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Abstract. Many regular expression engines employ syntactical extensions to provide
simple, expressive support for real-world needs. These features are subroutine calls,
zero-width lookaround assertions, DEFINE rules, and named parenthesised expres-
sions. A subroutine call executes a specified subpattern where the call is placed, possi-
bly recursively. Lookaround assertions are either lookahead or lookbehind: a lookahead
is a conditional within a subpattern: when it fails, the match at the current position
of the whole subpattern fails, while a lookahead itself does not consume any input; a
lookbehind works as a lookahead except it checks the input prior to the current posi-
tion. A DEFINE rule introduces a subpattern for use by a subroutine call, while not
involved in matching where the rule is placed. A named parenthesised expression can
be executed by its name in addition to the parenthesis number. This paper presents a
formalisation of subroutine calls, DEFINE rules, and named parenthesised expressions
using the matching relation while attempting to mimic the behaviour of real-world reg-
ular expression engines. Also, we give an alternative constructive proof of equivalence of
expressive power of regular expressions extended with subroutine calls and the class of
context-free languages: a conversion between such expressions and context-free gram-
mars. Finally, the question of whether regular expressions with operations lookaround
assertion combined with subroutine call have greater expressive power than expressions
with only subroutine call is answered positively.

1 Introduction

Regular expressions were introduced by Kleene[13] as a theoretical concept with ex-
pressive power equivalent to regular languages (these are further referred to as classi-
cal regular expressions or RE). This concept plays an important role in pattern match-
ing and its variants with multiple (finite or infinite) patterns (see the taxonomy of
pattern matching problems by Melichar and Holub[16]). So-called regular expressions
have been implemented in many tools (e.g., UNIX text filters, text editors), program-
ming languages, and libraries (these expressions are often referred to as extended
regular expressions, practical regular expressions, or regexes). Unlike classical regular
expressions, regexes “seem to have been invented entirely on the level of software im-
plementation, without prior theoretical formalisation” (Schmid[22]). Moreover, both
the syntax and semantics of the regex flavours used in implementations differ from
each other (differences among the flavours were described by Friedl[8]). However, re-
searchers have been exploring the algorithmic and language properties of practical
regular expressions. Research results address properties of combinations of particular
features used in regexes rather than complete flavours.

One of the fields in which this paper is concerned focuses on the expressive power
of regexes and its relation to known language classes. Some syntactic constructs (not
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used in classical regular expressions) are known to be mere syntax sugar: they can
be rewritten to equivalent REs. Among these constructs are positive iteration (e.g.,
a+), character class (e.g., [abc]), or counting constraint (interval quantifier, e.g.,
a{3,8}) as pointed out, among others, by Câmpeanu et al.[4]. However, some fea-
tures of regexes impact their expressive power: nonregular languages can be matched.
A backreference indicates that a substring matched by a corresponding parenthe-
sised subpattern should be matched again at the positions where the backreference is
placed. Regexes with backreferences can match a proper subset of the class of context-
sensitive languages (the expressive power of backreferences was studied, among oth-
ers, by Câmpeanu et al.[4], Berglund et al.[2], or Schmid[22]). The expressive power
of a practical regular expression with features of RE extended by lookahead stays
within regular languages (Berglund et al.[3]). Regexes with subroutine calls describe
context-free languages (addressed in master’s thesis by Hruša[12]). When a practi-
cal regular expression with backreferences is extended by lookaheads, its expressive
power supersedes the expressive power of regex with only backreferences (Chida and
Terauchi[5]). Therefore, it is natural to wonder whether adding lookahead to a regex
with subroutine calls also impacts expressive power. This question is addressed in
this paper.

The formalisation of syntax and semantics of features of practical regular expres-
sions is an essential part of proving their expressive power. Aho[1] gave a relatively
informal definition of a regex with backreferences: the definition uses named variables,
while any variable can be reassigned. Câmpeanu, Salomaa, and Yu[4] precisely for-
malised the numbered backreferences. Another formalisation of backreferences, factor-
referencing, was introduced by Schmid[22]: it uses named variables which can be re-
assigned, and unlike the first formalisation[1], it deals with details of both syntax
and semantics. Regexes with lookahead were originally formalised by Morihata[17]
according to Berglund et al.[3]: the definition uses lookahead language. Chida and
Terauchi[6] formalised the regexes with lookaheads and numbered backreferences us-
ing the matching relation. The syntax and semantics of the regexes with numbered
subroutine calls were defined by Hruša[12]. To the author’s knowledge, there is no for-
malisation of DEFINE rules, named parenthesised expressions, or named subroutine
calls. This paper fills this gap by extending the notion matching relation.

Finding the expressive power of regex flavours is motivated by more than scientific
curiosity. Users of pattern matching tools need to know what can and can not be
matched by particular flavours of practical regular expressions1.

To the author’s knowledge, there has been almost no research on the expressive
power of regexes with subroutine calls. The first known text dealing with this gap was
published as a blog post by Popov[19] providing a sketch of a reduction of context-free
grammars to regexes with DEFINE rules and named subroutine calls. Popov’s claim
of the equivalence of expressive power of regexes with subroutine calls and context-
free languages was later formally proved by Hruša[12] while using numbered-only
subroutine calls. This paper gives an alternative proof to the Hruša’s while using the
matching relation and regexes with DEFINE rules and named subroutine calls. We
hope that our approach is more straightforward and extensible in future research.

1 As shown by several discussions at Stack Overflow, for example,
https://stackoverflow.com/q/35449863, https://stackoverflow.com/q/2974210, or
https://stackoverflow.com/q/4840988.

https://stackoverflow.com/q/35449863
https://stackoverflow.com/q/2974210
https://stackoverflow.com/q/4840988
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To the author’s knowledge, there is no peer-reviewed publication on the expres-
sive power of practical regular expressions with both subroutine calls and lookaround
assertions. The problem seems to have a solution due to Popov’s[19] sketch (or, more
precisely, an idea) of a reduction from context-sensitive grammars to regexes2. How-
ever, we show a counterexample. In addition, we present proof that the expressive
power of practical regular expressions with lookaround assertions and subroutine calls
is greater than the expressive power of expressions with only subroutine calls.

This paper focuses on the expressive power of regex with subroutine calls (sub-
pattern recursion) and lookaround assertions. Our contributions are the following:

– We give a formalisation of practical regular expressions by extending the notion
of the matching relation. In particular, this paper gives the formalisation of con-
structs named parenthesised expression, DEFINE rule, and both numbered and
named subroutine calls. Our formalisation mimics the syntax and semantics of
Perl-Compatible Regular Expressions (PCRE2, as documented on the manual
page[10] and as we experimentally verified). At the same time, it also works for
Perl regular expressions[18] and Ruby Regexp class[20].

– We prove that the expressive power of regex with concatenation, alternative, DE-
FINE rule, and subroutine call is equal to the class of context-free languages. This
proof is based on the matching relation and works for regex with numbered and
named subroutines.

– We show that adding lookaround assertions to regexes with subroutine calls ex-
tends their expressive power beyond context-free languages. In addition, we also
show that the equivalence of the expressive power of these regexes to the class of
context-sensitive languages remains an open problem.

This paper is structured as follows. In section 2, we give notational preliminaries.
Section 3 contains the formalisation of practical regular expressions with subroutine
calls. In section 4, we present proof that the expressive power of regexes with sub-
routine calls is equal to context-free languages: a conversion between such a regex
and context-free grammar. Section 5 contains proof that adding lookaround assertion
extends the expressive power of practical regular expressions with subroutine call. In
section 6, we conclude the paper and discuss future work.

2 Preliminaries

The set of natural numbers is denoted by N and is without zero. The mathematical
symbols ∅, ∪, ∩, \, ∧, ∀, and ∄ denote the empty set, set union, set intersection, set
difference, logical conjunction, universal quantifier, and negated existential quantifier,
respectively. If V and X are sets, V being a subset (or a strict subset) of X is denoted
by V ⊆ X (or V ( X , respectively). An alphabet, denoted by A, is a finite nonempty
set whose elements are called symbols. A string over A is a finite sequence of elements
of A. The empty sequence is called the empty string and is denoted by ε. The set
of all strings over A is denoted by A∗ and the set of all nonempty strings over A is
denoted by A+. The length of a string y is the length of the sequence associated with

2 The reduction of context-sensitive grammars to regexes seem to be trusted: for ex-
ample, a Stack Exchange contributor claims that regexes with subroutine calls and
lookaround assertions can express any context-sensitive language using Popov’s argument:
https://cs.stackexchange.com/q/143221.

https://cs.stackexchange.com/q/143221
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y and is denoted by |y|. By y[i], where i ∈ N∧ i ∈ {1, . . . , |y|}, we denote the symbol
at the index i of y. The concatenation of strings y1 and y2 is denoted by y1y2. Thus,
y = y[1]y[2] . . .y[|y|]. The substring of y that starts at the index i and ends at the
index g is denoted by y[i..g]; that is, y[i..g] = y[i]y[i + 1] . . .y[g]. A language over
an alphabet A is a set of strings over A, denoted by L ⊆ A∗. The concatenation of
languages L1, L2 is denoted by L1 · L2 and is defined as L1 · L2 = {y = y1y2 : y1 ∈
L1 ∧y2 ∈ L2}. The closure of a language L is denoted by L∗ and is defined as

⋃

g≥0 Lg

where L0 = {ε}, L1 = L, and for g > 1: Lg = L · Lg−1.
The following grammar-related notions follow the conventions of Hopcroft et

al.[11] and Mateescu et al.[15]. A grammar is a quadruple G = (V , A, R, S) where
A ∩ V = ∅, S ∈ V, and R is a set of pairs (v1, v2) where v1 ∈ (A ∪ V)∗ ∩ V+ and
v2 ∈ (A ∪ V)∗. The sets V (nonterminals), A, and R are finite. We use the following
naming and typographic conventions: a ∈ A, N ∈ V, x,y ∈ A∗, and v ∈ (A ∪ V)∗

(bold italic sans serif for a string that can contain a nonterminal). The members of
the set R are called productions and are written with → as a delimiter of the left-
and right-hand side. Multiple productions with the same left-hand side can be con-
tracted: for instance, if v → v1, v → v2 ∈ R then we can write v → v1 | v2 ∈ R. A
derivation step in grammar G = (V , A, R, S) is denoted by =⇒

G

and defined as follows.

If v1 ∈ (A ∪ V)+, p, s, v2 ∈ (A ∪ V)∗, and v1 → v2 ∈ R then pv1s =⇒
G

pv2s. The

transitive closure of =⇒
G

is denoted by =⇒
G

+, and the reflective and transitive closure is

denoted by =⇒
G

∗. If S =⇒
G

∗
v then the string v is called a sentential form and S =⇒

G

∗
v

is called a derivation of v in G. The language generated by grammar G = (V , A, R, S)
is denoted by L(G) and is defined as L(G) = {x ∈ A∗ : S =⇒

G

∗
x}.

We relate language classes of practical regular expressions to the Chomsky hierar-
chy ([7]). A context-sensitive grammar is a grammar (V , A, R, S) where every member
of R is of the form pNs → pvs where v 6= ε, and p, s ∈ (A ∪ V)∗. A context-free
grammar is a grammar (V , A, R, S) where all members of R are of the form N → v .

A derivation S =⇒
Gl

∗
v in a context-free grammar G is called the leftmost if at

each derivation step we replace the leftmost nonterminal (in a sentential form) by the
right-hand side of one of its productions. A context-free grammar (V , A, R, S) is in
Greibach normal form if every production is of the form N → av . [9],[14, lecture 21]

A context-sensitive language is a language that is generated by some context-
sensitive grammar. Context-free languages are defined likewise. The class of context-
free languages is denoted by LCF.

2.1 Regular expressions

The set of all classical regular expressions over an alphabet A is denoted by EC,A.
The syntax of classical regular expressions is given as follows (as defined in the
literature[11,13] and adapted to conform conventions used in tools and libraries; op-
erators are ordered by their precedence from the highest):

1. ∅ and ε are regular expressions,
2. for a ∈ A, a is a regular expression,
3. for r ∈ EC,A, (r) (parenthesised expression) is a regular expression,
4. for r ∈ EC,A, r∗ (iteration, Kleene star) is a regular expression.
5. for r1, r2 ∈ EC,A, r1 · r2 or r1r2 (concatenation) is a regular expression,
6. for r1, r2 ∈ EC,A, r1 | r2 (alternative) is a regular expression.
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The semantics of classical regular expressions (where the language matched by RE r

is denoted by L(r)) is given as follows[11]:

– L(∅) = ∅,
– L(ε) = {ε},
– for a ∈ A, L(a) = {a},
– for r ∈ EC,A, L((r)) = L(r),

– for r ∈ EC,A, L(r∗) =
(

L(r)
)∗

,

– for r1, r2 ∈ EC,A, L(r1r2) = L(r1) · L(r2),
– for r1, r2 ∈ EC,A, L(r1 | r2) = L(r1) ∪ L(r2).

The set of all practical regular expressions with operations iteration, concatena-
tion, alternative, DEFINE rule, lookaround assertion, subroutine calls, and numbered
and named parenthesised subexpressions over alphabet A is denoted by ELS,A,X where
the set of labels of named parenthesised expressions is denoted by X (X ∩ A = ∅).
The set of all regexes without lookaround assertions is denoted by ES,A,X . Each prac-
tical regular expression consists of characters that may occur in the input string (i.e.,
a ∈ A) and metacharacters that cannot occur in the input3: (, ), ?, =, <, > /∈ A.
For brevity, we write parentheses that denote a parenthesised expression with their
assigned number, e.g., (l)l. Our syntax closely follows the flavour PCRE2:

– the empty string, a character, iteration, concatenation, and alternative are defined
the same way as for classical regular expressions,

– r ∈ ELS,A,X ∧ l ∈ N : (lr)l ∈ ELS,A,X ,
– r ∈ ELS,A,X ∧ l ∈ N ∧ N ∈ X : (l?<N>r)l ∈ ELS,A,X (parenthesised expression

named N and numbered l),
– r ∈ ELS,A,X : (?(DEFINE)r) ∈ ELS,A,X (DEFINE rule),
– r ∈ ELS,A,X : (?=r) ∈ ELS,A,X (lookahead),
– r ∈ ELS,A,X : (?<=r) ∈ ELS,A,X (lookbehind),
– l ∈ N : (?l) ∈ ELS,A,X (numbered subroutine call),
– N ∈ X : (?P>N) ∈ ELS,A,X (named subroutine call).

The numbering of parenthesised expressions, both named and unnamed, is unique.
(Note that neither parentheses around lookahead, lookbehind, nor subroutine call
delimit a parenthesised expression.)

The semantics of regexes with numbered backreferences and lookaround assertions
was defined using the matching relation by Chida and Terauchi[5,6]. We closely follow
their definition4. A matching relation  is of the form (r,x, i)  R where r ∈
ELS,A,X , x ∈ A∗, i ∈ N ∧ i ≤ |x|, and R = {i : i ∈ N ∧ i ≤ |x| + 1} (matching
result). The rules for deriving the matching relation for practical regular expressions
with lookaround assertions are as follows:

(∅,x, i) ∅

(ε,x, i) {i}

3 For brevity, we deviate from the way real-world engines treat metacharacters: they can occur in
the input and can be matched in a regex when following a special escaping metacharacter (some
flavours can match some metacharacters even without escaping), mostly the backslash. We refer
the reader to Friedl[8].

4 We omit capturing environment as this paper does not deal with backreferences.
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a ∈ A ∧ i ≤ |x| ∧ x[i] = a

(a,x, i) {i + 1}
,
a ∈ A ∧ (i > |x| ∨ x[i] 6= a)

(a,x, i) ∅

(r,x, i) R ∧ ∀ih ∈ R \ {i} : (r∗,x, ih) Rh

(r∗,x, i) {i} ∪
⋃

1≤h≤|R\{i}| Rh

(1)

(r1,x, i) R ∧ ∀(ih) ∈ R : (r2,x, ih) Rh

(r1r2,x, i) 
⋃

1≤h≤|R| Rh

(2)

(r1,x, i) R1 ∧ (r2,x, i) R2

(r1 | r2,x, i) R1 ∪ R2

(3)

(r,x, i) R

((r),x, i) R
(4)

(r,x, i) R

((?=r),x, i) {i ∧ R 6= ∅}
(5)

y ∈ A∗ ∧ (y,x[i − |y|..i − 1], 1) R

((?<=y),x, i) {i ∧ R 6= ∅}
(6)

The language of a regex r ∈ ELS,A,X is L(r) = {x : (r,x, 1)  R ∧ |x| + 1 ∈ R}.
We also say that a string x ∈ L(r) matches a regex r (similarly, L(r) is the language
matched by r). The class of all languages that can be matched by the regexes of
ELS,A,X is denoted by LELS

. The class of all languages that can be matched by the
regexes of ES,A,X is denoted by LES

.

3 Formalizing expressions with subroutine calls and
lookaround assertions

We now formally define the semantics of practical regular expressions with named
parenthesised expressions, DEFINE rules, and numbered and named subroutine calls.
Our definition is an extension of the matching relation in the previous section. In this
section, the following notation is used: i, l ∈ N; N ∈ X ; r, r1, r2, r3 ∈ ELS,A,X ;x ∈ A∗.

The subroutine call attempts to match a given parenthesised expression at a cur-
rent position. To be able to use the subexpression given the parenthesis number, the
partial function σr is computed before the matching of regex r starts; it is defined as
follows:

σr : N → ELS,A,X ∧ r = r1(lr2)lr3 implies σr(l) = r2

If no confusion can arise, we use σ for simplicity. In addition to being unambiguous,
the numbering of parenthesised expressions (both named and unnamed) is not im-
portant for our results. Our definition conforms to some flavours of practical regular
expressions.5

Matching a numbered subroutine call means matching the subpattern given in l-th
parentheses from the current position. The subroutine call can be located anywhere
related to the referred subpattern (i.e., both forward and recursive calls are valid).

(σ(l),x, i) R

((?l),x, i) R

5 Namely PCRE2 and Perl. Both PCRE2 and Perl even support enabling duplicate parenthesis
numbers (it is not the default). Our definition needs to be modified for the Ruby Regexp class:
numbers cannot be used when at least one named expression is present.
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Matching a named subroutine call uses the parenthesised expression assigned to
the given name. Named parenthesised expressions can be identified by either their
name or number. Thus, a name is just an alias for the parenthesis number. The partial
function νr is computed before the matching of r starts. If the name is used for
multiple parenthesised expressions, νr assigns the name to the leftmost parentheses.

νr : X → N∧r = r1(l?<N>r2)lr3 implies νr(N) = l∧∄l′ < l : r = r
′
1(l′?<N>r

′
2)l′r

′
3

If no confusion can arise, we use ν for simplicity.

(σ(ν(N)),x, i) R

((?P>N),x, i) R
(7)

This matching relation for named subroutine call closely mimics the semantics of
PCRE2, Perl, and Ruby.

Any regex can be wrapped in a DEFINE rule. In addition to the possibility of
extending ν or σ, the DEFINE rule does not affect the matching.

((?(DEFINE)r),x, i) {i}
(8)

DEFINE rules with the above-defined semantics are supported by PCRE2 and Perl.

4 Expressive power of subroutine call

We give a rigorous proof of the equivalence of expressive power of context-free lan-
guages and practical regular expressions with subroutine calls. Our proof is based
on the matching relation and extends Hruša’s work[12], which is based on Popov’s
claim[19].

Theorem 1. LES
= LCF

To prove the class equivalence, we first show that every context-free grammar can
be converted to a regex with subroutine calls. Later, we show that every such regex
can be converted into context-free grammar.

Lemma 2. LCF ⊆ LES
.

We show that every context-free grammar can be expressed by a practical reg-
ular expression with the following sufficient operations: concatenation, alternative,
DEFINE rule with named parenthesised expression, and named subroutine call. In-
tuitively, such a regex contains all the building blocks of context-free grammar: con-
catenation, alternative, and the ability to reuse a subexpression, even recursively. The
conversion is formally defined by algorithm 1 and definition 3. The restriction of con-
version to Greibach normal form grammar does not change the expressive power: Any
context-free grammar (and therefore any context-free language) can be expressed by
a Greibach normal form grammar using a known transformation.[9][14, lecture 21]

Definition 3. Let us have a context-free grammar G = (V , A, R, S) and a regex
r ∈ ES,A,X where V = X . The function rx : (V ∪ A)∗ → ES,A,X is defined as follows:
let v1, v2 ∈ (A∪V)∗, a ∈ A, and N ∈ V then rx(ε) = ε, rx(a) = a, rx(N) = (?P>N),
and rx(v1v2) = rx(v1) rx(v2).
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Algorithm 1 Conversion of a context-free grammar to a regex
Input: a context-free grammar G = (V, A, R, S) in Greibach normal form
Output: a regex r ∈ ES,A,X such that L(G) = L(r)

1. initialize r = ε and consider X = V
2. for all productions with a non-terminal N on the left-hand side (N → vN1 | · · · | vNmN

∈ R):
(a) let rNg (1 ≤ g ≤ mN ) be constructed from the g-th right-hand side of the production for N

(vNg) by replacing the non-terminals with subroutine call: rNg = rx(vNg)
(b) add a DEFINE rule with parenthesised expression named N containing the strings rNg con-

structed from right-hand side of these productions, i.e., let r = r(?(DEFINE)(?<N>rN1 |
rN2 | · · · | rNmN

))
3. add the matching of the initial symbol, i.e., let r = r(?P>S)

Lemma 4. Let us have a Greibach normal form grammar G and a practical regular
expression r such that r is constructed by the algorithm 1 from G. For any possible
derivation step in G, a possible step exists in the matching relation for r.

Proof. Let the grammar be G = (V , A, R, S). Without loss of generality, we can
assume that only the leftmost derivations are used to derive any sentential form. Let
pNs =⇒

Gl
pvs be a derivation step (recall that this derivation step is possible only if

N → v ∈ R) where p ∈ A∗, s ∈ V∗ and v ∈ (V ∪A)+. Recall that due to algorithm 1,
r is in the following form:

(?(DEFINE) . . . ) · · · (?(DEFINE)(?<N> · · · | rx(v) | · · · )) · · · (?P>S) (9)

The following steps of the matching relation show that an expression of the form
p(?P>N) rx(s) (from step 2a follows that rx(p) = p) can always be resolved by the
concatenation of p, rx(v), and rx(s).

. . .

(rx(vN1),x, ih) RhN1

. . .
(rx(v),x, ih) RhNg

(rx(v),x, ih) RhNg

. . .
. . .

(rx(vNmN
),x, ih) RhNmN

(rx(vN1) | · · · | rx(v) | · · · | rx(vNmN
),x, ih) RhN =

⋃

1≤h′≤mN
RhNh′

. . .

(p,x, i) R′

(σ(l),x, ih) RhN

(σ(ν(N)),x, ih) RhN

(?P>N),x, ih) RhN

. . .

∀ihN ∈ RhN : (rx(s),x, ihN) RhsN

∀ih ∈ R′ : ((?P>N) rx(s),x, ih) Rh =
⋃

1≤hs≤|RhN | RhsN

(p(?P>N) rx(s),x, i) 
⋃

1≤h≤|R′| Rh

Note that R′ = {i + |p|} if x[i..i + |p| − 1] = p and R′ = ∅ otherwise. Furthermore,
the matching result for rx(v), RhNg, is involved in the expression matching. ⊓⊔

The following lemma holds due to lemma 4.

Lemma 5. Let us have a Greibach normal form grammar G and a practical regular
expression r such that r is constructed by the algorithm 1 from G. Then L(G) ⊆ L(r).

Lemma 6. Let us have a Greibach normal form grammar G and a practical regular
expression r such that r is constructed by the algorithm 1 from G. Then L(r) ⊆ L(G).

Proof. Let the grammar be G = (V , A, R, S) and x ∈ L(G). The general form of
a regex constructed by the algorithm is (9) while all subpatterns rx(v) of r are of
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the form a1 rx(s) where a1 ∈ A and s ∈ V∗ (due to the normal Greibach form).
Such a subpattern can exist only if N → a1s ∈ R (due to step 2a). Following the
matching relation, the initial step in matching, that is, (?P>S) which applies some
subpattern of named parentheses S, a2 rx(s ′), is possible only when x[1] = a2; such
a subpattern is constructed only if S → a2s

′ ∈ R. Suppose, for contradiction, that
a2 rx(s ′) matches x and x /∈ L(G). As s

′ = N1N2 . . . N|s′|, the only possibility is
that any of (?P>Ng) matches a substring y of x and Ng =⇒

G

∗
y is not possible.

However, due to the algorithm 1, the named parenthesised expressions in r contain
only subpatterns corresponding to the right-hand sides of the productions in G. Due
to the Greibach normal form, r can only match x using subpatterns in the same
order as productions of G are applied when generating x. In any situation when
a subroutine call (?P>Ng) occurs, G can use any production for Ng, because the
application of productions in context-free grammar is not restricted by their order or
context. ⊓⊔

The validity of lemma 2 was shown by lemmas 5 and 6: any context-free language
can be expressed by a regex with subroutine calls.

Lemma 7. LES
⊆ LCF.

We show that an equivalent context-free grammar can express any practical regu-
lar expression with operations concatenation, alternative, DEFINE rule with named
parenthesised expression, and named subroutine call. We begin by showing that re-
moving the other valid operations in ES,A,X does not change the expressive power.

Lemma 8 (Redundancy of Kleene star). Every regex of the form r
∗ ∈ ES,A,X

can be expressed as

(?(DEFINE)(?<N>ε | r(?P>N)))(?P>N) (10)

where N /∈ X .

Proof. The matching relation can be derived as follows:

(ε,x, i) {i}

(r,x, i) R′ ∧ ∀ih ∈ R′ : ((?P>N),x, ih) Rh

(r(?P>N),x, i) R =
⋃

1≤h≤|R′| Rh

(ε | r(?P>N),x, i) R ∪ {i}

((?(DEFINE)(?<N>ε | r(?P>N))),x, i) {i}

(σ(ν(N)),x, i) R ∪ {i}

((?P>N),x, i) R ∪ {i}

((10),x, i) R ∪ {i}

It is clear that the matching result is the same as that of the Kleene star (1). Although
the matching relation of the Kleene star (1) excludes i from rematching r

∗, this
exclusion does not affect the positions in its matching result. ⊓⊔

The following two redundancies of a standalone parenthesised expression are
straightforward and thus are left without proof. Each occurrence of parenthesised
expression put inside a DEFINE rule retains its parenthesis number and name, and
thus it does not affect any subroutine call.

Lemma 9 (Redundancy of named parenthesised expression). A regex in the
form (?<N>r) ∈ ES,A,X (named parenthesised expression outside the DEFINE rule)
can be expressed as

(?(DEFINE)(?<N>r))(?P>N)
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Lemma 10 (Redundancy of numbered parenthesised expression). A regex
in the form (lr)l ∈ ES,A,X (numbered parenthesised expression outside the DEFINE
rule) can be expressed as

(?(DEFINE)(l?<N>r)l)(?P>N)

where N /∈ X .

The redundancy of the numbered subroutine call (and its replacement with the
named subroutine call) is straightforward and thus left without proof.

Lemma 11 (Redundancy of numbered subroutine call). Let r ∈ ES,A,X be a
regex with operations concatenation, alternative, DEFINE rule with named parenthe-
sised expression, named subroutine call, and numbered subroutine call. To construct a
regex r

′ ∈ ES,A,X such that L(r) = L(r′) and r
′ does not contain numbered subroutine

call, r′ is the same as r with the following modifications: any occurrence of (?l) from
r is replaced with (?P>N) in r

′ where l refers to (?(DEFINE)(l?<N>rl)l).

The conversion of a regex to a context-free grammar is formally defined in algo-
rithm 2, which is inspired by Thompson’s[23] pattern matching algorithm as presented
by Hopcroft et al.[11, theorem 3.7] and closure properties of context-free languages
studied by Scheinberg[21] as presented by Kozen[14].

Algorithm 2 Conversion of a regex to a context-free grammar
Input: a practical regular expression r ∈ ES,A,X with operations concatenation, alternative, DE-
FINE rule with named parenthesised expression, and named subroutine call
Output: a context-free grammar Gr = (Vr, A, Rr, Sr) such that L(r) = L(Gr)

1. construct grammars for elementary expressions
– G∅ = ({S∅}, A, ∅, S∅)
– Gε = ({Sε}, A, {Sε → ε}, Sε})
– Ga = ({Sa}, A, {Sa → a}, Sa) : a ∈ A
– G(?P>N) = ({S(?P>N), N}, A, {S(?P>N) → N}, S(?P>N)) : N ∈ X

2. iteratively construct grammars for operations in a regex (suppose Gr1
= (Vr1

, A, Rr1
, Sr1

) and
Gr2

= (Vr2
, A, Rr2

, Sr2
) are already constructed for r1 and r2, respectively)

– Gr1r2
= (Vr1

∪ Vr2
∪ {Sr1r2

}, A, Rr1
∪ Rr2

∪ {Sr1r2
→ Sr1

Sr2
}, Sr1r2

) : Sr1r2
/∈ Vr1

∪ Vr2

– G
r1|r2

= (Vr1
∪Vr2

∪{S
r1|r2

}, A, Rr1
∪Rr2

∪{S
r1|r2

→ Sr1
| Sr2

}, S
r1|r2

) : S
r1|r2

/∈ Vr1
∪Vr2

– G(?(DEFINE)(l?<N>r1)l) = (Vr1
∪ {S(?(DEFINE)(l?<N>r1)l), Nl}, A, Rr1

∪ {Nl → Sr1
,

S(?(DEFINE)(l?<N>r1)l) → ε}, S(?(DEFINE)(l?<N>r1)l)) : S(?(DEFINE)(l?<N>r1)l), Nl /∈ Vr1

3. having grammar Gr = (Vr, A, Rr, Sr), for every nonterminal N ∈ X ∩ Vr: if Nν(N) ∈ Vr then
replace all occurrences of N in the right-hand sides of productions Rr with Nν(N)

4. return Gr

Lemma 12. Let r1, r2 ∈ ES,A,X . Let Gr1
,Gr2

be the grammars constructed by the
algorithm 2 from r1, r2, respectively. If L(r1) = L(Gr1

) and L(r2) = L(Gr2
), then

L(r1 | r2) = L(G
r1|r2

) and L(r1r2) = L(Gr1r2
).

Proof. For the alternative of regexes r1, r2, following the matching relation (3), r1 |
r2 matches some x if at least one of r1, r2 matches x. Clearly, x ∈ L(G

r1|r2
) if

x ∈ L(Gr1
) ∨ x ∈ L(Gr2

). Following the well-known construction of a context-free
grammar for the union of languages[21], L(r1 | r2) ⊆ L(G

r1|r2
) because Vr1

∩ Vr2
can

be nonempty. Suppose, for contradiction, that x /∈ L(r1 | r2) ∧ x ∈ L(G
r1|r2

) while
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L(r1) = L(Gr1
) and L(r2) = L(Gr2

). The only way it can happen is S
r1|r2

====⇒
G

r1|r2

+

p1N1s1 ====⇒
G

r1|r2

p1v1s1 ====⇒
G

r1|r2

∗
p2N2s2 ====⇒

G
r1|r2

p2v2s2 ====⇒
G

r1|r2

∗
x where N1 → v1 and

N2 → v2 are not from the same grammar Gr1
,Gr2

; in other words, N2 ∈ Vr1
∩ Vr2

∧
N2 → v2 /∈ Rr1

∩ Rr2
. All grammars from step 2 introduce unique nonterminals that

cannot appear in both Vr1
and Vr2

. The nonterminals of grammars G∅, Gε, and Ga

clearly cannot have different right-hand sides of productions in different grammars
Gr1

,Gr2
. Both nonterminals introduced by G(?P>N) can appear in both Vr1

and Vr2
,

however, due to step 3, every N from G(?P>N) is replaced by a single Nl that rewrites
to a unique nonterminal determined by a single DEFINE rule. Thus, it is not possible
to achieve N2 ∈ Vr1

∩ Vr2
∧ N2 → v2 /∈ Rr1

∩ Rr2
.

Similar arguments can be used to prove that L(r1r2) = L(Gr1r2
). ⊓⊔

Lemma 13. If Gr = (Vr, A, Rr, Sr) is constructed from r by algorithm 2 then
L(r) = L(Gr) for any r ∈ ES,A,X (with operations concatenation, alternative, DE-
FINE rule with named parenthesised expression, and named subroutine call) and Gr

is context-free.

Proof. The grammars are clearly correct for the cases of elementary expressions
∅, ε, a ∈ A. Assume that for r1 and r2, L(r1) = L(Gr1

) and L(r2) = L(Gr2
), re-

spectively. For a subroutine call (?P>N), the matching relation (7) is

(r1,x, i) R

(σ(l),x, i) R

(σ(ν(N)),x, i) R

((?P>N),x, i) R

where R contains all i′ such that x[i..i′ − 1] matches r1 and l identifies the leftmost
parenthesised expression named N . Production S(?P>N) → N of G(?P>N) is effectively
S(?P>N) → Nν(N) due to step 3. Nonterminal Nν(N) rewrites to Sr1

. Therefore, the
grammar G(?P>N) generates the same language as is matched by (?P>N).

The grammar G(?(DEFINE)(l?<N>r1)l) follows the matching relation for the DEFINE
rule (8). The correctness of both G

r1|r2
and Gr1r2

follows from lemma 12. Therefore,
step 2 constructs the correct grammars.

All grammars add only productions with a single nonterminal on the left-hand
side; therefore, all grammars constructed by the algorithm 2 are context-free. ⊓⊔

Lemma 2 is proved by lemmas 5 and 6; also, lemma 7 is proved by lemmas 8, 9,
10, 11, and 13. Therefore, theorem 1 is proved.

5 Expressive power of subroutine call combined with
lookaround assertions

We show that lookaround assertion combined with subroutine call has greater expres-
sive power than subroutine call alone. We use an example of such regex inspired by
Popov’s blog post[19] and arguments by Scheinberg[21].

Theorem 14. LES
( LELS
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Proof. We show a regex r ∈ ELS,A,X that matches a language that is not context-free
(the equality of LCF and LES

is shown by theorem 1). Language L = {agbgcg : g ∈ N}
is a well-known language that is not context-free[11, example 7.19]. We show that
for r = (?=(?<N1>a(ε | (?P>N1))b)c)aa∗(?<N2>b(ε | (?P>N2))c), L = L(r).
Let r1 = (?<N1>a(ε | (?P>N1))b)c, r2 = aa∗, rN2

= b(ε | (?P>N2))c, and thus
r = (?=r1)r2(?<N2>rN2

). Let rN1
= a(ε | (?P>N1))b. The matching relation for r1

can be derived as follows:
. . .

(rN1
,x, 1) R

((?<N1>rN1
),x, 1) R

x[i] = c

∀i ∈ R : (c,x, i) {i + 1 : x[i] = c}

((?<N1>rN1
)c,x, 1) 

⋃

i∈R{i + 1 : x[i] = c}

Therefore, L(r1) = L(rN1
) ·{c}. Let us derive the matching relation for rN1

:

x[1] = a

(a,x, 1) Ra

(ε,x, 2) {2}

. . .

(rN1
,x, 2) RN

1′

((?P>N1),x, 2) RN
1′

(ε | (?P>N1),x, 2) RN1
= {2} ∪ RN

1′

((ε | (?P>N1)),x, 2) RN1

x[i] = b

∀i ∈ RN1
: (b,x, i) Rbi

if x[1] = a : ((ε | (?P>N1))b,x, 2) R =
⋃

i∈RN1

Rbi

(a(ε | (?P>N1))b,x, 1) R if x[1] = a

The regex rN1
matches only if a prefix of x has the form a . . . ab . . . b. Furthermore,

because as and bs are matched only within the same parenthesised expression and
the same number of times, L(rN1

) = {agbg : g ∈ N}. Clearly, L(r2) = {a}+. Following
similar arguments as for L(rN1

), L(rN2
) = {bgcg : g ∈ N}. The matching relation for

r can be derived as follows:
. . .

(r1,x, 1) R1

((?=r1),x, 1) {1 : R1 6= ∅}

. . .

if R1 6= ∅ : (r2(?<N2>rN2
),x, 1) R

((?=(?<N1>a(ε | (?P>N1))b)c)aa∗(?<N2>b(ε | (?P>N2))c),x, 1) R

The lookahead matches, following the matching relation (5), only if the regex r1

matches, while the current position in x is unchanged. Thus, r matches x if x starts
with agbgc and also has the form ag′

bgcg. In other words, L(r) = ({agbgc : g ∈
N} ·{a, b, c}∗) ∩ ({ag : g ∈ N} ·{bgcg : g ∈ N}). ⊓⊔

5.1 Relation with context-sensitive languages

To the author’s knowledge, there is no peer-reviewed or academic publication con-
cerning the expressive power of practical regular expressions with both lookaround
assertions and subroutine calls. The only known text on this topic is due to Popov[19]:
an idea of what a reduction of context-sensitive grammars to regexes might look like.

Popov claims that having a context-sensitive grammar G = (V , A, R, S), any
production in the form pNs → pvs can be converted into a DEFINE rule of the
form (?(DEFINE)(?<N>(?<= rx(p)) rx(v)(?= rx(s)))). However, this alone does not
work for all context-sensitive grammars. Let us attempt to formalize the conversion
in algorithm 3 as a modification of algorithm 1:

Although a regex r matches any string generated by grammar G, it is still not
correct because, in general, it can match more. To apply a production of the form
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Algorithm 3 Conversion of a context-sensitive grammar to a regex ([19], incorrect)
Input: a context-sensitive grammar G = (V, A, R, S)
Output: a regex r ∈ ES,A,X such that L(G) = L(r)

1. initialize r = ε and consider X = V
2. for all N ∈ V:

(a) let rN = ε
(b) for all productions with N on the left-hand side and particular left and right context (pNs →

pvN1s | · · · | pvNmN
s ∈ R):

i. let rNg (1 ≤ g ≤ mN ) be constructed from vNg for pNs (vNg): rNg = rx(vNg)
ii. if rN = ε then rN = (?<=p)rNg(?=s) else rN = rN | (?<=p)rNg(?=s)

(c) let r = r(?(DEFINE)(?<N>rN ))
3. add the matching of the initial symbol, i.e., let r = r((?P>S))

pNs → pvs in the generation of string x, the left-hand side of the production
must appear in a sentential form, that is, S =⇒

G

∗
p

′
pNss

′ =⇒
G

p
′
pvss

′ =⇒
G

∗
x. In

other words, the context (p, s) of the production must already be present in the
sentential form. Similarly to pNs → pvs being part of generating a substring of x,
the subpattern (?<=p)v(?=s) matches a substring of x. However, (?<=p)v(?=s)
can match a substring of another x′ /∈ L(G) because during the matching of a regex,
the order of the use of subpatterns is independent of the derivations of sentential
forms by G. The following example illustrates this.

Example 15. Let us have G = ({N1, N2, S}, {a, c}, {S → N2N1N1, N1 → a, aN1 →
aaa, N2a → caa}, S). Clearly, L(G) = {caaa, caaaa}. After applying algorithm 3,

r = (?(DEFINE)(?<N1>a | (?<=a)aa))(?(DEFINE)(?<N2>ca(?=a))) ·

·(?(DEFINE)(?<S>(?P>N2)(?P>N1)(?P>N1)))(?P>S)

and L(G) ( L(r), as caaaaa ∈ L(r): caaaaa[1..2] is matched by the subpattern
ca(?=a), and both caaaaa[3..4] and caaaaa[5..6] are matched by the subpattern
(?<=a)aa. However, in G, there is no way to apply production aN1 → aaa twice, as
there must first be symbol a in a sentential form (which consumes one N1).

As a result, the relation between the class of context-sensitive languages and the
class of languages expressed by regexes with both subroutine calls and lookaround
assertions remains an open problem.

6 Conclusions

We presented a formalisation of syntax and semantics of certain features of practical
regular expressions using the matching relation: subroutine call, named parenthesised
expression, and DEFINE rule. We attempted to mimic documented (and real) be-
haviour of certain flavours of practical regular expressions: Perl-compatible regular
expressions, Perl, and Ruby Regexp class.

This paper showed the equivalence of context-free languages and languages ex-
pressed by practical regular expressions with concatenation, alternative, and subrou-
tine call. This result applies to flavours that support subroutine calls. We presented
an alternative constructive proof employing named subroutine calls, DEFINE rules,
and the matching relation: a conversion between such practical regular expressions
and context-free grammar.
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We showed that adding zero-width lookaround assertions to practical regular ex-
pressions with operations concatenation, alternative, and subroutine call extends their
expressive power beyond context-free languages. However, the relation of the language
class expressed by such expressions to some non-context-free languages, particularly
the class of context-sensitive languages, remains an open problem.

We hope that our results stimulate more work on the expressive power of specific
combinations of operations used in practical regular expressions, such as backrefer-
ences, subroutine calls, lookaround assertions, or atomic groups.

References

1. A. V. Aho: Algorithms for Finding Patterns in Strings, in Algorithms and Complexity, J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, Elsevier, 1990, pp. 255–300.

2. M. Berglund and B. van der Merwe: Regular Expressions with Backreferences Re-
examined, in Proceedings of the Prague Stringology Conference 2017, Czech Technical University
in Prague, 2017, pp. 30–41.

3. M. Berglund, B. Van Der Merwe, and S. van Litsenborgh: Regular Expressions with
Lookahead. Journal of Universal Computer Science, 27(4) 2021, pp. 324–340.
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