by E.Ukkonen in TCS, 1992 for different purposes; also used by SWIFT

+ ”parallelogram condition” also already used by SWIFT

+ ”vertical projection”



tuiuiu: necessary condition

• Based on the minimal number of portions of fixed length q
shared by the occurrences of a repeat (q-grams)

ATTAAAATTT
ATAAATATTT

• good
the minimum number of q-grams that occurrences of a repeat
must share is

p = L - q + 1 - qd

first introduced by E.Ukkonen in TCS, 1992 for different purposes; also used by SWIFT

+ ”parallelogram condition” also already used by SWIFT

+ ”vertical projection”



tuiuiu: necessary condition

• Based on the minimal number of portions of fixed length q
shared by the occurrences of a repeat (q-grams)

ATTAAAATTT
ATAAATATTT

• excellent
the at least p q-grams shared by occurrences w and w ′ of a
repeat must be in the same order in w and w ′

+ ”horizontal projection”



tuiuiu: necessary condition

• Based on the minimal number of portions of fixed length q
shared by the occurrences of a repeat (q-grams)

ATTAAAATTT
ATAAATATTT

• excellent
the at least p q-grams shared by occurrences w and w ′ of a
repeat must be in the same order in w and w ′

+ ”horizontal projection”



tuiuiu

Input sequences are divided into blocks (L + b + d < 2L,
b = the smallest power of 2 greater than d . Among blocks
containing enough shared q-grams, it counts those that are in the
same order

r = 3 and minimum number of shared q-grams is p = 3



What’s left after tuiuiu

False Positives (fragments kept by the filter while not being part of
any repeat):

• FPrect due to check the condition for window of size L against
blocks of size almost 2L

• FPcond due to the fact that the condition the filter checks is
only a necessary condition, but not sufficient

• FP∗ due to check the condition between a window and blocks
(star shape) rather than all windows against all pairwise
(clique shape)

FPrect and FPcond are totally removed by an additional step of
local alignment between windows and blocks.



What’s left after tuiuiu

False Positives (fragments kept by the filter while not being part of
any repeat):

• FPrect due to check the condition for window of size L against
blocks of size almost 2L

• FPcond due to the fact that the condition the filter checks is
only a necessary condition, but not sufficient

• FP∗ due to check the condition between a window and blocks
(star shape) rather than all windows against all pairwise
(clique shape)

FPrect and FPcond are totally removed by an additional step of
local alignment between windows and blocks.



What’s left after tuiuiu

False Positives (fragments kept by the filter while not being part of
any repeat):

• FPrect due to check the condition for window of size L against
blocks of size almost 2L

• FPcond due to the fact that the condition the filter checks is
only a necessary condition, but not sufficient

• FP∗ due to check the condition between a window and blocks
(star shape) rather than all windows against all pairwise
(clique shape)

FPrect and FPcond are totally removed by an additional step of
local alignment between windows and blocks.



What’s left after tuiuiu

False Positives (fragments kept by the filter while not being part of
any repeat):

• FPrect due to check the condition for window of size L against
blocks of size almost 2L

• FPcond due to the fact that the condition the filter checks is
only a necessary condition, but not sufficient

• FP∗ due to check the condition between a window and blocks
(star shape) rather than all windows against all pairwise
(clique shape)

FPrect and FPcond are totally removed by an additional step of
local alignment between windows and blocks.



What’s left after tuiuiu

False Positives (fragments kept by the filter while not being part of
any repeat):

• FPrect due to check the condition for window of size L against
blocks of size almost 2L

• FPcond due to the fact that the condition the filter checks is
only a necessary condition, but not sufficient

• FP∗ due to check the condition between a window and blocks
(star shape) rather than all windows against all pairwise
(clique shape)

FPrect and FPcond are totally removed by an additional step of
local alignment between windows and blocks.



What’s left after tuiuiu

Types of False Positives (fragments of sequences kept by the filter
while not being members of a searched repeat):

• FPrect due to check the condition for window of size L against
blocks of size almost 2L

• FPcond due to the fact that the condition the filter checks is
only a necessary condition, but not sufficient

• FP∗ due to check the condition between a window and blocks
(star shape) rather than all windows against all pairwise
(clique shape)

How to reduce/eliminate the FP∗??



tuiuiu: how it filters

• star approach vs clique approach:
tuiuiu keeps fragments that satisfy the necessary condition
with r − 1 other fragments, without checking the condition
between these r − 1 other fragments

• p = 3 (minimum number of shared q-grams in the same order)



1) Reducing FP∗: Double Pass Strategy

• Motivation:



1) Reducing FP∗: Double Pass Strategy

• Solution:

1. run tuiuiu once on the input sequences
2. run tuiuiu once again on the filtered sequences (faster)

During the second pass:

• only fragments of kept sequences are considered

• only blocks containing kept fragments are tested while
checking the necessary condition



2) Reducing FP∗: Empty Block Strategy

• Motivation:

Necessary condition check:

• ALL possible blocks of all sequences are taken into account,
including blocks of already filtered sequences that may not
contain any kept fragment: empty blocks



2) Reducing FP∗: Empty Block Strategy

• Solution:
• double pass with extra time cost (even if negligible)

• detect empty blocks on the fly during the first pass (reduce the
search space and speed up the computation)

• double pass and empty block can co-exist



2) Reducing FP∗: Empty Block Strategy

• Solution:
• double pass with extra time cost (even if negligible)

• detect empty blocks on the fly during the first pass (reduce the
search space and speed up the computation)

• double pass and empty block can co-exist



Speedup of local alignment algorithms

Pre-processing of input sequences to speed up glam21

• 5 orthologous regions cystic fibrosis
transmembrane conductance regulator
gene (humans)

• Size: 5518041 bases

• Parameters: L=100, r=5, d=7, q=11

• Intel(R) Quad-core
Xeon(R) E5405/2GHz

• 10GB RAM

input sequences
CFTR

TUIUIU
single pass

filtered 
sequences
sel = 0.18% GLAM

output

3 min

30 h

19 s

1Frith, M., Hansen, U., Spouge, J.L. and Weng, Z. Finding Functionnal
Sequence Elements by Multiple Local Alignement



Speedup of local alignment algorithms

Pre-processing of input sequences to speed up glam21

• 5 orthologous regions cystic fibrosis
transmembrane conductance regulator
gene (humans)

• Size: 5518041 bases

• Parameters: L=100, r=5, d=7, q=11

• Intel(R) Quad-core
Xeon(R) E5405/2GHz

• 10GB RAM

input sequences
CFTR

TUIUIU
double pass

filtered 
sequences
sel = 0.12% GLAM

output

2 min

30 h

20 s

1Frith, M., Hansen, U., Spouge, J.L. and Weng, Z. Finding Functionnal
Sequence Elements by Multiple Local Alignement



FILMRED

We have a fast and accurate (no false negatives and very few false
positives) filter for finding multiple repeats with pairwise limited
edit distance

FILMRED is a tool to detect long repeats:

• that uses the filter as a preprocessing step

• that uses the information collected by the filter to speed up
the actual alignment step

• with a biologist-friendly visualization of results



Using data from the filter

Not just pre-processing of input sequences to speed up Multiple
Local Alignement.



Sketch of a possible pipeline

• Running tuiuiu

• Align each kept window against all its ’friends’ blocks (all
FPrect and FPcond are removed).
again EBS here + some more tricks to speed up

• Clique detection among blocks (many FP* are removed).

• Actual alignment of what is left and output.

The output is... a redundant set of redundant cliques!



Clique detection

• Consider a graph with a node per each block containing a
kept window, and en edge connecting two blocks if they
contain windows that are ’friends’.

• Search for maximal cliques in this graph using
Bron-Kerbosch’s algorithm using the vertex with largest
degree as pivot.

• Keep cliques of size k ≥ r : they are repetitions occurring k
times!

• This step is (surprisingly?) fast.

But indeed we get a redundant set of redundant cliques



Some first tests of our MLA

Dataset is five ortholog sequences of total size ≈ 5.5Mb.

First test: L = 100, d = 5, r = 3

Initially there are ≈ 5.5Mb windows
Time filter (four passes): 1021.03s to keep 4659 windows
Time alignment: 4.16s to keep 2306 windows
Time clique check: 0.03s to keep 202 cliques (actually ≈ 20
repetitions)
Time multiple alignment: 0.66 s
TOTAL TIME: 1025.88s (about 17’)



A redundant clique

—
clique found! 169071, 169070, 95585, 95584, 95583
—
Five occurrences that are actually two!

Possible reasons are

• Tandem repeats (unlikely).

• The same window can be contained in two consecutive blocks.

• Parameter d is too large: actual repetition is more conserved
and allows shifts.



A redundant amount of cliques

—
clique found! 169071, 169070, 95585, 95584, 95583,
clique found! 169071, 169070, 169069, 95584, 95583,
clique found! 169070, 169069, 169068, 95583,
clique found! 169072, 169071, 95586, 95585, 95584,
clique found! 169072, 169071, 169070, 95585, 95584,
clique found! 169073, 169072, 95587, 95586, 95585,
clique found! 169073, 169072, 169071, 95586, 95585,
clique found! 169074, 169073, 95588, 95587, 95586,
clique found! 169074, 169073, 169072, 95587, 95586,
clique found! 169075, 169074, 95589, 95588, 95587,
clique found! 169075, 169074, 169073, 95588, 95587,
. . .
—
Many cliques for actually a single repetition: the length of the
actual unique repetitions was underestimated: parameter L was
too small.



Redundancy removal

• The two clique redundancies type can co-exist.

• Redundancy occurs when parameters are not accurate:
remove redundancy means performing an automatic
parameters tuning

• Remove redundancy by blocks merging on the fly, leading to
cliques made of enlarged non-overlapping blocks.



Some experiments: timing

[Intel(R) Quad-core Xeon(R) E5405/2GHz with 10 GB of RAM]

Performances of the different phases of FilmRed to find
(L, r , d)-Erepeats on the CFTR dataset (five ortholog regions of
the cystic fibrosis transmembrane conductance regulator gene in
chicken, cow, human, mouse and tetra for a total of 5518041
bases), with L = 100 and r = 5, and d = 7, 12, 14, 15.

Filter Semiglobal Align Clique detection Total
d time(s) sel time(s) sel time #cliques time(s)
7 64.20 0.05% 56.56 0 - - 120.76
12 1017.51 0.01% 0.88 0 - - 1018.39
14 3772.65 0.02% 1.41 0.001% 0.00 1 3774.06
15 7128.19 0.65% 740.01 0.003% 0.01 1 7868.21



Finding LTRs, an interesting application

Performances of the different phases of FilmRed with r = 3 on a
data set of size 26392324b of the mobilome of three S. Cerevisiae
genomes.

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 29.44 0.17% 744.48 0.09% 6.30 24 780.22
300 30 31.68 0.16% 1473.65 0.07% 2.13 13 1507.46
5000 500 9.00 0 - - - - 9.00

By using the annotation available for one of the three yeasts, we
found that all detected repetitions were either real LTR or are part
of a retrotransposon.



Searching LTRs in Sunflower

We compared repeats found by FilmRed in the Sunflower with
the ones found by the signature-based repeat finding tool
LTR Finder.
We observed that all the repeats identified by the other tool are
found also by FilmRed. The latter, however, returns also further
repeats, which are not identified by the former.

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 0.44 3.32% 3.38 1.10% 0.00 3 3.82
300 30 0.46 3.42% 7.36 0.98% 0.00 2 7.82
200 25 0.59 5.66% 4.24 2.57% 0.00 3 4.83
300 45 178.25 41.70% 35.59 3.15% 0.00 2 213.84



Future work

• A filter (also) based on (maximal) longer seeds with few errors

• k-mers statistics taking into account also their relative
distances (and not just the order.


