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Abstract. A tandem duplication in a string takes a substring and inserts another copy
of it right beside it. Given two strings, we want to find a shortest sequence of tandem
duplications that transform the shorter string into the longer one, or recognize that no
such sequence exists. The problem, in particular with short tandem duplications, is of
interest in genomics, and a number of complexity results are known. First we improve
a recent simple XP algorithm. However, our main technical contributions are an FPT
algorithm, where the parameter is the difference of lengths of the two given strings,
and a polynomial kernel.
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1 Introduction

1.1 Definitions and Problem

In this work we give combinatorial and algorithmic results for a particular problem on
strings, i.e., sequences of symbols from an alphabet. For understanding the problem,
some basic definitions are needed first.

We sometimes use |X| to denote the length of a string X , that is, the number of
symbols in X (where multiple occurrences of a symbol are counted that many times).
A string where all symbols are distinct is called exemplar. A square is a string of the
form XX , in other words, a concatenation of two equal strings. A substring of X
consists of some consecutive symbols of X , that is, we use the term substring in the
strict sense.

A tandem duplication (TD) transforms a string of the form AXB into AXXB,
that is, it inserts another copy of a substring X besides the existing occurrence of
X . The TD distance of a string T from a string S is the minimum number k of TDs
needed to transform S into T . We define k = ∞ if no such sequence of TDs exists.
For clarity we state our problem formally:

Given: two strings S and T , where |S| ≤ |T |.
Find: a sequence with a minimum number of TDs that turns S into T .

We use n := |T | for the length of the target string T .
Short tandem repeats appear to be a type of mutations of particular interest in ge-

nomics. To quote from [10], “Short tandem repeat (STR) ... are abundant throughout
the human genome, and specific repeat expansions may be associated with human
diseases. ... Thus, the knowledge of the normal repeat ranges of STRs is critically
important to determine pathogenicity of observed repeats in known STRs or to dis-
cover novel disease-relevant repeat expansions”, and from [11], “Very short tandem
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repeats bear substantial genetic, evolutional, and pathological significance in genome
analyses.” For a given sample of genomic strings we may want to recognize whether
some strings result from others by sequences of short TDs, in order to figure out
normal and irregular amounts of TDs. Also note that k TDs of length at most some
ℓ can expand a string by at most d ≤ kℓ symbols.

The computational complexity of computing TD distances is only partly under-
stood. To begin with, NP-hardness has been shown only rather recently: Computing
the TD distance is NP-hard even when the alphabet size is 5 [2] or when S is an
exemplar string [9]. The problem parameterized by the number k of duplications is
fixed-parameter tractable (FPT) for exemplar strings S [9]. The latter paper also
mentions a simple XP algorithm for arbitrary strings S and T that runs in O(n2k)
time. It is based on the operation opposite to TD:

A contraction transforms a string of the form AXXB into AXB. In the present
paper we call AXB a contraction result of AXXB.

The aforementioned XP algorithm simply branches at most k times on all possi-
ble contractions, whose number is trivially bounded by n2/2. Hence the number of
different sequences of contractions is at most (n2/2)k.

1.2 Contributions

First we improve the XP algorithm from [9]. By using some combinatorics of periods
in strings, the time is reduced by essentially a factor nk.

In the main part of the paper we first present an FPT algorithm for minimizing the
number of TDs, parameterized by the length difference of T and S. This parameter
d may be practically motivated as mentioned above, and from the parameterized
complexity point of view, d is just a natural parameter to start with.

Intuitively one would expect this problem to be in FPT, since a small length
difference allows only a few short TDs, and together with the linear structure of
strings it should be possible to apply dynamic programming on subsets or a related
technique. The basic idea is to decide which symbols in T shall be kept (matched) or
deleted (unmatched), and (if possible) to delete exactly the unmatched symbols by a
minimum number of contractions. However, it is not so obvious how to do the “local”
technical details in the most efficient way, as one must care about dependencies among
overlapping squares.

We also construct a polynomial kernel, which needs even more effort. Part of the
preprocessing is an acyclic directed grid graph that encodes all possible alignments
of the input strings, including invalid ones, and whose geometry allows to derive data
reduction rules.

We remark that our problem can be seen as a variant of string editing, with
TDs as edit operations. It is well known that string editing problems with insertions,
deletions, and replacements as edit steps can be easily rephrased as shortest path
problems in a certain alignment graph. For TD minimization we have to use an
alignment graph in a more elaborated way (where periods in strings play an essential
role), indicating that the concept might prove useful also for other string editing
variants.

We conclude the paper with open questions.
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1.3 Periods

We provide some terminology concerning periods in strings. For a positive integer p,
a string R = r1 . . . rm is said to have a period p if ri = ri+p holds for every index i with
1 ≤ i < i+ p ≤ m. A p-run in a string is a substring that has a period p and length
at least 2p, and is maximal with these properties, in the sense that adding another
adjacent symbol would destroy the period p. Note that every substring of length 2p
in a p-run is a square. A substring which is a p-run for some number p is also simply
called a run, without specifying p. The exponent of a run R is its length |R| divided
by its shortest period; note that this is in general a fractional number.

1.4 Fixed-Parameter Tractability and Problem Kernels

Technical introductions to parameterized algorithms and complexity can be found in
a number of textbooks. In a nutshell, a problem with input size n and another input
parameter d is in XP and in FPT, if some algorithm can solve it in time O(nf(d)) and
O(f(d) · nO(1)), respectively, where f is some computable function.

Given an instance of a parameterized problem, a kernel is another instance with
the following properties: It is equivalent to the given instance, in that it yields the
same output, its size is bounded by some function of d, and it is computable from
the given instance in a time being polynomial in n. A problem is in FPT if and only
if it possesses a kernel. But the kernel size is not always polynomial in d.

The O∗ notation for XP and FPT time bounds depending on the input size n and
a parameter d suppresses factors that are polynomial in n (with a constant exponent
not depending on d) such that it focusses on the more critical dependency on the
parameter.

2 Improved Branching for Arbitrary Strings

Not very surprisingly, the brute-force bound in [9] is a bit of an overestimate. Our
idea is to avoid this brute-force branching on all substrings and potential contractions,
and to branch only on contractions that produce different strings, taking advantage
of some nice properties of periods. We begin with some combinatorial lemma.

Lemma 1. All contractions of squares of length 2p in a p-run yield the same con-
traction result.

Proof. We choose a square XX of length 2p as indicated, and write the p-run ac-
cordingly as AXXB. Let CAXXBD be the entire string. Note that each of A, B,
C, D might be empty. The result CAXBD of the contraction can be obtained by
deleting the right X and moving BD by p positions to the left. (If BD is empty,
nothing happens in this step.) Since p is a period of AXXB, the prefix CAXB of
the contraction result has, at every position, the same symbol as CAXXB had, and
the suffix D is always the same, independently of the position of XX . ⊓⊔

This gives already an improvement of the trivial O(n2) bound on the number of
different contraction results:

Proposition 2. A string of length n has at most n(ln n + 1) different contraction
results.
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Proof. First we observe, for every p, that any two squares of length 2p that overlap
in at least p positions belong to the same p-run. Namely, let T = t1 . . . tn be a string,
and let ti+1 . . . ti+2p and ti+k+1 . . . ti+k+2p be squares, with some positive integer k ≤ p.
We have to show tj = tj+p for all j with i + 1 ≤ j < j + p ≤ i + k + 2p, or simpler,
i + 1 ≤ j ≤ i + k + p. For j ≤ i + p this holds because of the first square. For
j ≥ i + k + 1 this holds because of the second square. Every j in our range satisfies
at least one of these conditions, since j ≥ i+ p+ 1 implies j ≥ i+ k + 1 by k ≤ p.

To prove the actual assertion, consider any fixed positive integer p ≤ n/2, and all
squares of length 2p in the string. Whenever the left ends of two squares are at most
p positions away, they belong to the same p-run, and by Lemma 1 they yield the
same contraction result. By contraposition this can be formulated also in this way:
Two squares of length 2p can yield different contraction results only if their left ends
have a distance at least p. Hence at most n/p different such contraction results can
exist. Finally, summing over all p yields the claim, using the well-known sum of the
harmonic series. ⊓⊔

However, we can do even better, using deeper combinatorics of strings: In [4] it
was shown that the sum of exponents of all runs in a string of length n is at most
4.1n, thus improving linear upper bounds with larger constants from earlier papers.
This further reduces the XP time bound considerably:

Theorem 3. For a string T of length n and another string S we can find a sequence
of at most k TDs that transform S into T (or report that none exist) in O∗((2.05n)k)
time. Moreover, there exist at most (2.05n)k different sequences of strings of the form
S = R1, R2 . . . , Rj = T , where j ≤ k, and every Ri+1 is obtained from Ri by some
TD.

Proof. Simply branch on all possible contraction results, in a search tree with T at
the root and with depth k, keep only the contraction sequences that result in S. The
branching factor, i.e., the base of the time bound, is the maximum number of different
contraction results in a string.

Proposition 2 would already yield O∗((n log n)k). For the better linear base, ob-
serve that the number of different periods p ≤ k/2 of a run of length k is at most
half its exponent. Lemma 1 can be rephrased in the way that the contractions of
any squares of the same fixed length 2p in the run, where the numbers p ≤ k/2 are
periods of the run, yield the same contraction results. Hence the number of distinct
contraction results overall is at most half the sum of the exponents of all runs. With
the bound 4.1n [4] we obtain 2.05n. ⊓⊔

Remark 4. The bound of O(n) distinct squares (2n in [6], later improved by several
authors like [7,5] to eventually less than n in [1]) does not simply imply a time bound
as in Theorem 3, because squares that have different locations but are equal as strings
are not counted there as distinct, but they can produce different contraction results.
A similar remark holds for the known result that every string has only O(n) different
runs [8,3]. The catch is that a p-run (as defined here) is also a q-run for all integer
multiples q of p until the half length of the run, and squares of different lengths yield,
of course, different contraction results. Therefore, the linear bound on the sum of
exponents of the runs is needed.

Remark 5. Since the O(n2k) bound in [9] was used after kernelization in their FPT
result when S is an exemplar string and k is the parameter, Theorem 3 improves the
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running time for solving this problem kernel accordingly. Probably Theorem 3 can
also improve other related results.

3 Length Difference as Parameter

Next we consider our TD minimization problem parameterized by the length dif-
ference d = |T | − |S|. (In the rest of the paper, symbol d is reserved for the exact
difference.) Since the number k of TDs that transform S into T trivially satisfies
k ≤ d, Theorem 3 yields an O∗((2.05n)d) time bound for finding a shortest sequence
of TDs. However, below we will obtain an FPT algorithm for the parameter d. The
idea is quite natural: Since most of the symbols are not involved in TDs, certain
sub-instances of the problem, consisting of certain pairs of substrings of T and S, can
be solved independently, while a dynamic programming process cares of separators
of matching substrings.

Theorem 6. For a string T of length n and another string S, with length difference
d = |T |−|S|, we can find a sequence with a minimum number of TDs that transforms
S into T (or report that none exist) in O∗((2d)d) time, more precisely, in O(d3(2d)dn)
time.

The remainder of this section is devoted to the proof of Theorem 6. First some
more preparations and definitions are needed. Remember that a substring consists of
consecutive symbols in a string. Sometimes we use r1 . . . rn with n = 0 to denote an
empty string.

Lemma 7. Consider any sequence of contractions of T that deletes d symbols in
total. Then there exists a partitioning of T into substrings of length at most 2d, such
that every contracted square is entirely contained in one of these substrings.

Proof. We call a symbol in T active when it participates in some contracted square
(no matter whether it belongs to the deleted or undeleted half of that square). All
other symbols are called inactive. Since d symbols are deleted in total, at most 2d
symbols are active. (It could be fewer than 2d symbols when the contracted squares
overlap.) Any maximal substring of active symbols is called a block.

Consider any subset Q of symbols in T that becomes a contracted square some-
times during our contraction sequence, and consider any inactive symbol u in T .
Assume that symbols of Q appear both to the left and to the right of u. Since, by
definition, inactive symbols are never deleted in a sequence of contractions, u remains
present all the time, such that Q will never become a substring (i.e., consist of con-
secutive symbols), which contradicts the assumption that Q becomes a contracted
square.

It follows that every contracted square is contained in some block. Now we simply
make every block a substring of our claimed partitioning, and divide the inactive
symbols arbitrarily into substrings of length at most 2d. ⊓⊔

Dynamic programming function. Given S = s1 . . . sm and T = t1 . . . tn, we define
c(i, j) to be the minimum number of contractions needed to transform t1 . . . tj into
s1 . . . si, and c(i, j) := ∞ if no such transformation exists. To account for empty
prefixes we also define c(0, 0) = 0.
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Principle of optimality. Let i and j be any indices such that c(i, j) < ∞, and
consider some corresponding optimal solution, i.e., minimum sequence of contractions.
By Lemma 7 there exists some index b ≥ j−2d such that for every contracted square
Q, the symbols of Q are either all in t1 . . . tb or all in tb+1 . . . tj . Let e be the index such
that t1 . . . tb is transformed into s1 . . . se. It follows that c(i, j) is the sum of c(e, b) and
the minimum number of contractions needed to transform tb+1 . . . tj into se+1 . . . si.

Computing the optimal values. Based on this observation, we now describe the
computation of c(i, j) for any given pair of indices (i, j). If i > j then c(i, j) = ∞.
Values for i = j are also clear: If t1 . . . tj = s1 . . . sj then c(j, j) = 0, else c(j, j) = ∞.

Due to the principle of optimality, we may proceed as follows. Try all possible
index pairs (e, b), where j − 2d ≤ b < j and e ≤ b ≤ e + d. For every such pair,
transform tb+1 . . . tj into se+1 . . . si using a minimum number of contractions. Add
this number to c(e, b). Finally, c(i, j) is the minimum of these sums, for all index
pairs. The mentioned index pairs (e, b) are sufficient, since b ≥ j − 2d was shown in
the paragraph above, the inequalities e ≤ b ≤ j are trivial by the definitions, and e
can differ from b by at most d, since a string of length b can be contracted only to
strings of length at least b− d (and c(e, b) would be infinite otherwise).

Complexity analysis. We check O(d2) pairs of indices (e, b). Now we bound the time
needed to optimally transform tb+1 . . . tj into se+1 . . . si. The length of the former
string is at most 2d and the number k of contractions is bounded by d. The XP
algorithm from [9] enumerates all possible sequences of contractions, and takes the
shortest one.

A sequence of, say, k contractions can be uniquely specified, e.g., by the left ends
and the lengths l1, . . . , lk of the deleted substrings. For the left ends we have (rather
generously) at most (2d− 1)k choices. Since l1 + . . .+ lk ≤ d, the number of possible

sequences of k lengths is
(

d

k

)

. Hence, by the binomial formula, the total number of

choices for all k ≤ d is at most ((2d− 1) + 1)d = (2d)d.
Since j ≤ n and i ≤ j ≤ i+ d, we must compute O(dn) values c(i, j). (To see that

only these values are needed, remember the definition of c(i, j) and of the parameter
d.) The product of the three terms above yields the claimed overall time bound. This
concludes the proof of Theorem 6.

From the optimal values, a specific solution can be reconstructed by backtracing
in the standard way.

Remark 8. Direct application of the trivial O(n2k) bound from [9] to n ≤ 2d and
k ≤ d would only yield O∗((2d)2d) time, but another counting argument above gave
O∗((2d)d), since 2d is close to d. Also note that the direct application of Theorem
3, that was made for general n and k, would yield O∗((2.05d)d) in our case, which
is slightly worse. The picture would change with an improved bound on the sum of
exponents of runs.

4 Kernelization

In this section we construct a kernel that is polynomial in the parameter d = |T |−|S|.
Recall the notation S = s1 . . . sm and T = t1 . . . tn. With the help of an alignment
graph that depicts possible “paths of insertions” of symbols, we find, in any large



24 Proceedings of the Prague Stringology Conference 2023

enough instance, either two matching substrings not involved in TDs, or periodic
substrings whose deletion does not change the result of the instance.

4.1 Alignment Graph Construction

As a first step we define a directed graph G that we call the alignment graph. Its
vertices are certain (but not all) pairs of integers (i, j) in the rectangle specified by
0 ≤ i ≤ m = |S| and 0 ≤ j ≤ n = |T |. They can be imagined as grid points in a
Cartesian coordinate system. Also note that d = n−m.

We will create certain directed edges of the form either (i, j − 1) → (i, j) or
(i− 1, j − 1) → (i, j), called vertical and diagonal edges, respectively.

Before specifying exactly which vertices and edges exist in G, we outline the idea
behind the graph: Traversing (i, j − 1) → (i, j) shall model the deletion of tj , and
traversing (i − 1, j − 1) → (i, j) shall model the action of matching symbol si to
symbol tj. Thus every solution with exactly d unmatched symbols corresponds to
some directed path from (0, 0) to (m,n) with at most d vertical edges. Of course, the
converse of the last statement is far from being true. We also “purify” our graph by
not creating some obviously useless vertices and edges. Now we describe the actual
construction. See also Figure 1 for the position of the alignment graph in the i-j
coordinate system.

Definition 9. The alignment graph of two strings S and T is obtained as follows.
We (tentatively) create all vertices (i, j) with 0 ≤ i ≤ j ≤ i+ d, and all vertical and
diagonal edges between them. Next, any diagonal edge (i−1, j−1) → (i, j) is retained
only if si = tj, and otherwise deleted. Finally we also delete all vertices (and all their
incident edges) that cannot be reached from (0, 0) or cannot reach (m,n) via directed
paths.

The construction can be done in O(dn) time by standard techniques: First, the
graph has obviously O(dn) vertices and edges, respectively, and it is a directed acyclic
graph. For every diagonal edge it is decided locally, by testing the equality of two
symbols, whether it is retained or deleted. Finally, the vertices reachable from (0, 0)
or (reversely to the edge orientations) from (m,n) can be determined by breadth-first
search in linear time.

In the so obtained alignment graph G, the directed paths from (0, 0) to (m,n)
describe exactly all possible alignments of S and T after deleting d symbols from T ,
but still without caring whether these deletions can be realized by contractions of
squares.

The alignment graph has two special directed paths from (0, 0) to (m,n) that we
call the left and right greedy path, defined as follows.

Definition 10. The left greedy path always traverses a vertical edge, and whenever
the vertical edge from the current vertex does not exist, it traverses the diagonal
edge instead. Similarly, the right greedy path always traverses a diagonal edge, and
whenever the diagonal edge from the current vertex does not exist, it traverses the
vertical edge instead.

Note that the alternative edge always exists by construction, because G contains
only vertices from which (m,n) is reachable. That is, we never get stuck. We also
observe that all vertices of the alignment graph are in the region of the plane bounded
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Figure 1. Diagram of the alignment graph. Its vertices are located in the region between the two
long diagonal lines. The breadth of this stripe is d, both in horizontal and vertical direction. The
diagram also depicts a pair of diagonal paths with coordinates as in Lemma 11.

by these two greedy paths. Otherwise some directed edge must leave this region, which
would contradict the definition of the greedy paths.

We call any directed path merely consisting of diagonal edges a diagonal path.

4.2 Periods and Alignment Graph Properties

For convenience we say that a vertex (i, j) in the alignment graph is in column i and
row j (see Figure 1).

Lemma 11. Consider two rows k and l with l−k > d in the alignment graph. Suppose
that two (not necessarily distinct) directed paths from row k to row l are diagonal.
Then either these paths are identical, or they have the form

(i, k) . . . (i+ l − k, l) and (i+ p, k) . . . (i+ p+ l − k, l)

for some integers i (k − d ≤ i ≤ k) and p (1 ≤ p ≤ d − (i − k)), and in the latter
case, both tk+1 . . . tl and si+1 . . . si+p+l−k have a period p.

Proof. We only have to show periodicity in the latter case. It follows directly from
the condition for the existence of diagonal edges. Namely, for every q (0 < q < p) we
now obtain si+q = tk+q = si+q+p = tk+q+p = si+q+2p = tk+q+2p = . . . (and so on in this
way, as long as the indices are in the given interval), which yields the assertion. ⊓⊔

For formal clarity we need some further technical definitions.
A valid sequence for T = t1 . . . tn and S = s1 . . . sm means any sequence of con-

tractions of squares that transforms T into S. Recall that every contracted square
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has a length of at most 2d. Without loss of generality we can assume that every
contraction deletes the left half of the contracted square. With this convention, any
valid sequence defines a partial function c from {t1, . . . , tn} onto {s1, . . . , sm}, where
c(ti) = sj means that ti is turned into sj by the valid sequence, and c(ti) is undefined
if ti gets deleted by some contraction. This function can be naturally extended to
substrings T ∗ and S∗ of T and S, respectively: c(T ∗) = S∗ means that T ∗ is turned
into S∗. Note that this is possible only if |T ∗| = |S∗|.

A fresh symbol is a symbol that does not yet appear in the strings at hand, that
is, it may even extend the alphabet.

Lemma 12. Let T ∗ be a substring of T , and let S∗ be a substring of S, with the
following properties:

– |T ∗| = |S∗| ≥ d+ 2.
– In every valid sequence for T and S it holds that c(T ∗) = S∗. (In particular, all
symbols in T ∗ are matched symbols, in every valid sequence.)

Next, we write T ∗ as a concatenation T ∗

1 T
∗

2 where |T ∗

1 | = d, replace T ∗

2 (in T ) with
one fresh symbol f , and denote the resulting string T ′. Similarly, we write S∗ as a
concatenation S∗

1S
∗

2 where |S∗

1 | = d, replace S∗

2 (in S) with the same symbol f , and
denote the resulting string S ′.
Then, the valid sequences for T and S are exactly the same as the valid sequences for
T ′ and S ′, in the sense that they contract the same squares, and in the same order.

Proof. The two directions of the equivalence are similar in structure, but they have
to use slightly different arguments:

Consider any valid sequence for T and S. The assumption implies that every
contracted square is completely to the right of T ∗ or contains at most the d leftmost
symbols of T ∗. Hence the same sequence is also valid for T ′ and S ′.

Consider any valid sequence for T ′ and S ′. Since f occurs only once in T ′ and S ′, it
follows that f is a matched symbol, and f in T ′ is matched onto f in S ′. Furthermore,
every contracted square is completely to the right or to the left of f . Hence the same
sequence is also valid for T and S. ⊓⊔

In the following we use a nice and simple property of periodic strings. Let X
be any string that has a period p: Let us delete any substring P of length p and
concatenate the two remaining substrings of X . Then the resulting string does not
depend on the choice of P . Basically this was already stated in different phrasing
in Lemma 1, but here we add a similar observation for the reverse operation: Let
us choose any position between two neighbored symbols of X and insert there the
suitable (and uniquely determined) string of length p that preserves periodicity. Then
the resulting string does not depend on the choice of that position. We refer to these
two operations as shortening and enlarging a p-periodic string X by p consecutive
symbols.

We remark that, in the assumptions of the following lemma, C “starts d positions
earlier” than D, while their end positions are the same. This is intended, as we need
that to account for the deletion of up to d symbols from T until position j + l. Also
remember that d denotes the exact difference |T | − |S|, not only an upper bound.

Lemma 13. Suppose that the string T contains a substring D = tj . . . tj+l having
a start position j > d, the length l + 1 > d(d + 1) + 2d = d2 + 3d and a period
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p ≤ d, and that the string S contains a substring C = sj−d . . . sj+l, also with period p.
Then, shortening both D and C by p consecutive symbols yields an equivalent problem
instance, that is, an instance with the same optimal number of contractions.

Proof. Consider any valid sequence for T and S. Since every contraction of a square
of length 2q deletes q unmatched symbols, and d unmatched symbols exist in total,
the (at most d) contracted squares together cover at most 2d symbols. There remain
at least d(d+ 1) symbols in D which are not covered by any contracted squares. We
further observe thatD can be uniquely partitioned into maximal substrings of covered
symbols and uncovered symbols, respectively. Since at most d contractions are done,
this partitioning has at most d substrings of covered symbols, hence at most d + 1
substrings of uncovered symbols. It follows that some substring of uncovered symbols
has a length at least d. In other words, D has some substring M of d symbols that
are not involved in any contracted square. In particular, M is a substring of matched
symbols.

The aforementioned substring M of T is matched onto a substring of S that we
denote N . That is, c(M) = N . More specifically, N is a substring of C (since C
starts at position j − d, and at most d symbols are deleted from D). Let us remove
some substring P of length exactly p ≤ d from M , and also remove the corresponding
substring (its matching partner c(P )) from N . Let T ′ and S ′ denote the resulting
strings, after these deletions from T and S, respectively. Then our valid sequence is
also valid for T ′ and S ′, since M is not involved in any contraction.

Now remember the above definition of shortening and enlarging, and note that
removing P from M and c(P ) from N means to shorten the p-periodic strings D and
C, respectively, by p symbols. Similarly, we may insert, at corresponding positions
in M and N , two equal substrings of length exactly p that preserve the period. The
effect is that the p-periodic strings D and C are enlarged by p symbols. and our valid
sequence is also valid for the resulting strings T ′ and S ′, for the same reason (M is
not involved in any contraction).

Finally consider a valid sequence doing the optimal number k of contractions for
transforming T into S. To summarize the observations above, shortening D and C
yields a valid sequence with k contractions, furthermore, after this shortening there
cannot exist another valid sequence with less than k contractions, since this would
imply such a sequence also after enlarging D and C again (thus recovering the given
T and S), which contradicts the minimality of k. This shows the assertion. ⊓⊔

4.3 The Kernel

Using the previous lemmas we can now finish up. Tandem duplication admits a kernel
of size O(d3), or in more detail:

Theorem 14. For a string T of length n and another string S, with length difference
d = |T | − |S|, the problem of finding a sequence with a minimum number of TDs that
transforms S into T (or report that none exist) has a kernel of size O(d3) that can
be computed in O(dn) time.

Proof. We can assume d > 3 and n > 6d3 (for simplicity with a generous constant
factor), otherwise there is nothing to prove. For better orientation in the proof see
Figure 1 again.

First we construct the alignment graph G. Since each of the two greedy paths
uses d vertical edges, both greedy paths together can use at most 2d vertical edges.
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Trivially, these 2d vertical edges (i, j − 1) → (i, j) can use at most 2d different
coordinates j on the T -axis, and these positions j cut the T -axis into at most 2d+ 1
intervals. Furthermore, within these intervals, the greedy paths can use only diagonal
edges. From these observations it follows the existence of an interval D ⊂ [0, n] of
length n/(2d + 1) > n/(3d) such that the sub-paths of both greedy paths restricted
to the indices j ∈ D are diagonal paths. By Lemma 11, either the two greedy paths
restricted to D are identical, or T and S have aligned substrings with a period at most
d and length n/3d. Since n > 6d3, this length is larger than 2d2 ≥ d2 + 4d > d+ 2.

In the former case, since G is bounded left and right by the two greedy paths, all
alignments must use the greedy path restricted to D. Thus we are in the situation of
Lemma 12, that is, we know two substrings of length at least d+2 that are necessarily
matched to each other. As described there, using a fresh symbol we can shorten the
instance to an equivalent one.

In the latter case we use Lemma 13 to shorten the instance to an equivalent one.
(The substrings D and C specified there have lengths of at least d2 + 4d.) This can
be done only O(n) times until n ≤ 6d3.

Thus we eventually obtain a kernel of size O(d3). As for the time for this kernel-
ization, we first remark that polynomial time is evident. For the claimed specific time
bound we observe: The initial alignment graph can be constructed in O(dn) time,
as noticed earlier, and the greedy paths are found in linear time. The shortening
operations together take only linear (not quadratic) time as well, since they all cut
away pairwise disjoint parts of the strings and the alignment graph, and updates after
every shortening operation. are local ⊓⊔

A fully worked out substantial example would be lengthy, but a simple example
just illustrating the principle could be a pair of strings like S = aaaacacbbababababab
and T = aaaaacacbbabababababab. The kernelization algorithm would recognize that
cacbb must be mapped to cacbb and replace this pattern with a fresh symbol, and
shorten the periodic substrings to the left and to the right of this pattern, by cutting
out the same periods in both S and T , and the kernel would still reveal that some a
and some ab must be doubled at the left and right end, in order to convert S into T .

In Lemma 12, for simplicity we did not care about the number of different fresh
symbols. Substrings with more than d positions in between may reuse the same fresh
symbols. Since at most d symbols of T are deleted in total, these remote occurrences of
the same symbol would not interfere, and still the correct symbols would be matched
to each other. Thus, extending the alphabet by only O(d) different fresh symbols suf-
fices. A technically more challenging question is whether one can avoid any extension
of the alphabet, without sacrificing the kernel size, or at least lower the number of
different fresh symbols further, e.g., by using carefully designed substrings instead of
the fresh symbols.

5 Concluding Discussions

To our best knowledge, it is open whether the tandem duplication problem for ar-
bitrary strings, parameterized by the number k of contractions, is fixed-parameter
tractable (or perhaps W[1]-hard). A positive answer would imply our FPT result for
parameter d, but even in that case, the question of complexity bounds would remain
interesting. E.g., recall that the dependence of the time bound on d might be further
improved.
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We have studied the length difference d as parameter, but note that k ≤ d, and
a certain weakness of parameter d is that k can be arbitrarily smaller. A refinement
worth investigating is the combined parameter (k, ℓ) where ℓ denotes the maximum
length of substrings to be duplicated. Note that d ≤ kℓ, hence our problem is in
FPT also with parameter kℓ. Since trivially ℓ ≤ d, parameter ℓ alone would be much
stronger than d, but the question whether tandem duplication parameterized by ℓ is
in FPT seems to be as challenging as for k. Also a more fine-grained analysis in the
parameter (k, ℓ) rather than d does not appear to be straightforward. But hardness
results (provided that they hold) might be easier to prove for stronger parameters.

Finally, in our results we have not fixed the alphabet size. Would fixed alphabet
sizes allow stronger time bounds? Can one construct a kernel without extending the
alphabet?
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