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Abstract. V -order is a total order on strings that determines an instance of Unique
Maximal Factorization Families (UMFFs) [7–10], a generalization of Lyndon words [12].
V -order has also recently been proposed as an alternative to lexicographic order (lex-
order) in the computation of suffix arrays and in the suffix-sorting induced by the
Burrows-Wheeler Transform (BWT) [11]. The central problem of efficient V -ordering
of strings was considered in [2–4, 9, 10], culminating in a remarkably simple, linear
time, constant space comparison algorithm [1]. In this paper we improve on this result
to achieve significant speed-up in almost all cases of interest.
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1 Introduction

This paper extends current knowledge on the non-lexicographic ordering technique
known as V -order [6]. New combinatorial insights are obtained which are linked to
computational settings. The first of these leads to an improvement on the linear-time
V -order string comparison algorithm described in [1].

2 Preliminaries

We are given a finite totally ordered set of cardinality σ = |Σ|, called the alphabet,
whose elements are characters (equivalently letters). A string is a sequence of zero
or more characters over Σ. A string x = x1x2 · · · xn of length |x| = n is represented
by x[1..n], where x[i] ∈ Σ for 1 ≤ i ≤ n. The set of all non-empty strings over
the alphabet Σ is denoted by Σ+. The empty string of zero length is denoted by
ε, with Σ∗ = Σ+ ∪ ε. If x = uwv for strings u,w,v ∈ Σ∗, then u is a prefix, w
is a substring or factor, and v is a suffix of x. We denote by s[i . . . j], or si · · · sj,
the substring of s that starts at position i and ends at position j. Notably, if i > j,
s[i . . . j] = ε; that is, s[i . . . j] is the empty string. If x = uk (a concatenation of k
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copies of u) for some nonempty string u and some integer k > 1, then x is said to
be a repetition; otherwise, x is primitive. For further stringological definitions, theory
and algorithmics see [5, 13].

We define an order that is not lexorder (dictionary order), called V -order, as well
as some of its notable properties, both combinatorial and algorithmic. V -order was
explored in [6] and subsequently studied extensively in the literature both combina-
torially and algorithmically [1–4,7, 9–11].
Let x = x1x2 · · · xn be a string over Σ. Define h ∈ {1, . . . , n} by h = 1 if x1 ≤ x2 ≤
· · · ≤ xn; otherwise, by the unique value such that xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤
xn. Let x

∗ = x1x2 · · · xh−1xh+1 · · · xn, where the star * indicates deletion of the letter
xh. We write xs∗ for (. . . (x∗)∗ . . .)∗ with s ≥ 0 stars. Let g = max{x1, x2, . . . , xn},
and let k be the number of occurrences of g in x. Then the sequence x,x∗,x2∗, . . .

ends in gk, . . . , g1, g0 = ε. From all strings x over Σ, we use this process to form the
star tree, where each string x labels a vertex, and there is a directed edge upward
from x to x∗, with the empty string ε as the root.

Definition 1. [6, 7, 9, 10] We define V -order ≺ between distinct strings x, y. First
x ≺ y if in the star tree x is in the path y,y∗,y2∗, . . . , ε. If not, then there exist
smallest s, t such that x(s+1)∗ = y(t+1)∗. Let s = xs∗ and t = yt∗; then s 6= t but
|s| = |t| = m say. Let j ∈ 1..m be the greatest integer such that s[j] 6= t[j]. If
s[j] < t[j] in Σ then x ≺ y; otherwise, y ≺ x. Clearly ≺ is a total order on all
strings in Σ∗.

For instance, using the natural ordering of integers, if x = 2631, then x∗ = 263,
x2∗ = 26, x3∗ = 6, x4∗ = ε, and so 26 ≺ 2631 while 2631 ≺ 94.

Definition 2. [6, 7, 9, 10] The V -form of a string x is defined as

Vk(x) = x = x0gx1g · · ·xk−1gxk

for (possibly empty) strings xi, i = 0, 1, . . . , k, where g is the largest letter in x —
thus we suppose that g occurs exactly k times. For clarity, when more than one string
is involved, we use the notation g = Lx, k = Cx.

Lemma 3. [6, 7, 9, 10] Suppose we are given distinct strings x and y with corre-
sponding V -forms as follows:

x = x0Lxx1Lxx2 · · ·xj−1Lxxj,

y = y0Lyy1Lyy2 · · ·yk−1Lyyk,

where j = Cx, k = Cy.
Let h ∈ 0..max(j, k) be the least integer such that xh 6= yh. Then x ≺ y if, and

only if, one of the following conditions hold:

(C1) Lx < Ly
(C2) Lx = Ly and Cx < Cy
(C3) Lx = Ly, Cx = Cy and xh ≺ yh.

Observe the recursive nature of determining ≺ in (C3); that is, each substring
pair xh, yh can likewise be decomposed into V -forms.
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Lemma 4. [9,10] For given strings x and v, if v is a proper subsequence of x, then
v ≺ x.

Theorem 5. [1, 4] For any strings u, v, x, y: x ≺ y ⇔ uxv ≺ uyv.

Note that, according to this result, a comparison of two strings can ignore equal
prefixes (or suffixes) — see Algorithm COMPARE.

Lemma 6. [1] For any two strings x, y with x ≺ y and any two letters λ, µ such
that y ≺ xλ:

(i) if λ ≤ µ, then xλ ≺ yµ;
(ii) if λ > µ, then yµ ≺ xλ.

Lemma 6 led to Algorithm COMPARE (Figure 1), described in [1]1. Note that, in
contrast to comments made in the Conclusion of [10], this tells us that in fact V -order
comparison can be conducted in a positional manner as in lexorder comparison — in
fact, COMPARE is an on-line algorithm [13] that requires only a one-character window.
Notably, the first V -order comparison algorithm was presented in [9], and this was
followed up by a couple of other interesting algorithms [2, 3, 10] before algorithm
COMPARE was presented in [1].

procedure COMPARE(x,y, δ)
i← 1; j ← 1; δ ← 0
while j ≤ |y| and i ≤ |x| and x[i] = y[j] do

i← i+ 1; j ← j + 1

if i > |x| or j > |y| then
if |x| = |y| then

δ ← 0; return

if i > |x| then

δ ← −1; return

δ ← 1; return

while true do

while j ≤ |y| and x[i] > y[j] do
j ← j + 1

if j > |y| then
δ ← 1; return

else

i← i+ 1

while i ≤ |x| and x[i] < y[j] do
i← i+ 1

if i > |x| then
δ ← −1; return

else

j ← j + 1

Figure 1. Comparing x of length m and y of length n in V -order: x ≺,=,≻ y according as
δ = −1, 0, 1.

Lemma 7. [1–3,9,10] V -comparison requires linear time and constant space.

1 This version corrects the comparisons in lines 5 & 8 of the original presentation.
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3 V -order String Comparison

In this section, we present a new algorithm to compare strings in V -order, which is sen-
sitive to the structure of the input strings – the COMPARE-Sensitive algorithm (Fig-
ure 2). We show that probabilistically COMPARE-Sensitive runs faster than COMPARE

in almost all cases of interest. We also show experimental results comparing the two
algorithms. From these experiments we see that COMPARE-Sensitive runs at least
twice as fast as COMPARE, in almost all cases of interest. Moreover, the new algorithm
can easily be converted to work in an on-line setting, just like COMPARE. In addition to
the new algorithm, we give a minor correction to the COMPARE algorithm (Figure 1).

3.1 COMPARE-Sensitive Algorithm

Suppose we are asked to compare two strings x, y with V -forms

x = x0Lxx1Lxx2 · · ·xj−1Lxxj,

y = y0Lyy1Lyy2 · · ·yk−1Lyyk.

In this representation we can “most of the time” determine the order simply by
applying conditions (C1) and (C2) of Lemma 3 to Lx and Ly: if one maximum is
greater than the other, or if the maxima are equal but have different frequencies of
occurrences, then we are done. The COMPARE-Sensitive Algorithm (Figure 2) uses
this observation to compare strings x and y. The first few lines of the algorithm show
the very simple preprocessing required for each string x,y to check for conditions
(C1) and (C2).

procedure COMPARE-Sensitive(x,y, δ)
SCAN(x, |x|;Lx, occx)
SCAN(y, |y|;Ly , occy)
if Lx 6= Ly then

δ ← SIGN(Lx − Ly)
else

if occx 6= occy then

δ ← SIGN(occx− occy)
else

COMPARE-C3(x,y,Lx, δ)

Figure 2. Apply conditions (C1) and (C2) to x and y: for n ≫ σ, almost always Lx = Ly , while
at the same time usually occx 6= occy, so that the routine COMPARE-C3 does not need to be executed
at all.

procedure SCAN(x, |x|;Lx, occx)
Lx ← x[1]; occx← 1
for i← 2 to |x| do

if x[i] ≮ Lx then

if x[i] = Lx then

occx← occx+ 1
else

Lx ← x[i]; occx← 1

Figure 3. Scan traverses the string x to compute the maximum Lx and its frequency occx.
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procedure COMPARE-C3(x,y,Lx, δ)
i← 1; j ← 1; δ ← 0
while j ≤ |y| and i ≤ |x| and x[i] = y[j] do

i← i+ 1; j ← j + 1

if i > |x| or j > |y| then
if |x| = |y| then

δ ← 0; return

if i > |x| then

δ ← −1; return

δ ← 1; return

if x[i] = Lx then δ ← −1; return ⊲ s(xh) = ε

if y[j] = Lx then δ ← 1; return ⊲ s(yh) = ε

while true do

while j ≤ |y| and x[i] > y[j] and y[j] < Lx do

j ← j + 1

if y[j] = Lx or j > |y| then ⊲ Lx = Ly and y[j] ≯ Lx
δ ← 1; return

else

i← i+ 1

while i ≤ |x| and x[i] < y[j] and x[i] < Lx do

i← i+ 1

if x[i] = Lx or i > |x| then ⊲ x[i] ≯ Lx
δ ← −1; return

else

j ← j + 1

Figure 4. Comparing x of length m and y of length n in V -order, when Lx = Ly and occx = occy:
x ≺,=,≻ y according as δ = −1, 0, 1.

However if conditions (C1) and (C2) of Lemma 3 fail, we need to invoke the
COMPARE algorithm to check for condition (C3). A potential disadvantage in invoking
COMPARE is that it must rescan at least one of the strings in its full length. We
propose a modification to the COMPARE algorithm, the COMPARE-C3 algorithm, which
takes advantage of the values Lx = Ly computed by SCAN to avoid this rescanning.
COMPARE-C3 is motivated by the following observations:

Observation 1 Recall that the condition (C3) of Lemma 3 first eliminates a common
prefix (up to the beginning of substrings xh and yh) in strings x and y, and then
compares only the substrings xh and yh containing the first mismatching letter in x

and y while scanning the strings from left to right. Therefore, instead of comparing
the entire strings x and y as in COMPARE, it suffices to first identify the substrings xh

and yh and only compare them.

Observation 2 Observe that the substring xh (yh) is either followed by the empty
string (when xh (yh) is a suffix of x (y)), or Lx = Ly (when xh (yh) is not a suffix
of x (y)). We use this observation to identify the end of substring xh (yh) in x (y).

Similar to COMPARE, the first while loop in COMPARE-C3 identifies a common prefix
(alternatively the first mismatching position in strings x and y from the left). Note
that this prefix might include a common prefix of substrings xh and yh identified
under condition (C3) of Lemma 3. We denote the suffixes of xh and yh without
a common prefix by s(xh) and s(yh), respectively. Then the second while loop in
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COMPARE-C3, unlike COMPARE, only compares the suffixes s(xh) and s(yh), to compare
strings x and y. Therefore, it terminates when it encounters Lx or ε, which marks
the end of substrings xh and yh as seen in Observation 2. The two if statements
before the second while loop ensure that COMPARE-C3 returns correct results when
either s(xh) = ε or s(yh) = ε. For completeness we give the pseudocode for SCAN 2

(Figure 3), which is used in COMPARE-Sensitive to scan the string x (y) to compute
the maximum Lx (Ly) and its frequency occx (occy).

If the conditions (C1) and (C2) of Lemma 3 do not hold, then we need to exe-
cute COMPARE-C3 to compare strings x and y. For such strings, scanning them and
computing Lx (Ly) and occx (occy) might result in an overhead. Therefore, such
strings are possibly one of the worst case input strings for which the time required by
COMPARE-Sensitive is the maximum. Therefore, we refer to them as “bad strings”.

Lemma 3 The probability of choosing a pair of bad strings x and y of length n from
an alphabet of size σ is

σ
∑

Lx=1

n
∑

k=1

(

(

n

k

)

(Lx − 1)n−k

)2

σ2n
, (1)

where Lx is the maximum letter in x, and k = occx is the number of times Lx occurs
in x.

Proof.

For a given Lx and k the number of strings of length n is computed as follows:

1. the k positions where Lx occurs can be chosen in
(

n

k

)

ways;
2. the remaining n− k positions can be chosen in (Lx − 1)n−k ways.

Then for fixed values of Lx and k the total number of ways to choose x is
(

n

k

)

(Lx − 1)n−k.

Since we choose y independently of x, and Lx = Ly, the number of ways in which

we can choose y for fixed values of Lx and k is also
(

n

k

)

(Lx − 1)n−k.
Therefore the total number of ways to choose a pair of bad strings x and y for fixed
values of Lx and k is

((

n

k

)

(Lx − 1)n−k

)2

.

Since Lx ∈ [1..σ] and k ∈ [1..n], the total number of ways to choose a pair of bad
strings x and y is

σ
∑

Lx=1

n
∑

k=1

((

n

k

)

(Lx − 1)n−k

)2

.

The total number of ways in which we can choose two strings over an alphabet of size
σ is σ2n. Therefore the probability of choosing a bad pair of strings x and y is

2 For reasons of efficiency, the implementation of SCAN does not necessarily conform to the pseu-
docode given in (Figure 3).
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σ
∑

Lx=1

n
∑

k=1

(

(

n

k

)

(Lx − 1)n−k

)2

σ2n
.

To simplify the computation in Lemma 3, we assume that |x| = |y| = n; that is,
the strings to be compared are of the same lengths. However, Lemma 3 can easily be
extended where |x| 6= |y|.

We computed the probabilities for the length of strings (n) ranging from 1 to
100 over alphabets of size σ = 2, 4, 20, and plotted graphs (see Appendix A) for the
same. From the graphs we see that the probability of choosing a pair of bad strings
x and y reaches a maximum value, and then drops significantly and stabilities to
a constant value as n approaches 100. Since for all practical purposes the strings of
interest are very large (≫ 100), we conclude that COMPARE-Sensitive will run faster
than COMPARE in all cases of interest.

3.2 Experimental results

In this section, we show the results of the experiments conducted to compare the
performance of COMPARE and COMPARE-Sensitive on different classes of bad strings.
As expected from the Lemma 3, COMPARE-Sensitive runs much faster than COMPARE.
In fact from the experimental results we see that COMPARE-Sensitive is twice as fast
as COMPARE.

The experiments were conducted on a Windows 10 64-bit Operating System,
with Intel(R) Xeon(R) CPU E31245 v3 @ 3.40GHz x64-based processor, having an
installed memory (RAM) of 32.0 GB. The code was implemented in the C++ language
using Visual Studio 2017.

Strings x in the sample pair of strings (x,y) were chosen from the sample strings
found at:

http://www.cas.mcmaster.ca/ bill/strings/,

and the string y was generated as a permutation of x. Since y is a permutation of
x, the strings x and y fail conditions (C1) and (C2) of Lemma 3. Therefore each
pair (x,y) is a pair of bad strings. In particular, strings x were chosen from the
sample DNA, protein, random (σ = 2, σ = 21) and highly periodic strings available
at the above URL. The lengths of the strings in a pair range from n = 10K to
50K. To minimize the effects of external factors (for example delays caused due
to interrupts etc.) on the experiments, we executed the algorithms COMPARE and
COMPARE-Sensitive on the same pair of strings ten times, and used the minimum
time taken by each of them. In addition to this, we take the average of the time taken
for 100 different pairs, to get the final data point for comparison in the graphs.

Let Tc and Tcs be the slopes of the COMPARE and COMPARE Sensitive lines seen
in the graphs. Let

α =
Tc

Tcs

.

Then the α values computed from the graphs for DNA strings (see Figure 5),
random strings over alphabets 2 and twenty one (see Figures 6, 7), protein strings
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(see Figure 8), and highly periodic strings (see Figure 9) are: αDNA = 2.023, αrand2 =
2.031, αrand21 = 1.984, αprotein = 1.954, and αhp = 2.009, respectively. These α values
suggest that COMPARE-Sensitive is twice as fast as COMPARE. Extrapolating for a
value of n = 1, 000, 000, 000 (1 billion) for a DNA string, the time taken by COMPARE

is 24.44 10−3 secs while that for COMPARE-Sensitive is 12.06 10−3 secs. Moreover, it
is seen that the size σ of the alphabet does not have any discernible affect on α.
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Figure 5. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from DNA strings of length 2K to 50K and σ = 4, and y is a permutation
of x.
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Figure 6. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from random strings of length 2K to 50K and σ = 2, and y is a permutation
of x.
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Figure 7. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from random strings of length 2K to 50K and σ = 21, and y is a permutation
of x.
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Figure 8. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from protein strings of length 2K to 50K and σ = 20, and y is a permutation
of x.
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Figure 9. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y) where
x is randomly selected from highly periodic strings of length 2K to 50K and σ = 2, and y is a
permutation of x.
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A Figures for experiments conducted to compute
probabilities of choosing a pair of bad strings of length n

from an alphabet of size σ.
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Figure 10. Probabilities computed for strings over alphabet of size σ = 2, and length n ∈ [1..100]
using Equation (1).
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Figure 11. Probabilities computed for strings over alphabet of size σ = 4, and length n ∈ [1..100]
using Equation (1).



Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 49

n

0 10 20 30 40 50 60 70 80 90 100

P
ro
b
a
b
il
it
y

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 12. Probabilities computed for strings over alphabet of size σ = 20, and length n ∈ [1..100]
using Equation (1).


